THE SURVIVOR Volume 2 By Kurt Saxon

JUST A FEW OF THE ARTICLES IN VOLUME 2

- Complete Course in Hydroponics
- Portable Shop
- Survival Kits
- Tie a Hangman's Noose
- Radio Control
- Reed Furniture
- Survival Shelter
- Experiments With The Microphone Transmitter Button
- Utility Press
- Reflex Building
- Survival Fishing
- Home-Made Toys
- Science From Chambers Encyclopedia, 1891
- Electroplating Non-Metallic Objects
- Silk Screen Printing
- Dick's Encyclopedia of Formulas and Processes, 1872
- Intruder Detector
- Leather Working
- Animal Traps
- Silk-Screen Printing
- Plus Much, Much More

THE Volume 2
 SURVIVOR
 By Kurt Saxon

Copyright 1977 by Kurt Saxon

A Small Bunsen Burner

From Popular Mechanix 1915

An excellent bunsen buraer for small work can be made as follows: Draw a glass tube to the shape shown, to produce a fine
 hollow point. Mark carefully with a file and break at A and then at B. Bore or burn a hole in a cork to fit the tube. Cut a V -shaped notch in the side of the cork extending to the hole. Bend the lower tube at right angles and insert it in a wood block, previously slotted with a saw to make a snug fit. A little glue will hold the glass tubes, cork and base together. The air mixture can be adjusted by sliding the upper tube before the glue sets.

Making Bubbles Carry Faper Figures
Popular Mechanics 1925
To make soap bubbles that will carry small paper figures is an interesting pastime. A solution made of soap shayings and water, with glycerin in the proportion of one-third, is used. The solution is placed in a bottle and shaken up unitil the soap has dissolved, and is allowed to stand until it settles, the clear liquid at the top being used for blowing the babbles.
The figures are cut from tissue paper and a short piece of thread is attached through the top. The other end of the thread is knotted through a disk of very thin paper. It is best to blow the bubble through a.glass tube, and when a bubble of the desired size has been formed, place the paper disk on one side; this will at once slip to the bottom. Shake the bubble off and it starts on its aerial journey carrying the paper figure.-S. Leonard Bastin, Bournemouth, Eng.

THE MEANING OF ATLAN

By KURT SAXON

Legend has it that there was once a great civilization called Atlantis. It is said that Atlantis had a highly developed technology with everything we have and more. Aside from airships, some even have said that they had links with civilizations in outer space.

The story goes on that some great cataciysm destroyed Atiantis. Some say it was from great upheavals in the earth's surface. Others say it was wiped out by atomic war. The great majority of the people died of starvation, riots and wars fought over what was left of civilization.

The survivors, most of whom were highly trained technologists, lost theit great cities, industries and technology. This left them heipless and most of them reverted to savagery. From greatness they were reduced to small bands of hunters and gatherers of roots and berries.

Although Atlantis may have been a myth, the further back archaeologists go, the higher the skills acquired by the ancients have been discovered. The cave men, chipping crude Ilint axes and arrowheads may have been the degenerate descendants of men with knowledge and powers we can only dream of. A good example of this is the degenerate descendants of the Mayas, living like Jungle animals in parts of South America today, their ancestors a once proud race, higher in science and mathematics than that of Europe of the same period.

One might wonder how such giants of science and technology as the Atlans could degenerate into the savages archeologists call the "first men".

Ur of the Chaldees, Sumer, Babylon. Egypt, Rome, etc., also rose and then fell with a crash that lelt their survivors in various states of savagery. They were not as primitive as the cave men since their technologies were more simple and easier understood by the survivors. Even so, the fall of Rome produced a thousand years of what we know as the Dark Ages. Tenth century farmers plowed and planted in the great Roman Coliseum, wondering at the lush harvests. They didn't even remember that that plot of land had been fertilized by the blood of thousands of gladiators and animals slain in the great arena.

Years ago, I was fascinated by how civilizations rose, provided comforts for the populace, erected great monuments to skill and industry and then fell. If they had a system which worked for them, why didn't they go on to aver higher levels of refinement? Why did such powerful nation states as Babylon, Greece and Rome fall to such illiterate savages as the Scythians, early Romans and Huns? Imagine New York City of 1880 being taken over by the Sloux. (I think they could do it today).

That these once great civilizations did degenerate to the point where they could be overrun by primitive barbarians is a fact. Then, after each fall, the survivors reverted to the most basic of the remaining wisdom, requiring the minimum of knowledge and skill.

The survivors were usually of the peasant class who held on to their poor plots of ground and scratched out a bare living from the soil. Warilke barbarians would descend on such peasant groups and enslave them. Requiring more food for their soldiers, for further conquests, they actually contributed to the growth of agriculture.

Live Bait Used in Fishing

From Popular Mechanies 1915

With the simple device jllustrated, no fisherman need worry over running short of bait or even regarding the usual repeated baiting of the hook. A small clear-glass bottle should be procured, and several hooks wired to it about the neeke, or at each end, as desired or found best after several trials. After filling the bottle with water a live minnow is placed in it, and the bottie is sealed with a cork, which is notched around the edge to permit water to enter or leave the bottle without losing the bait. If live grasshoppers,

The Bait la Xept Alive and Uahargese is a Bettla
or similar bait, is desired the cotk can be used unnotched to form a watertight atopper. As illuminated bait for right fishing, several fircflies can be put in the bottle.

Shield for Heater in Chick Brooding House
From Popular Mechanix 1919
A shield of sheet motal, having π small heater in the center of it, provides a good means of warming a brooding house for small chicks. The heat is radiated from the shield and the efticks remain at a distance, secking a comfortable temperature. The device may be mide easily by
 cutting a sheet of meral to form a cone-shaped hood and fitting it with a vent passing eat through the roof of the house.

Gradually, warrior dominated peasants rebuilt civilizations, offen far inferiot to the previous civilization. Of course, in the beginning of such civilizations, pnly the strongest and hardfest survived.

But as agricultural methods improved, more people were fed who would have otherwise starved and faken their weaker characteristics out of the gene pool. So unfortunately, this surplus was also the means of preserving weaklings and defectives who should not have survived. Further, wuch weaklings were enslaved by the ruling classes, and when not being needed for agriculture, triffed to the cifies and worked at unskilled jobs or lived on the dole or by begging.

Of course, there were intelligent and skilled arilsans and Iradesmen in the cilies. But the bulk of the population gradually was made up of rejects from agriculture.

The avarige Roman was jobless, a Prolstarian, living on government handouts supplied largely by the Legionaires bringing back grain and other booty from foreign colonies and conquests.

Today, the Proletarlat are known as unskilled workers or welfare recipients.
Every culfure, as it developed and assumed greatness, nurtured a breed of politiciana catering to the useless. Roman politicians financed, 1hrough exhorbitant laxas, and even their own wealth, the buliding of great coliseums, where were held chariot races, gladiatorlal combats and various forms of entertainments such as feeding social dissidents, such as Christians to lions. They also had millions of animals collected from all over the then known world. These animals were slaughtered for the enjoyment of the simpie-minded Proletarians in the atands. The Romans made exilinct literally dozens of animal species.

The greater the show and the more degenerate the acts, the more vates went to the spansoring Roman pollician. Fhus, the most degenerate and wasteful politicians gained the most power over the state and its people. "Brend and
Circuses" was the method of not ority placating an idie and riotous population, but in perpotuating a Senate nearly as corrupt as our own.

The lack of ussful work, coupled with the low standards of social acceptability turned a once great nation into a herd of Irresponsible, weak-wiliod, feeble-minded degenerates which were the greatest contributori to the nation's births. In fact, the term "Proletariat" also meant "child bearers".

Whan the Roman leglons resched the furthest areas from which they could Ioot food from their subject colonies, starvation and social collapse set in.

Thus, Rome fell. Its artiaans and intallectuals died out along with its degenerate Proletarlat, Then came the Dark Ages ruled by iliterate princes and a cortupt priesthood, both groups of which destroyad as many of the men of reason as they could find, mainly though inquisitions.

The ilitterate princes reped the people through rulnous taxation to ilght useless wars with each other and in their stupld Crusades. The Church not only sanctioned these practices, but kept hidden all the knowledge they had collected in the monasteries, which, had they released it, woutd have done immeasurable good. But their aim was religious domination, not soclal advancement. Further, the Church chose for Its cellbate priesthood, the most intelligent youth. whose genes might otherwise have gone to improve the race.

Today, the Church has lost most of its power, although it does its best to encourage the breeding of the poorest and most useless and degenerate of its followers. Happlly, though, its loss of intluence spares more intelligent men who would otherwise rob our gene pool by cellbacy.

In its placs, homosexualiy is laking over in the free world, initiating into a Iffe of virtual celibacy many of the best specimens of our youth. Its spread insures the robbing of our national gene pool by limiting future generalions to those less atiractive, intelligent, and consequently less able to contribute to society.

In Its lurn, our civilization rose from virtual barbarism and has achieved the highest technology in known history. Our prevlously vast aurpluses of food and fuel have led to a surplus population made up largely of the useless and degenerate.

Windmill for

 Light PowerFrom Popular Mechanics 1915
The windmill shown in the sketch is one that will always face the wind, and it never requires adjastment. It

Fiuners hiverit to the Arma
consists of a verrical ahaft, A, provided with a number of arms, B, on which are linged square sails, C. These sails are preferably made of wood frames coyered with callvas. They are provided with linges, D, attached to the ends of the arme in such a way that they offer reaistance to the wind ons one side of the whicel, while they muve edgewise against the wind on the other side, as shown. The shaft of the mill can either be run in bearings set on an upright post, the lower end of the shaft turning on a conical bearing. or collars may be used on the bearings to keep it in position. The power can be transmitted with gears or by a flat belt over a pulley.

A wheel of this kind is not adapted for high speed, but direct-connectrd to a pump or other slow-working machimery will prove very efficient

SCIENTIFIC AMERICAN CYCLOHED IA
 $$
1891
$$

Cendlen, Adanactione Canallea,- 100 Ib . of mutton tallove; 24 th, of camphor ; beeswer. 4 tb, ; 4 lum, 2 th .

Aromatio Cendiex.-For perfuminy apari. menta-Melt balasm of Peru and carmphor with the material ut Which the candles ure to be mafle: or the wicks rasy be steuped in some aromatic tincture and dried.
Cable, Twoted or Spfril Crnulles, These are moulded in the ordinwiry way, and then turmed by meana of \& special hathe; ar they raay be chest in rified mouldis, from whioh, on vooflng.

Instead of the paradise a controlled population could enjoy indefinitely, our technology is only contributing to the breeding of half-wits, murderous psychotics. Liberais and other perverts who are bringing down our civilization by the year. Adding to this are the changing weather patterns, which will only worsen in our time, plus a growing lack of resources, causing the mass starvation of literally billions of people.

Woridwide collapse of clyliization is imminent.
it won't happen ovemight, but in country by country and area by areă, industry by industry, and so on. it could hil you tomorrow. So whether you are an auto mechanic, steelworker or nuclear physicist. you have only a relatively short time in your present occupation. Your survival is up to you.

Years egol saw the same factors appearing in our society which had led to the collapse of past civilizations. I particularly noted the specialization of the educated, on the one hand, and the frivalous interests and idleness of the less able on the other hand.

I recalled the tales of the fall of Atiantisand 146 resultant barbarism. Knowing that the Ignorant masses were doomed and the more able were locked Into an imterdependeni technology, I searched for answers, as did many of my generation. I became a joiner of cults and causes, giving them ali my all. Eut almost without exception, every faction proved to be a dead end and led by saif-sarving phonies or psychotic fanatics.

Again recalling the fall of Atiantis, I began preparing a method by which I could provide knowledge to inteligent survivors of the future collapse. My main idea was that the biggest problem facing the survivors would be the lack of knowledge which they could apply to their own circumstances.

As If was, the intelligent survivor could only hope to acrounge sustenance from the ruins. Such sorounging would prove futle in only a short lime after the tall.

I hit on the ides of collecting all the practioal knowiedge of the 19th Century, as it was relatively simple and easy to apply. Aiso, it would insure a standard of Ifving tar from primitive and a springboard to the technology we have today. Further, it is far easier for the layman to understand than modern texts on science and cratis.

Back then, creative and knowledgeable people wrote their instructions for use by anyone inferessied, whether he had any background in the field or not. Today, books on science and technology are written mainly to those who are expected to be already prefty well grounded on a particular subject.

Also, they wrote in plain language, not showing off their expertise in terms pnly their fellow experts could understand, as is often done today. Nineteenth Century terms unfamiliar to us were not used io show off, or to conceal knowlechge from the uninitiated. They were just the lerms poople used in those days. Most such old-fashioned lerms have been updated in GRANDDAD's WONDERFUL BOOK OF CHEMISTRY.

For years l've been collecting such knowledge and am now, and in the near future. hoping to assemble all the practical knowledge applicable to the needs of future Survivalisis.

So Atian Formularies is simply a figurative reference to the real or mythological Atlantis and a remedy for people in their comparative situation.

Affer the crash of world civilization there will be chaos and universal suffaring and death. Yet, unlike the original Atlans wa can revert to a level of technology the intelligent layman can implement.

The only savages will be those who ought not to havo been born in the first piace. THE POOR MAN'S JAMES BOND wili help Survivalists deal with such doomed predators.

GRANDDAD'S WONDERFUL BOOK OF CHEMISTAY will enable you to make the ohemical compounds you will need in your dally struggles.
MEDICINES LIKE GRANDDAD USED TO MAKE will help keep you well when your modern doctor loses his contact with the pharmaceutical companies. which will soon be out of existance. (Now part oZ Chemistry)

SURVIVAL FOODS, PLUS will help you to prepare and preserve the jood you will need. (Now fart $a=$ Survivor VoI. I)

THE SURVIVCR
T0)

Lhey ace wound ant.
Cervipharse Canalkin-Melt aver a wacer bach 50 parta of atearic scid and 5 to sts parta of bleached beeswnx Let it remain over the Weter bath for one-hulf hosar, hat do nors at is or agitabe. Ther allow che flubd to coul, until thery les sigight fils un the surtace, Pour tae matosintar moulds, which bave becs beaced to the fame temperatury, but mwuld stirring.

To Cout Tavkue Candiea with a Biand Sutatanes which utily wot Cruck. Dip the crndles smonesaively inta the rollowing thres mistransel I. \& parta whiles resiof bs partas gromi kallame; fiperts camphor: 20 parts siantio neid; 14 parts dammner rain. Melt.
3. 4 parta miliow : 6 parts cambpor; 30 parts atearte sodd : 4 purti walte plteh f is perta dausposer feain. Meft toigether.

8 so parts ecanris astdi i parte wlaite was; 10 purte fallow $\frac{1}{6}$'s perta comphar. Mell.

Colored Casndted-Amnng the nnjoring mat. fers rated for aundles are the Loilowlag?

Blast Prumpian blue, indiga, atramerine. eopper maiphato, aniline blae; Red $=$ Carmine. Arosil vood, alfoget rook, falgisen, verfailion wilipe rouls Tellow: Garobogr, bhrome yelbow, BAphthaine yeuidow, Grocs c Mixime of
 cure of blue mad red combari. Neskral Tishs: Oxiden of irpa, Follow ooher, Frenktoet blabk.
 blaoks. In under to ayg perntid candios wiln su soiline bege, nibab ws minmoth, she dye is arst diseivel io stestion, and a litie of the kr. gaifang stamaks in addod to ibe paritha.
 oolored bisok: 1 . Abacardinm Metapo - Mar vin. or whatover tuagarisal ia doplred for cher
 of ite wactht of the cliopred frisit of A nosor afvin obguiardale, Chpalles pres pared ia inle way are oqually bisuk througimoty and Fledd oo irritatis. Fepors wheo tmarat.

- Aniling Rotbou.-The macerial in be dyed Ls banped A Per ongrget nbove ine melsiag vosist with i ks of of niarontro fat salor (peourared by Thentaws, Wlasahart dice of Rtrasualal. Parania

 persd ars mint to bs of a somber hue Blarouplioub End of i let binotr mppearsacs.

Diaphane Capdlos.-Mnle torred her In a siva in
 tajlov ind il th momerle sab. The acearie ach
 prodienta.
Erpabinta
Hosme Made Chaulfas-Muny of our renders in the rarsi dintrions wis find chat casidea can be
 bepwrex with the ballow in give durabuliby gu the gasille, and to preveus ita rumalng. Tha Ithbtroci i fallow chadle ont bo impriven is ofocoen and brillismeg by usinif small wiclas Fhlal tave bean dipped in opirit of sarpeocine and thovougrily driped.

Ryolence Drantas-witaon and rajton pres para thove by imoorporsticy ladiae and n inveit para buows oy poporporth the cande cancerlal, ind thos oorinder thas durfag ithe evombuscioo tbe iorlioesand aulplur arn both elinainetnd ia the froe state, accovilniz to the dequation:
$4 \mathrm{BI} \times \mathrm{BO}_{4}-\mathrm{I}_{4}+6+3 \mathrm{H}_{2} \mathrm{O}$
Jari Carifles.-1. Dinalves 1 lb , alua atad 1 jb salbjeter in it gt water over is noto fre: 13 ib isno are added. The oftrojar mupt he repe up
 bot jesve on the fire troo lemg, en the lerd in tingte to ke sinooloned. It is sala thes these

 Hmail plexies put in a pot with is Ib. slum sad Y Ih esaltpeter iprevionaly Alammived in int Fater. orer \& alow ifel, beir goredantly orer
 to shmmer until the stanm beathes to rise, thrm temove trom the fire, Tbeas chandiea sci biarcer chan thise msole crom tallow
 Throw quickitmo in meltad mattum faret: tho Hme will finl to the hottom, arid narry aling With it all the alrt of the suec, su us to lense in植 puryand as flue as the wax lame. Kow, ir bo jourt of the auEt you nix. \& parts of reil wax, You will have a vgry tue, and, to mppescaLce, a renl wan aqnolinz et loest the mirture pould uewor be dincovered, not even it tino mouldiog of winx urnameabs.
 Ife of meraury mixed with max, ind f wiele of bothor inserted therofr. Kecrommended by Mr. Callis for partiai merouriul famigistion.
 curcoil nestl, the upper ortice of whlcls is allrectiod to the dilseesed part.

THE SURVIYOR volumes will take care of the dally problems 19 th Century people handled with such ingenuity.
In short, my books will give you a level of technology both interesting and praclical, usetul even today, You need not fear death from want, ignorance ot from human predators.
I have been told, and agree, that had I omitted the grimmer aspecis of the coming chaos I could reach more people. Sailing only nostalgia and 19th Century handicratts I could appeal to far more buyers and make more money.

But that approach would have had me catering to hobbiests or nostalgia buffs. Nm telling it like it is. I'm not interested in hobblests or nostalgia buffs. I'm aiming my material at the strong-minded individualist, the only type who can, and should, survive.

I have no political solutions or aspirations. My only admonition to my readers insofar as a future sysiem is to not lel another Atlantis happen again. My paramount advice fo future generations would be to limil their offspring to only that amount they can provide for and manage with the love and individual care which develops strong citizens.

No social dependent should be allowed to eniarge his dependency, That is, the individual who cannot provide for himsell should not be allowed to repataces.

If this simple rule had been followed there would never have been a surptus population. Hoards of tertile idiots and genetic delectives procreating like unmanaged livestock would not have toppled nearly every clvilization I've mantioned.
It is too fate for today's maiority to ascape the fate of Allantis. But with individual effort and stern measures of population control., Paradise on Earth could be a reality. The next generation, descended from the surviving remnants of this one, could Inaugurate the next step in the evolution of human olvilization. Then our surpiuses could go, not to the upkeep of human vermin, but to the provision of land and well-equipped homes for all, and then even Starships.

Throwimg

Stick

By

CHARLES and BERTRAM BROWNOLD

A MONG the $\begin{gathered}\text { Msapoos of primitive man, }\end{gathered}$ the thruwing atick is one of the delmplent to make abd use, asd it therefore has all the elements of as entertataing outdoor targot camo, provided apesce is avallable and mitricient precsuticms tan be takes agatint aceldental infary to enloolcers.

Prebtataric mas le belleved to have ased the firrowtog tetick, and it las bees foumid among tbe zativen of the upper hmeson
regione of South Americs, in Aurcratia, in Mexdoe, and emoor our own Bouthorestern Todlase. The model inturated here, however, is biased upia su Wiakimo design, atill popular in the Arctic. The throwing stick hav remalned in use emosg the Beidmus for cwaturise because much of their hunting in dome fa trall ksyares Alded by the atick, an Eakimo ons huri a spear with great toron trom se ritting powillon without endangering his equalibrium erta when kandicapped by roush water, flowting kee, high minda, and extreme cold. Ah flont, vually an tnilated bladder, Is attacbed to tha spoar by a right llio. The float guldes the hunter to the fintpaled grome and also hinders its escapes.

As moditied for use in a terget game, the Darowing atick if amply a K_{s} " thick plect of wood ebout 19^{n} long and 8^{*} 鱼 widich at

Stromne chandite.-Tiese art made of the acearine of utenicic seld obtained from tallow, In the aanue way ws pther monld candles. TByy Thrnisk a a aperior Lighte end burn a bueg time: tbrte or four ycarf siec it what a khneral prac. Lies for the mandaciurer, to sad a litule atseutous acla twhite argeatel to the slearine to provent it arystelliztur, nad thile apolitar the apposinmec of the cuivder ; but owning to the
 ea by the prose, is bas been disoontinued by all the respectablo homes.
Tailno Cadnikue. To miske band tallow ean. dies, use a miature of metion tallow, 10 or:
 ${ }^{0} \mathrm{O}_{2}$
Thilowa Cluudks, to Buwden,-D)p Arss in thas followhas: ptearie ned, bi, parts trilow, 46 perte ; canupbor, a purcot: whioe rontm 2 parta: gum dammar, 1 part when hand dip lo other molution, whath oonelists of of perts itea ra acth; tallow, यi parta; © sumphor, it parts: white wax, z pirta: kum diwnues, I pirt, Poy a tinal ousting dip in wi parta steafic uctd, parbuel hatiow ; samphor, 8 perta; stive was. partin

 omatargots. Dtseolve tho atund ia water. Lhen put in the pulow, suc star untu bochare meit. ed sosecther, then run in meulds. Thle part of

 by cusaing ayee ube difoks, one of wheth shabl
 tha hottum of the camale) and the othor Suinnst cho boctom poipia of the mouide. The and of the twitaied whole ta thateued to the pesick on the top of the mouta, nud le drewn by B piove of booked vire through eacs romud in aucocsulua, lixyluge it lrop oilaith the bitione painta of the mould. thit lerine sre vevereal thave by the botbim aich fuxive carcuagh
 iant ear sted to tbe vpper ok ill the melced tallow is blean puorsp jnis tho unouldes sad allownd in pend atrot nis hours in a scol pluze aftor whish she hotfogs sicia mhist pe
 drawn fram the taudide the tailow should coi be hanted muol mory than la becheary to arelt it.
IVan Gandiln - Thoes arg made sibher by pouriog motied max over the whe of by agplying the wax to as tort ath we piti the natis. and nilerimpt roling it euodra, with a rolau
 polinend walnut wood, Tageg ar the cecut and
 aily simdevted over cinterne of aselleal was. and the whole sry strang ypuas ak bus bowp anpipided frow the twith.
haie lina tran fonalfan-its callyw, purifed ly torowlas, powier ryak surab 10 ow wob melued, adत? part uf ras to 56 sart twiver. This makce ubequtiful candio roumblag wus. Puthot pult peter ajod /o to of hime in 2qtol puler. Dip the wicke in thia, This prevessu ban tellow from ruationg adid sile nopeoves we lisbec.
Loide Wiem, Pregariag -TO impertu Ibe Hatht, nod prowsat the tallo $\%$ from rumime. uso flon fodinwisy prepalafion: 1. Eteep tor Wiolo for a artation of lime sater in phash caitjecter has boen matden in the proportiog of
 she wluke before usiak.
2 Borar a is, calcium chloride, aultpeter and chioride ammoniuin, bues 1,6 os: slboulve in 46 गt- water, and fller. Bhate zbo Winss in this moltutheth, zbep des.
Candles. Scented or Aromalle. Then are preparod by fatroduefog a very amill quanatis of any appropriate aromatic lite the hasuarin (the wax or wich) of which they aro made (thilie it in in the iliguid stave. Caruphor, ghen
 bensoln, balath prom, Care muith be laked bot to overto it, wis thea the cmalien will baris accoky and sive isklo Hght.
Candica wich Enufics Whela-The great obfection to tallow sandles is the frequeat nooles dity for removmg the suuf, or chiurnd wick, Filed risen into the body ot the tlame sod obsoures the lifht If the wick can be expousd to the alr, it $\pi / 1 i$ be entirely oposumed. I This is tho air, in compodte cendfes by pluting the cortton lutu \& Gat wivk, wbleth in to buras curyes orer Rometmen a wery tioe wire fial lanlubjed in the wick, which in uaualy alpped in a totsdon of borar. 2 Thist the wlak whe one utrend ahorter than tho others, wbjek Fill beed

Cut the groave first, aither helf-raund or sceuete. to haldi the light spear. Shape the hondit and bore the capor his oeet, $\mathbf{3}$ in its pattores itase plue ., be blok, Taper afier the glow has set

Sorwal upepn ore asoled for a canpetitive goms.
 wilh a piect of watel whing to hold a unsil spanges, istad for mariling the farget
cse end of esch if fitted a plece of metal tublyg toto which is thruat is amell tived aponge tor maricing the target. These targete can be made 24° ha dismeter from any chapap papar, or else can be prowolesend A tew remple ralon will mip makice coente tuiga excting. Drem Hose or pest boer Lape of 20 and 30 yerde from the terget, and have escb player throw thros mpase trom sach of thane hase for a slagle round. Btepping over the lise is in font or foot faut, 00 score belog allowed for a tool throw, Gcore the bettar mark for a maar thet striket the diviaint lise betwesa two rlige tea the target After els roonde, total the socren to deteruntse the wianer, A differewt ealorsd lak tor sach player will tolp in this by evtomatically isfentifyiay all hits.

Be sure that all playem and ipectations vaind bebind the throwing tine and that no throws are zuade whille apoere art belag retrieved. The spesars are thrown with coasiderable forces, and the metal tipe could cause nevere lafury

THE BICYCLE: Viable Survival Alternative

by Dr. Spoke

Ever sinee the "Enargy Crisis" hegan of scarce paris and fuel reserves on short bicyeles have goined in popularity, but and long trips alike. few people have yet looked into two-wheeled mototiess transport as a viable survival alternative for the bigger crisis to come.
Even after the Fall there are likely to be stretches of unbroken pavement, sidewalks, hardpacked woods trails, abandaned railroad rights of way, bridges, tunnels, and whatnot open to bicycle travel. With an easily portable lightweight or folding bike that can be "broken down", the hardy uraveler can even park ane on borsebsck. mulehack, or- or peopleback, on a wagon or in a boal, over wilderness trails to rideable territory beyoad, along with necessary wrapons and bousehold goods. And any bicycle-even a heavy balloon-tire job-can serve as a weleome adjunct to available motor transport by lessening use

Lest anybody think bicycles are fost glarified kiddie toys, be aware that the Viet Minh and Viet Cong won their wars by manhandling their Peugeots over the Ho Chi Minh trail with up to 500 ponnds of freight apiece: The U.S. Army once supported a bicycle battalion, British paratroop conumandon executed a successful raid on a Nazi heavy-water installation in Norway using foldup bikes, many hig-city police departments sponsor speris bjeçcle patrols in parks and other areas where prowi cars are ineffective, and the "humble" bicycle still outnumbers the automotile in most of the world's countries for transportation, freight hauling and other uses. Bicycles are even used on the largest supertankers for quick hassle-free trips down those huge
the wat shaghis when the fut maite
Sperinasect Clandlos.-R verrapoett, efther mane of Gimblimal Fith bard infice ballow. forms Nary wod emmilica, bot they vill not beae cer-
 minifel portiots.

ACTIOY OF RERPOSOTE OS FKOD
If is wall kroper that kivecote tas hicen applicd to great alarange in thin jrescruation of wood for cogineering 1 arpusen fand a reren
 If its coasulutitg atbuminots enlstariese sal
 lufish or young whod; segoth to its abtivering 4ld nyprapinieung be oxsgee is the porre of the wood, and prevesiting is uetion upirt the sturuly tisnat: third, to 14 Fetomiffirg within the potes of the moyd, whil the cxulidiap luek air acd maistare furth, to is acting ms it pobitive polsor to the lewer forme of animal and vegetabla life, and prolecting the woal sigmine tie atiacks of sill periasisie sbjecte. If is stated that the formidable ravages of the while eat ane prorented by lhe use of thlo gubdance, and that in may be considersed on wolving all thu yrobleths praentad in regird to the piesiseration of nuod under all circumstancos.

The marhed indicenca of fiectats gyent ition
 fovived a priting illoulation it die expentence of the Austrations The resule of Ule
 ho liven fis muse is reluetion of the ralis vill froms ibury-ueven and a half imetien at Intat, to fowtevo ant one-quapier influes to ifis. Firceiumly then diffiruleg, atof to ioho prepuer metiar our fuluring ity forath, na ieypertor of stace fovertg hae lees eppolited by the koverathent, for the jul) pare of pass ont.
Ing biny firther waild of nmoler, mod of te plentire forest zeed in ilflermt Y*rls of the ebuatiy.

ABST1NENCE.-Disease may oft be cured by abotinenco from all food, especially if the disarders have beea procured by luxurious living and repletion. The latter overtazes nature, and it rebels against such treatment. Indigestion, giddiness, headache, mental depression, sce., wre oftes the effects of greediness in meat and drink. Omitting one, two, or three macals, allows the system to rest, to regain strength, and allows the clogged organs to dispose of their burdens. The practico of drog taking to cleanse the shomach, though if may give the needed relief, always weakens the system, while abshizence secures the good result, and yet does no injury.

Said a young gentleman to a distinguished plysician of Pbiladelphia,${ }^{-}$Doctor, what do you do for yourself when you bave headache, or other alight attack Y 'Go without my dinper,' was the reply. 'Well, if that will not do, bow do you proceed then?' 'Go with. out my supper,' was the answer. 'Bur if that does not cure you, what then? *Go without my breakfast We physiclans seldom take medicines oursclves, or use them in our families, for we krow that staroing is better, but we cannot

IContinned on Page
quarter-mile decks!
But eyen the least migratory survivalist will find a bicycle indispensable in his hormestwad or business, Knife sharpeners in England utilize a small gritulstone dutached to a chaingear run off the rear wheel of their machine ta ply their trade, and an eaterprising survivalist could de this with very little effort. He could take additional advantage of fuelless pollutionIree "pedal power" by using a stationary hike to turn a generator for electricity, or even gearing one to a circular saw for woodeutting. With the appropriate gears on a multi-speed bike, the operatot of such equipment needn't even raise a heavy swhall But if it's exercise you want, a biecele on a stand is an ideal way to pass ing winler months or states of siege withont the incanvenience of gaing nutdoors: you can pedal hundreds of miles right in your own living room.

Parts for bicycles are very likely to be available from junkyards, old or abandoned machines, and other sources, even when car and motorcyele parts are not. but it's still a good idea to prepare in advance by gathering up frames, wheels, tires, abies etc. NOW, After the Fall they will be invaluable for barter and a. good bicycle mechanic will be as nuensary to his bome and nommunity as the former, blackamith, and weapons expurt. But even the sankest novice will find bicyele maintenance and rupair are a snap compared ta looking after any motorcyele or car. For starters Id recommend the simple liLler paperhack "Row to Fix Your Birycle ${ }^{-}$by Helen Garvey and Thed White, available for only $\$ 1.00$ at most bike shopsi This litzle gett gives ensy-to-follow picturen and text to help the beginner solve almost any eommon bike repair problem-even in spoking your own wheels.
For do-ft-yourself repair and maintenance of a two wheeder only a few special sools are needied. Bome old Einglish and Ameriean (Schwion) bikes use standardmcasurc tools, hut most all of the newer and imported machines are metric. If you already have a car then you hopefully have a tool kit for it and most of these (sockots and orenches) are perfectly sdaptable for bicyele mork. Get a metrie set if your car is Americau. The only really special hike tools you need buy, unless you intend to set up a shop, are a chain remover tool, a freewheel extractor and a "cotterless crank tool" (all of these are specifically far 5 and 10 speeds), and a tire repair kit. cone wrenches, spoke wrench and punch for most all bikes. A more complete description of these and other tools can be Iound in the Garvey and While book I mentioned above.

With just a little work and ingenuity, every nuember of a household old enough to ride can have his or ber own bike or share the use of ane or more "common" bikes. 1 would even recammend that various typer of bikes be used for different tasks depending on ayailability and rider preferences adulh three-wheelers with carrying baskets for transporting farm produets, toals, weapons, and nther bulky stuff; 5 and 10 speeds for faster travel and longer trips, especially in hilly country; one on three speeds for flatter terrain and shorter Lrips: Landetis Jur groups and even Motocruss bikes and mopeds. "Motocrosses" are bjeycles with reiniorcen, heavy frames buill like dirt motarcycles but withoul the molor, and while heavy and cumbersorte will last practically forever: "moped 8 " are power ed by tiny engines of one hp or so and are just the ticker for Irail riders who find regular bieycies too slow or tiring. They get over 160 mpg when motoring or can be propelled by auxiliary pedals with the engine off. There are several types (Eviropran and Japanese) available in the U.S. and all are fairly expensive ($\$ 400+$) compared to mast ragular bikes, but their potuntial usefulness and simple upkeep leompared to cars and motorcycles) might justify the initial cost, especially when gas is scarce.

Ever a lightwetght 10 -apeed can carry a lot of stuff in frame-mounted baskets of sttached bicycle trailers (manulactured or improvised). Light-welight front and back carriers are also available, the Jim Blackburn tubular aluminum model heing the best, lightest, and costliest. I sincerely recommend puncture-proof Iuben with sturdy tires and steel rims to stand up to rough usage and minimize flats on long trips, because a flat tire is no fun even with a patch kit handy. Good lights and reflectors are also essential, even if you don't plan to travel at night. No bicycle Tight is perfect and most are shablyy and not worth a damn, bui long years of experimenting have seen me improvise i few good ones using six-volt waterproof hunting lanterns. I recently rigged up a dandy unit able to run on either straight batteries of off a lightweight generalor, thius overcoming the drawbacks of either system alone (batteries lose juice when cold and generators conk out when wet). I use a rather exponsive sealed-beam diver's lamp. but an inexpensive six-volt fashlight will suffice quive ficely.

Following is a short bibliography for those who want to look further into bicycles and bicycle history. The publications marked * are especially good for beginners and should he availahle at most bike shops. Prices listed are as of

December, 1976. All other books should be readily available at any good library.
Alderson, Fredenck. Bicycling: A History: Praeger Publications, NY, 1972 "BMX" Soldado Publications, City of Industry, CA, 1974 Book on Motocross Caidin. Martin and Jay Barbree. Bieycles in War, NY Hawthorne Books 1974

Ciuthbertsoa, Tom. Bieycle Tripping; Ten Speed Presta 1972 \$3,95. Alicyding"* Western Publishing Co. NY 1974 \$2 95 . "The Blacycle Book"* Price/Stern/Sloane Pub, Los Angeles $1972 \$ 1.50$. Cosster aod 3 speed Bicycle Repair, Xyxyx Pub. Canoga Park CA. 1972 \$3.95. "How to Fix Your Bicycle ${ }^{*}$ (Helen Garvey 奴 T. White)

Shire Press ISF $\dagger 1971 \$ 1.00$. Humphrey, Clifford C. Bnek to the Bike; 101 Publications (SF) 1972. Sloane, Eugene A. The Complete Book of Bicyaling: Trident Tress NY 1970. Smith, Robt. A. A Social History of the Bicyele: Arnerican Heritage Press. Woodlorde. John. The Stery of the Bicycle: Universe Books, NY 1970 .
(Coutinued trom Page make our patients believe it.'

Hippocrates (the father of medicine) said wisely, that if a man eats sparingly and drinks little, he is nearly certain of bringing no disease upon himself, and that a moderate supply of food nourishes the body best. The quantity of food which nature really requires for her support is small, and he that eats and drinks moderately at each meal, stands fair to enjoy sprigbtliness, vivacity, and freedom of spirits. Bodies govemed by temperance and regularity are rarely hurt by melancholy, or any other affection of the mind. To have a clear head we must have a clean stomach ; for this Is the grand reservole in which the food is first deposited, and thence lts nutritive power in distributed throughout all parts of the body.

ACETOUS CATAPLASM, or POULTICE.-This is made with vinegar and bran only, or with the addition of oatmena, or bread erumbs. It is a simple poultice, but very aseful for spraing and bruises. As it becomes dry. it should be moistense with vinegar.
EOLIAN HARP, To Manufacture an-Let a box be made of thin deal, the length to correspond exactly to the breadth of the window in which it is to be placed, Give ioches in depth, and siz in width. Glue on it at the extremities of the top two pieces of oak about balf an Inch high and a quarter of an inch thick, to serve as bridgea for the strings, and within-side of each end glue two pieces of beech, abour an inch square, end of length equal to the width of the box, which is to bold the pegs. Into one of these bridges fix as many pegs (like those of a violin) as there are to be strings, and into the other fasten as many small brass pins, to which wtach one end of the strings. Then string the instrument with first-fiddie strings, fixing one end of them and twisting the other round the opposite peg. These strings, which should not be drawn tight, must be tuned in unison.
To procure a proper passage for the wind, a thin board, supported by four pegs, is placed over the strings at about three inches distant from the soundiag board. Place the instrument in the window partly open ; and, to Increase the force of the current of air, open the

Making T-Squares
From Popular
Mechanix 1919

THE molking of a zingle article of any lind present : a dintinct pribllem in itsell, but the prodacticn of : large cuntrier of the rame article mu-T be dine ie a different way, if etliciency and anformily is the prodest areder able puatines. Tinsimg. Gor iateznce, the makirg of a large number of Tivjuates the mileriab is nat minde wp in the -ame manner an for one. Whore a numbler of there inverments was required, they were made as followns with mil odier equipment than bevelo tools and a lamif saw. The equares were made of :172bogany haring loots rock ando blale edged with maple. The harbe were fadened to the stock with ave γ_{3}-its. hutton-heud screws.

The maceris) for the fieate and the

Dimenakin tor s T-Syudit of Whait in Matrlber wite tu he Hale io Datiowe
Dlaces was gland up and firished to the sizes given at A and B. The material was eut to gavge lines on the hand saw, the blades being a scant $\frac{1 / 8}{}$ it. in thicknoss, and the srocks, \$s in. Two of tach were cut from cach prepared plece, first from pare fide asst theil fram

 Que Jid tor kutabieg
the other. They were then faced uff on buth sides, and two mere pieces cut. With circeful cutting. six blades and six storked were made from each piece. Thiz Teft one side of each piece to be planed aiter sawings The holen for the serews were drilled wath as small hand drill.
For assemblinge a jig was made by mailing a pierc of atock, is in. thick, 10 a straight drawing hoard. One end of the piece was planed straight and true before it was fastened in place Stups were provided to lacase the stork and hold the thade square with it. Wedges were weed to keep both stock and blade rgainst the stops while the serews were insertod. The wedget vere nce driven with a barmmer, but yushed in firmly with the fingers.

door of the room or an opposite window. When the wind blows, the strings produce a pleasing admixture of all the notes of the diatonic scale, in the most delightful harmosic combinations.
ALE, FINE WELSH, to brew. --Pour forty-two gallons of water, bot, but not quite boiling on eight bushels of malt, cover and let it stand three hours. In the mean time infuse four pounds of hops in a little hot water, and put the water and hops into the tub, and rum the wort upon them, and boil them together three hours. Strain off the bops, and keep for the small beer. Let the wort stand in a high tub till cool mough to receive the yeast, of which pur two quarts of ale, or if you cannot get it, of small-beer yesst. Mix it thoroughly and often. When the wort has done workfog the second or third day, the yeast will sink rather than rise in the middle, remove it then, and tun the ale as if worla out ; pour a quart in at a time, and gently to prevent the fermentation from continuing too long, which weakens the liquor, Put a bit of paper over the bung-hole two or three dinys beforestop. ping op.

Ale, or Strong Beer, to brew.Twelve bushels of malt to the hogshead for beer, (or fourteen if you watit of a very good body), eight for ale; for either pour the whole quantity of water, hot, but not boiling, on at once, and let it infuse three hours close covered; mash it is the first halt-hour, and let it stand the remainder of the time. Run it on the bops previously lafileed in water, for strong beer three quarters of a pound to a bushel; if for ale, half a pound. Boil it from the wort two bours from the time it begins to boiL Cool a paitful to add three quarts of geast to, which will pro pare it for potting to the rest when ready next day; but if possible put together the same night. Tun as usual. Cover the bung-hole with paper when the beer has done working: and when it is to be stopped, have ready a pound and a half of hops dried before the fire, put them into the bung-hole, and fasten it up. Let it stand twelve months in casks, and twelve months in botules before it be drank. It will keep fine eight or tem years. It should be brewed the beginving of March.

Great care must be taken that the bottles are perfectly prepared, and that the corks are of the best sort.
The ale will be ready in three of four months: and if the vent-peg never be removed, it will have spirit and strength to the very last. Allow two gallons of water at first for waste.
After the beer or ale has rum from the grains, pour a hogshead and a half for the twelve bushels, and a hogshead of water if eight were brewed; mash, and

Continurx page 488

To say that the subject of this article is the simplest motor in the world is not to overestimate it, ior the apparatus is not only 3
 motor reduced to its essential elements, but combines within itself its 0 wn source of electric power, all without the use of a single piece of wire. The experimient is very interesting and instructive and will well repay a. rarein! construction along the lines indicated, even though not in strict accordance with the dimensions given.

The firat step
it to procure a permanent magnec, about 委 in. in diameter and 6 in. long. It such a magnet cannot be conveniendly secured, a pioce of tool steel with fat ends should be hardened by lieatiog it to a dufl red and plonging it in water, and thea stronghy magnetized. This may tie readily accomplished by slipping a coit of insulated wire over it through which the current from a staruge hattery or set of primary cells is passed. It these are not at hand. almost any electricsl sapply store will mognefize the steel.

A square hase block with neatly beyeled cornets is now in order, which is trimmed up squarely and a hole bored centrally through it to receive the lower end of the magnel Procure a neat spool and make a bole in it large enough tu pass over the magnet. Glue the spool to the base after locating it in the exact center.

The outer and larger cylinder is of copper, or of brass, copperplated on the inside. It is cup-shaped, with a

PHESERYATUS OF GMAIS AND EEED IV vacto.

Sonee tifine since 1r. Taratri, of France, projoed the teio of ricapin reeroois for the perancon and ilefinioc presorvition of seals and graim if all kinle Fiarther experimeshs hese tmen maile io this dinectiun, and it senms tu be Hretty urD escotained thas the frocesas hes an econominal saluez and that जlile the mecewary vessel-cin be meile of large sive at s molemife cest. the proces of exlusation of the sir aloa masts hat firiles smud oace irenied in this aray the sects ais remala ea indefinite mumber of yenrs
bole in the bottom just large enough to permit the magnet to be pushed through with a close fit, to make a good electrical contact. The magnet may be held in place by having it closely fit the spool and the copper cylinder, and by soldering the heads of a couple of small tacks, or nails, to its under side and driving them into the spool. Coat the magnet with gitch, or paraffin, from the top down, and around its councction with the bottom of the eylinder. The small thimble shown at the top should be of brass or copper, and while one can be easily formed of sheet metal and soldered, it is not improbable that one coutd be made in seamless form from forme small article of commerce. In the exact center of the under side of the top of this thimble, make a good mark with a prickpunch, after which a smill steel Hhumb tack sticuld be filed to a fine ueedie pons and placed, point up. exactly central on the upper end of the magnet, to which it is held with a little wax. The mmaller cylinder is simply a piece of sheet zinc bent.into a true cylinder of stach a size that it may be sprung over the lower end af the thimble. 'This done, it is only necessary to slip the zinc ovee the end of the magnet until itbe thimble rests on the thumb eack, and then pour some dilute muriatic or sulplyuric acid into the outer cylinder, after which the thimble and attached zinc will begin to rotate. T he required strength of the acid and the resulting speed will depend upon the nicety of suspension and the trueness of the rotating zinc cylinder. The zine will have to be clanged, but the copper undergoes po deterioration.
without farther mitention, with a sertainty that ill the elements, slaencical or rital, of the grain will he yraparily presetved

APPLYLXG PATNT TO PLASTER CASTS.
Poroins plaster or swite miny be revderod compact, and fitued to reccive paint by nppling a snating of a solation of one part alommen in five of acotic acil. The result is a fine, firm, adherent shin, upoa which the paint may then be laid.

Preview of life in coming dark age

Western civilization doesn't have to blow ftself up to tear itself down, necording to Roberto Vacea. In his book "The Coming Dark Age," the University of Rome electronics and computer expert predicts a massive breakdown of our enormously complex technological systems between 1985 and 1995 -a "knockout" resulting in a return to a prioitive way of life The quality thal sets Vacea's book apart from many Prophet-of, Doom manifestos is the logic with which the describes not only the coming technological collapse but also ins aftermath. in the following excerph, "Preview of Life th the Coming Dark Age," he speculates oa the problems facing the gurvivors of a catastrophe we may not be able to avold.

By roberto vacca

It is not necessary for a lew kilomegatons of hydrogen bombs to explode for hundreds of miltions of people to be killed.

The same result may occur by less violent and more intricate means: that is, by virtue of the fact that vast concentrations of humen beings are involved ln systems that are now so complicated that they are becoming uncontrollable. This hypothesis \rightarrow of an apocalypse that is impersonal, casual, and unpremeditated-is more tragic than the other.

My thesis is that our great technological systems of human organization and association are con-
tinuously outgrowing ordered controt they are now reaching critical dimetsions of instability. As yet, a crisis in a single system would not be enough to bring a great metropolitan concentration bo of halt.

But a chance conoomitance of stoppages in the same area cnuld start E catastrophic process that would paralyze uje most developed societies and Iead to the deaths of inillions of people.
One cannot demonstrate a prioti, of course, that 2. shance coincloence of avents-decime, congesHon, and slowdown-must lead inevitably to dis. aster: not, at least, in a developing situation such as I describe. It seema very likely, however, that the most developed mations, we on the way coward breakdown on a large scaler.

Countries that are less advanced than ohhers fether on the Way to motersily, or sill underdeveloped, or just Dackwerl) witt only be involved In the crisis to a margimal extert Seventy per cent of the population of lis wurld will not be much in. jured by the firsi wave of destruction.

On the other hand, De agore advanived nations will be more vulverable to the harth that will ac: company the breakdown of the greal sybtems; in the dark age that would follew, their total poptlation mipht be halved.

Since these nations wrould include Europe and the Soviet Union, Norch America and Jupurf, soma 900 antilion people would be involyed, of about 30 per cent of the present popolatlon of the wortid

The death of 450 million people in the worid's pont developed countries would miean that' setentifle development, tectuioioglical reseruch, large undertakings in civil engloeering, tndustrial muss production at low cost, the whole orgarizing and directive siructures that tunction in modern soclety. would come to a complete stop,

Along with a certsin setbeck that the countries of the Thind Worid would suffer, there would be grave secondary consequences: manufactured goods, finlshed and durable products. medicines, produc: tion facilties and managerial know-how previously suppled by the more advanced nations-all would be missing

There is one fact that will bring notable relief to many survivors. the grim problems facing them will it least be completely different from those that heve been tormenting them in past years.
The problems of en advanced civilization will be repalced by those proper to a primeltive dylilization, and it is probable that the majority of survivars may be made up of people particularly adapted to pessing quicily from es sophiswicated to a primitive type of existence.

The flirst benefit to be enjoyed by the surivwors will be the end of congestion: there will be too few people left in circulation to cause any congestion at all

Ooe must point out, however, that many who now deplore the oppression, injustice, and intrinsic uglinecy of bie in a techaleally advanced and congested society will decide that things were better when they were worse; and they will discover that to do withourt the functions proper th the great systemswithout telephone, electric light, car. letters, telegraus-ls all very well for a week or 50 , but thrat. if is not amusing as a way of life.
To some of the survivors it will be as obvious advantage that 50 many durable goods will be avallablie in excess of demand. The death of the greater part of a city's population will make hooses and dwallings of all types avallable far in excest of need

If, before the knockout (KO), there had been on an average one car to every two Inhabitants of a citym ater the KO there will be some two oe thred cars per head, and for a trone the survivors will bed able to satisty their transportation needs simply by using one of the many abandoned vehicies. The car industry will disappear.

Later, when old cary have been used up and thers ure no new oriex, abardoned cars will he the obvlous source of spare parts, until new needs begin to ranew Industrial production. Then, production wilt be on a semall artisan scale, fulfilling small cortmisslons or making single parts.

Búldings will show a stmitar gradual breakdown - an indtial superabundance resulting in the dis. appearance of buflding as a great industry. A small number of people, forced to rely on themselves, wtil be unequal to the adequate maintename of the buldings they are using and they will give no attention at all to thoge they are not using

Empty buildings will be raided for fixtures or odd pleces having sotne structurel value; and thls, along with damage due to weather, will cause colIapses. These will bring down other, Inhabited buildings.

In the long run therefore, houses will be much Scarcer thar laew were before tie SO, and flew ruins will become a typical fenture of the urban landscape. Ancient and noble ruins will be covered and obliterated by new ones in accordance with a process that was familiar in the former Dark Ages.

Vandalism will sdd to collapse and destruction In clties; and Insmouch as if will not cause direct hnom It will not be funished, but will bs ane of the few entertainments still avallable to the young.

After the KO, as during the original Derik Ages, the distinction between new and secondhand otJects will lose the great importance that it has $\begin{gathered} \\ \text { I }\end{gathered}$ present The only distinction will be between thing that are effectively usable and those that are brotict and beyond repair.

Again, this will happen at first because of tha availability of many secondhand things in goovs condition. Then new objects will become extrem: ly rare, so that there will no longer be anything derogatory about the term "used."

Further new products will often be of mach poorer quallity than used products made of better material and in accordance with finer methods of production.

Before the KO the standard of living reached by a large number of people in the advanced nations made it respectable for them to buy books and antiques secondhand. but certaloly not clothes: to acquire a used garment was almost unthikable After the KO used clothes would not only he bought oc bartered; they would he helilooms.

One hopes that at least this new state of things will gratify today's detractors of consumerlsm and all who are annoyed (perheps not unceesonably; that fashion should be so powerfoll in the fletd of consumer goods.

A very severe restriction tof the movement and use of cars will follow from the scarce and irregular avallability of oil products and gasollne.

As a consequence, frameys for plessure will become very rare and will be restrved for the powecful or for trampe who wfll have to go long distances on foot. There will bas \mathbf{x} large incrense in the percentage of people who nave never moved trom the place where they were parn, neither lor worlc, nor for sightseeing, par for any ather reason.
The scarclty ot travelers will peovide opportunity for the revival of brigandagt. Pigaimige will be the motlve for undertakiag folrly long foumeys.

Indesd we may expect that the new dark age will favor the revival of a religlosite as simple ns It will be widespread, and expressed in forms thet toduy are unforeseenble.

In the fleld of economic relationshlps an Import ent sfentent in the modern constumer structure that will be missing at ance is credit. It ennditions of eatreme Inslabilaty, no one could possibty give a creditor meaninghal zuarantees of futbure payment with interest.
It Is very 'Tke'y that at first ail formo of mofey will lose whatever value they have and that ex. changes will be solely by bartec. There Intrinsic tarity will suffice to keep gold and silver colns in ise, and the old convention would be reestablished wherebry the weight of coins and ingots would be the sole determinant of their value: every merchant would include in his oflice equipment a small batnace for wejghing zold and silver.

Short-term advanlages can accrue to the so-walled developing countries inasmuth as they ire actually subject is eolonized by, or oppressed by ;hote atdvanced countries on their way to regression, When the regression of the wanced nations liecomes effectively obvious, their appressian of others will sease and the less developed rations will experience relief.

But If will probably be briet, because in the long run much graver problems will emerge, not oniv because finished products fiown the regressing coun tries will then be lacking bat also because gen eralized armed conflict is liliely to be the paturn. elther between nations in retragresslon, or betweat those that have not yed acyanced, or - at a mote microscopic level betweetn dities, villages, or families, and between mollviduals.

Corresers inc

A Real Electric

From Popular Mechanics 1937

 the Poliss of the Piolt Coily and Araorwe. is Nlya Uepd ier ike Brashes and Conmmutata
 slear cellulose larquer adhll oz of copper powder. Commercial eellalose laequer is often fon thick sad should be diluted by adfing lacquer thimer until the right consistency for apraying is obtained. The mixture may be sfightly thicher if it is to be applied wisl a brush. Some bronze powders, sold as copper powder, bave an alnminum base and are not satisiacfory for this purpose. The pure copper powder ean be bouglat

MADE from ordinary wire paper clips and No. 26 cnameled wire, this small electric motor takes only a few minutea to construct. It is a series motor and will tun either on a. c. or d. c. as a low porential, such as that provided by a single dry cell.
The framework for the field coils and the armature are first made from paper elips bent to the shape indicated, and the armature supports are then made in a stimilar way. Wind 50 turns of enameled wire on F_{2} and F_{2}, the direction of winding on thege poles being oppusite and hooth coils being connected together. The free crit of arie enil is connected to the battery while the end of the other eoil, marked F, connecty to one of the arma:ture brasiles B_{1}, shown in the lower right detail. The urmature is wound next, 25 turot of wire being wrapped on poles A_{1} and A_{s}, bobl coils heimg wound in the same direction and terminating at C_{3} and $\mathrm{Cis}_{\text {, }}$ where the enamel is remoyed trosis the wire. Jeaving the bright copper surface which forma the commutator. The brushes B_{i} and B_{1} are simply lengthe of enameled wite with the ends brightened io form good electrical cuntact and wound in a ispiral form, aw indicated, to produce a spring effect which causes the ends to make good conlact with the commutator. The field-coil Grame, the armature supporss and the benshes are then fastened to a wooden base with thumbtacks, and the armature is slipped in position. Carefully adjust the brushes so that they will touch the coarmutator lightly, the proper Iension at this point being highly important. Now honk mp Bz to the other terminal nf the hattery and the motnr will run if it has been correctly wired and properly adjusted.
The operation of the motor can be greatly improved by having the coils on the armature balanced as closely as possible and spaced exactly the same distance from the center. This point should also he taken into consideration when ferming the armature fiame. The small eyes at the end of the armature supports, which serve as bearings, should make a loose fit on the armature shaft, and light machine oil may be ased here to reduce friction. Drops of solder at the ends prevent the shaft from slipping out.
 lacquer as applienl. Thia wasing treatntent shontd not be given to friats of Rowers, as much of the surtace detall would be destroyed.

Ore electroplater has prodiaced some pleaming ctownitam dramsticks thas are very poputar. The sticks are tarned ous uf Jiglic basswoud, hoiled in linseed oit, and painted will the copper latquer mixtare They are then given a Kidin. Layer of eopper, is thin coas of rickel, and a binal plating of cloromlam. The nkieks are plate ed slowly to oltaion is stmooth suriace and are buffed betwecis each plating operation. A weight is husg on each stick 30 that it will sink whet placed in the plating bath. When the sticlis are finfshed, they bave ahout the same weight as bickory, and are practically unbreakable.

It the nbject to be plated bas ou base to which the electrical cuntiection can be made, the condurlitg wire should be wrapped around it lansely and the position of the wire should tre ehanged after sach plating process, so that any uneventeese of the surface, made hy contact with She wire, can be buffed oft, as in Fig. 4

If the object has a base, a more satisfartory connection for the first heavy coat can be male by attaching the con-

MAKE A HANGMAN'S NOOSE AND ROPE HANDCUFFS

By A.D. Robingen

One knot that spems to hold a perverse fuscination to some is the hangman's noose. It works by the slamming action of the coils striking the victim's neek, and in so doing breaking it. An intereating sidenote is that many states have laws that attempt to regulate the number of coils a hangman's noose may have, the idea being to prevent anauthorized
ducting wire to the base with a small amount of heared dental max. The wax hardens and holds the wire in place firmly so that it can be suspended in the bath as in Figs, 2 and 3. The copper-laequer mixture should also be psinted over the wax and around the wire. This connection can be brolsen out after the first plating process and the wire wrapped around the article, as already meationed. for applying the surceeding coats.

Anl interesting table ofriament is made by glaing a fow pebbles in the bottom if a small saucer and inserting a branch among them to represent a trez. 5 miall pieces of rubler sponge klueil to the branch make realistic clnsters of leaves. By dipping the Atficles in wax and then paioting them with the electrically conducting coat, the piece may be finished by platiog it with sifver.

Iywhings.

Since Tve been going op about the hangman's noose, yon are tuubtless itching to make one of your own. To start, luke sume string, rope or what have you and lay it out on a flat surface is shown below:

The drawing is sideways in the inverest of saving space. During your first few atcempts, points A, B, and C should be held atationary to prevent frostration from too many fouled knots. You can tape the points to is Lable or desk if you are using string, and tent pegs or similar, work well for rope. There should be a goodly amount of slack on the end that is pointed on the drawing. enough to make as many turns as desired. Don't worry about having soo much excess; it is easily taken up when the knot is finished.
For your next suep, make the following bends:
The number of turns are variable, but you get the idea. It seems awkward winding the coils around the thrice bent rope, but this feature is helpful to prevent breakage during use. You can see bow embarrassing that would be, can't you?

Once fou have completed your rope manipulations, the coils are pulled tight, most of the slack is cut off and the thing is

dose. The finished product should look like this:

Don't be discouraged if yours doesn'l look fit to appear on "Bonanza". As you practice, your skill will improve and you will be making perfect specimens with ense.

Another fun project in knot tying, and equally amusing, are the rope handeuffs. They are amazingly simple and might even come in handy someday. They are made by laying down two loops, the second on top of the first, like so:

They are then pulled through each other as shown. Illustrated below are the finished cuff:

The victim's wrists are put inside the two nooses. The ends are pulled tight and knotied.
I trust pou, the reader, to find many clever uses for bath knots.
let it stand, and then boif, \&c. Use add one teaspoonful of the powder to every pound of flour, and knead it weil. By this powder hot rolls may be had to breakfast every morring, as its accion is so rapid. Keep the powder in a well corked-bottle.

BEER, Excellent Table.- On three bushels of malt pour of hot water the third of the quantity you are to use. which is to be thirty-nine gallon5. Cover It warm half an hour, then mash, and let it stand two hours and a half more. then set it to drain. When dry add half the temairing water, mash and let it stand half an hour, run that into another sub, and pour the rest of the water on the malt, stir it well, and cover it, letting it Infuse a full hour. Run that off, and mix all together. A poind and a half of hops should to infused in water, and be put into the tub for the first rumping.

Boil the hops with the wort an hour from the time it first hails. Straln off and conl. If the whole be not cool enough that day 60 idd the yeast, a pail or two of wort may be prephred. and a quarit of yeast puit to it over night. Butore turning, stf the wort shonld be adiled together, and thoroughly mixod with the lade-pail. When the wort censes to work, put a bit of paper on the bung-hole for three days, when is may be saifly fastened close. in four weeks the beer will be fie for drinking.

Nole Rerrnnta hould be dirnsted to put a oork trito hrery bairol on soan No the lay B inkem out, sad to fasten in thise rontpers. the

BILIOUSNESS, - The first thing is to ailay the itritability of stomach: second, in evaciaste the howels of theit acrid itratter ; third, to temove spisins, iutitation, or urgent symptoms ; fourth, to cxcite a heanliy secrition of the liver. For these the Noutratising Misture (sere page 275.) will be found applicatle for tbe purpose; give a small tablespraunfui exery half hour, or as aften as the voriating ocrors, and when allayed take a good putgative; such as 102 , of castar oil, at a strong dose of Rhibarb; or a porging mixtore: Glaulers Salits, $1 / 202$; Epsum saltis, $3 / 2$ oz, - spearmint water $51 / 0.25$; sutimonial wine, z draehms; Bincture ot senna, 36 oz . mix, and take a, 3 coc of tablespoonfuls for a duse, every a hoars umtil it cperates. If these do not $2 \mathrm{a}=$ recourse must be hat to mjections onmposed of - Sureet mik, 1 pint, muges lage of slippery clm, i pint, olive ef, I gill; malasses, $5 / 2$ pint; common sulf, a or.; mix. Use a large size syntinge. Should there be great pain in ste lower intestines add a drachm of laudanum to each injection, it will relieve the griping pain, Introduce as much of the injertion as the pratient can bear, to be sepeated every hour of two until the

SURVIVAL ELECTRONICS

The following is presented to the person concerned with dofending an area such as his home or farm. It is not aimed at the person who, in a disaster, heads for the hills with a knife in his teeth.

During any period of distress, it is fraportant to know what is happening around you. Since almost all communieations today are electronic, I will try to present some ideas about the simpler things that can be done.
Remember that there will always be some kind of brnadeast radio service on the air. Radie stations that have had their towers and buildings knocked down by tornadoes have been back on the air in a matior of hours. Thet is what is expected of them, and their engineers know how to do it.

They will be seuding important informalion about relief efforts, weather conditions, food, water and medical services that you miny need very badly.
1 am going to start whith the first requirement $-\operatorname{s}$ good AM radio. At the firat thought, it seems like a good iden to buy a simple $\$ 9.98$ transistor pocket radio and leave it at that. but there ate some interealimg probtums to consider.

Firat. your ubiligy to hear up-te-date information during a national emergency just may save your life. Are you going to depend an a radlo that harely worked in the store it wan sold In? Simply puc, you need an erriremely dependahle radio.
Secosed, your litule cheap radin always sounds great listening to that strong local station when you buy it, boi the station goo neud to hear may be distant and weak or covered by static.
Third, doring she disaster, are yov going to run down to the local stare and buy a fresh ballery? Hell no. You need a long-life renewahle proser source.

There are several solutions to the problem. Let's call them the simplest, the cheapest, and the best.

THESIMPLEST SOLLTTON

The simplest solution is a quality portable radio. Buy only oue kind Panasonic Any model in the $\$ 50$ fo $\$ 100$ price range will in which used " D " batteries, the comman large flastlight battery.

Why Yanasonic? I am in no way coonected with Panasonoc, but I have had considerable experience with the various brands of portahle radios, and many theusinds of dollars worth of laboratory elertrontic equipment te test chem on. Other branda may be is good, but why take a charce?

When you buy yout radio, ask for onf that does not have a. tape player or recorder in it. See that it has a butvon to
turn an the dial 1 mmp , and make DAMN SURE the store ean get you the 12 V DC bettery adapter so you can operate your radio from a car battery.
1 am not giving model numbers, since models are changing constantly. Most changes are only external for sales appeal. THE CHEAPEST SOLUTION
Surprisingly, you can often get a better radio for murh less money, if you can use tonk and do a littie thinking.
The modern automobije radio is almost perleet. It is extremely rugged, uses $12 . \mathrm{V}$ DiC, very sensitive. and uses an omnidir ectional antenná.
Porlable radius, including Pumasonic, une a loop-type untenna for AM reception. The pull-up whip is only for FM. The reeeption of this type of radio is often very directional. Thus the station that you need to hear just may he in the radio's null spot! You can waste a lat of time turning your radio crying to pull a sigral in.
The whip or mast type of anterna used on the car radio works much better. It picks up stations from every direelion. plus the whip is much more nensitive to wwak signals than the loop. Your cat radio alao has special noise eliminating eifeuits in it to remove some of the static.
Pioking your cas tadio takes some judgment. Foillow these guidelises:

1. Pick an AM/FM frour a late model, it you can.
2. DONOT get one with an eight-track player in it.
3. DO NOT get one with tubes in it Some special tubes made for car radios are pot a a ailable ANYWHERE
4. Use the origisal speaker if the radio is AM unly. Many transistor radios use oddball impedance speaker.
5. Take the original eleetrical plugss it will make your wlring neater and easier.
B. Simply use a piece of wire for an antena or buy a new one. DO NOT iry in salvage the original one. That heavy-looking cable to the antenta is actually very delicate.
6. Make the seller test the radio before you buy it.
Additional Note: If you own one of Lhuse God-awful mistakes from Detroit that has the "antenta" in the wind shield, put a standard car radio antenna on your render and connect it to your radio. You will be absolutely amazed at how much better your radio will work.

Now let's get that prize of yours working.
First, you need power. Buy a good 12 volt auto battery and small charger. DO NOI get some junker from the trash pile of a gas station. A good dependable
bowels are moved or the pain abated.
Apply theumatic Lieamenf warmed with a flannel dipped in it, to subdue pain in the abdomen.

BLISTERED FEET.-Belor: and after walking, wash the feet well in a solution of Sal Ammoniac-half an ounce in two quarts of water. Let not the stocking be wrinkled, or much mended, when you walk. Easy boots and shoes should be worn, and yery smooth next to the sole of the foot. -Or, the best remedy for this is to ruk. the feet, when going to bed, with spirits mixed with tallow, dmpred from a lighted candie into the prims or the hand:

BUG POISON.-The spirit of tar is a powerful remedy, applied by means of a brush; chloride of lime is a very good wash.-Bugs have become so general a nuisance, much care is neces. sary to get rid of them. Bedsteads should be taken to pleces at the begirning of the year, and each part washed with a strong solution of eorrosive siblimate. The crevices or cracks should las stopped up with potly, then the joints and crevices painted with white lead, to be well dried hefom the hed is put together. Engss do not like paint, it is too cold for them. If the wally are Infested, the paper should be renoved. and the walls washed with the corrosive sublirmate, (stopplog all cracks io the walls with plaster of Paris,) The floor in inveterate cases, may be pointed all Found the skirting-board to the extent of four inches. As the corrosive sublimate is a strong poison, the bottle containing it should be marlet, and a caution given to those who apply it.

Coal oil, or naptha, is sard to be a sure destroyer of bed-bugs. Apply plentifully, with in small brush or feather, to all places where they congregate. The cure is effectual and permanent. Gut frames, chandeliers, \&o. rubbed slightly over with coal oil, will not be disturbed by flics.

CANCER.-A cancer is a harel indolent tumour, usually seated in snme of the giands, as the arm-pits, cye, nose. lips, tongue, womb, and the female breast; the two last are most subject to it. It affects the aged more than the young, and may exist for years. It commences with a small hard tumour, increasing slowly, and attended with
battery can he usod for much more than this radio, IF IT WORES!

Build for your hattery a niee wooden box with a cover and few yent holesPlace it in a cool, NOT COLD, well-ventilated place and run some heavy wires (No. 12 to 141 back to your radia. Always connect the charger directly to the battery. Cae a hydrometer to check the condition of the cells and charge acrording to its readings. Use only distilled water to cop off the cells and do not over-fill. Keep the trminals greased on the outside to prevenc enrrosion.

If your house has melal sitling. mount the anlenia sutside of s window. If you're in a standard frame building, mount the antenas on che bos that halds the radio.

Your radio will have Iwo power leads. One operates the radios the other the dial light. Put a littie switch in the tight lead so it will anly draw powor when you nped the light. Make sure that the lamp and the radio power lesds have fuses in them (two ampo is normal!. This conld sape you a lot of burned up wiring or a fire.

If your radio has oully one speaker witr. the other terminal of the speaker connects to the esse of the radion, as cluts the negative wire from the boutery.

If you want your radis to be really HI FL. moant yotir speakerist ir a halfe.

Build a wowden box ol about three ruhic feet volume. Aic firm wood, plywod, or partiele board will de 1MPOTETANT Jine the Inside of the lvix (batfie is the proper term) with fihergluss insuation glass side oul Juai glue the paper backing to che wood. This won'l mound as good as $\$ 200$ stereo cyatrm speaker, but it will sound one heil of a lot twotwr than a barespeaker liging on qustelf
Do the alrove with a good quality AM/FM slereo ear radio, and you will be umaredot the job at will do. It will work better then any of the cheap three piece stereo modime lhat yout woold normally buy. Tlus. ft will voerate for many, many days off its sutobeltery during a power failure.

THE BEST SOLUTTDV

The auto radio is a hard one to beat. The only tring Leat woild really be hetter is a professional communications recelver.
This is what used to be called a shart wayc radio. There is much mote io radin than juat browArast apdicR. If you resily want to know what is guing on in the world and listens in per amateur (ham) emergency messiges, this is the way to do it.

IMPORTANL NOTE: Nimost all amateor, militart, masine and govern mept comannications are by two modes ueletype and voice by single side hand
ISSBL NO DNE uees AM except international brosdcasi ssations. (And
their broadcasts are, with few exceptions, mnstly propaganda-1 The value of your receiver depends on how well it will recelve SSB voice transmissions.
The old short-waye sets were built before SSB hecame common, and the cheap, soeatled multi-band portable radios, do not have the cirruits called BFT's or product detectors to retelve 858. Nor are the dials designed for the deticate tuning often required.
Because of these problems, the design of the modern radio is quite different than those of years gone by,

Whatever you do, do not try to use or convert any old surplus military radio equipment. It is simply not worth the time unless you are a well-trained electrunic lechnician with a good shop. Military equipment often uses tubes or other parts that look like they were made on Mars. Spares are diflicult to lind. The radios usually require 24 volts DC for power or worse, 400 cyele, three-phase AC.

The design of most surplus is obsolelethat's why it is surplus! Yes, I know it's waterproof and its paint job matches your tank: bui do you really want a 30 -year-old weirdo radio?

If you have the money, buy a DRAKE Model SSit 1 receiver ai $\$ 350$, It covers Irom the botiom of the broadeast band, $1 / p$ MHZ, to way puat the CB band. 30 MHZ and all the short-wave bands and ham bands in belween. An exeellent receiver for AM, SSB and code, tt will operate from 12 volts and is made in the U.S.A.
There are several ather excellent imported cormmunieations recelvers available. Svek out the opinion of a couple of local amaturars io help you pick it out. I DO SOT recommend the Radio Shack equipment.
Short wave listening is a very complex subject that I can not cover here. This is where world trdio eommunications is earried out, and whenever there is any kind of disaster or emergency, the amateur w will be on the air handling messugen to and from the area.

In one serious Dood in my area, teen-age hams using their own equipment provided the ITS. Army with most of its commonications for 1 wo weeks:
In the meantime, you CB people will be amayed to hear the job a professional receiver will do on the CR hand; far better thain any CB set you have ever heard.
Remember, if the world turns into a sotal mess, you can always cobble up some kind of transmitter for communications, BUT ONLY if YOU HAVE A PROFESSIONAL RECEIVER TO START WITH!
acute shooting pains; sooner or later ulceration sets in. The discharge is so acrid as to intiame the part with which it comes in contact. The place where cancer occurs assumes a purplish appearance previous to its ulceration. Utceration gives ease for a time, but the enneer penetrates deeper, and spreads wider, corrupting the stream of life, and reducing to the greatest debility, and offen terminating in death.

To Cure, remove debility, and improve the general heatith. Regulate the bowels, and give an ernetic, Give a vapour bath made of bitter herbs, us camomile, hops, catnep, tansy, \&c, and boiling water and vinegar. Occasionally rutb the whole surface of the body with the following liniment;-eayenne, a tea-spoonful; salt, two table-spoonfuls; pour upon them halt a plat of boiling water; infuse three hours, and then add half a pint of boiling water; infuse an bour longer, slirring ocersionally. Steaming with the bitter herbs, combined as above, allays the pain, swelling and inflammation. The following pills wilt be of much use; blood-root, one and a half drachms: extract of diandelion, three drachms: lobelia seed, one drachm; cayenne, one drachm; senna, in powcler, one drachm: add three drops of oil of mint, und form into pills. These pills will be found very efficacious in the sure of jaundice, and liver complaints.

Citric Acid will relieve the paia of cancers. Dr. Brandini, of Florence, had a patlent, agod 71 , affocted with cancer on the tongue, An operation could not be made, for the affection wis too extensive, investing the base, the sub-lingual, and the sulb-maxillary glands. In the midst of his pain, the poor man asked for a lemon. It abated the pain; and the next day it gave him still greater relief. This led the doctor to try Citric And four grains of the acid, in one oriace of water : and this, as a gargle, entirely carried of the pain, and reduced the swelling of the tongue very much, The doctor tried the samo remedy on a female with an ticerous cancer on the breast, deemed incurable. Her torments were so great, that neither she, nor the other patients could get any rest. He applied a pledget of lint soaked in the above solution, and the teliet was instantaneous. It was repeated with the same success. Thus Citric Acid promises to be a great boon to mankind.-Citric Acid is prepared from lemons,

Externally apply the following; -Simmer cicuta leaves till they are soft, then mix them with slippery eim bark, to form a poultice; apply morn and night. It is valuable.-Or apply the Irritating Plaster. for a continual

Survive Through a Home Business

By Kurt Saxon

As our system slows down, unemployment will soar. Revenue lor wellare will dwindie due to the scarcity of taxpayers and the recipients will starve. Less taxes will bankrupt the Social Security system and the elderly will starve. Industries will shut down and labor unions will go broke for lack of dues paying members. Cities will become shooting galleries and small lowns will become garrisoned city-states.

As bad as this might seem, now, it has to be so you might as well prepare to ride it out.

Your only real hope in the near fulure is a home business. This will not only give you independence, but it will give you the confidence that destroys fear,

A homs husiness hes many advantages over being empioyed by others. First, you don't have to commute to work. Also, being around the home all day provides the best security as you are usualty on hand to detend your home and laved ones.
Another blg advantage is that a home business is almost tax-tree. Everything connected with your business is deductible. Rent, utilities, your car or truck, gas and just about anything you buy and can claim as a business necessity. You can also deduct any business losses.

The factory or office worker can't deduct his rent, car, gas or any transportation expenses uniess he's a travaling saiesman or aomething similar. He must pay more for clothing so as to be presentable to the public and his fellow workers. Working for others is very expensive. Even union dues aren't deductiblo.

Solif you work for others, you are a virtual slave, A big slice of your sarnings is taken from your paycheck each payday. You never sea If. You can'1 use it, Invest If or even put it in the bank to draw inierest until A pril 15.

Many Amaricans taks in millions sach yeer and pay no taxes at all. They know all the loopholes and deciare oniy what they pleass. The working stiff, however, has no loopholes to speak of and he can't even cheat on his taxed. At least nol where his main esarned income is concerned.

Another good reason to start a home business in that you can't be fired of laid off. In that sense, it's depression-proof. Of course; if you fall in your business, you've created your own depression.

For this resson, you must practice a lot of caution and foresight. Don't quil your job until you are making as much or more from your home busineas as from your job.

Part of the beauty of atarting a home business is that you can build it up while you are holding a regular job. There is a lot less riak in starting a home business than if you starisd a contracting or service business where you had to work full-tims.
Al this point I want to advise you against the home business come-ons in such magazines as POPULAR MECHANICS. Everyon has seen their ads for home business or to be worked out of the home, such as uphoistering, locksmithing, carpet cleaning, TV rapair, electrical appilance repair, etc.
These ads are all sucker bail.
First, they are wriften by expert ad copywriters to appesi to the Ignorant and unsklled. They have their testimonials, usually from the one-out-ot-a-thousand who did succeed with their business.

They know wery weil thal mosi of their customers will not get a return on their Investment. A person with the skili and discipiline to really apply himself to such a business, would be a success at most anything and would have no need for their course.

And in most ceses, if is simply a correspondence course. Such courses are soexpenalve, from $\$ 200$ to $\$ 800$, the ad writers leave out the price of the course. You have to send away for ewen more of their advertising.
In most eseee, if your community can support the business they advertise.

Etischarge must be kupt mp, its the patient is able to beat it. The douch bath has been resummendot, and doubtless it has had a good elloct in mathy cases, The followitg applications are tiseful :-

Cayenne and bobelia seed equal quantities powdered: meadow-Fern and thalm of Cilead bueds, of each 3 aes. (these two steeped in spirits for five or six days, and made into bintment, with lated suffecent.) Unite the whole sa a paste, and apply to the enneer, covariag with a clath. When the plaster is taken off wash with somp-suds.-Or bsim a quantity of red oak hark to cashes, arol make mita Iye. Buil the lye lill it becoumes as thick as boney. Thon apply constantly. Sivch prepenations, by thear 5timulating and relixing propecties, excite a prerematural diseharge, or calise a sloughing of the tilcer, and thus remove or Jessen it. Use one of these otnemerts ivrincipally, the fhaco Salew occasionatly, rat ther mual dowclarge, tress with am mmoflient ountment. This treatment has ellected mumerous cures. (see Black Salve.)

A decoction of narrom-lenved doekreol tras been found to produce sare eftecls. Fiaturated cluths with the kames may also be applied, Or the rooe may be powderer, and made inca an ointmont with lobelia seeda powdered.

CANCER.-Use the cold bath. -This has cured many,-A bleeding cancer was cured by drinking twice a day a quarter of a plit of the fuice of clivers, or goose grass, and covering the wound with the bruised leaves. Another hy the following recefint -

Take half a pfint of small heer. When It boils, digsolve in it an ounce and a half of bess wax : then put im an ounce of bog's land and bail them together. When it is cold pour the beer from it, and apply it sqread on whife lentber. Renew it every other day. It brings out great blotches, which are to be washed with sal prunello dissolved in warm water.

If if be not broken, apply a plece of sheet lead beat very thin, and pricked full of pin holes, for days or weeks to the breast. Purges should be added ivery third or foutth day,-Or, rul the whole breast morning and evening with spirits of lartshorit mixed with oil. Or, keep it continually moist with honer.

CANCER PLASTER,-White oak-bark, 402. ; bruise it well, and add urine sufficient to cover it. Infuse four days, boil it till it becomes as thick as treacle. Add 2 ors. of honey, and 2023 . of strained turpentine gum. To make this plaster caustic, add a drachms of white vitriol. Spread on soft leather, or limen. - It may be applied to all kiuds of ulcers, white swellings. For cancers it is invaluable.
there is already an established business in that line. But they avoid such consideratlons. Thelr aim is to make you believe that an amateur such as yoursell can successfully compete with established professionals. This is unraalistic at best.

But you might ask, if their deals are really rip-ofts, how do they stay in business? Well, you take any ad, full page, costing several thousand dollars lor each insertion, run month alter month, year atter year. They couldn'l afford these ads if thev weren't sellinc a lot of those courses.

But where are their graduates? There should be a locksmith on every corner and a TV repalrman in every second house on the block.

The truth is that most correspondence schoolers drop the courses after a couple of lessons. And the schools couldn'y pay for those ads if they didn't threaten to prosecute the student for payment for part or all of the failed course.

Another thing wrong with the majorliy ol such courses is their specialization. The course and the equipment you get is worthless for any other application.

Also, lor a small tultion fae, you can take night high-school or college shop courses on many of the skilis these comeapondence schools offer.

When considering a home business, insiead of some exotic ine, you should choose a line you are familiar with. Even if you are not so Jamiliar with a certain Ine, there are so many how-to books on the markel that you shouid be able to find just the material you heed.

You should reject all lines which would not be essentlal after the collapse.

A Lamp Cooker
 From Popalar Mechanix 1918

An ordinary sifcular-wick kerosene Iamp produces enough heat to do corfsiderable cookisge provibed the hent is

The Lamg Copter will Prerape Mrato and Figawaign Javicavoriff ant Io Unekul for the Cacaptr anf in Emerestifel
a cooker is as follows: Sow a bole, 12 iri. equare, in the sop of a snall table, or packing box of about the same beight as a table. Cover this with a piece of sheet metal, having a 4 -in hole in the center. Places a ${ }^{-1}$-in fluwerpot over the hole in the metal, and plug of the hole in the bortiom of the pot with fire clay or plaster of Paris. Vegerables in jars may be set around the flowerpot to cook slowly and a roast in a pan on top of it. A wooden bux or metal pail, lange enough to cover the arrangement, should be placed over is Air holes should be provided in the
luwer bax and in the coven,
To aperase the device light the lamp and when it is burning brightly, place it onder the table, elevaring it so that the top of the chimney is in the center and larely within the rim of the flowerpot. Uhe little water in the vegetables and keep the caps looncly on the jars. The rosst, if well hultered, wIII brown nicely, and while the cooking will re quire considerably more time than it wrould in a range, the resulte will be as good, if not superior. The satural juices are preserved by the slow cooking at compraratively low temperature. The cuver may be lifted to turn the meat occasionally. This devier will appeal to campers, summer cottagers, and others.

Homemade Electric Plant from Old Auto-Trucle Chassis

From Popular Mechanics 1988
Oymers of a hilitg station and general repair shop, where electricity was used extensircly, found that the cust of the current was low high and installed theit own genersaing plant, the mann pert of which was art old duto trock. They sel the truck chassis on blor'at antl fastened a multiple V-julley on the Lrivestiafl. Jusy above this, a 20-amph gencretor, was mounted on the frame and was lirlled th the driveshaft pulley l es means of five V.-belts, which deereased belt slippage to a manimum. The motur was aftered to tha on tatural gas by enlarging the ay vent in the carbaretor. With a his plant, electricity was prodriced at a cast of a bouk one cent per kilowat hout.

CARMINATIVES - Rind of Seville oranges, 3 drachms; fresh lemom peel, 2 drachman; ginger, in powder, 夋 drachm; hoiling water, 8 ozs. Infuse s hours, and strain. Then take of the above, $1 /$ oz ; spirit of peppermint, //8

Antifatulant Mixture.-Uil of anisteilg, to drops; refined sugar, I drachm. Beat up togetber, and add, ilinoture of ginger, a drachms; peppermint water, 6 ezs. Mix; three tablespounfuls when necelul.

Anotber.-Assafetida, 6 grains; rhubarb, 4 grains; oil of aniseeds, 5 drops. Muse two pills, and take every five or six hours.

CARMINATIVE DROPS; for Expelling Wind,-Aagelica, z ounces; lady's slipper, I ounce; sweet flag $1 /$ ounce; anise $₹$ ounce; fennel sead, Yo punce, catnep flowers, 1 ounce; motherwort, x ouncet pleurisy root, a tuincias. latove in a punt of spiriss of wine for threes or four days, oft shaking, keeping it in a warm place; then add a pint of water, and a tablespoonful of tincture of cayenne. Excellent in flatulency, colic, nervous affections, promoting perspiration, and refreshing sleep.

Another Receipt,-Anise, dill, letuel sead, of each \% onise; catnep flowers, and motherwort, of each, 2 ounce; plearisy rol + ounces. Infuse in brindy for g2 liours, and then stram; to children, give Irom tive to fifty drogs; and $t 0$ aduls: from one to four teaspoonfisls, every tiret of four honssIt taser phin, produces perspication and sleop, rembyes fisulency, colic, and is an sxcellent netviive.
CARMINATIVE PURGATIVE, - Tinstare of senia, 1 oz ; powder of alnes, 10 grains: peppermiat water. I ues, ; syrup of ginger, 1 u:. Twa Lahlespoctifuls for a dose, mpeated in threr hours it cecessary.

CHARCOAL, usefti properties of,-All sorts of glass vessels and other utensils may be purificed from tad smelis by fincing them out with charcoal powicr, ater the grossest impraitics have been scoured off wilh sand and potash. Robbing the teeth, and wasting out the mouth with charccal poutder will render the teeth beautifully white, and the luteath periectly swect.

Build a Pit Cabin

by Fom Laxk

The nuclear war which athe Pentagon expects to devastate Docth America betore the bul of this eualary will make 4 lot of changei in aur lifestyles. One which you may wish io make and live in is a pit ration
Instead of forldiag your tog rabis to the usual height. build the walls on easilf dug. well draited soil to a height ofonis ctree or foue feet. This will save sou the bbur and back bresking cisit of lining lageraver sout bead. Also, when you put the roof on you censtatul on the flour unit work at an pasily acreasibile hright, so you ran de a good joh Lhatall the door with the dele fart you will Later want to extesd it downward. If the yround has a sloper, put the dour ca the sowahillside.
After the original low: wall cebic has Fieco rompiesed you far thun keape itom four by digetions.

In selecting your logen. ceder should be selecend as the totionn loger, in contret with che grouind. Fop.at of whatever thee is asyalable may be cied far the other begers and for the conat The reasour 5 m surgresting the Lae of poplar is the Luec that there is so murh of il around. Spruce is a so exceillont.

Poplar, when fresh cait, is ta irly soft and easy to work. Siter it has dried it boromes very Mardand se7vienable

In wisur poplar, leave most of the bario on Lo discouranc roc Poll alf abohal a (wenty degree sisip of bark off sach log trom thi side toward the istaide it your miks. This

Boevt Mrial CYeged la Niee la Beat IF Kease a
Shaping Sheet Metal without the Use of a Bending Machine
To shape sheet metal -ithout the use of a banding amachine, place a suriable length of angle iren un sach side oi the metal and clamp the assembly in o Tise The sheet metal cas then be bent by

will contral the shrinkage of the bark.
sher gou have the basement dug out to the jize yos want you can line it with eedar logs to keep the dampiess from the soil out. Cedar should be used herause it will be the most rat resistant wood available.

Besider the case and safezy in building, a pit cabin has other advantages. When the winter blizzords slam against the sides, yolire going to be hard to get al usen it one should Cind ary openings where you didn't iam enough moss, clay and spuff between the logs. It will take less firewiond and other slulf piled against those low walls to double the insulation than on a ruivertionalstrucures.

With the cold wind Misuing if sod difficult ie ger in, and the heat trom your fireplace finding it sp difficule 10 get out, your new bome will be just plain enery.
li sornebody doesir like you, atacking you in your rurfed neur foxhole can be fidiculousis hazardous to his bealth. You may wish to camoullage ynur pit eabin by avdling roeks to the outsige iosutation, leaving unly a few gun thits herv and there ta help air the place.
Jost how difficult and huardous a pit cabin ran the to atrutk was prowen tor the Younties when they atticked Albert Jobnsob. The Mad Trapper, in his pit cabin if the Yukn. They nearly got him when they threw that bunille of dyyattite onto the ruol. Thero's nothing like a roof built of a trow re two of good slout loga to eomplicate chat sort of thing.

CHARCOAL MEDICINE. It is buch used in Mexico, and in South Amelica, where few dritgs are procista1.los save those "simiplea" which the in-
 Herkalliks tave devised. Freshly-Lumat Chareosl, roduced to powbler and given it water, is in great repute. It immedi-
bolding a block of wood against it and striking the latier with a matlef.

Making and Using the "Bandilore"

An East Indian roy, known as a "bandilote," is made from a piece of spool, about $1 / 2$ or $3 / 3 \mathrm{in}$. thick, and two tin disks, about 4 in . in diameter.
The section of spool is tacked between the two disks, exactly in the center. Tie
 one end of a 3 or $4 . \mathrm{ft}$. length of stout cord to the spool. The bandilore is operated by winding the cord around the spool, and holding the free end of the string in the band. The roy is dropped and descends with great speed: just before the end of the cord is reached, the whole thing is given a quick upward jerk. This increases the speed and momentum of the disks so that the cord is waund in the opposite direction, and the bandilore climbs upward, the proctss being repeated as often as desired.
gtely removes olfensive odours from intestinal and renal discharges, and purifics the breath, it removes offensive extialations from any patc of the londy. oither given in water, of to the form of pills, made up in whatat lour, or giom muentase. It feinoves pions abous the right shoulder caused by obsu: hans of the liver, As an antiacid, either or combined will iloubarb, and carbub. ate of soda, it spepedily and permianestly remoyes hearthurn, Charconl is a powerful antiseptic, removing, or cheoking decay, and must be very valunble in the incipient stages of consumption.

CHIORIDE OF IUME:

 Seatier chloride of lime on a board in a statile to remove alf kinds of flies, but trore especelally biting fies, Sprinkilog beds of vegetables wilta even a weat solution, effectuaily preaerves them from caterpillars, sloges, EC. A priste of one part powdered chloride of lime mad one half-part of some fatty matier placed in \& narrow band round the trank of a tree, prevent insects from erecping up it. Fven rats, mice, eockroaclies, and crickets flee from th.CHLOKIDE OF LIME.It is a great purifier. Owe pound regtires three gallows of water; use the slear solution. To purify rooms. sprinkle of the foor; and if reedfal, on the bed-linen. Infected clotlies shianld be dipped in il and wring out, Juse belore they are washed. It purises aight comtentes, and walor closets, 80.

COCKROACHES, to Destray.

 - Mix bread crumbs, sugar, and corrosive stiblimate, and place it bear their havents, -Or mix sugar, laudanum, und water logether, - They are very fond of beer, which might be substimted for water- Sorne persons bave found a mixture of plaster of Paris, sugar, and catimeal, effeciual.-Powilered phosphocous, oitmerl, ant sugat, form it sure remerfy.CREAM CHEESE,-Put five quars of the last milkirg of a cow. called "strithpings" inio a pan wifi y spoonculs of renmet. Whem the curd is conne, strike it Jown with the skimmer ta break it. Let it stathd a hours, spread a clierse cloth on a sieve and drain upon it; brenk the cund a ilftle wish your band; puit it into is vat with a $a \mathrm{ib}$. weiglt ution it. After standing 12 hours bind a fillet round. Turn every day till dry; cover with green leaves, and let them gradually sipen on a pewter plate.

EGG PICKLE.- Boil from two to three dozen fresh eggs quite hard; then set a sufficient quantity of goud vinegar over the fire, ginger, white pepper, mustard soed, and a clove or two of garlic. Haying placed the eggs

A Reed Basket

INASMUCH as there is a great demand for reed formiture and since gond weavers are comparaavely tew in number, it wpuld we well to learn the process of reed weaving. The Weaving pperations call be leafned nuach betisr slirough the constraction wĭ sombe small article, smelr as a basket or jardinére coler. The center is the most aliffewit pars of the basket makiug, and it is best to begin with waod botturnos is the whole lacher cart be hept is a much berier lormi due to the stiffuess formished by suels a bottomi. It is also an afruroach to the reed furstbare which is waven on framework The objestionable ledkure of she wood bottoms is the unfinished appeanmet of the wood edge slowning throwhli, lant this can le bvorenure by the use of the roit shown in the Buetrition.

While she ruras=1 bolloms hase lieen
 used for this clays of wurk lor a nomther oil years, the noll is new and is reey pupular with those who have seeti atid tised it. The rull cass be placed in many ways on stiterent-shaped bas kets, anil offlet reed preces, so thar it is best lo mazter this piece of work thumughly before strempring the othen, or larger, pleces that will be described loter, in other articice.

Tlie descriprion is fixi a taslet 5 im .10 dismetre evul 3 inf high, ase shown in the illustraform. A ciak of weod, 15 s in. thick and 5 im in thameres, is recured. Ma-swoul makes the best borum. Dut pine, or ceilar wifl de cout a lased alvotst of in appare, alul raw liagoral fencs on iL intersectiog at the vetler, Hhers draw a circle. 5 in in fiameter, as shown is Figg 1 albo anoltier circle,

using the same center, 39 in in diameter. Set compass potnts about 5/6 iri. apart, and stpp off spaces on the inner circle to make $\$ 4$ points. This will have to be tried out frore than once, to get the spaces to come out evenly and just bave the right number of points. Holes are bored with a $1 / 4-\mathrm{in}$. bit, just inside of the inner circte, back of the places marked by the compass poinis, as shown in Fig, B. Cut the board on the outside circle with a coping, or turn, saw, to make the circle, as in Fig, 8. Do not saw out the circle before borizy the lioles, as poherwise the diak might pplit out in places.

The reeds placed vertically are called spokes, and the horinontal obes are the weavers. For the spokes, what is called a No. 4 reed is used. Do not wer the spokes before putting them through the Hood. Allow the eljds to project about D1/2 Ifs. below the botforn, as shown in Fig, 4. Place the bottom, with the bpokes, in water, and soak them thorougtily, espeecially the part below the botlam. About 15 minutes of soaking will be ataficient to rwake them pliable enough to bend nver at right angles. It will not injure the wood bottom to soak it with the reeds. As shown at A, Figt. 4 and है, each rpoke below the wood botiom is bent down and back of the two nearest spoles. B and C, ilsen out between the Lifird and lourth nowkes, C, and D, and sa un. The la-x two spokes, Y and Z, Fig. f, are forced under the spokes A nind B, respectively In this flustration the spluke Y is shown at is is heing inserted unter the epoke A When this eperation is ecimpletert, the botram will lave the appearance of a fircworks pinwhec!

Fontinue the fending of the spokes, in the same directim, $1: \rho$ and across 1tier thickuests of the woost in Pront of Three; selact prokes and betrind the fourth, as shoutn in Fig ? Thic would rint caver the elige of the wood entirely, noti, for this reastan, otler short spokes anp-t be inserted in front of each of the first anes before it is brought up

Withom shells into hroad muathed jars, pour the vinegar, $\delta \mathrm{x}$, ovet lhem When eold tie them down. The pickle will be ready in a month. It forms a pretty garmish when cut in slices, and constitutes al piguant relish with cold meat.

EXTRACTS, to Make-Take of the plart, rost, or leaves you wish to make Eic extmets from, any guantity, add sulfictent wates. and bait them gradually, then pour off the water and arid a second quintity; repeat the process intil all the viftue is extracted, lhen mix the seveal decnctions, and evapor tate $\pi \mathrm{L}$ as low a tempratatur as positioc, to the coasistence of an extract. Tw. tracts are better made in a water-bath, and in zlose vessels, and for sorne very delicate artioles, the evapontion may be carrted on at a very fow ienpenstare, In a vacunnt, by auroounding the vessed Whth another copminiog sulpburic ard. Marulacturing druggisis ushally add to every seven prunds of extruct, glam arabic, 4 ources : aloobul. I olince; olive oil, 1 ounce. This mixiure gives the extract on ginse, and keeps it soit.
FEATHERS, to Clean.Fenthers may be cleansed from their animal bil by storping them in lime water -1 It, of lime to n gathon of water. stir well, and then four the water from the ime.

To Cleanse Feathors from Dirt, make a strong lather of white soap and bot water. I'ut in the featlets and subs them for 5 minutes. Rinss in clean hol water,

FEATHERS TO CURL, Heat them slighty before the fire. Then stoke them with the back of a knife. and they will carl,

FEATHERS TO DYE.-Stecp them a lew bours in warm water.-hae may bu dyed by exlraci of indigo and boiligg water. himmet over the fire a few minuses:-Grect, Verdigris and Verditer, 1 cz . each; and gum water; dip the feathers. Or mix the indigo bquol witi Persitn berry íquor. Liac. Use cudbear and hot waterRed. Brazil wood, a lithe vermilion and alum, and vinegar; boil 30 minutes $;$ and then dip the feathers - Yeilow by fur-meric,-Scarles, hy cochineal, cream of tartar, and muriate of tin,-Reavly prepared dyess can be purchased at the druggist's shops.

FRECKLES-Take I oz, of lemon-jrice, a quarter of a draci:m of powdered borax, and half a draclym of sugger; mix, ler them stand a rew days in a glass bottle, then rub it on the bands and face occasionally. Or. mix two-teaspoonfuls of muratic acid with a ozs. of spinits of winc; and 1% pint of distilled water, Or, 2 dirs. of muriatic acid in I pint of water, and a

across the edge of the wood. These abuut $13 / 2 \mathrm{in}$, and continue the weavsupplementary spoke should be alout t it. long. The manner of inseruing these spoker beinre making thie bend is shown at G and $T, F i g$ G. The double spike, must be preasel down flat, when brought up in place, without riding one of the other. If the ends are too loog End istericre with the next pait, they can be cut of a litule with a fat chisel. or knife, being carciul not to make thers too shors, ur the pieces will not stay in place. If there is sill an open space, ant essra, Nhort spoke con be inserted to crowd the pieces together and fill up the space.
When the ruil is completed, insert three weavers, of No, 3 reed that has been soaked about 13 minutes, placiag them between the spokes A and B_{1} B and C, and C and D, an shown in Fig8. Pass weaver L in front of the spokes B and C, flien back of D and out between D and E, Weaver M is passed in front of C and D , back of E and out in fromt of E and F. These operations are clearly shown in Fig. 9. The weaver N is placed in front of D and E, hack of F and then in front of G and H. At this point the weaver L is used again. The weaver farthest the The difle tehind againe is weaver ar hess die most difficult to hande, as they of the tho of the two spokes nearest to it, then to correspond with those already in behind the third and out in ftont of the place. It is best not to pull the ends nest two spokes, Do not try to use of A, B, C, and D dawn too tightly at weavers longer than $\frac{B}{\mathrm{ft}}$, which is first, keeping in midd that the last ones about half the length of a reed. When must be inserted under the first ones. a weaver is uned up, press it back to The last standing spokes are reprethe side a little, pusb in a new reed sented by the full and shaded lines.
teaspoonful of spirits of lavender. Apply with a camed hair pencil, or linen. Or, horse-radish steeped in sour milk for 12 hours, and a drop or two of tineture of myrth. Wash two or three times per day.

FREEZING MIXTURES.If ice cannot be obtained, water may be cooled to the freezing point by the following mixtures : - sal ammoniac, 5 parts: ritue, 5 parts; glauber salts, $\stackrel{5}{8}$ parts: water, 16 parts.-Or, nitrate of ammonia 1 part; carbonate of serda, I parc; water, I part-Or mix i part of muriate of ammonia, or sal-ammoniac powder, with 2 parts of nitrate of potash, or salfpetre:-this forms one pousler. The powder to be mised with it is formed of barilla, or the beat Scotch soda, powdered. This must be kept in a cool place, well corked, as must the first powder. F'or use put an equal quantity of these two powders into the iec.pail, and pour on them as much cold spring water as will dissolve them.

FRUIT SALT,-This excellent artiole is composed of a ozs, of Epsorn Satis, 2025 . of Cream of Tartar, a $3 /$ ozs. of Carbonate of Soda, 2/4 ozs. of Tar. taric Acid, 4 oms. of finely powiered sugar. Mix rapidly altogether adding a small quaritity of Brotuide of Potass. Put into a dry bottle, well corked. Take a good tea-spoonfulifa a fumbler glass of water oceasionally. It is exceilent for quickly moving the bowels, pain in the stomnch, Se-

FUEL, Cheap - Onc hushel of small coal or saw-dust, of both mixed Together, a hushels of saind, 31/ bushels of clay, made into balls, or brielcs, and allowed to set limety, will supply an exocilent fuel, and effect a great saving in coals.

FUEL, to Save,-Take 4 lbs . of chalk in lumps, not above $1 / 2 \mathrm{lb}$. each. Make a clear fire of coal, and place the lumps of chalk in the grate. as coal is laid. The chalk becomes red hot, so as to be searcely distinguish. able from burning cinders. A few asher or small coat thrown lightly on from time to time, will keep up a clear bright fire all day. The same chalk may be used 3 or 4 days, when it becomes lime, and manure for gardens or allotments, or for whitewashing- Ilall-a-peck of coal used thus with chalk, will give a capital fire for is hours, The saving in ocal is x 䛇, In grates the chalk should be kept behind, and coals in front because chalk will not burn unJess in has coal or heat on all sides of it.

FULMINATING SILVER. -Put into a small-necked bottle, resiing on a little sand, one part of fine silver filings and 3 parts of nitro-muria-tic-acid. When the silver is dissolved, pour the solution into a glass, add 5

If the rull illustrated in Figs. 11 and 12 is too difficult, a simple break-down can be used, such as shows io Fig 13. To make this frisit, spoke A is turned back of spoke B, ia front of spoke C and back of spoke D, but not out again. Spoke B is bent Lack of C, in front of D, and back of E. The other are turned down the same way. The manner in which the iwo last spokes are turned down and inserted is shown by the double dutted lines.
The remainder of the illustrations show the method of lorming a roll between the first and second pyokes, where only three spokes are turned down before the throwing-across proeess begins. The firnt three spokes tumed down are shawn in Tig. 14. and the throwing over, in Mig. is. The second begrining is shawn in Fig 16. The finisting of this top is shown in Figs, 1t and 1s. The full. heavy lines represent the final insertions, and the reed must be in quite a sharp lorg to make thie end enter the right place. It is then drawn down and forced in front of the other reed that passes out belween the same spokes.

When the basket ia dry, the long
ends can be rot nff close up with a knifc, heing careiul not to cut a weaver, If there ate hairy fiteers sticking out they can be ainged off uver a gas, of other. fame that will not smut. If it requires hleachigg, brush some chlorite oो limse mixed in a little water, over the reeds ant set in the sunlight for a short time. It is better to leave the Бwish a litule dark zather than use too mach bleaching, as the latter will give an objectimahte wlitish appearance that looks like a poor job of parating.

In wrotking the recds. de not leave them in the water fonger thren decessary, as this whil rurn them dark A bleaclicd reed will staml the water muth lomger than in the matural slate. Dampen the reed fretpently while wesang it, as the weayer- pack down much closer when wet. 'The dampenine process is also required to remedy the irying out caused by whivkitg the reeds through the air in weaving operatuans. A great viricty if taskets can le marde from this form, viz., low, Lall, lapering vase forms, bawI shapes, ptc., in plain or dark wases.

times the quantity of water, then take spirit of sal-ammoniac, and pour it into the solution drop by drop, until the silver is precipitated to the bottom; decant the clear liguor, and wash it several times in warm waters, dry and place it on paper, to absorb the moisture. Is a grain of this powder is put Inta an fron sproon, and exposed to the flame of a candle, it will explode with a Loud report. The crackers are made with this powder, a 5 mall quantity being placed in a bit of paper with a pea and a blt of sand lwisted up.

FURNITURE CREAM. -

 Linseed oil, I pint; spirita of wine, a ozs. ; vinegar, I $0 z_{2}$; butter of antimony \% oz.FURNITURE POLISH, The cheapest is a mixture of linseed oil and turpentine, laid on in a thin coat, rubbed off with a soff cloth and polished,

Furniture in consbant use is gratly improved by washiog with vioegar and water, and afterwands applying cold drawn linseed oll, rubbing if very much. It should be rubbed ogain in a day or two afterwards,

Or, linseed oil, x plot : spirits of wine, Kgil. Mis well Apsly with a linen rag. Rub dry with a soft cotion eloth. Rub last and hard with a piece of old silk. In time it will have a mest beautiful gloss. Or,
tinseed oil, bees was screperl into, and gradually dissolved in turpentine, to the thickness of cream. Apply as above and rub well.
Or, I pint of linsced oil, 1 oe. of finely powdered rose piuk, x is of shellac: beat well x oze of alleanet root, and add it to the olber. Keep the vessel in a warm place for a week, stirriog now and then. This is excellent for dorkening new wood, and rewoving markes, \&ic. Apply, and rub as tiefore, Chamois leather is the hest to rub with.

FURNITURE POLISH.Spirits of wine, 1 pint: gum shellac, and gum lac, of each t/a an ce: fum sandarac, 4 oz \quad Nrit with very gritle heat, frequently shaking, the bottleDouble or tieble a piecd of cloth: puta little polish upon if; cover llat with a piece of soft linen rag lightly touched with cold-drawn linseed on. Rub the furriture or wood in a cirectiar cirection. Afterwards, rub in the same way spinits of wine, with a little of the polisf added to it; and a very brilliant polish will be produced. Some furniture requires previous scraping with tine glass paper, on account of baving been polisbed with wax.
Or, linseed oil, I pint ; treacle, 8 ors. ; ard a glass of gin; stir weil; apply with a rag; rub till dry, and it will produce a splendid gloss.

Thnsen Pect Runifulie

Br CHARLES M, MILLER

A Variety of Small Stools and Foot Regts

FOOTSTOOLS of reed are preferable, in the home, to those made of other materials, because of their fight weight, rounded edges, and comfortable, yielding tops. Reed, rattan, and similar material, used in their construction, withstand hard wear, and will not easily mar floors or furniture, a feature not to be overlooked, especially since the footstool is a favorite seat or play table of children. Several types of stools and foot rests are shown in the Illustration. A stool having a framework of dowels, covered with reed, and utilizing the frame to produce a paneled effect, is shown in Fig. 3. The upper dowel of the iramework is covered and woven over with the top, in the somewhat ligliter stool shown in Fig. 8; the legs are braced at the ends with reed, arched and covered with winding reed. The atool shown in Fig. 11 is designel with rounded lines, the bracing dowels being set low, and a panel of openwork woven into the nides. Figure 13 shows a foot rest, the framework of which is steamed and bent, and the top slanted to provide a more comfortable rest for the feet. It is strongly braced, paneled on the sides with winding reed, and ornamented with openwork scrolls. The details of the construction of the frames and the method of weaving the reed are shown in the other sketches.

Dowels, $3 / 3 \mathrm{in}$. in diameter, are used for the main framework of all of the stools shown. The dimensions of the various stools may be made to suit individual tuste, those suggested in each instance having been found satisfactory. A good sire for the stool shown in Fig. 3 is: height, 9 in.; width, 11 in -; length, 15 in . The lower of the horizontal dowels should be set at least one third the height of the leg from the top. The braces are notched at their ends ta fit the curve of the legs, and finishing nails are driven info them through the legs. The cormer joints are further reinforced by a biniling of reed, placed over them. The holes for the spokes are bored through the braces before the constraction is nailed together. They should be bored about $11 / 4 \mathrm{in}$. apart, spaced unjformly. according to the length and width of the stool. The tops of the Jegs should

project about K_{s} in. above the upper hracer, ko as to produce a level surface when the winding reed is applied.
The upper end of the legs must first be covered with winding reed, as shown in Fig. 2. Tack a strip of the reeif on; then add successive pieces, as shown, until the end is covered. The joint of the leg and the lower brace must be reinforced, as shown in Fig. 9, by tacking winding reed aver it harizontally. The braces must then be wound with winding reed, the spokes being inserted later. In winding the reed on the braces, tack one end of it to the brace at the left of a leg; then hegin the winding on the brace to the right of the leg. and as each bole is em countered mark with pencil on the reed, 30 that if any of the holes are covered they may be found easily, when inserting the spokes. The fratks should be made on the lower side.

Tac spokes extend from the Jower edge of the bottom rail on orie side to the lower edge of the corresponding rail or brace on the opposite aide. Short spokes are fitted between the uipier and lower rails at the ends of the stool. The top is woven complete before the sides are woven, the prairing weave being used. In thio method two strands of reed are handiced together, the first passing behind one spake, and being below the second strand, and then passing in frunt of the next spoke, and being above the second strand, etc. This weave is shown in detail in Fig. 9 illustrating an article on "Taborets and Small Tables for the Summer Veranda," page 155, July, 1D16. The weaving of the top includes the onvering of the upper rails at the ends of the stool, which are wound in as spokes, the reed

FURS, to Keep Moths from. Sprinkle them with spirits of turpentine. Or wash them with corrosive sublimate, yo or 12 grains in a pint of warm water. Or use borax dissolved.

FURS, to Improve. - Warm hran in an oven. Rub it well into the fur several times. Shake and brush till free from dust. Rub light furs with magnesia.

HARNESS POLISH - Take 2 ons, of mutton stict, 6 czs . of hees wax, 6 ozs of powdered sugar-eandy, 2 ozs. of soft soap, and 1 oz. of indigo or lamp black. Dissolve the soap in a quarter of a pint of water ; then add the ether logredients; melt and mix together; add a gill of turpentine. Lay it on the harness with a sponge, and polish off with a brush.

HORSES, to Water-Water is as becessary to a horse as food, and horses are found to thrive betler by having water ad libifum than by being stinted. The Dest way is to have the manger divided, so that corn may be in one half and the water in the other ; by this plan the horse takes the water as be wanis it, and noe when it is offered to him. The plan of having elean water In the manger has been tried by a great number of the London merchants, and found to answer admirably.

USEFUL HORSE RECIPES.

Horse Ointment-Resin 4 ous.; bees' whs, 3 ozs, ; hog's lard k lb. turpentine, oors, ; dissolve in a pipkin with a gentle beat; then add a ots. of fine verdigris, stir well tugether, and strain the whole through a coarse cloth: cool for use. This is a good ointment for a wound, or bruise in flesh or boof, broken knees, gathed backs, bites, cracked heels, mallenders, pr , when a horse is gelded to beal and keep off the flies,

Purge for a Horse.-Aloes 1 oz.; rhubarb, \& drs. ; of of mint, 4 drops, made into a ball with honey.

Cordial for a Horse.- If the horse is weak through travel, give bim a pint of warm ale, with 1 oz of diapente in it. Diapente will comiort his bowels. drive out cold and wind, and may cause him to carry his food the longer.-Diapente is composed of gentian root, bay berries, bay leaves, birhwort, mint, and myrth.

Sore Back.-If the saddle bruiscs his back and makes it swell, a greasy dishcloth laid on hot, and a cloth over it, bound on fifteen minutes, (with a surcingle), and repeated once or twice, will sink it flat. If it is slight, wash it with a little salt and water only. Alter the saddle, that it may not press upon the tender part, for a second bruise will
passing around them and being directed hack in the opposite direction.

The weaving for the sides is carried around the stool continuously, passing around the legs. One of the strands in the pairing weave passes behind the leg, and the other must be wound around it an extra turn, to cover up the space otherwise exposed. The reed is wound around the legs to the lower end, the strand being tacked at the inner side of the 1 eg .

The framework for the second rype of stool is shown in Fig. 6. The two side rails are fixed into place by the same method used in making the first stool, and the frame is braced on the ends' by sections of No. 12 or No. 14 reed. These are fitted into place and covered in the winding. The braces shouid be fitted to the curve of the leg, and nailed into place with small finishing nails. The ends where the
braces join the legs and rails should be whittled down to a long, thin wedge, so that they may be bound in securely by the reed that is wound atound the legs, as shown in Fig. 4.
The spokes in this model, तs shawn in Fig. 6, do not pass tbrough the upper rails, but extend from one lower rail over the upper rails and to the Jowet rail on the opposite side. This makes it necessary that the upper rails be set slightly below and in from the top and outer edges of the legs. The lower rails should then be set in so as to be uniform with the upper ones.
The lower rails and the end braces are wound by the method used for the rails in the first stool. The tops of the legs are finished differenlly, however, as shown in Fige. 4 and 5. The weaving is begun at the lower rall, and proceeds until the side panel is 6 flled to the under edge of the upper rail

be worse than the first.
Splint.-The splint is a fixed, callous, bony excrescence, growing upon the flat of the inside or outside, of the shark bone; a little under, and not far from the knee, and may be seen and felt.-Cure. To take it off, first cut the hair close, then gently beat it with a round rule until is appears hot to the touch, then rub bard soap all around the edge of the splint, to prevent the blister affecting any other part, and apply on the splint the following blister ointwent: mercurial oiptment, I oz.; Spanish flies, 2 drs, ; mised well together ; a littie of this may be applied once a week undis the splint is removed.

Spavin-The spavin is of the same nature, and appears in like manner, on the instep bone behind, not far below the hough-Cure. The same blister as recommended for splints; if it fails, firing and turning the borse to grass for 3 months, is the best method.

ICE CREAM. - Put into a hucket I 1 h . of ice hroken very smalt; throw two handfuls of salt, amang jt, and bave it in the coolest place you can find. Put the erenin into an iecepot, and cover it: imenerse it in the ice, and draw the ice round the pot, so as to touch every part. In a fow minutes put a spatula or spoon in. and stir the piris that ice round the odgea to the centre, Stitring quickly increases the cold, Therestinulf te holes in the huckel to let out the ice cas it thaws.

The creann for ieligg is thus reade fNew milk, 1 quart; yolks of 6 eggr: fine sugur, 4 ozs. Mix. Strain. Beat gently, aid then seol.

1NDELIELE INK-Grman

 Receipt-Dissolve go grains of sugar in 30 grains of water, and the addicion to the solution of a few drops of concentrated sulphuric acid; the mixture is then heated, when the sugar is cartonized by the action of the acid. It is said that the writing is not only of a solid black colour, but that tbe acid resists the action of chemical agents.IN K, Invisible or Sympathetic. -Dissolve bismuth in nitrous acid. When the writing is exposed to the vapour of sulphur, it will become quite black.-Make a wrak solution of galls; write with it, To make it visible, moisten with a weak solution of copperas; moisten the paper with a sola-fion of prussiate of potass, and it will appear blue.-Suphate of ropper (blue virriol) and sal ammoniac, equal parts, dissolved in water, wrile colourless, turn yellow when heatod. Onion juice, like the last, Solution of salt or saltpetre, shows when heated. Wrile with starch water-a weak solution of fodine will make it visible.

The weavers cannot then be returned at the corner, and are cut off to extend 3 in , beyond the leg. Their ends are thinned out, and then brought around the corner against the upper rail on the end, as shown in Fig. 3. Alternately they are turned down on the leg and against the end rail, producing a covering for the corner. The strands of the top are wover over the thinned-out ends, and bound over the joint of the braces with the apper rail The corners may be beaten gently with a block of wood to smooth them, and to bring the weavers firmly together. The weavers pass twice around the legs, as each strand is brought to the leg. as shown in Figs 5 and 8 . It will be found convenient to place the spokes in only one lower rail, as in Fig. 6, while weaving the first side pancl, and the top. As the wark proceeds the spokes are bound down to the upper end rails, and when the middle of the second side panel is reached, they are trimmed off and brted into theic holes, on that side
The third stool differs fundamentally from the preceding ones in that the framework is curved of the upper ends, and the weaving of the tnp is earried down over the ende The framework is shown in detail, in Fig. 9. Ash dowels, $7 / 4$ in in diameter, are nsed for the framework, and the rails are notched into the main sections, and nailed, as were those in the preceding stools. The length of the curved dowels must be determined carefully, and it is desirable to have the stock looger than is necessary for the fonished pieces, so that inaccuracies in bending may be allowed for properly. The discance between the jegs should be such that a space of $1 / 2$ in, is provided between the legs and the first hole for the side spolkes, and the intervening spokes should be placed 1 in . apart. A satisfactory size is to make the stool 8 in . high, the end rails 8 in., and the side rails 13 inches.

The method of bending the dowels is showe in Figs, 12 and 13. They mast be soaked in hot water or steamed, and clamped around the form as indicated, being left to dry. A pipe fitted over the ends of the dowels, to give leverage, will aid in bending them. The form is made by fitting pegs, suitably spaced, into a board, ψ_{3} in or more in thickneas. The curved pieces may be braced temporarily, as shown, and removed from the form when partly dried, so that it can be used quickly for the second piece. The pegs must be set close ennugh together so that the curve at the upper ends of the legs will not be too large, maling the legs appear short. Care must be taken in bending this
short curve, as the dowels are likely to break if the curve is quite abrupt. Ry setting the pegs solidly and making them long enough, two pieces of dowel rod may he curved in the form at the samic time, and permitted to dry A convenient tray of galvanized iron, for use in beating water for the moistening of the dowels, is shown in Fig. 10. It is 28 in. long, but may be made shorter if the points at which curves are to be made are moistened separately. A wash boiler, or any other suitable vessel, may be used for heating the water and dipping the dowels into it. After being shaped, the pieces are trimmed off to the proper height on the leg portions. Holes for the spokes are then bored through the lower and side rails, and they are notched and nailed to the legs.

The cross rails of the framework, shown in Fig. 9 , are fixed into place by the method used in the previous models. The lower rails should he set about 2 in from the floor, and are bored for double spokes. The rails are set with their outer edges $1 / 3 \mathrm{in}$. in from the edges of the legs, so that the weaving will be flush with the surface of the legs. rather than project slightly beyond it. The spulkes for the ends and seat, or top, pass from one lower rail on one and to the correspunding nil on the other end, and are supported on the upper end rails. There are no corners to be fitted with the winding reed in this model, as the wiadings continue over the curves at the ends and down over the latter, by the same method of weaving as used in the top. The weaving is begun at the lower rails, and passes completely around the sides and ends of the stool, until about $11 / 2$ in has been covered, up from the lower rails. The ends only are then covered, the strands of reed passing around the curved portion of the upper rails, and around the dowels forming the support for the top, in weaving back and forth.

The ornamental weaving at the sides of the stool is produced by spreading out the double spokes and conducting them to the proper holes in the upper rails. Several types of design muy be made by crossing the spokes in various ways beciore setring them into the holes in the rails. The short spokes in the sides are permitted to remain with their upper ends free and longer than necessary while the $11 / 2-\mathrm{in}$. lower section is woven. They must be cut carefully to the size necessary to form the desired design, and the ends glued into the holes.

The stool shown in Fig, 15 is desigped as a foot rest. with a slanting top. It is similar in general construc-

INSECTS on Plants to Des-troy,-Tie up sulphur in a muslin bag, and dnst the leaves of young shouts and plants. A dredging box may be used. Sulphur increases verdure. A weak solution of alum sprinkled upon plants is not relished by insects.-Or, a thin mixture of soap and oil of turpentine painted on the stems of trees.-Or, use a solution of borax.
Faimting the walls behind rose trees, fruit trees, \&c.., prevents the visits of spiders earwigs, caterpillars, \&c. The best paint for this purpose is gas tar.

ITCH.-It is a skin desease, infectious. Sometimes it is caused by poor living, ubwholesome food, bad aif, unventilated and dirty houses, dirty beds and clothes. The iteh begins with small eruptions, on the joints of the fingers, on the wrists, thighs, \&e. They cause a most intolerable itching, the scrateching of which only spreads the disease.

Remedies:- Sweet oil, I pound; suet, I lh. Melt and macerate; then add powdered nitre, 3 ozs, : powdered alura, 3 ozs, ; powidered sulphate of zine, 3 ozs, ; oil of aniseed, of of spike, and oil of origanum, to perfume. Or, mix 2 ors of lard with x or, of sul-phur-vivum, and a few drops of essence of lemons. Before going to bed rub this well into the affected parts, In the morning wash with soap and warm water; change the lioen and elothes, Repeat the application, if necessary. Take at the same time flour of sulphus and cream of tartar, in milis, beer, or treacie.

Frequertly take a Warm Bath. Th. greatest cures have den effected by it.

Wash the parts affected with stroog rum.-Tried-Ot, anoint them with black soap, but wash it off soon.-Or, steep a shire half an hour in a quart of water mixed with half an ounce of powdered lorimsione Dry it slowly, and wear it five or six days. Sometimes it seeds repeating. - Tried. -Or, mix powder of white heilchore with cream for three days. Anoint the joints for three morninga and evenings. It seldom fails. -Or, beat together the juice of two or three lemons, with the same quantity of oil of roses.-Anoint the parts affected. It cures in two or three times using.

The following is said soon to effect a eure:-Sulphur-vivum, Venice turpenting, x oz each; land, $4 /$ or. Melt the lard and turpentine; add the sulphur. Apply several times a day.

Or, wash the body well in warmi water, and rub it with the following pre-paration:-Lime, $202 s$.; sulphur-vivum, 2 ozs . Mix in I quart of water. Pour off, and use it when clear.

A decoction of white hellebore, with a Little lavender water, has been recom. mended.
TVORY and BONE, to Stain.
tion to that shown in Figs. 8 and 11. the framework being made of dowels, bent fo the shape indicated by means of a form. The top and ends are woven in the marner described for the previous model. A point of difference to be roted is the bracing by means of a woven panel below the side rails, as shown in Fig. 15. This feature may be carried around the ends also, or the ends may be braced to the lower side panel ly the method of bracing shown in Fig. 4 . The rails around the stool are all on the same level. The double spokes for the top are fixed into the end rails, the spokes for the side panels into the side rails, and the smaller dowel placed at the lower edge of the side panels, as a support for the twisted weaving shown. The weaving of the top and the panels is by the method used in the previous model. The scrolls fitted into the open portions of the sides are tacked into place, and the strands of weaving reed carried over them, where the curves touch the upper and lower rails. A variety of designs may be worked out for the openwork. The nerolls are made of No. 6 or No, 8
reed, and should be formed on a base, as in Fig 12, brads being used to hold them in shape until dry.
Another type of foot rest with a slanting top is shown in Fig, 14. The framework is built up of dowels, straight sections only being used. The joints are fastened by the method used in the first and second models described. The method of covering the frame is essentially the same as for the stool shown in Fig. 15, or an adaptation of that used in Fig. 11 may also be applied. Where facilities for steaming or moistening the dowels are not to be had conveniently, this type of construction will be found satisfactory, the designs being limited to straight lines, however. The method of covering the framework used in Fig. 3 is also ayail able for the framework shown in Fig. 14, and the corners may be finished as shown in Fig. 2. Numerous variations and combinations of the types shown may be worked out readily after one has become reasonably familiar with the possibilities of woven-reed construction.

A Woven-Reed Footstool

Br Charles m. nilier
The sanous matenals referred to in this aricle hy number or size were described in detail in an artiele on "A Reed Blashet" in Volume Iof The Survivor.

REED furniture has become very popular within the last few years, and the newer designs and methods Have been so atractive as to place this constructive effort among the handicraft serics of modern art. It is possible 50 to analyze, simplify, znd illustrate this work as to make it Feasible for amateurs, and at the same time there are possibilities which involve problems that may try the ability of the skilled workman. In other words, there are possibilities of progress in this kirtd of furniture making. There are places where careful weaving is the principal aim; again parsicular attenfion will be given ta corners, or, perhapss, a nicety of modeling will be found neressary to bring out the propier curves involved.
Each piece of reed inruiture lian a framework, पsually of dowels, heit it may also be made bil loards it such motels as small rahles, dressers, bed-
steads, chests.
etc. The board
construction is more often covered with flat reed. In footstools there are bootif kinds of frmmework. The illustrations Gbow the same parts marked with the same letters throughout the series of sketches,

The framemork of the stool in shown in Fig. 1, in which the rails and ponts are made of dowels, 4 im . in diameter, and the braces of dowels. 5/8 in. in diameter. It will be noticed that the posts extend to the top of the frame for strength in this manner of construction. If the rails rested on top of the post S , the nails would have to bi driven into the end grain of the wood.
-Brack:-Rutb over with diluted cil of vitrial; wash, and then steep in nitrate of silver ant good folk--Bhue; stecp in a strong solution of extract of indigo and at hittle potash.-Grees; dissolve copper in nitric acid, and steep the ivory in it.-Steeplo oxalic tin, and then In a strong decoction of Brazil wood, or lac dye, and alum,-PurgNe : nitric acid, a paits; sal ammoniac, I part; mix, and steep the fivory in it.

KERNELS, to Blacch,-Simply put them into bviling water a mifute or two: rub them between a ciean cleth, and ti:e brown skins will soan reve off. Almonds and other kerrels may be blanched,

KETTLES, Incrustation, or Furring, to Prevent.-Keep in the yessel a clean fuarble, a cockle, of oystor shell; these will attract the partheps of sand.
LAXATIVE POWDER for Horses:-Crocus of antimony, finely Inchigated, nitue, cream of tartar, and flour ol sulphar of each 4 ors. Fowder and mix well together. A table-spoonful of this mixnue may be given every bight and mbrning a few limes, in a ntash of scalded bran, or a feed of corn moistened with water. This powdet is prod for horges kept on dry meat; and four stallions in the spring as they keep the body erol and opien, and eause them in ever their coat, and make thelr skin as luight nt sifke

LOBELIA.+AT American plant, convining mast valuatile medical prosporties, li was first used with greal actuantage, as an emelic, by the AmeriEsill Incilane, and was brought into motricty by Dis. Sarmul Thompsoa. It z expetio and stimataing, and Dr. Eetel says. "from its action on the grest sympalinetio nerve, its effect is felt larongfout the whole system. It exerter pecyliar auliva upon the trachea ant bronctial vessels, expelling all collected mucns:" It must therefore be very valunhic in asthma, croup, tooping entegh, and consumption. The greatest fersfis from it has beern round in dyspepsia, evoghs, 25 bima, liver complaints, *en it has reseved astiomatic subjecth when on the grint of suffication by accomblated plitegro, cough, \&e. Also in pilionmonla of anfarts.

It is also a valnatile suderific; it reluxef the consificted pores of the skin, and protootes free perspirntion. The leaves, sceds, and secdwessels may be given in powider, and tineture. Dose of the poweer. from a drachm, or a small tenspoonfol; of the tiricture, a teaspoonfut.

LORELIA, Acia Tincture of. -Lohelia herb, I os. ; cayenne. a drs. ; viotgar, half a pint. Hoil the vinegar, and put all into 2 botlle, cork weil for 7
which makes the strength depend en- for the top extend down and out at the tirely on the holding power of the nail ends, and each may be of one piece, 32 in this pusition, as there is no binding of in. longs. As there are no spokes at the the upget yart to the posts in the weav- top extending to the side pieces, short ing With the post extending to the spokes must be inserted at the right top, the nail passes through the upper time for the side weaving. The loca-
part of the post and into the end grain of the ralls, and the raits are bound to. gether horizontally by the weavang.
The material for the iratne consists of the jollowing dowel stock: two pieces for rails, $\frac{34}{4}$ in. by 14 in. long; two pieces for rails, $3 / 4 \mathrm{in}$. by 9 in. long; four posts, $3 / 7$ in by 7 in. loag, and two braces, $\frac{5}{5}$ in. by 17 im . long. These pieces are shawn in Fig. 9. If notches are cut with a small saw, a coping saw preferred, in the ends of each rail and in the bractes, as shown in Fig. 3, they will be to the posts better and make a stronger joint. White different makers use a finsbing nail; a barbed or corrugated, nail; or ace mented or gine - crateil, nail, I find the beit to he on ordinaty 4 penny nail, which on-wers the purpoze well. Danot drive the nail throagh the ports withonat first drilligg a hole with a Kon-in. drill. A small hanit or hreast drill will be needed for this wark.
Before nafling the frame together, the holes for the spokice in weaving should be drilled in the raits. The spokes may be $\mathrm{N}_{n} 4$ and the weavers No. 3 reed. The Nis 4 reed requires a $1 / 4$ in. hole. The hole for the top and end side spokes may be combined, as shown in Fig. \& The dotted lines show the vertical and horizontal diameters, and E the outside and F the inside of the rail, one hole being repre-
 tion of the holes in the side rails is shown in Fig. 2. The holes in the side rails may be driled straight in the wood.
The pieces may now be nailed together to form the frame, as shown in Fig. 1. If the top of the side rails A are set about $1 / 1$ in in below the tops of the posts, the weaving will be almost level, as the winding reed is thinter than the round reed. The braces D are halved at the eenter, on a slant, to bring their upper surfaces on a level when they are in place. The length of 17 in, as given in the naterial list, is not Arcurate, as sufficient length is given to allow the ends to be cut, in huing them it place after the frame is averabled. The posts should seand vectical and square. Try the bracen before nailing them in place, to see that they do not draw the frame uut of shape.
The first operation in weaving is to cover the tops of the four posts, which is started as shown in Fig.'. A short piece of winding reed, G, is tarst tacked in place, A round reed can be split if one is careful, in cate winding roed cannot be obtained. Tacks used by shoemakers are just the thing for fastening these weavinge in place. After fastening the weaving G in place, another, H , is put on in an opposite directioth, wherenpon J is fastened on the same as G, and so orn, until the post is covered, as shown in Fig. 6. Perhaps a better way to cover the posts would be to tack all eight pieces on the post part C, and then weave them down together. It may not be neceessary to tack thero all on the rails.

After the corners are all covered, the end rails B are wound with the winding reed, the start being shown in Fig 7. where the frame is shown in an in-
or 8 days, Dose for a cough, half a teaspoonful in any pleasant vehicle. Repeat when the cough is troublesome. It will require a larger dose for asthma or croup.

LOBELIA, Emetic.-Take lobelia powder, x ounce; boiling water, I pint; mix, and make an infusion. Dose: A fluid ounce to be taken every half hour, until vomiting ensues,

LOBELIA POULTICE.
Linseed meal, // on: ; slippery elm. I oz. ; powdered lobelia, $11 / 1 \mathrm{oz}$. ; ginger, I oz, ; whiskey sufficient to make it. Good for all inflamed parts, as the side in pleurisy, Biver complaint, rheumatism, lumbago.

LOBELIA TINCTURE.Put 1 oz of the powdered plant to a quart of whiskey. Infuse 7 days. Dose, a teaspoonful when the cough is trouble: some. The tincture can now be bought at most Herbal Stores.

LOOKING-GLASSES, to Silver,-Take a sheet of tinfoil, and spread it upon a table, then rub mereury upon if with a hare's foot till the a metals incorporate. Lay the plate of glass upon it, and load /t with weights, which will have the effect of pressing out the excess of mercury that was applied to the tin-foil. In a few hours the tin-foil will adhere to the glass and convert it into a mirroe. About a oss. of mercury are sufficient for covering 3 square fect of glass.

MAGGOTS IN SHEEP, to Destroy.-Water, 1 quart; spirit of turpentine, a tablesspoonliti ; sublimate of meroury, as much as will lie upon a slibling; cork in a bottle, with a guill through the cork, so that the mixture may come a litte at a lime Shake Infore using. Pour a little-of the mixture upon the spot where the maggots are, and they will creep lapon the top of the wool, and fall oit ilead. Apply afterwairds a little train bil to the place.

MARIGOLDS, to CultivateFull ap atl those plants, whose flowers are less double, as soon as they aprear. that they may not impregnate the othiers with their farina. Save the seeds from the largest and most double flowers. Sow the seeds in April in places where the piants are to remain.

MARIGOLD CHEESE. Pound marigold petals in a mortar, and strain out the juice; put it into the milk when you put in the rennet, and stir them together; the milk being set, and the curd come, break it as gently and as equally as possible; put it into the cheesc vat, and press it with a gentle weight. Manage the same as other cheeses.

MILDEW, to Remove. - Mix

K , to the side rail, and whenever the winding comes to a hole, a pencil mark is made to locate the hole later. This mark is shown at L. When the two end rails are wouyd, push a bodkin, or other steel point, in between the windings where the marks are located, to make way for the insertion of the spokes. It may appear to an observer that the spokes could be put in before the winding, but the winding cannot be properly done aiter the spokes have been inserted, as the windings would separate too much around them. The hole must be opened up through to the opposite side of the rail. Single spokes go through the rail, and they are ouly put through one end rail at first, as the weaving is much easier with one end of the spokes free, but, of course, they must be inserted in the other end before the weaving gets within 2 or 3 in. of that end. An extra spoke is inserted beside each spoke, as the weaving proceeds and after a strip has been woven $3 / 4 \mathrm{in}$. wide. These short spokes are cut jast long enough to ft in between the end rails. The weaving is done with a single weaver, and it is passed over and under double spokes as if they were one. When the weaver comes to the side rail, it is wound twice around the zail, to take up the space for the two strands across. If the weaver does not go twice around the side rails each time, either the weaving will take a curve or the side winding will be loose. The starting of the weaving is shown in Fig. 8, where the extra spokes are
inserted along the side of each spoke that runs through the end rails.
After the spokes have been inserted in the opposite end rail and the weaving in the top completed, the braces and posts should be wound. Where the braces D connect to the posts C, three strips of the winding reed are passed around the post and tacked on both sides of the braces, as shown at M, Fig. 9, Where the braces cross, the winding passes around both pieces for a short distance, as shown at N . It is quite appropriate to use the brass caps 0 on this model, but on many stools their use has been discontinued and the wioding continues down to within $1 / 8 \mathrm{in}$. of the bottom of the post. In case the brass cap cannot be obtained, the winding may be used also on this model.
The side weaving is called the apron, and in this case the pairing weave is used. The short spokes will have to be inserted in the under side of the side rails, abd the extra spokes are added after the weaving is started and a small strip woveu. The pairing weave is shown in Figs, 10, 11, and 18. The two weavers are represented by the letters P and Q The weaver P passes back of spoké T and out between T and U. The weaver Q is then used in the same manner, and so ony around the stool. When the post is approached the weayer that comes oit between the last spoke and the poat is passed around the post and in hehind the next spoke on the other side. It will be seen in

soft soap with powdered starch, half as much salt, and the juice of a lemon, and lay on with a brush. Let it lay on the grass day and night till the stain is gone. Or, take 2 ozs. of chloride of lime, pour on it a quart of boiling water, then add 3 quarts of cold water; steep the linen 10 or 12 hours, when every spot will be extracted.

Mix oxalic acid, citric acid, and milk together; rub into the linen; repeat as it dries; wash, and bleach on the grass.
MUSTARD.-Tbis plant is both culinary and medicinal. As a condiment it is generally used and esteemed. As a cataplasm or poultice, it is made thus;-powdered mustard seed, 4 oss, ; vinegar, as much as is sufficient to mix it for a plaster; it is stronger by adding horse madish, scraped, a ozs. It is employed as a stimulant ; it often inflames the part, and raises blisters, but not so perfectly as cantharides, Sometimes they are applled to the soles of the feet, in the low state of acute diseaves, for raising the pulse, and relieving the head.

The white mustard acts not only on the bowels, but also on the skin. It wonderfally strengthens the whole line of the alimentary canal, improves the appetite, the digestion, and promotes sleep, and the heatio generally.

When the seed is used to remove conatipation, take it an hour before breakfast fasting. A small table-spoonfal is sulficient.

MUSTARD, to Make.-Mix the best Durham flour of mustard by degrees with boiling water to a proper thickness, rubbing it perfectly smooth; add a little salt, and a little tincture of eayenne, and keep it in a amall jar close covered, and put only as mach into the glass as will be used soon, which should be wiped daily round the edges.

OPODELDOC.-Dissolve 1 oz. of camphor in a pint of spirit of wine: then dissolve 4 oxs. of hard white Spanish soap, scraped thin in 4 ozs. of oil of rosemary. It may be improved by adding 2 ozs. of ammonia, tincture of aconite, or oplam 1 oz , and a littie oil. It is a good application for sprains, lumbago, pained limbs, weakness of joints, \&c. Mixed with tincture of cantharides, or tincture of cayemne, it becomes more effectively stimulant.

PARSLEY, and other Herbs fo Dry-Pick them clean from all decayed leaves. Put in a sieve; cover with blotting paper, and expose to the sun; or in a very slow oven, and turn tham often; the quicker they are dried the hetter. Aromatic herhs, if not dried quickly, will lose much of their flavour. They may be dried also in a Dutch oven. Rub them, and pass through a
the pairing weave that the weaver behind is always thrown over the other weaver. This gives the appearance of 2 rope twist to the weaving, and also cinches it to the spokes and prevents slipping - Always pass the one weaver around the post twice to take up the space for the one that cuts across the corner. The weaving of the sides or apron is done with the object tarned upside down, where it is in a good position for finishing off, which is sometimes called breaking down.
If the weaving has been carried far enough, the extra spokes are cut off even with the weaving, and the breaking down may be done as follows: The spoke R, Fig. 13, is shown turned down lack of the spoke S, and S back of T and out. The spoke R, as shown in Fig. 14, is back of S, in front of T, back of U , and out between U and V , but as R is brought out, the spoke T is brought down back and parallel with R. Likewise the spoke S passes back of V , and U is brought down with it. The spoke T is brought back of W and V is brought down back of it. The short end of R is inserted under the roll, between the roll and the weaving. and is left extending on the inside. If it is too long, it can be cut off close to the inside of the weaving. In Fig. 15, alt the short ends are shown brought through to the back as far as the weaving is illustrated. At the corners, the posis are used as spokes. To finish the
roll, the spokes will have to be inserted through the roll, to correspond with the rest of it ; hence, the beginning of the roll should be left loose, as in Fig. 13.

In weaving, the weavers should be kept wet, but not the spokes, Do not put the reed in water and leave it for any length' of time, as it will become discolored. About 15 minutes will be sufficient to make the reed pliable, then it is best to have a sponge and bucket of water at hand, to dampen long weavers frequently by drawing the reed across the wet sponge. Besides being more workable, the wet reed, held in place until dry, stays curved in the form woven much better. Some workmen leave the reed in water for a long time and depend on bleaching to whiten it, but so much of the bleached work looks like a poor job of painting that it is much better to keep $1 t$ white from the start. In case bleaching is found necessary, a little chloride of lime in water makes a good bleacher. Avoid making the solution too strong. It should be put on with a brush, so as to get it into the interstices of the weaving, whereupon the work is placed in the sunshine to dry.
Any kind of reed used will have some of the small hairlike fibers sticking out after the weaving is complete, and this should be singed off with a gas flame. A blowtorch is good for this purpose. Be careful not to scorch the weaving.

Taboreta and Small Tablea for the Summer Veranda Ot CHARLES M. MILER

UTILITY and ready portability are well recognized featares of wovenreed furniture, but the qualities which make it especially attractive for summer use in the open air, or on the veranda, are its inviting comfort and graceful lines. While furniture of this type arranged in suites makes a particularly harmonious showing, individual pieces may be used in combinatien with other furnitare, lending a touch of variety. Small tables or taborets, of light weight and simple design, may be made by the novice, and may be adapted to a variety of uses. Footstools, jardiniére stands, sewing tables, card tables, and smoking stands are some of the possibilities. Three representative types are shown in Figs. 1 to 3 , and the general method of construction as well as the details of the weaving are also illustrated.

A serviceable taboret or stand is illustrated in Fig. 1. It is 18 in , high, and 17 in , in diameter on the top. The sides are 9 in. wide at the top and 14 in. at the bottom.
The framework for the top of the stand consists of a disk of wood, 16 in . in diameter, with a similar one, 14 in . in diameter, directly underneath, the edge being set under 1 in . all around. Four legs of 1 -in. doweling support it, and two cross braces of doweling are placed between diagonally opposite corner posts, behind the woven portions of the side. The grain of the wood in the upper disk should run at right angles to that of the lower, to prevent warping, and the disks should be fastened together with nails or screws. Avoid putting them into the lower disk, where the legs are to be fixed. It contains a volatile oil which is obtained by distillation. The infusion is warming to the stomach, and allays sickness. It relieves spasms, hysterics, flatutency, and colle, and promotes expectoration in dry consumptive coughs. It promotes perspiration, and is most valuable in obsinuction of the menses.
PENNYROYAL WATER.Pennyroyal leaves, dry, it lb, : water, from $x \frac{1}{q}$ to a gallons, Draw off by distillation, one gallon. It is a specific remedy for fermale obstructions. It is good for gout, rubbing the parts with it till they are red ; and if salt be added, it is good for the side in liver complaints, It is very warming to the stomach, produces perspiration, and therefore is good for coughs, asthma, \&c, An infosion of the berb in bot water is nearly as good,

PENCIL DRAWINGS, to Fix.-Dissolve white resin in spirits of wine; lay the pencil drawing on its face upon a sheet of slean paper, and brush the back of the drawing with the solution. This penetrates throngh the paper, and as the spirit evaporates, the resin is deposited as a varnish on the drawing. It does not cockle the paper, which watery solutions will do; and as the brush only passes over the back of the drawing, none of the pencil marks are in my degree removed.

Pencil, or Chalk Drawings, to Fix.-Immerse the drawing in a weak solution of isinglass ; allowing no part of the drawing to remain without the isinglass passing over it , or it will look spotty, Drain it, by holding the drawing up by one end over a plate.

PLASTIC MATERIAL for forming various objects new. -By Professor Purkins. Five parts of whiting are mixed with a solution of one part of glue. When the whiting is well worked up into a paste with the glue, a proportionate quantity of Venetian turpentine is added to it, by which the brittleness of the paste is destroyed. In order to prevent its clinging to the hands whilst the Venetian turpentine is being worked into the paste, a small quantity of linseed oil is added from time to time. The mass may also be coloured

To locate the position for the legs, draw a diameter on the under side of the top, as at A, Fig. 4, and 4 in . on either side of it draw parallel lines B and C. Draw another diameter, D , at right angles to A , and draw the parallel lines E and F 4 in . from the diameter D. Where the four outside lines intersect will be the centers of the holes for the legs. These holes are not bored perpendicularly, but are slanted to conform to the slant of the leg. A template should be used in guiding the bit, as shown at G, Fig. 4 . It may be con-

Taborets, of Light Welphe asd 3 imple Denifa, may be Made by the Nouict and Adapled to a Variety tif User in the Roge, Ther Are Particulerf Artective for the Summer Veransa. Sewise Tablee,

 Ged to Sult ibe Frameserli. The Foetetival Shewn is Pig I Is Typiral of Stands Having Vertical Sidea
structed of wood, 3 in , wide and 5 in . long, Fig. 5. Place the gauge just outside the edge of the hole to be bored. Nail it to the board lightly on the diagonal, as shown, and guide the bit against it.

Before the legs are fixed into place finally, the holes for the spokes of the side should be bored. The parallel lines of Fig 4 now serve another purpose, that of giving the location of the spokes. Place one spoke $1 / 2 \mathrm{in}$. from each leg, and the others 1 in. apart. The legs are utilized as spokes in the
by kneading in any colour that may be desired. It may be pressed into shapes, and used for the production of bas reliefs and other figures, such as animals \&c. It may also be worked by hand into models, during which operation the hands must be rubbed with linseed oil; the mass must also be kept warm during the process. When it cools and dries, which takes place in a few hours, it becomes as hard as stone, and may then be employed for the multiplication of these forms.

SMOKY CHIMNEYS.-Certain chimneys draw well ordinarly, but are subject to violent fits of smoking in certain winds, and generilly in boisterous weather, blowing both flame and smoke into the room to an intolerable extent. For this particular class of nuisance I have for many years past adopted a very cheap and permanent remedy, which has never fuiled. Instead of a common chimney-pot, 16 fx , in the like manner, a 9 -inch drain-pipe, 2 feet long, socket downwards, which gives it a firm seat ; and on this I $6 x$ anotber like drain-pipe, baving a 4 -tach double junctions, inserted obliquely into the 9 -inch pipe. When the wiad blows, it rushes into these lateral openings, which, having a turn upwards, direct its blast against the downward current from the top of the pot. The fixing should be in cement, and yous have a cheap chimney-top, which will neither perish nor blow off. I use nothing but drain-pipes for chimney-pots, which, as well as being cheaper and stronger than any thing else, admit of a second and third story being added to them if the draught be dull, or the branch pipe top as I have described, if subject to downward gusts. For kitehen flues, ra -inch pipes are safer--T. E in the Builder.

To increase the draught in the chimney, some persons make a hole in the hearthstone, providing there is a room below, and cover it with a ventilator to proteet it from cinders and ashes.

Or, inflate a large ox's bladder, and tie it by the neck to the middle of a stick, and place it across a chimney, a feet from the top, or at the foot of the chimney-pot. The buoyancy of the air keeps the bladder contínually in a circular motion, and thereby prevents the rush of air into the funnel from descending so low as the fire-place.

SOLDERS, to MAKE :-
Solder for Lead.-Tin, I part; lead, a parts. Its goodness is tried by melting it, and pouring the size of a crown piece upon the table, and, if it be good, there will arise litle bright stars In it. Apply resin when this solder is used.

Solder for Tin.-Lead, 10 parts; tin, 7 parts.

Solder for Pewter.-Tin, 1 part;
weaving. The spokes should be double, and the extra spokes may be inserted beside the original ones, after the weaving has progressed a few rounds. Number 5 reed should be used for the spokes and No. 3 reed for the weavers, which are woven back and forth around the spokes.

Drive the legs into their sockets, applying glue, and pin them with nails, as at H, Fig. 4 . Tack strips on the bottoms of two pairs of legs and then lasten two strips in brace them, as shown in Fig. 6. The strips should be put on and the distance between the legs spaced before the glue sets.

It is best to weave the sides before beginning the top, so as to prevent rubbing the woven top while weaving the sides, with the stand inverted. The side spokes should be 2 ft . long and should be set into the top 1 in., with glue. Turn the top of the stand down on a table, and begin the weaving at the under side of the top. Single weaving is used for the sides, every other round passing twice around the legs.
There being four sidea in the construction, there will be an even number of spokes, even though there should be an odd number to each side. The weaving would thus repeat itself, is going behind and before the same spoke each time. This is not desirable in this construction, and a change should be made each roond. To do this, go over two
spokes, instead of one, at the finish of spokes, instead of one, at the finish of
a round. Such a "skip" is an Indian method, and forms a design that may be carried in slanting lines back and forth down the side of the stand, It is best to confine these "skips" to one side. Another way to overcome the repeat, as the weaving in and out around the same spokes in two successive layers is called, is to insert an extra spoke on one side, thus making an odd number of spokes around the stand. It is necessary then to conform the design of the open work for this side to the number of spokes. The design for the open work shown in Fig. 2 will be used for the stand illustrated in Fig. 1, and to be described in detail. The first of the two methods of overcoming the "repeat" will be used.

Insert the extra reed for doubling the spokes, after a few rounds have been woven adjoining the top. The method of weaving from the corner post and the making of the open design are shown in Figs, 7 and 8. The method of "pairing" for winding the reed in and out of the spokes, is shown in Figs. 9 and 10 . The rear weaver of the pair of strands is thrown over the forward weaver, back of the next spolke and out. The fore weaver then becomes the rear one, and is thrown in
like manner. This process is repeated in order to make the complete rounds. Figure 9 shows the weaving from the side, and Fig. 10 is a view looking down on top of the spokes and the edges of the weaving, shown in section. Pairing gives a continuous rope twist to the two weavers, and an even or odd number of spokes is equally suitable.
For the open designs of Fig. 2, one
or more of which may be placed in the side of the stand, the center spokes are left free, as shown in Fig. 7. Before turning the first weaver back for the open work, as at M, start a short weaver N about two spokes back from the opening, and pair it with the regular weaver across the opening, and two spokes beyond. In turning back on the spokes, the single weaver goes twice around the spokes, as shown by the intermediate layers O. This is a short bend and the weavers must be very soft. Use short ones and wet them Irequently with a sponge. A sectional view of the weaving at the opening is shown in Fig. 8, as it joins with the weaving around the corner posts. At K, the weaver turns back on a double thickness of reed, and at L, a short spoke is set back of the other two, and the weaver is wound around the three, thus lessening the abruptaess of the winding. The latter method is the better. At the horizontal center of the opening, two rounds continue across the opering and around the stand. Pair a short piece of reed across at the finish of the openings, as was done at the lower end at N, Fig. 7.

After weaving to within 5 in , of the bottom of the legs, cut off the extra member of the double spokes, and soak the ends of the remaining spokes in water. Braid them into the border finish, as shown in Fig. 1. The corner posts serve as spoke spaces, and the spokes nearest them are wound around the bottom ends of the legs. Short spokes may be inserted beside the posts and wound around them if the ends of the spokes are not long enough for this purpose.

The top may be made next. Holes are bored horizontally into the edge of the under disk, as shown in Figs. 4 and 11. In Fig. 12 the holes are shown bored into the edge on an angle. This method gives a thicker rolled edge to the top, although both methods are satisfactory. These holes must be bored before the work on the top is begun. There are two ways of beginning the weaving for the top. The radial spokes may cross each other in groups of four, the upper and lower courses being bound together with winding reed, as shown in Fig. 13, or a small maple disk may be used as a
lead, 2 parts; bismuth, 3 parts.
Solder for Brazing.-Copper, 3 parts; zinc, 2 parts; or sheet brass, a parts ; zinc, 1 part. This is called Spelter, and is used for brass, iron and copper.

Solder for Britannia Metal.Bismuth, $1 / 2$ of I part; tin, I part; lead, 1 part.

Solder, Soft.-Tin, 2 parts; lead, 1 part.

Solder, Hard.-Copper, 2 parts; tin, 2 part.

Zinc and lead are soldered with lead and tin, not quite equal parts, lead preponderating.

To use Old Britannia Metai instead of Block Tin in Solder. Take old britannia metal and melt it ; and while hot sprinkle sulphur over it and stir a short time.
SOLDERING, Hard.-To braise a pieces of iron together, file one side of each piece bright, put on the clean face a paste made of borax and water, tie the two pieces together with several separate coils of brass wire, smearing more borax on these. Hold it over a bright coke fire, and the brass will melt and run into the joint. File oft the superfluous metal. When the brass melts in blue flame will be seen to arise.

SOLDERING MIXTURE, for Iron, Steel, Copper, \&c.Take any quantity of muriatic acid, and dissolve as mucb zine in it as it will take ; then dilute it with X as much soft water as of acid, and it will be ready for use.

This applied to iron, Ee., cleanses it, and leaving zinc upon the surface. causes solder readily to adhere to it.

SPRAIN.-Hold the part in very cold water for two hours.-Or, apply cloths dipt therein, four times doubled, for two hours, changing them as they grow warm.-Or, bathe in good crab verjnice -Or, boil bran in wine vinegar to a poultice. Apply this warm, and renew it once in twelve hours.Or, mix a little turpentine with flour and the yolk of an egg, and apply it as a plaster. This cures in a desperate case.

Weakness remaining after a sprain is cured by fomenting the part daily with beef brine. Suppose the ancle sprained : -rst. Foment it with warm vinegar four or five times every four hours. and. Stand, if you can, three or four minutes at a time on both your feet, and frequently move the sprained foot. Sometimes also while sitting with your foot on a low stool, move it to and fro. 3 rd. Let it be gently rubbed with a warm hand at least thrice a-day. \&th. Two hours after every application of the vinegar, let it be just wetted with spirits of wine, and then gently rubbed.
center from which the spokes radiate, as shown in Figs. 14 and 20 . The cen-ter-disk method is not difficult, and is used exiensively. The other type is novel, and also quite feasible

The spokes for the method shown in Fig. 13 are bound together in the following manner: Place two spokes at right angles to each other and wind them with winding reed, the end of the latter beginning between the two spokes, as shown at P. Fig. 15. The perpendicular spoke is uppermost. Add a second perpeadicular spoke and bind it into place, as at Q. Continue this process until four perpendicular spokes have been bound in as at R. Place a second horizontal reed into position and go over each vertical spoke with a separate winding as in the first course. Continue until four horizontal spokes are bound in, and the end of the winding reel is looped around the last, as shown at S. The spokes should be of No. 5 reed, and 25 in. long.
Four groups of four spokes each will result by following out the process described. Separate the spokes by drawing the outer ones ioto the comer spaces. They should haye the appearance of spokes in a wheel, as in Fig. 16. Use two weavers of No. 4 reed, in the pairing weave, as shown in Fig. 16, and is detail in Figs. 9 and 10. Continue the pairing weave until a center, 8 in in diameter, is woven. Crowd up the weaving closely, for the appearance of the top will depend much on the first few rounds. Hold the center with the left hand, and manipulate the weavers until they are well seated in their proper places.
When a few rounds have been woven, nath the center securely to its place on the middle of the top. This will leave both hands tree for the weaving. After a disk, 8 in , in diameter, has been woven, begin the triple weave illustrated in Figs, 17 and 18. As the triple weave is begun, add another spoke, 8 in long, between each pair, all around the top, making 16 new and 16 original spokes. When two or three rounds are woven, the new spokes will become secure. Continue the triple weave to the edge of the top. Measure and cut the end of the spokes to uniform length. Curve the ends over the edge to see how much will be needed before cutting, allowing about $1 / 2$ in. for insertion into the holes in the edge.
Wet the ends of the spokes with water until they are pliable enough for the curve. Bending and tying them down while wet and permitring them to dry in this position, as shown in Fig. 19, is desirable also. Weave down the curve of the roll and insert the ends of the spokes in their respective holes
with glue. Then with the single, plain weave on the under side of the roll, weave well up to the ends of the spokes.

For the disk-center method of construction, as shown in Figs. 14 and 20, use $1 / 2-\mathrm{in}$, maple, and cut it 5 in . in diameter for the centerpiece. To locate holes on the edge of the disk draw a line $3 / 10$ in. from the upper edge and mark off spaces 1 in . apart, except four, which are made $15 / 16$ in, apart, to make a convenient division, practically uniform. Bore the holes $3 / 4$ in. deep. Number 5 reed is used for the spokes and No. 4 reed for the weavers. The disk should be toenailed around its edge with brads, fixing it firmly to the top before the spokes are inserted.
Proceed with the pairing weave, as in the other method described, until 2 in . of the spokes is covered ; then change to the triple weave and add additional spokes. Proceed as with the other type from this point on.

The taboret is braced by two 1 -in, dowel rods, placed 2 in, above the bottotn roll of the sides and extending from one corner to the other, diagonally. Their crossing at the center may be made into a halved joint, by cutting away one-half of each rod on the adjacent edges. The ends are fitted closely into the corners, and are nailed to the legs.

A taller stand or small table, the side weaving of which has been described as applied to the taboret shown in Fig. 1, is illustrated in Fig. 2. The construction in general is similar. A lighter roll is used for the top, and the bottom ends of the legs are curved outward slightly. The legs are curved by steaming the ends of the corner posts, clamping them into position, and permitting them to dry.
The footstool, shown in Fig. 3, may be made as a miniature stand, with vertical legs, and the spokes set in a circle under the top board. The spokes and weavers will carry the form, if well woven. The stool may also be braced, to withstand hard usage. It should be about 18 in . in diameter at the top, 10 in in diameter for the body, and 6 in . in height.

The method of forming the opening shown in the side of the taboret in Fig. 1 , and the weaving of the construction, will be readily understood from the method described. The principles and methods presented may be applied readily to other construction of the same general type.

TUMOURS, Cure of.-To remove tumours, Dr. Simpson, of Edinburgh, introduces a hollow acupuncture kneedil or very fine trocar, into their tissue, and injects in a few drops of some irritant liquid, such as a solution of chloride of zinc, perchloride of iron, or creosote. The effect has been to destroy the vitality of the tumours so treated, and they have been separated. We haye seen a similar plan adopted in Paris by M. Maisonneive. He had slender stylets, made of a paste com. posed of flow, water, and chloride of sinc. These are baked. A puncture is made in the tumour, the caustic stylet is inserted, broken off, and left. We saw several malignant tumours treated in this manner, and some cases in which a healthy granulating surface was left, after the separation of tumours which had been destroyed in this manner.
WASHING, made Easy,-One of the best bleaching and emolient agents in washing either the person or clothing. is common refined borsu. Dissolve in hot water, 8 kalb . to 10 gallon5; a great saving in soap is effected by its use. The borax should be pulverized first. It may be procured in the form of crystals at any druggist's ; it will not injure the most delicate fabric; and laces or other fine tissues may be washed in a solution of borax with advantage to colour, \&c.
WASHING, Ready and Effec. tual Mode of.-Dissolve I lb, of soap in 3 quarts of boiling water, the night before washing. Beginning to wash, put the soap into the dolly tub, add 8 table-spoonfuls of spirits of turpentine, and 6 ditto of harishorn, Pour upon the above 8 gallons of boiling water. Have the clothes ready assorted; begin with the fine ones. Dolly each lot about 5 minutes, wash them in hot water in another dolly-tub, if you have it, next in blue water.- When the water is getting cool, pat it into the boiler to boil kitchen towels, or any greasy things.
N.B.-The quicker the washing is done the better. As soon as one lot is taken out of the dolly tub, put another in whilst the others are being rinsed.

WATERPROOFING Shoes. -Melt bees' wax and mutton suel, and when you take from the fire, add a teaspoonful of turpentine. -Or, India rubber and gutta percha, dissolved in good naphtha. - Or, yellow wax, 4 ozs. ; rosin, 4 ozs, ; linseed oil, x pant; oil of turpentine, $/ 4$ of a pint. Melt over a slow fire, and when melted, take from the fire, and add the turpentine, and stir well. Remember that it is very inflammable. When required for use, melt and apply.

WATERPROOF CLOTH.
 Fibely (that af mere toweluing top of she paions is maficiant. Sectlon the tecti, stionsh lie stove onily when mecestary. Io tiling a new saw the first Rume, every effort should he watle to preserve the original slape of the tooth as strit is che leest guale in fiftius. The size of the file macy stit the teeth. particnlarly sut the croncemt saw. as the muwlice of priges to the inch raries with the sies of the reeth. A simgle-cut threy cornerad 6 le is mont consooniv wevt is biting bigadeavs and the sualler-biaveler cirenlar blales. Thie pints per inct are onual to owe unge shan the number of feeth per inelt, ar will he keen from Fig. 1 . Tbie tesignalioni is tisef only on sufoight haters.
fi the tactly of a hasplan haike been fascasgol toy ranining accidenstily binto a mail or other mecal utivet, most particulatNv if the teeth lave teen damaged onty ou one side of the blate, as irceluents happerrs, it is lest to joint the blade lightly leiore setting. This is tone by making a simple bolder from port of att ofid Gle as it Fig. \&, althodugh a suall printer, as stown in Fig. 5, can be ohtavied at almost any lanjlware store. The olject in jointing is to bring all tur tectir on the sume leugth beiore oflug- Damated seelh shoutd be given only a Tiglir fofuting; then they should be set add aftecnard finistrel

to tengith ig a seroud johang. This arokis mating off tow moche at firet which would hesersibte wulte fifing to stape the teeth propurly. As a rale a suw in keod condidien shaitd be anly Tghtily jointed, then set and filed, lout if the set is neafly out af the seeth it is better to set the teeth first, then lightly joint and file them. In every case the procedure muss be determined by the conditios of the blade. The degree of the set depends largely on the work to be done. If the saw is to be used exclusively on soft wood the set should be sufficient to form a sligh space or valley between the alternate feeth. In hardwood, and for average use, the set should be mediam. If the saw is to be used exclusively in hardwood, the set should be very light. Fig. 1 shows the approximate degrees of set to meet various contitions. The same is true of both crosseut and ripping blades.

Handsaw blades may be set by using a pitu punch, as in Fig 7, luyt a saw-setting tool, as shown in Fig. 9, is better as it is possible to adjust the tool so that only about onethird the length of the tooth is bent. In setting with a puncli, care must lie

Apply to the calico or linen 2 coats of boiled oil, a little rosin or burgundy pitch, and a small quantity of turpentine. Hang up to dry.

WATERPROOF CLOTH. To I oz. of melted white was add I quart of spirits of turpentine; when thoroughly mixed and coid, dip the cloth in it and hang it up to dry.

WOOD, to Resemble Mahog-any.-Take two ounces of dragon's blood, (gum tragacanth) break it into pieces, and dissolve in a quart of spirits of wine, to which add a little soda; let it stand in a warm place and shake it frequently ; fit for use when dissolved.
Or take four omices of logwood, and half a pound of madder; boil in a gallon of water, adding a little pearl-ash, and 1 oz, of walnut peeling. Apply hot

WORMS.-The worms found in the human body are mostly the ancan ides, the thread worm, infesting the lower intestine, causing much itching and irritation about the anus, The teres, or long round worm, generally seated in the small intestines, and stomach.
The symptoms denoting the existence of worms are common to the different species, viz, indigestion, with a variable appetite : foul tongue; offeosive breath; hard, full, and tense belly, with occasionat gripings and pains about the navel; heat and jiclling sensation in the rectum and about the anus; the eyes heavy and dull; liching of the nose ; short dry cough; grinding of the teeth; and staring during sleep, attended often with a slow fever.

The indications of cure are, tarst, to clear the stomach and intestines of redundant slime, and afterwards to strengthen the sfomach and bowels, so as to destroy the disposition to their generation,
Give an emetic once or twiee a weck, in order to rid the stomach of impurities, slime and morbific matter, the cause of worms. Attend to the state of the bowels, for they are often irregular through worms. A dose of the Com: position Powder given night and morning, and bitter tonics during the day will be of essential service. This should be continued a week or two.

Lime-water beiog capable of dissoly+ Ing the mucus in which the wonns breed, may be taken; a teacupful two or threte times a day-less for a child. Take with it the Tomic Mixture, or bitters. It is very effectual in relieving children.
The following infusion is valuable:Best senna, Carolina pink-root, manna, worm-seed, rhubarb; of each 1 oz Bruise them, and infuse for two or three hours in boiling water. Sweeten with treacle. Give to a child six years old from three tablespoonfuls a day.

Elatl that the blasie is eit rraiked ate the gullets. The kamner blowe eurat be usk. form and it is herter to go arer rach set ol tecth r wice with the saw clampod letween (wa liasflwagl suripu. Corsular slar blades 10 in or sure io thamelef, dee gencrally aet on a slake miale a shósत in The. 7 . Tecth of blatet linder thit kure can be ret moie accunalely whte the brder nary Tandsow at. Whee tarting. sec that the font is promerty adtioctel by making a tral setting on twe or three teeth, then set each alternate teorh, alter whirly the blade is re versed and the rint of the teeth finshed. Fig. II shows a briliowe-grouwd. sthooth-cutiag on planer blade and the ourside cutrer of a dato tread. Thath blades are bollow erousd and the keelf swould never he vet. It winl be madieed that the ferth on the dater cutiec are in sections consealiang of four or more gatting ter)h whth a elesser or raker tuats liet wisen and separated by drep kolliots Oe the phories blade the raker tooth presedes the fuas cutting teett in (be same section. On beth types of blades the cleance tooth is filed straight across and she best practice fequires that its edge be very thigholy belome The eutting circle of the forar crovesat teech The inside zutiers of the dado head
are filed the satne as the eleaner touth on the outside cutters. The Eutting teeth on the outside cutter of the dadn fiead are kenerally in sectioma of four fecth ench. The withel fo filed the sanic way, theat is, alter. hate bections of foter meaty alo Filed fram oprovile sulce of tow hitede, as the kecth of any one pew tinan are hevefind the rame amb from renty ofte sule

The circularmaw blaide is leat prioted an the ather as in log. Io The hatale is returasil on that is rus- lackenol, the salie fo rainct so that is surface is alowe the choting circles, anol in shis pmition an nil-ous is laill lruethwle on the slot drceets over the htale The machime is btarech in the resular Mas aser the lable is Lowrect very slandy unei She Terifo of the saw Gulae the flome. Care mos-s lic taket not bo taks off nopro than is nocenary. Step frepuensly and cxamine the thate, When every sunti has been toushed try the thate then jotutuge is conte plote. If desired, a frame to tratd the stone can loe mate as in $\overline{\text { Dis }}$. 15

In fitive a Jiambas in is wastly best praetice in- disecgard cach individual tomh ant adopt a suiform siroke of the the Though this mean that we shatl loul it necensary to go frum nue emf of tliv-bidate to the other soveral inves. the metlonl will prouluce a joh that is morly perfeet. providerl, of courke, it is done with cate atod attontion to uniformity in the Jength and mumblier of strokes on eacli tootle and the angle of the file with the libals, By this methor the filimes must lie centinued antif the teeth Jave been hrougtit to a sharp point. remoring all traees of the fattencd point catracil hos foriting. If care is ised in kecpirg the file strokes equal, the alternate teeth are reasombly kure to Tie of the sabie Ieneth. Fig. 12 shows the compoon angles uf the inle when sharpening both ripping and crosseyt saws. The azigle of the bevel on each tooth is determined by she prositions of the fill with refation to the hade. lioth verticalty ant horizontally. In this, nue shonbl be mpiddel by the origmal hevel on the tooth, if filing a new saw. The same is trac of the

Sweets should be avoided. Salt and water taken in the morning will expel worms, especially the seat worms. It may be made by dissolving a tablespoonful of salt in half a pint of water. It may also form an injection to bring away the ascarides. - Camphor is another remedy. Dissolve 10 grains in a little spirit of wine, and add it now and then to the tonic bitters.

Various Remedies for the Cure of Worms:-

Take an ounce of tin , finely powdered, and two drachms of Ethiop's mineral, mixed together ; divide it into six powders, and take one of them, in a little syrup, twice a day: when they arel used work them off with a bitle rhubarb, Or,
Spirits of turpentine, in doses of from 8 drops to a teaspoonful, in gruel sweet-ened.-Or.
Jalap, M of an oz. ; powdered rhabarb, 14 of an oz: ; gamboge, 2 drs.; syrup of bears-foot, sufficient to make it into a paste ; then make it into ordinary sized lozenges. Dose :-For a child 3 years old, is a lozenge: 6 years, 1 lozenge ; and so on, according to years. Or,
Cowhage mixed with treacle. Give a chitd a teaspoonful fasting for 3 or 4 mornings successively-an adult a tablespoonful. Then give a parge.
Powdered rust of iron is a good vermifuge. It expels the worms and strengthens the constitution. To a child 6 years old from to to qa 0 gerins may be given. An adult may take from a $/ 602$ It may be given in treacle or in beer. Dr. Rush says, "Of all the worm medicines that I have given I know none more safe and certain than this simple/7 preparation of iron." It should always be followed by an aperient.
The common male ferr-root is a cet' tain remedy for the tape-worm. Two or 3 drs, of the powdered root to be taken in the morning, no supper having been taken the night before. It generally sickens a little. A brisk purgative is to be given a few hours after, which sometimes brings off the worm entire; if not, the same course must be followed at due intervals. For the success of this remedy, the root should be recently gathered; as after being kept long in the shops, its activity is diminished or destroyed.

WORMS.-Take 2 tea-5poonfuls of brandy, sweetened with loaf sugar, every morning.-Or, a spoonful of the juice of lemons.

Or, take a tea-spoonfuls of wormseed mixed with treacle, for 6 mornings. Or, 1, 2, or 3 drs. of powdered ferm-root boiled in mead. This kills both the flat and round worms. Repeat the medicine from time to time.-Wesloy.
cirritar Maile After filing the sectly of froth liand anal circtular sawe should lie lightly drecsed wath as whone an in Fig: 14, to irce up any chance inomatity on the set, and to malie the blate sat mige smouthay. The gallets of laree datmeter eipping bates slmisel to rounded neessianally utiti a +panl routal fire Sre Fig.

not of anty particular inportance on blades smaller thatr 10 ite in fiameter. In fling. care should be taken nor to ron the threecornered file deeply into the gullet.

Figa, 4 and 6 show vises that may be made from pieces oi hariwood to frold both the circolar and unizht blades for filing. In the case of toothe bandsaw and cirentar blade yises, the edge of the vise should contact against the entire surface of the saw blade, fist below the feeth. In the absence oi suitable ready-made vises, 25 shown in Fig. J, these homeraade ones will serve very well.

Fig, i4. Teath of liath Mand and Circular Siwn Should le Licholy Dresacit Dovin nis the Silles

 Whon Jumtine obe Tent of a Cirsular gave
For those who would like to start a small communty repair thop and thus go ante the water of tnw filing on a commerciat hasis, investment in a saw-fling machaue will snop tepay one for its cost by the saving in tinu, Such a machine, driven by a 110 -volt sootor, automatically files and joints rip, crosscur, back, miter, meat and all other sypes of handsaws, besides eircular saws from 3 to 24 in , in diameter, with 3 to 16 points per inch. It is also provided with an attachment for filing band saws Irom $1 / 8$ to $41 / 2 \mathrm{in}$. wide. Either a bench or pedestal-type machine can be sbtamed to best suit the space requirements of your workshop.
 Band and Aㅔ Hindshwn.

YEAST, Dry--Boil a large handful of loose hops, or a heaped tablespoonfal of pressed hops, tied in a muslin bag, twenty minutes, in three pints of water; then take out the bag, and stir into the hop-water a pint of raw potatoes (grated.) Add one tablespoonful of sait, one of ginger, half a cupful of sugar, and one pint of flour ; stir the flour in slowly, and pour as much boiling water as is needed to make it a smooth batter, stirring briskly while pouring it on, till all is smoothly combined. Then remove from the fire. When lukewarm add a cupful of good yeast, or one good yeast-cake dissolved. Let it stand one day in warm weather, or two in cold, stirring it dowa as often as it rises and foams. Then stir ia good white corn meal to make it thick enough to make into thin cakes. Dry these cakes in the shade ; but where the air circulates briskly, tarn them over often. The quicker they can be dried, the better they will be. When dried all the way through, put them into a bag, and hang up in a dry, cool place.

Cakes should be small; not over two incles across, and half an inch thick. One of these cakes will raise four or five good-sized loaves,

YEAST, for Home-made Bread-Boil a handfal of hops $\frac{1}{\text { an }}$ hour in 3 pints of water. Pour half, biniling, brough a sleve, upon a cup of flour, mix, and add the rest of the hop water ; a spoonful of salt, half a cup of treacle, and when warm, a cup of yeast.

YEAST, to Make.-Thicken 2 quarts of water, with fine flour about 3 spoonfuls, boil half an hour, sweeten with near $\frac{1}{} \mathrm{lb}$. of brown sugar ; when near cold, put into it 4 spoonfuls of (resh) ycast in a jug. shake it well together, and let it stand one day to ferment near the fire, without being covered. There will be a thin liquor on the top, which must be poured off; shake the remainder and cork it up for use. Take always 4 spoonfuls of the old to ferment the next quantity, keeping it always in succession.
A half-peck loaf will require about a gill.

YEAST, to Make Another Way.-Boil t lb, of potatoes to a mash ; when half cold, add a cupful of yeast, and mix it well. It will be ready for use in two or three hours, and keeps well.

Use double the quantity of this to what you do of beer-yeast.
To take off the bitter of yeast, put bran into a sieve, and pour it through. having first mixed a bittle warm water with it.

SURVIVING FATIGUE

by
Bill Abreu

An ever tncreasing problem among many individuals is fatigue. Fatigue has many causes, physical strain being only one of them. However, other causes include: lack of exygen (as the case may be is higher altitudes), lack of salt, sugar. or water, and high temperatures. Fatigue can also come from a combination of these and other contributing factors.
Firstly, physical exertion does indeed cause latigue, as anyone who has worked hard for long hours is well aware of. For a long time this was thought to be the only cause. But when studies were made it was found thal sometimes people whe worked extremely hard felt fine. while others who had worked the same or even leas hours were totally exhausted. This at first coofused physlelans who soon carre to realize that fatigue could be brought on by demands. other than physical, which the body makes. Thus the problem is that it is offeis difficate to redognize exactly what makes you feel tired.
Fatigue is aboo cauned by jobs. Werkers get home and leel like doing nothing after dinner but sitting down and watching television. Usually this worker will attribute hir weariness to the fob fiself or the fact that be bas been working so hard. Actually most hurnan beiogs use about one thisd or less of their fail capa: bilities.

Strange as it may seem, it has been shown that productivity drops when working bours are lengthened. But whef they are reduced the rate of production increases, forcing the worker to put more labor into each hour. Interesting to note is the laet that people who work night shifts are asually prone to more errors and will produce less than they would during the normal daytime shift. This is because of a timing device in the human mind called the circadian thythm which tunes our body functions to the rotation of the earth. It also helps to explain why some people feel more tired in the morning than they did the nigts before. while others are exsetly the opposite. Often, taligue results when a person exerts himself at certain hours when his body adjustments dictate that he should not. Understanding one's ctreadian rhythms can be a great benefit to feeling and working at your best. To do so a Iew simple questions should be answered.

First, take into account how you feel when you get up in the morning. when you go to bed, and at what times. Then decide if this schedule changes when you
go on vacation or elsewhere. When do you eat your meals? Are they at strict patterns or at random't Most belpful is accounting the times of day when you usually are the most happy and when you are low.
Sometimes it is difficult to change your ways if there definitely is a conflict in your body clock. It is, however, fairly simple to take certain precautions. of course, you should avoid any physical or mental exertion at times when you are least productive. If you feel cired when you awake in the morning then you might try waking up or going to sleep at different times. Obviously it is best to do the most important tasks when at your highest peak of the day. Or writing in nasty better to someone when you feel your worst. If you cat meals at regular set times you can change your eating habit schedule and see if you notice any differences in your highs and lows.
Sleep also has a lot to do with ratigue. A person who has too much sleep may perform just as badly as one who has had too little. At wake up time some people will fall back asleep for those "just few more minutes." This usually results in fatigue and sluggishness for the day because of the fact that their whole schedule has been thrown off. Keeping a regular sleeping schedule so that your body can properly adjust $t o$ it is also important. If you decide to try changing the time that you go to sleep, then you should stay with that set time for a few weeks. And rather than hopping right out of bed in the morning at the sound of the alarm. it helps to lie awake for a few moments and stretch or sit up. This will save you from the sudden shock of transferring from a dream state to reality, and allow the blood to start flowing. Instead of coming fully awake at around noontime, you will be most alert in the morning.
Exercise, though it can be a cause of Liredness, can also help relieve fatigue. The best kind of exercise for this reason is one which is not too strenuous. Naturally, after a few sets of tennis you would be tired and worn out, bowever, a short walk can be especially helpfol in overcoming fits of fatigue. For one think, walking gets the blood circulating, allowing more to flow to the brain where it is much needed. Another added benefil of waiking is that it relieves strain on the beart. Thirty percent of the circulation of blood is done by the legs when walking. The constant motion pushes the blood upwards through the body and to the heart, reducing the chances of heart problems.

The way you eat can also have a fot to do with whether you feel fatigued or not. It should go without saying that the four basic food groups (milk, meat, vegetables, and bread) are much needed in your diet to eliminate the chances of fatigue due to poor nutrition. But often the problem lies not in the kinds of foods eaten, but when they are eaten. Many people have gotten into the habit of eating very little in the morning and afternoon, and then gorging themselves for dinner. This is not a good praclice, for the blood becomes overloaded with calories in the evening. a time when the person will moat likely do nothing to burn it off. It has to pump harder to absorb the food, leaving the brain with less blood. This lower amount of blood to the brain causes fatigue and lenves the individual feeling light-headed.
Breakfast greatly affects how one feels during the course of the day. However, the idea that people need to stuff themselves with food in the moraing to support them through the day is a misconception. Too much food at any given time again results in the blood having to absorb it all. While it is a good idea to get the requirements in the morning meal, one does not have to eat an entire feast. Vitamin C cannot be stored in the body so a glass of orange juice or a slice of grapefruit should be consumed in the morning. Cereal is also good for people who are trying to keep their weight down, for it contains low fat. Eggs, on the other hand, contain high cholesterol and iron which cin be beneficial hat should not be eaten
in excess.
Another important cause of fatigue is boredom. When a person is bored he may resort to eating or sleeping. There are, of course, other alternatives but these two are the most common. It is no secret that an uninteresting book can make you feel drowsy. And in most cases this drowsiness is unjustified. A person may have gotien plenty of sleep the night before and be feeling just fine in the evening when along comes his neighbor with films of his wife and brats. It is then when the normally alert person must start stifling yawns to remain courteons to his guests.

Monotonous jobs are the major causes of boredom. Even if the job appears interesting at first, it can quickly become dull after being overdone day after day. Some assembly line workers can carry out their jobs and productivity well because they think about more pleasant subjects while working. When finished with their hours it has been shown that they can scarcely remember having worked at all, Daydreaming seems like a no-no while on the joh but there is absofutely nothing wrong with it as long as it does not interfere with one's working performance.

The most obvious way to escape job boredom is to get a different job; however, this can often be difficult to do. If this change of occupation is impossible then the alternative of daydreaming may provide a limited relief. During long breaks a short asp can be taken. Though it sounds like a child's pastime, short
sessions of sleep can be excellent for recharging one's vitality. When off the job and boredom still occurs exercise has been found to be a good cure. Exercise results in mental alertness and provides the bored person with something to do in his idle time. Again, a brisk walk is the perfect kind of exercise for relieving this boredom.

There are a few simple practices which can be done for fits of fatigue when quick revitalization is needed, such as an upcoming important meeting or party. Lying down with one's feet elevated for a few minutes can sometimes increase consciousness by providing less blood for the legs and more for the brain (though the temptation is great, it is wise to avoid closing your eyes when doing this). Boredom often comes from those who use their minds for countless simple and menial tasks. Earolling in certain community groups or school classes will relieve the effects of boredom and supply the individual with something more important to do other than deciding what to watch on television. Niacin (as mentioned in issue 6, volume 2 of The Survivor) can be helpful against fatigue, in that it opens wide the vessels and capillaries and allows blood to flow(which, incidentally, explains the flushing sensation).

When times get worse and you must adjust to a different kind of living, fatigue may be a major problem. But, as of now, it is simply one which must be overcome like the many others that exist in these troubled times.

DOUBLE ROOFS PROVIDE IDEAL SHADE FOR POULTRY COOPS From Popular Mech. 1919

Ilaving no native shade in our city chicken yard, we noticed one summer that the bens, especially those in the low brouter coops, became droopy and exhausted from the excessive lieat. We studied the construction of the U, S. Weather Bureau thermoneter shelter, which usually stands out in the sun. and is me larger than our brooder coops. It has a double rool with free air-circulation space between the roofs, hence the inclosed thermometers are exposed to a irue-shade temperature. We then placed an extra ropf on each of the brooder coops, leaving a 6-in. open air space between, the top roof being sapported at the corners only. The arrangement proved so effective that the hens sought the coops, against the heat of unventilated inclosures on quiet, hos days.

How to Make a Small Electric Fumace

From Popular Mechanics 1915

The formace consists of a large flower pot containing an ordinary clay crucible about 6 in . in height, the space between the two being packed with fireclay. Two $7 / 4-\mathrm{in}$. holes are bored through the sides of the crucible about half way between the top and the bottom. Holes corresponding to these holes are molded in the fireclay, which should extend several inches above the top of the flower pot. A smaller crucible is placed inside of the large one for use in melting such metals as copper, brass and alumintm. With metals that will melt at a low degree of heat, such as tm , lead or zinc, the large crucible can be used alone. Each crucible should be provided with a cover to confine the heat and keep out the air. The electrodes are ordinary arelight carbons.

The furnace is run on an ordinary 110 -volf lighting circuit and it is neces-

sary to have a rheostat connected in series with it. A water theostat as shown in the sketch will serve to regulate the current for this furnace. Small quantities of brass or aluminum can be melted in about 10 minutes in the furnace.-

A Perpetual Calendar

From Popular Mechanix 1919
It is only necessary to set this calendar the first of each month, by sliding

If It Only Necesuary to Change the Slidiag Pieces to Sot the Catendar for Rach Mpart
the insertions up or down, to get the proper month or week. The ealendar. ay it is shown, is set for January, 1916, Saturday is the first day and Friday the sexenth, and so on. It is not confusing and can be read either by the day or date. If the day is known it will show the date, and if the date is known it will show the day. The fllustration clearly shows the parts, which can be cut from heavy paper or cardboard.

Making a Catamaran Raft From Popular Mechanics 1925

A simple raft, that wit meet the requirements for an inexpenvive and simple

A Uselul 目oar, Huilt of L.oga as a Caramaran Rafs, Taket the Plact of a Reculation Rowboat Whem the Latier is Not Easily Obsained
Loat, can be made from two or three logs in the manner indicated in the drawing.

Two logs, about 12 ft . long, are used for the sides, and cornected with crosspieces, spikes or wooden jegs being used to secure the parts together. A phece of split log answers for a seat, and two forkel branches, iftserted into the sidepieces, make satisfactory oarlocks. In the absence of regulation oars, pieces of board can be cut to approximately the proper shapie.

By Kurt Saxon

There is something about working steadily for someone else that đulls the human mind. Security is the main reason people give for fixed employment but the unrealized drawback is dependence.

With fixed employment you have a measure of security only if the business is growing. You may even advance, getting higher wages. But when the business levels off, so does your pay. And as the pay scale becomes fixed, so does the routine. So you are at a dead end and become just a part of the machinery.

A worker can go for years doing the same thing and getting the same pay. Except for cost-of-living raises, which seldom make up for inflation's gain in the same period, spendable income remains about the same.

When a business hits its peak and is serving as big a part of its market as it can reach, it usually starts going downhill. This is because the markel has been saturated. There is no more room for development, no new money coming in.

Then, even cost-ot-living raises are hard to come by, Then come the strikes. Raises are given, prices of the products are raised, fewer people can buy and less money comes in. As inflation eats into your strike-won raise, you must strike again, get the prices raised, lose even more customers and on and on.

That's the way it's getling to be alf over the country. So if you work for others and think you have security, you may be insane. You'd better check that out.

The rosin drawback of a fixed income is your dependence on things staying as they are. Rising inflation and increasing bankruptcies are threats to just about every wage-earner's ivelihood.
My earty career was wasted in wage-slaving. I was uneducated, unskiled, unbalanced and a drifter trom job 10 job. I could never keep a job long but the worst fimes were when I had a job I could do and stuck at it lor up to a year. This was a waste of time as my savings never equalled the price of anything worthwhile,

When I was going to college I worked part time at a hospital doing kitchen duties for $\$ 27.00$ per week take-home. This was in 1960 and my rent Was only $\$ 6.00$ per week for a room with sink and a hotplate. I spent maybe $\$ 3,00$ per week for food sol didn't need much.

Just the same, the hours were from four to aight p.m. and I didn't like the work or the money. But a full-time job would have kept me out of college.
I was bitching to a wino name of Charles who lived in the same rooming house. He was a house painter and suggested I get in the trade. I'd never painted but had seen him at it and ligured it he could do it, anyone could. I had watched him on a ladder once, hanging on with an elbow, with a fifth of Thunderbird in one hand and a brush in the other. He fell often but worked when he wanted to.

He wrote an ad for me: Painter; Fast, Reliable, Good References, $\$ 2.00$ per hour and the rooming house phone number and who to ask for, It cost me about $\$ 3.00$ to run it a week in the Work Wanted section of the local paper under PAINTING. Then I quit my job and sat back. I had to because I'd have been at work when anybody called, t's dumb to quit one job betore getting another, So if you work, put in the ad the time you will be home to accept calls.

That lying ad took effect the first aftemoon it ran. I got a call from an old lady with a tiny kitchen. I told her over the phone that for $\$ 2.00$ per four Pd supply the labor and the tools but she'd have to buy the paint. She had the paint ready and I stopped by the Dime Store and bought a paint roller, pan. three different sized hand brushes and a plastic drop-cloth.
Itook this on the local bus and started my lirst paint job. The old lady showed me into her dark red kitchen and pointed to the bright yellow paint and went into her front room to watch TV.
I poured too much paint in the pan and just dipped in the rotler, as the pan

Homemade Shower Bath

A Shower Wath That Coint Lees Than Oas Dallar to Male
While in the country during vacation time, I missed my daily bath and devised a shover bath that gave consplete satisfaction. The back porch was inclosed with sheeting for the room, and the apparatus consisted of a galvanized-iron pail with a short nipple soldered in the centes of the bottom and fitted with a valve and sprinkler. The whole, after filling the pait with water, was raised above one's head with a rope run over a palley fastened to the roof of the porch, and a tub was used on the floor to catch the water. A knot should be tied in the rope at the right place, to keep?t from rumning out of the pnitey while the pail is lowered to be filled with water, and a loop made in the end, which is placed over a screwhook turned into the wall. If the loop is tied at the proper place, the pail wilf be raised to the right height for the person taking the shower bath.

The water will run from 10 to 15 minutes. The addition of some hot water will make a splendid shower bath.

Device Enablea Croescut Sow to be Ueed by One Man

From Popular Mechanics 1925

A device which enables one man to use a crossent $5 a w$ is shown in the illustrafion. Two posts are driven into the ground about 6 ft . apart. Near the top of each of these is fastened a pulley, and midway between the posts is fastened another pulley, as shown. A sawhorse is placed beside one of the posts, the handle
was too full to allow folling the roller on the pan's ramp. Thes doesn't work and It was several tries before I got the idea of pouring some paint back into the can and rolling off the excess paint on the pan's ramp betore rolling it on the ceiling.

You can't imagine the mess at the beginning. I Dad paint on me and had a totally yellow arm and a soaked forso through my shirt. it that sweet old soul hadn't been in the front room watching TV, she'd have fired me in the lirst five minutes

I'm pretty smart so I got the hang of it in the first half hour. I did that inttle kitchen in four and half hours and gol $\$ 9.00$ and even compliments.

A few days later this pervert called me and asked if lid paint bare-chested. I was pretty naive and didn't understand and told him that I wouldn't consider painting bare chested as I got enough paint on my chest as it was without painting shirfless.

That first week I painfed two kitchens, a garage and a bedroom. Atter awhile I seldom had to put in an ad. I got a lot of repeat business and, working only when I wanted to, averaged $\$ 34.00$ per week. That wasn't miuch, even in those days. But it was more than I had gotten at the hospital and in fewer hours and was sufficient for my needs. If I wanted something more, I'd just work another day or two. So even in this poor trade my income wasn't fixed and I could choose my hours. I could have worked all the time if I'd wanted to.
Just in case you might want to try this, here are a tew tips. Get a book on decorating and study the painting section. Then go 10 a paint store and have a cterk tell you what you'll need. Your ideal start would be to paint as much of your own home as you can for practice. A couple of days painting your own quarters would get most of the bugs out of your technique.

Charge about a third of what a Union painter gets. Don't worry about Union interference. People who hire bargain painters want bargains. They won't pay Union rates and so don't really expect Union skill. Union paintera wouldn't be interested in such jobs, anyway.
Three dollars an hour for non-professional work is fine, especiatiy since you don't have to declare it for taxes. If's all yours unless you want to pay taxes on if. Most of the guys i knew in the trade never declared their income because there was no way the Feds could check:

No malter what, do as good a lob as you can and be extremely honest. I was never asked tor a relerence but those who I would have used as reterences hired me for one job after another. These were mainly landlords who hired me to redo vacanl apartments.

After a time I charged $\$ 2.50$ per hour and could have gotten more had I become a contractor.

Never work for a non-union contracior, You won't be fast enough to make a profit for him and he'll fire you. Il you are fast onough you might as well be a contractor yourselt.

Contracting is where you give an estimate and accept a set lee for the job. When people asked for an estimate I would say I needed a license to be a contractor so I just charged by the hour with no estimates. I didn't have the kind of mind where I could examine a job and tell how long it would take.

Contracting is more profitable, and I'm not sure about the license, but when you make an estimate, you're stuck with it. If you estimate a job will take eight hours and it drags out to sixteen, you'd be better off working by the hour.

I worked this way, off and on, for years. I was temperamentally unsuited for steady work. But I could be charming and polite to anybody lor a few days, which kept me a fine fellow through most of my bigger jobs. Most of my customers were very nice and liked my work, although I was never really fast.

I' I could do it, you can, too. You'd be surprised how much work goes begging because unskilled people don't know they could do it and skilled workers price themselves beyond the property owner's means.

Work in painting, home repairs, etc. is all over the place and you'll learn this if you'll only put in an ad. One place I was painting at, there was this young
removed from one end of the saw, and the end of a rope passed tarough one of the bolt holes and tied.

The other end is passed over the pulley on the first post, under the center pulley,

A Two-lfaided Crosicut Saw is Exaly Eandlad by One Man If Thls Rigkieg to Uesd
over the pulley on the other post, and a heavy counterweight is then fastened to it. With this arrangement, the saw may tie easily handled by one man.

PAINT MADE FROM POTATOES

From Popular Mechanies 1931
Fotatoen provide the base for a cheap and durable lorm of paint suitable for are particularly on farms for gates, fences or machinery exposed to the weather. One pound of potatoen are peeled and well baked. They are then masked in thrke or four pounds of boiling water ind passed through a sieve. To the mixture is added iwo pominh of powdered chalk mixed wifl four pounds of water. This forms a aont of glue capable of receiving any kind of color, even powdered charcoal or soot for a fine bidack.

PLANTS GROWN 1N AIR-TIGHT BOTTLES

Popular Science 1936

RAISING plants on synfhetic soil in botUes sealed against outside air, moisture, insects, and plant parasiles, is the remarkable accomplishment of a Miliburn N. J, woman botanist. The artificial soil which provides a scientifically balanced food for plants, consists of agar-agar, a seaweed derivative, combined with various chemicals. Poured into bottles, it congeals into a translucent, gelatinous mass. Seeds and spores are planted with a platinum needle and the glass containers are sealed with cotton wadding. In their indrvidual. sterile "greenhouses," the seeds rapidly develop into healthy, thriving plants. A moist atmosphere containing the essentials for plant life is maintained through the agency of the chemicals and the plants themselves; with each change of temperaHute, mist forms inside the glass and "rains" back on the plants, Given sufficient light, the plants will grow for years, or until they are too big for their contafuers, when they can be transplanted to larger bottles or to an outdoor garden. Delicate
moron also doing painting on a picket fence. He didn't even scrape off the old, loose paint.

I nolliced he had wet his pants and asked the lady how such a nebbish could get work from anybody. She sald he only charged \$1.50 an hour and did all sorts of little odd jobs. This was mainly for old people who simply couldn't handle any sort of labor and preferred a mental defective to no one at all.

I met many other odd-jobsmen. They started out just as people who could do something, or were willing to try. They simply advertised that they could do a certain job and they had been busy ever since.

It doesn't matter what you do. Painting, hauling, odd jobs, home repair, carpentry, electrical work, typing, babysitting; a few lines in your local paper will keep you busy. An old fellow who was going with my mom had been a painter. He told me he had worked my system all during the depression and had always lived well.

It isn't all roses. You'tl get an occasional griping, abusive customer you can't please. Then there are those who'll want you to be licensed, bonded, insured and all that. If you do your best at say, $\$ 3.00$ an hour, they're getting a good deal. If they don't appreciate that and glve you a hard time, to hell with them. They're stupid. But this type is rare. Most of your customers will be just good, poor people who need a bargain and have sense enough not to give a bargain like you a hard time.

It you happen to be a professional and a Union tradesman, this sort of work would be moonlighting. I knew protessionals who cut their pay by a third to be independent. A Union painter or electrician would contact apartment house owners and be on call all the time. No need to worry about licenses. If you're giving a landlord a bargain, he's not going to turn you in to the Union or the Hicensing place or the IRS or anybody.

So It you are temperamentally unsuited for steady work or have been laid off or fired, put in an ad. Even if you're in fine shape and just need some extra income, put in an ad. It employed, you can tell a caller you'll be free on the weekend or at night. They don't care when you work if it's convenient for them.

You try gotting work this way, even if you have a job, and you'll be surprised how needed you really are. You'll never be worried about unemployment again and the worse the economy gets, the more secure you'll be. Places have to be kept up and it money is tight. Union workers stay home.

Another good point is that while you're working on such jobs you are still tree to follow up leads on better opportunitles. You can atso go to school or work on some home business that you don't expect to make money on for awhile, So if you are too young for steady work, retired, slightly handicapped, a dingbat, have a rotten work record, or whatever, you are still highly employable in this field.

and rare plants are said to be easy to raise by this method and when transplanted outdoors, they prove exceptionally hardy. Because the chemical soil is nearly transparent, botany students can observe and study all the stages of root development.

Moth Balls on Roosts Keep Lice Away From Popular Mechanies 1931

Moth balls have been found higbly effecuve in keeping lice out of a poultry house. The roosts were fitted with blocks, each of which accommodated just one ben and thus prevented crowding. A hole, large enough to receive one moth ball, was then drilled in each block and also in the roost between the blocks, as shown in the drawing. In attaching the blocks woodscrews were used, these being driven in from the underside of the roosts. It seems that lice cannot endure the strong odor of the moth balls.

Moth Balis Hald in Halea Drilled in Raasus Kees Lice Away tromi 11ens

Getticg Extra Heat from the Stovepipe

Ustally the heat passing throught the stovepipe and chimitey is practically wasted, but with the arrangement shown in the drawing much of it is radiated into the room. Take an otl drum and put two lengths of stovepipe inside as shown; then mount the drum over the stove, and brace it to obtain the necessary rigidity. The path of the smoke and hot air through the drum and up the chimney is indicated by arrows.

Making Beaded and Velvet Handbags

Beads have been used by woman for thonsandt of years, and she has not yet wearicd of stringing beads on thereads and applying them to a background 10 form varioiss articles of use and ormament, such as the attractive licaded handbags that are at present so popular and -s0 expersive. However, there is no obstacle to prevent anyone making her own bag at a cost of only the trifling sum required for materials and time.

crn to be reproduced, on tissue paper, and trace it onto the scrim with a " $4 \mathrm{H}^{\prime}$ pencit, a hard jencil being used to prevent blucring- After the design has been traced, it is filled in with water-color paints as nearly as possible the color of the locads used.

The beads are sewed on one at a time, guided by the limes of the scrim. Linen threar should be used; this is knotted, and the needle is drawn through from anderneath, taking a bead of the proper color on the necdle. As shown in the drawing each bead is securely sewed to the fabric. About every third lead the thread is taken back through them in the mantier slown; this makes the bag stronger and the row straighter. It is necessary to make each row straight across, working in beads of each celor as it oceurs in the design traced an the fabric. Anothor cifective and pleasing bag consists of colored-bead designs applied ugainst a background of dark velvet, or fatin. As it is not possible to trace the design on the surface of these materials, the pattern is applied to the underside of the cloth, and is then worked out with colored threads, which gives the worker the necessary gridauce, the beads being ap-
 the whepere of Oneich ons $\frac{1}{T}$ tr Depoptiont mex be Worked Dut ie Steit the Iadivedan Tase
a metal top, which may be ohtalimel from mogt stores, Y/ yol of serim, lising mat terial, and the uccessary bead. fo mak. fitif the bag care strould be taben to bave the lines of the serim rum uF and downs. as thene lones serve as graides for bewing on the beats,

Make an aceurate design of the pat-
plied an detcribed. Instead of using beads, the same ided call be pleasingly worked vot in cutton yarms of different colors. The design in this case is traced on tissue paper pewed to the material at the exact location, and the yarn is applied throwgh the papur, which is torn off when the work is Gaisbed.

BARKLESS DOGS BROUGHT FROM AFRICA

Mute but far from "dumb," four voiceless bunting dogg, the first of their breed ever to be seen in England, were exhibited at a recent international kennel show held in London. Shorthaired and with sharplypointed ears, the curious animals have never been known to bark. The dogs are called "Basenjis," and were imported from Africa where they are used for hunting by some of the remote tribes inhabiting the central part of the continent:

Survival Tools

By T, Fitzgerald

The most basic and deadliest weapon ever known is, of course, the human mind. It has the capacity to turn even every-day items into devices capable of maining and killing, whether in defense or offense.
Beginning at a lower level we will consider ways of using simple and often disregarded items for food gathering and/or defense/offense in an environment of complete collapse.

Several years ago a railroad surveyor was checking a section of track in the Rocky Mountains. He was alone with no weapon. Upon rounding a curve in the track he found himself facing an angry Grizzley Bear. Faced with almost certain injury or death, this man killed the bear in two minutes without injury to himself. How? Very simple. The trackbed was of stones approximately two inches through. He blinded the bear by throwing stones. keeping out of reach meantime, and then proceeded to stone the bear to death. This man was lucky, the next man who tries this may well be killed instead. It does prove, however, that no thas is ever unarmed: he only thinks be is.

The stone is probably the oldest weanon in the world. Some of its advantages are choice of size and shape, readily available, unlimited quantities. Also it comes in many styles: The brick or half-brick is probably the style most familiar to city-dwellers. The mapner of use is still the same.

Some disadvantages of stones as weapons are they are short range weapons, they come in sizes too big to throw and sizes too small to do any good, and they can be thrown back at you, possibly by someone with better aim than you.

Large stones are good for defending heights as they ean be simply dropped and stones too large to be thrown can thus be used. It is very difficult to throw a stone of any size back up at you to any advantage.
To attain any distance and real force with a stone the thrower must have assistance. The throwing weapon PAR EXCELLENCE and of undoubted age is the sling. The classic example is David and Goliath.
There are two basic types of sling. The first is two straps of flexible material (leather boot laces are excellent) joined by
a pocket. The projectile is placed in the pocket, the two ends are held in the hand and the sling whirled round and round the head. At the right moment one strap is released (often there was a loop on the end of one strap to go over a finger), the
pocket opens and the stone hopefully flies to the target. Actually, with practice this can be a very accurate and deadly weapon. Depending upon the length of the straps, the projectile, and the method of whirling and release. the extreme range of this type of sling can exceed 300 yards. The ancient Romans and Greeks cast lead sling balls is order to increase the range of their slings as war weapons. These balls often had such mottos as "take this" inscribed on them.
The second type of slings involve a staff or stick. There are two main types of staff slings. The first having a staff a bout 4 feet long. One strap of an ordinary hand sling is attached to one end of the staff, the other strap being made long enough to be held with the butt of the staff and thus give an extra length to the outside curve of the swing and so give more velocity to the projectile.

Another type of staff sling. employed mainly in military service, was a stout staff with the pouch held seeurely to it by one strap of few inches from one end. The other strap was fitted with a ring which slipped over the point of the staff. With a stone or ball in the pouch, the staff was held in both hands and swung from behind straight over the head just like driving a stake with a sledge hammer. At a certain point the stone shot forward forcing the ring off the end of the staff and opening the pouch.

A modern sling is of course the slingshot which propells a ball by the force of rubber bands.

Any of these slings is an excellent means of providing meat for the pot with almost no noise and NO expenditure of possible irreplaceable rifle or shotgun ammuxition. With the exception of the modern slingshot they are also proven in battle.
Probably the second weapon that man discovered on his way down from the trees was the club. At first merely a broken tree limb it later evolved in many ways.

Wooden missiles have been used as serious weapons of war and effective bunting weapons since prehistoric times and, in isolated parts of the world. continue to be used still.
There are two basic kinds of wooden missiles. The first is the straight club variety. generaliy with a large knob at one end, which is thrown and is meant to stun or kill with a blow. Of course, these can also be held and used to strike blows in the classic manner of a club or bat if the enemy or quarry is close enough. These straight clubs ranged from 3 foot long types used by 'West African natives to break animal legs at a few feet distance to
the ciubs of Fiji, about 18 inches long with heavy knobbed ends.
The African KNOBKERRI was the most popular of the throwing clubs, being about 2 feet long, with a narrow rod-like handle. These could be thrown with great force and accuracy. These were used with great effect against Hyrax (Rock Rabbit) and PAUW (a quaillike bird). Two hunters moved about 50 yards apart. As they roused their quarry they threw their clubs so that in dodging one club the quarry almost always was hit by the other.
The native Australians practiced throwing their clubs so they struck the ground several feet in front of an enemy and bounced up, thus being harder to dodge than if thrown straight at the target.
The second club variety is the curved clubs, which if nattened and properly shaped can fly in a variety of courses and even return to the thrower. The common name of such an interesting weapon is the boomerang.
Contrary to popular belief such curved throwing sticks. even the returning type, are not strietly a product of Australia. The word boomerang, strictly speaking. applies only to the curved wooden Australian throwing sticks, but are now used to describe any flat, curved throwing weapons, for sport or war, that can or cannot return to the thrower.
The true boomerang that returns must be thrown with a great Jerk to give it a spinning motion. When the forward motion dies, if the boomerang is still spinning fast enough, it will slide backwards through the air, often behind the thrower. This violent jerk when throwing causes an accuracy and velocity loss. Therefore, the returning boomerang is seldom used for anything but birds and exhibitions. The thrower also is in great danger when one returns as it is still spinning fast enough to injure or even kill if a person is hit in the head.

Actual shapes, weights, and sizes are actually just a matter of choice. The light return boomerangs have been thrown as far as 50 yards. Heavier, curved, throwing sticks, meant only for hunting or war and not to return, have been known to break bones and have a range of up to 150 yards. Each individual stick has its own characteristics when thrown and must be thrown in the same manner each time to fly the same. One stick may fly straight for 50 yards and suddenly dive down, for example. This means that there is not as much danger in an enemy throwing such a
stick back and causing you injury as you may have thought, because he would not know how to properly throw your personal throwing stick.
In India both iron and wood boomerangs
were widely used.
In ancient Egypt boomerangs are known to have been used as far back as 4000 B.C., generally as sporting weapous for wild ducks, but also as a fighting weapon. A type of boomerang sharply curved on one end is still used in Abyssinia and the Upper Nile.
The Hopi Indians of the American Southwest also had their own version, known as a rabbit stick, for its principal target.

SURVIVAL TOOLS - H3

T. Fitzgerald

Next up on the list of weapons is the spear.

With the end of a stick pointed and hardened in a fire, prehistoric man was able to inflict effeetive wounds in a large animal. or in his fellow man. Later refinements were stone or bone tips, then metal.
One very important contribution to the development of the spear is a stop, or crossbar, behind the point. This prevented the spear from penetrating too deeply in a large animal, thus putting the spearer into range of the teeth. claws, antlers, or whatever, of the spearce. The spearmen could thus hold on to the end of the spear to fend off his opponent until it dropped from loss of blood or the hunter's companions finished it off.
Spears for humting gradually evolved until they were perfected in the sixteenth century. Hunting spears were between 6 and 7 feet long, with a blade of 12 to 18 inches long and were used for all types of game, bear spears being larger in all proportions. Animals were either hunted down with dogs or driven into nets. Sixteenth century hunting spears were also well regarded as military weapons.
Lance and spear were originally interchangeable generally, but from the seventeenth century on, lance usually applied to a spear with a long shaft and small head. Today regarded primarily as a war weapon, from early times it was often used for the hunt. As a hunting weapon the lance had limited uses. It could be counted on for a certain kill only on small game, but it gave a horseman a better chance of reaching and slowing down the quarry so a sword or spear could be used.
Spears and lances were of yarious lengths, to over 20 feet long. The long spears and lances were at a decided disadvantage in bushes, trees, and high grass. Eventually a short spear, $61 / \pm$ feet long, with a stout staff with a lead weight on the butt, was evolved. These were normally used on a horse and properly used could bring down a powerful animal, but brought the quarry dangerously close
to both horse and rider.
Throwing spears, also called javelins and darts, were short. light spears that have always been hunting favorites. Often they had feathered tails. like an arrow, to insure additional accuracy. Top darts were also thrown from the top castles of naval ships. Throwing spears were usually from 3 to 4 feet long with a blade 4 to 7 inches long. The shafts were usually wood but all steel models were popular. The range of most throwing spears was probably 50 to 70 yards, but a French traveler in Persia in 1670 claims distances of "six or seven hundred paces,"

To enable all but the heaviest of spears to achieve respectable distance an artificial aid, known as a spear thrower. is needed. The simplest is a loop attached to the shaft. The spear was rested in the hand and thrown by the first 2 fingers hooked through the loop. A similar loop was used in some areas that slipped off the spear as the spear was released. Another type was strap with a loop to fit the butt of the spear sad the remainder of the strap wound around the shaft. The free end of the strap was grasped and when thrown, the spear was given a spia, supposedly contributing to accuracy as well as distance.
Light throwing "arrows" are used in England for distance contests only, and have little or no value except for amusement. To throw them a loop that slips off as the arrow is released is used. The record throw for this type of throwing spear is over 372 yards. A regular arrow can be thrown by this method 200 yards easily.
The most effective and efficient spear thrower was the throwing stick ${ }^{+}$found in Australia. Central America, and the Aretic. Almost all were of wood, between $11 / r$ and $2^{1 / 2}$ feet long, and many were carved. The basic design is a nlat board with a grip at one end and a projecting pin or tooth at the other end. The spear was placed along the stick and held by the fingers, the butt of the spear placed at the pin. With the throwing stick the force of the throw was at the butt of the spear, in many cases doubling the range of a spear. Some Australian aborigines reached distances of almost 100 yards. The Australian spear thrower was normally fashioned in a long bowl-like manner to enable it to be used as a holder for herries and other food stuffs.
Spears with muitiple points were also made. The only real value of these pieces seems to have been as fishing spears and for use as frog stickers.
Harpoons are a specialized type of spear used for such activities as hunting whales, seals, walrus, polar bear,
sometimes deer, driven or found in the water, and hippopotamus, I doubt there will be much call for harpoons and harpooners.
*Throwing stick called an "atalat" (Eskimo work) B.S.

SURVIVAL TOOLS - 肘

T. Fitzgerald

The rope or erepper noose has been a hunting weapon since man became man. Set up or suspended in the trails of wild animals, attached to the end of a long rod for birds, ur even for fishing, it was the cheapest, the simplest of hunting tools. and often the most successful. Early American Indians were prone to-capture deer by a loop in the deer trails and lighter rope or cerds served both Indians and early settlers for providing the main ingredient for rabbit stew.
To be able to move and give range to the noose the lasso was devised. This is merely a rope with a loop on one end and is now normally thrown from horseback. American Indians were known to use a lasso from a canoe on deer found swimming in lakes and rivers. The Roman mosaic at Utiga shows a hunter on horseback laswoing a stag. Pictures on Scythian amphora (jugs or jars) found at Chertomlyk show Seythians breaking-in horses using laspos.
From time to time the lasso has also been a successfol war weapon. The Sagartians carried no weapons except dagkers and ropes made of twisted thonge. When they engaged their enemies they threw out their ropes, with nooses in the end and whatever anyone caught was dragged toward themand, man, or horse, was put to death. One of the "five weapons of war" in the Sinhalese MAHAWANSO was a rope with a noose, running in a metal ring.

Whatever its use in war, the lasso is primarily a hunting weapon. It has been used as such in almost every eountry in the world. Scandinavian and Lapp hunters have relied on it for capturing reindeer and bear; American hunters have taken mountain lions with it; early Californians were known to rope bears; in Southeast Asia heavy lassos are used in capturing wild elephants: and some cowboys of the old west tried to rope anything they thought no one else ever had. It was in the American West and the Pampas of South America that the lasso actually became famous and it is still used there for controlling horses and cattle.
The American lasso is from 45 to 60 feet long, made of horse hair, leather, hemp, or other materials. One end has a ring, generally of metal, by which the loop is made. Lassoing looks easy. The
hunter makes a loop of 5 to 8 feet, holds it in the throwing hand, whirls it rapidly around the head, and releases it at the animal so it will fall around the head or legs. The method of throwing can be varied and the aceuracy with which it can be thrown at a full gallog is surprising. However, the skill required to throw a lasso thus is not easily acquired and the lasso has only a limited range.

Equally or more effective than the lasso is the bolas. They have longer range and the skill required is much easier to attain.

South American bolas are of three typest One ball on one thong; two balls. one on each end of a cord; and three balls attached to cords and the ends attached together. The one and two ball bolas are nowhere near as elfective us the three ball bolas.
The cords, of plaited or Lwisted leather. are from 3 to 10 feet long: the balls, of iron, wood, or stone, and enelosed in leather weigh from 1 to J //r poonds eacb.
To throw the bolas the thrower takes one of the balls in his hand and whirls the other two round and ceund bis head; then, taking aim, he relenses them. They spin through the air; and, when they steike an object, wind around it, erossing each other, and firmly bind the object. When the balts are stone they have enough force to break a horse's leg.

Balls of wood and as large as a turnip are used in bolas for capturing horses withoul injury. Bells of fron car be thrown to the furthes distances. The main problem in using bolas on horseback is to be able to ride well enough lo wilir! them so steadily round and round the head so as to take aim and release them, all the while af full speed. On foot the art of the bolas is ensily learned.

Another way fo throw the bolas is to grasp the cords where they join and twir the three balls together. In any event, the effect is a pattern of shot about 8 leet actoss that will tangle and disable rather than kill. Each eord can be as much as 8 to 10 feet long, making a pattern about 20 feet wide. The range of the bolas is Irom 30 to 60 yards on foot and 80 to- 100 yards on horseback.

Eskimos isse a lighter bolas for catching flying birds. From 4 to 10 walrus ivory or bore weights are tied to eords of sinew or seal intestines 24 to 30 inches long with a short handle of brass or feathers where the cords join. Carried in a pouch slung from the neek from which they are quickly extracted and thrown, the bolas are said to be effective at ranges of 30 to 60 yards.

The American Indian versinn was used in the northern areas and was two stones joined by a single cord. One stone was
held and the other was twirled round the head. Thrown with a side throw across water at swimming docks, the stones could skip scross the water for amazing distances and were quite successful in swaring or stunning ducks before they could be alarmed and fly.

SURVIVAL TOOLS - 月 5

T. Fitzgerald

Often thought of only as a child's toy, a pea-shooter is in faet a miniature of a very deadly and usefal instrument. Other weapons call for manual dexterity or strength. The blowpipe or blowgun calls on the power of a man's lungs; the air blows out forcefally thru the blowgun propells the projectile with great force.

Often thought to be merely an invention of primitive South American Iodians. blowguns were actually much more widespread in their use. IllusIrations in many European manuscripts from the Middie Ages show blowguns being used for hunting rabbits, birds, and other small game. Because of the large variety of other projectile weapons blowguns were not in great demand. Nevertheless their production and use did not die out. During the middle 1500s Eryland had a passion for making walking canes with one or even more uses above that of a simple cane. Included in these dual-purpose canes were some hollowed out for use as blowguns. Advertisements listed tubes, darts, pellets, pellet moulds, targets: touted their use for rooks (crows). pigeons, rabbits, vertsin, etc. at ranges of up to 50 yards, and acelaimed them as a pleasing source of indoor arousement. They further bade the purchaser to beware of imitations.

By use of a self-made blowgun, an American reporied kills on hares as far as 60 yards during World War II.

The blow gun's use outside of Europe is mainly confined to two regions. One is in Asia from Ceylon around to Borneo and New Guinea reaching to Japan. The wother is Guiana, Brazil, and Ecuador in South America, also appearing in Mexico and the south-east USA.

Native blowguns are of three types: 1) bored from one piece of wood or bamboo, 2) two long pieces of wood, each flat on ooe side, are grooved on the flat side and joined to form a tube, and 3) two hollow reeds or canes, pone inside of the other. This last type uses very light weight reeds and two are used for suflicient strength A wooden mouth piece is normally ased on all of these. In Borneo a heavy wood blowgun is made from 6 to 8 feet long itype 1) and a blade tied to the muzale so ii can also be used as a spear.

Length of blowgons varies Irom about 4 to 5 feet to an extreme of piver 11 feet. This longer one is used by Gutana Indians. Made from a very thin reed inserled into a lengith of palm, it only weighs about $1^{1 / 2}$ pounds.

Bores of blowguns seem to be fairly standard at about $1 / 6$ itich.

Projectiles are cither clay pellets or darts. Pellets require much effort to produce enough force to stun a bird and about 40 feet seems to be their useful range. Darts are much more useful, Borneo headhunters use darts 6 to 9 inches long and $1 / 16$ to $1 / 8$ inch in diameter with a pith cone fastened to the base. These are extremely light and so relatively barmless in themselyes. However, they are coated with poison. Six out of ten darts can be put into a potato at 50 paces. Properly prepared and weighted, the headhunters insist they could kill a rhino.

Io the Malay Peninsula a heavier dart is lused, with in iron point and twisted. cone shaped piece of bark at the base. plus poison.

The Japanese used a sliver of bamboo with paper feathers, also poisomi.

South Ameriean Indians use leaf stems of palm about 9 inches longs. with or without poison, padded with cotton at the base.

South India bsers shot a miniature harpoon. A barbed head Iit luosely on the shaft and the two were connected by at piece of string wound around the dart.

American Indians had their version also and used milkweed fuff tied on the base of a wooden dart.

The blowgun is primarily for use within a distance of 50 to 60 yards at birds and small animals. With poison it is also capable of being used against about anything you can think of, including man. Careful preparation, and care that the night of the dart will not be disturbed by a pulf of wind or breeze, allows nearly a 150 yard range.

Modern, machine made, blowguns are available for under $\$ 10$ from various firms, come complete with darts, and exira darts are available for a small cost. Or, make your own.

ByT.Fitzgerald

Bows

The world record distance for an arrow from a handheld bow was recently set at 1077 yards using a modern recurve bow and a special short arrow. Hunting arrow distance records are at 500 yards.
Bows have been in existance since

Paleolithic times (from 750,000 years ago). Actual bows dating from Neolithic times (from 10,000 B.C.) have been recovered in Switzerland. Made entirely of yew wood and 5 to 7 feet long, they are of the type of bow termed aself-bow.

1. Shorter bows from Neolithic times averaging 40 inches long have been found in Asiatic Russia. Some were of wood reinforced on the belly with strips of antler or horn, others were apparently laced with sinew to prevent the wood breaking. These were the earliest forms of composite bows.

After a strong glue was perfected, the three materials, wood, horn and sinew, were joined into one strong piece, shaped and fitted with two notches for the bowstring, Λ bark or skin cover often kept it from getting damp or excessively bet.

To increase the strength, the ends of the bows were made to eurve away from the holder when the string was loosened or removed.
2. In Egypt in 3500 E.C. both one-piece and composite bows were being used, Later, several Egyptian kings boasted of killing elephants. wild bulls, and lions, using bows.

Bows were made of various materials. Some wood\# used were yew, bamboo. mulberry, birch, heech, sumac, cherry, spindlewood, elm, and whatever was ist hand. Also used in various combinations were oxhorn, sinews of various animais, various types of glues, silk, leather, various metals, ivory, birch bark, water bulfato horm bone, ete. Almost every combination of these seems to have been tried at various times.
3. Possibly the altimate bow wus the Turkish composite bow. Short, about ? feet 9 inches, unstrung, and three feet twa inches when strung, this bow is extremely strong and elastic and requires a pull of about 118 pounds or more,

The bow is mostly flexible hom and sinew glued to a very thin piece of wood-1/8to $1 / 4$ inches thick except for the handle, and from $1 / 2$ to 1 inch wide. The wood offers no strength and is only the core on which the other parts are glued. Because of its length and thinness, the wood is fashioned in three parts; the limbs and handles, which were fitted together. and glued.
4. The inside of the bow is lined with two pieces of horn about $1 / 4$ inch thick and are butted together.

The outside or back of the bow is formed by a strip of ox or stag sinew about $1 / 4$ inehes thick.

Thin bark, leather, or skin, is then glued over the sinew to keep it from damage or damp. The horn is not covered. In the better bows the outer covering is then painted red and decorated, dated, and signed by the maker.
A.-Thumbring.
B. -Thumb.
C. - Bowstring.
D.-Arrow.

The fingers can be curled up or straight.

Bow strings were originally made of sinew, which was easily spoiled by rain or fog. Later, silh bowsirings were introduced. Sometimes wax was used on the silk bowstrings, but it was net considered absolutely necessary,

The arrow lengt is normally between 25 and 26 inches.

To draw suich a powerlul bow, une cabnôt use his fingers. Tastead a "Lhumb ring" is used. This is a ring, of ivory or other hard material, fitted on the thumb, with a "lip" on the side wort inside, which is used to draw the bowstring. It would seem that drawing a bow with sucb n ring would hurt the thumb but it is simply not 50 . You can bend a slrong bow further and easier with such a device and the range of the arrow is always further when using a thumb ring than with the conventional finger pull. The bowstring release with the "lip" of the ring is quiek and clean.

The best distance achieved by a Turkish bow is over 800 yards, using flight arrows. The range with a war arrow is in excess of 400 yards, using a strung bow and a strong archer.

Compare this with the famous English long bow, a self bow of yew. The maximum range with anlight arrow is 340 yards, and the range with a war arrow is about 200 yards.

Bows have of course been used in virtually every area of the world, for hunting, offense, and defense, but none was so effective as the Turkish bow.

Arrowheads come in a wide variety of shapes, sizes, and materials, beginning with a sharpened stick, then fire hardening the stick, pointed antler, bone, stone, and finally metal.

Against birds and small game a large blunt head is often used. Against just birds, a double-pointed, broad headed,
point is used to inflict a large wound and rapid bleeding if a killing blow is not dealt imtnediately, And, when the target is fellow man, an even greater variety of designs is used.

Buws haveeven been developed to shoot stones instead of arrows. These have only limited powers though. and are only good for small game and birds at relatively close ranges.

Bows are constructed as simply or as complicated as desired. New on the market are two completely different bows, using to entirely new principles, One has two limbs and a number of pullies. It is more powerful than a conventional bow and easier to draw. The other iype hasa series of pullies. ONE limb, and a large muveable arc fixed to the other end. More conventional bows are available as one piece or Lakedown models. Arrows are avallable in various woods, aluminum, and fiberglass, with an assortment of fixed or interchangeable heads

The disadvantage of the bow is the extended time and practice needed to become truly expert with one. Advantages such as ease of manufacture of bow and the arrows to go with it, silence, and effectiveness, make it well worth the effort.

SURVIVAL TOOLS \#7

By SFC Theodore Fitzgerald

Before we proceed further, it is important to reongnize yet another survival tool developed by ancient man. but still used today. The "tool" was the domestication or taming of wild animals and of course the products of the original taming are still with us and used every day.

Dogs are the most important animal to be considered here. Their use in survival atmosphere will spell the difference between life and death to many, many, people.

Dogs were originally used for hunting. burglar alarms, and at times for food when times were rough. All of these applications are still current. A dog will be a most, vital part of almost any survival effort. especially if things get as dangerous as is likely in a state of complete collapse. A dog will be almost worth your life as a danger alarm when strangers get near. You will need to train your dog not to bark. however, merely to give the alarm. A barking dog could bring a gang upon you. And, if you have a surplus of dogs, you may have to use them as a lood source at the onset of collapse. You may be able to reach no other source of food for hours or even days. Any way you look at it a dog can save your life.

I do not believe that dogs will be al immediate value as hunters after the collapse. For a considerable length of time after the collapse you will not want to do anything to draw unwanted attention to yourself, and hunting would do just that. You would be a walking Invitation for an ambush and your dog would probably be too interested in hunting to alert you.

Dogs are also useful for transportation of goods. In the winter they can pull a sled. Winter or sumtner they can carry a light pack. If you are moving around much this will be a great fatigue saver for you and will not hamper the dog, unless the pack is too heavy or improperly fastened. Don't pack your spare ammunition or first aid kit on the dog though, keep such valuables in your own pack.

Horses will probably gain their major importance sometime after collapse. I do not foresee an immediate demand for horses, burros, etc. Later, of course, they will be of almost priceless value as draft animals for plowing, pulling wagons, etc. Their immediate value will be as food animals. Very few people will need mueh transportation after the first few critical days, but they will need food. The same reasoning holds for cattle; their immediate value will be as food.

This is not to say that yoo should slaughter any cows and horses you see because of their food value. On the contrary, if you are not immediately in danger of starving, you should make every effort to keep any cattle or horses in good condition. They will be invaluable aids for long term survival, which is what it is all about. You should also keep any goats you can because they are too quick to go completely wild and are correspondingly almost impossible to recapture later. They
are also much easier to keep than cows and give good milk too.

Cats are a bit harder to classify. In ancient Egypt they were Irained and guarded the granaries, much as dogs are trained and used. An added benefit was the mice and rats they caught. thus doubly protecting the grain. I do not know how epe could train a "guard cat" but they are still valuable as mice and rat catchers, Here, ance again. the immediate value will probably be as food.

Guinea hens are good to eal, lay eggs, and will give a loud alarm if strangers approach. Here too, though, they may call attention to your presence that you may not welcome. For an established sorvival group, rapable of fighting off a sizeable group of marauders, they should be of sufficient value to offset this drawback.

Specimens such as cormorants Jor lishing, hawks for eatching birds, etc.. are not considered to be of survival value. They are toys for an advanced or secure culture.

Exotic species, such as elephants, will
not be considered either.
Pigs are of great value in long term survival. Besides their obvious advantage as food, they are quite intelligent and easily trained. In France they are still trained to hont truffles, an underground fongus esteemed as a food delicacy, In the middle ages they were often Irained to be as good a guard as a dog. If you are hard up for transportation, they even grow large enough to ride. Given the space and opportunity, they will use the same area each time for a toilet and given a pool of clean water to tie in they will forego mod and remain quite clean. You may even decide to trade in your dog for one after seeing all of these good points.

I have only considered those birds and animals with definite survival advantages, Chickens for example offer no survival advantage as, undoubtably. wild game birds will greatly increase and become correspondingly easier to obtain. They require much more care than guineas with none of the advanlages.

METHANE GAS AS AN ALTERNATE FUEL/ENERGY SOURCE

By T. Fitzgerald
 BACKGROUND:

Methane is a renewable fuel/energy source. Manulacture of it is nothing more than speeding op nature's. million year manufacturing process. For ancounted eons plants absorbed the sun's energy and, through the process of photosynthesis, stored it in organic carbonbearing compounds. When the plants died. anserobic bacteria fthose that live out of contact with (ree oxygen) consumed the decaying vegetable matter, and as part of their metabolic process, combined one atom of carbon with lour of hydrogen. The resultant molecule (CH4) is methane.
Natural gas, as found in underground reservoirs, or as it come bubbling out of marshes in the form of swamp gas-the process is still going on Lodiay-is mainly methane, but also contains 5 to 16 percent ethane (C2H6) and sometimes as moch as 8 percent hydrogen.

Natural gas is important because there is a lot of potential heat energy stored in those molecules of carbon and hydrogen. Burn a cubic foot of it and you will get somewhere between 1000 and 1100 BTUs (British Thermal Units-a means of measuring energy). Methane gas produces about 678 ETUs per cubic foot.
Methane gas can be used eflectively in
the place of natural gas or propane by simply drilling the orifices (gas npenings) of the stove, lantern, ele.. being used, slightly larger asmethane is not as "hot" a fuel as natural gas or propane. Caution must be used, jost as when using natural gas or propane, as methane gas is explosive when mixed with oxygen in as small a ratio as 14 to 1 .

INTERNAL CHEMISTRX OF

 METHANE GAS PRODUCTION:1. Anaerobic digestion of waste material will occur at temperatures from 32 to 156 F . The action decreases below 80 and preduction is mast rapid at 85 to 106 and 120 to 140. A temperature of 90 to 95 is the most nearly jdeal for stable methane ghs production.
2. The proper pH range for anaerobic fermentation is between 6.8 and $B .0$. Acidity higher or lower than this will hamper fermentation. The introduction of too much raw material can cause excess acidity (a too-low pH reading) and the gas-producing bacteria will not be able to digest the acids quickly enough. The addition of a little armmonia can raise the pH value very Iast. If the pH grows too high (not enough acid), fermantation will slow until the digestive process forms enough acidic earbon dioxide to restore balance.
3. Although bacteria responsible for the anaerobic process require both earbon and nitrogen in order to live, they consume carbon about $30-35$ times faster than they use nitrogen. Other conditions being favorable, then, anaterobic digestion will proceed most, rapidly when raw material fed into a methane digester contains a carbon-nitrogen ratio of 30:1. If the ratio is higher, the nitrogen will be exhausted while there is still a supply of carbon left. This eauses some bacteria to die. releasing the nitrogen in their cells and-eventual-ly-restoring equilibrium. Digestion proceeds slowly as this oceurs. Op_{p} the other hand, if there is toe much nitrogen. fermentation (which will stop when the carbon is exhausted) will be incomplete and the "leftover" nitrogen will not be digested. This lowers the fertilizing value of the shurry.
4. Dry vegetable matter has a carbon content ranging from 5,000 to 8,000 BTU per pound; that of green algae, or pond scum, is as high as 11,600 BTU per pound.
5. The "solation" must be agitated to keep it in solution and to prectude the buildup of a hard crust, thus limiting the production of gas.
6. Methane yas also does not pose a half-ile hazard for thousaods of years as does atomice energy.
TWO SIMPLE METHANE GAS DIGESTERS:
See illustrations one and two
A TUREE STAGE TANK METHANE GAS DIGESTER:
See illustration three.
TWO METHODS OF COLLECTING/ STORING METHANEGAS:
See illustrations four and five.
THREE METHODS OF USING METHANE GAS TO GENERATE ELECTRICITY:
See illustrations six, seven, and eight,
"SCRUBRING" METHANE GAS TO REMOVEIMPURITIES:
7. Hydrogen sulfide (H 2 S) is present in methane gas, It supposedly will "eat" metal in digester tanks and will ruin or impair an engine if it isn't filtered out of the methane before being used as fuel This is only theory and many people with experience with methane gas doubt it is present in quantities large epough to be harmful.
8. Methane gas can be "scrubbed" or "cleaned" in various ways by filtering it throught
a. Iron filings which are supposed toabsorb H2S.
b. Limewater to remove carbon dioxide.
c. Calcium chloride to extract water vapor.
d. Wood shavings to extract water vapor.

PRODUCING LIQUID FUEL, FROM METHANEGAS:
Methane gas can be compressed and botilied, but it has been agreed by most people who claim knowledge in the field of methane gas production that this is not too praclical in most cases.
The most economical and best storage of methane gas would probably be in collection tanke /see illestrations four and five).

Methane gas ean be transferred to storage bags or gas bottles carried on a vehiele and used to propel that vehicle, as was done on a limited basis in World War IL. This is nor mally not satisfactory and the best possible uses of methane gas are probably in generating electricity (see illostrations aix, seven, and eight), and/or
used as a substitute for natural gas in heating and cooking.
Methane gas can be "scrubbed" or "cleaned" to remove harmful (?) impurities.
Once produced, methane gas can be converted to liquid form in several combinations that make acceptable motor fuels, either by themselves, or mixed with gasoline. Only the earburetor must be adjusted for handling the different fuel. The formula

$$
1 \mathrm{O}_{2}+\mathrm{CH}_{4}+\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}-\frac{\text { CATALYST }}{2}
$$

yields anything from formic acid to benezene. The chemical proportions, catalysts, temperature, ete., must be varied to determine the best product mix.

```
HE|MT:arlse & 1
```


sumation of

Shooting Gallery for Toy Pistols

From Popular Mechanics 1925
Skill in shooting toy pistols, ltowigens. and similar harmless weapons thet use peas, marbles, or wooden darts fot am-

A Wiunt Euil for Indoer Uav. Io Matas of Whies ons
 Marmises Wespens Such at Mnlulas Pros, aed Darte
munition, can te soaily achuired by practicing on a target of the type shown in the drawing Clohbeppins spools, and sime whe ate sbont the anty maserial. reypired, The clothexplos, a sunot lietween each puir, are placed on a stiff wire of smull rod and fitted in a borr. as shown. Back of the clotheapins and a little above their lawer enibl is a seoml wire that holds them uprigloty this wire should be placed so tbat the pros will leat forwaril a litile. When thepe targets are knowed byer by an expertor lueky-shot, they are calcht by the pinserting roel st she bach; this rod is bent from a piece of stiff wife, amt is liedt horizontally by a rubber hatel, When ath the targets lave been knocked over, yr after each markstnan's umen is over, the fins are reset toy a puill on the eneil tived to the pin-setring rud If desired. The clorhespins can be painted anil designated by numbers.

Jack Aids in Clearing Land From Popular Mechanics 1925

Pulling Up Stumps, Serall Trees, and Roots with the Aid of a Track Jack I.eaves the Greund Roady lot Immediate Plowiec

The easiest way to do this is to burn an 02 dame in an atmosphere of methave and collect what condenses. (Run a gasoline engine(perhaps to turn a geherator) on a much-too rict mixture of methane and air. channelling the exhanst into an auto radiator, which is submerged in water or otherwise adequately cooled, and collect the condensed liquid-which should be OK. By adjusting the fuel mis and the length of pipe between the engine and radiatorand, thus the time before quenching of equilibrium reactions-you ean get almost any combination of proflucts. Of course. this will involve a bit of experimentation and you will probably not get a useful mixture immediately).

TWO VALUABLE BY PRODUCTS; GAFLBAGEDISPOSALAND

FERTILI2ER:

It is becoming more of a problem daily to disposer of garbage and waste. One mixing of my small lawn produces in excess of 40 pounds of grass elippings. A methane digester uses garhage, paper, leaves, sawdusl, grass, manure, etc, as its source
for the production of methane gas. When an excess of sawdust, paper, etc., is used, a balance of internal chemistry must be achieved (see INTERNAL CHEMISTRY OF METHANE GAS PRODUCTION above). The digesters shown in illustrations 1 and 2 can be filled up and when the methane cycle is complete be emptied and then refilled for another cycle. The digester shown in illustration 3 is better"fed" less quantities each day as the slurry will move through as the methane is released. Once the material fed into the digester has been processed for its methane gas it is gradually expelled/dis charged from the back of the digester (the Lype shown in illustration 31 as new material is fed into the front. This "waste" or "slurry", both liquid and solid, makes excellent fertilizer, probably better than any commercial fertilizer available today and at no extra cost.

This will not be the answer for all, but for others this may be the answer to self-sufficiency and independence.

 apllianest is is x evtions.

An ortimars tatctect fick anakes an effechese toni fue pating torts- and tramp:
 madilters, abshost in Fis 1 Frigure? slows a moliod of publite thmen a re-ce-s it ent in the sump tor nle iseb to liear athinot: Jy dre ace of hargo apumis. it would pumibe lae hetter to efact it iato sevesal pieces with tumprug phwter anml extract the fieces in the spone mavoer. For rothoying the main roots of a trec.

Htey are ent off as close os possible to the stmop and pulled ont of the ground by the methonl shown in Fig. 3, an excavationti around the foot being recessary to place the chain in position.
Pulling stampo, instead of burning them, has the decided advantage of leaving the gronnd in good shape for plowing, the formus is not lurfued out, athd if the soil is clayey, it will not be burned hard as brick.

Silk-Screen Printing

The thich mas of painf is drawn acres the back af the sousn wilh a squnagne. A single well-regulated strake is soffieient

DO YOU ever need quantitien of attractive porters to adverliop an a/rateur theatricat show elab pirrty, or bome workabop exhibition? Would you like to know a way to carn extra money printigg show cards and poaters? Then you ahould get acquadnted with the silk-screen proceser it is, in essence, a procesa in which thicle paint is forced, by means of a squeeger, through a stencit attached to a tightly stretched screen of aitk or other autabte material. It is simpler and more rupid than ordinary stenell printing and leaves no troublesome connecting links to be touched out.

By repeated printings, through properly cut and registered atuncils, any number of colors may be applied. The method may also be extended to print on wood, metal, celluloid, tabric, glass, and other materials.

The essentials are a wooden frame, a baseboard or wooden table top, manterial for a screen, loose-pin hinges, tacks, gum-paper tape, artificial sheltac, a squeegee, and the necessary paint and paper or poster board.

For making a small frame, I by 2 -in. furring atrip is excellent: 2 by 2 's would be better for a larger frame. The inside dimensions of the frame should be large enough to allow a margin of about 4 in . at each end and 2 ln . at
each mide bryovd the largeat poster you intead to print Plane in $1 / 6$-in bevel around the outer edge of one of itw nides.

The baseboard may be made Crom an old drawing or bread boaril, or the frame may be hinged directly to n wooden table lop. Lovee-pis hioges are used to the frame trany be detached tisstantly sor Inmpection or cleaning:

For screens professfonsts generatty use stencil silic of silie bolting cloth. The former conts about $\$ 3$ a yard, the intter Irom $\$ 6$ to $\$ 10$. Both may be bought from iny large deeter in art supplies. For the limited requirements of the ambieur, however, ordinary white organdte, costiog only 40 or 50 cents a yard, may be used.

Whatever the material it must be stretched as Ughtly as possible over the frame and tacked along the bevel. Turn the frame over and seal the inside juncture of frame and cloth with cellulose tape of adhesive peper tape. Apply a strip of tape over this, of the outalde.

With the frame thinged to the baseboard and closed down, drive is neil through each of the aidepleces of the frame right into the bsseboard about考 in, deep. Pry the frame from the base, clip nat the sharp points of the nails, and colarge the holes in the basd a trifle. These nalls and boles will insure eecurate register.

To support the frame between printingm, make a leg of wood, 6 or 8 ln . long, and attach it with a alngle screw to the right of the frame, al ahown.
The simpleat way to maice a stencil in to paint it directly on the noreen with lacquer, shellac, or enamel. Thif method, bowever, leavea a illgbtly ragged edge. Other methods involve loose paper stencils, photography, and putented tranafer films. The following li a proved mathod, enally carried out, that produces clean-cut resulth:

Firat draw your lettering and design In detall on a plece of cardbonrd or poster boand the exact size of the poster-tobe, If it ts to be of more than one color, the dealgr may be painted in the deaired colorn, or colors may be merely Indicated with a dash of crayon.

Farten a sheet of tracing paper moothly over the finished design with a thln costing of rubber cement. Allow the rubber cement to become partly dry bofore attaching the tractig paper. Now give the upper side of the tracing paper a coat of artificial shillac. This comez under various trade names and Is recommended for sereen worls because it may be washed out more easily than real shellac.

Next, choose the first color you wish to print and carefully cut through the outlines of all the parts of the design of
board, the same thickness as your poater, are glued to the base as shown to act as guides.

Witbout disturbing the original, the frame is closed upor it, several thicknesses of newspaper are laid on the inslde of the screen, and the screen is pressed into contact with the sitencil that color. Use n sharp knife and harely out through the tractigg paper. The

The moueted fracing paper is sat with a ahorp knifs.

purts of the stencil that are to be open should then be peeled from the cardboard.

Now take your original, with the stencil on It, and center it on the baseboard. Four little rectangles of cardwith a warm fatiron. If properly done, the stencil becomes firmly attached to the underside of the screen, and the cardboard original may be peeled from it. Any mishaps to the stencil may be patched with bits of tracing paper and shellac. Fill the space between the stencil and the frame with a cont of shellac.

The essentials for a good paint are that it be thick enough not to run, yet thin enough to go through the sereen without clogging; it must bave budy, and it must not dry too quickly. Beautiful oll colors, prepared especially for silk-screen work, may be bought in large paint stores. In a pinch, ordinary flat oll palnt may be used. Firat allow it to stand twelve hours or more, neim of the oil that floats on top, and add a Jittle Itho varnlah. For rilknoreen unc, paint must be tos thick nil apple sauce.

Good water-color painta may be made by addiag dyes or bhow-card colors to a base of molasken or corn tyyrup mixed with thick nuarch paste, with a IIttle glycerin added to prevent too rapid drying. Proper consistency must be determined by experiment.

To print, dump a quantity of paint into one end of the Irame, ralse the framen place a poster thect against the Fuldes, and lower the frame hgain. Then place your squeegee blade behind the mound of paint and draw it with an oven stroke across the back of the soreen, An ordinary window squeegee will serve the purpose, although special squeegees are made for screening. By varying the angle of the blade in relation to the screen, the rmount of paint forced through may be controlled. For the next poster, the squeegee is drawn back the other way, and so on:
After the entire run is made with the first color, the remaining paint should be washed out and the stencil removed with alcohol. The stencils for the second and succeeding colors are made and mounted exactly as the Ifst stencil.

Tracing paper is attached umaothly to the original dovign with rubber sement: then artificial shalloe is appliad to the wasing poper.

Efficient Jig Saw from Scrap Parts

Jig sar io asembled as illustrated in drawings. Note ingenious areangement of cate to operate saw mrm.

From Modern Mechanics 1931

YTOU can iurn out some neat scroll work on this simple little jig saw, which is made from a few acrap pieces that every workbench fan usually has around. The arrangement of the saw arms is extremely simple, and se assembled as illustrated above. Mounted on the wooden apright, they ahould be greased at the pivot points so that they will swing casily. The saw table consists of a wood disc, which is supported by three pipes with flanges, as shown. The blade passes through a one-inch hole bored in the position shown.

The novelty of this saw lies in the device which transmite power to the saw arm. To an upright made from a crank hole cap is
attached, ds illustrated above, a bearing from a phonograph motor. The shaft and cam are made from an old poppet valve, the connection to the saw arms leing made by a piece of strap iron. The motor for operating the jig saw may be connected to the shalt by gears, bell, or joined directly. A quarter horke motor will run the saw without a hitch, but a oneefphth horse will do in a pinch. In operation always keep all parts well oiled to insure stwooth running. Attachment of the saw blade is ainiple; merely bore holes in the ends and bolt the blade to the ends of the saw arms, keeping the joint well greased to prevent heating. The drawiogs above illustrate arrangement of parts.-

How to Keep Flies Out of the House

From Popular Mechanics 1928

There are fly swatters, fly papers and various kisids of poisons for getting rid of bouse flies, but all of these have seme disadvantages. A better and more effective way is to take a small clean sponge and place it in a dishafter dipping in very hot water Immediately after dipping the sponge, apply a few drops of oil of lavender on it. Flies do not like the odor, and will leave any place where it is present. If the sponge is moistened about twice a day, flies will not come around.

Burglar-Alarm Circuit

From Popular Mechanics 1925

The burglar-alarm circuit shown in the drawing cannot be put out of order without giving an alarm. The only special apparatus required are a felay, which may be of most any type, four coils of equal resistance, and the closed-circutit battery,

With the alarm circuit completely conneeted as shown, the relay will remain inoperative because both sides of the battery, positive and negative, are connected to each end of the relay winding through equal smounts of resistance. The relay is in a neutral position with respect to the battery and receives no current. Now, should the side of the bridge forming the alarm loop become unbalanced, short-circuited, or broken, the current would flow through the relay winding, causing it to operate and ring the bell, or other alarm device.-C. M. Crouch, Minneapolis, Minn.

 pief hinge plates is made from two pieces of $1 /-\mathrm{in}$. stock and shown in Fig. 3, while its pattern is given in Fig. 1. The bending from eye to curl can be done by working the stock on a flat surface with a hammer, as shown in Fig 7. The eye is hammered first; then, by gradual rolling from the smaller curves into the larger ones, the complete curl of the knocker is fashioned. The piece can then be slipped over a section of pipe and lightly hammered to take out bumps and hollows. Fig. 8 shows the assembly of the two
pieces, the knocker portion being held to the plate with a soft-metal rivet, fitting the turned-over portions of the plate. Like the hinge plate, the fastenings are fake nails, bot these should be as long as possible in erder that they may have greater holding power. Round-headed wood screws may be used throughout, if the beads are hammered down later. A door handle and plate, in a matching tulip design, to fit any standard cylinder lock are also shown. The handle portion of the lock proper is bent to
stape and is rounded in the front, while the concave back can then be built up with solder hardened with antimony. If the handle is of the knob type, the knob should also be hammered, as in Fig. 18.
Other designs in door trim are equally feasible. The more ornate old-English hinge with accompanying hardware, as shown in Fig. 9 , is particularly adapted to some homes, while the simpler colonial type, shown in Fig. 10, is well suited for either town home or lakeside cottage. Hinge plates for chests, toolboxes, etc., are shown in Fig 5. Plain or hammered brass, copper or aluminum may be used for these smaller items.
 tenings, they may be lield in place merety with handforged pyramid-headed nails. These can be made quite simply by biling the heads of round-headed galvanized nails to obtain the proper, shape, or by making dummy heads from a ${ }^{3}$-in, square piese of wrought iron, as shown in Fig.
6. The bar is first drilled lengthwise down the center, the end is filed to a pytamid shape and the filed portion then sawed off. The dummy head thus formed is held in tlace with a stmall finishing rail, after which the dummy head is lightly

The Horse as a Survival Tool

By Patrick Wastie

Finishing the hardware is often done by applying ahott three coats of linseed oil, burned off with each successive application, which blackens the metal. This is the liest fimish for extefior harduare. Aiter the blackening process, the high spots ape brightened by rubhing with emery cloth. and sfar varaisil is applied. Arother popular finish is obtained by rubbing the material, if hrats or coppert with fine powdered putnicestone, knap and water. This will leave the metal puite bright for a time, liot it soon chagges to a deep. rich bronze color. If stesiresl cop. per can be oxidized by stipning if into a misture of liver of sulphur and water. brought to the beiling pwins. The pieces are then rinsed io clean water, after whicts a fine hrosh and pumicestope are ased to slightly brighten the high spors. -

It is quite practical fo go a step farthet and make act wal working hinges, hs thown in Figs. 11 and 16. for use on sloutters and light doors. Altraktive shortee dogs of "hold-facks," 10 match almost any desigh, are shown in Figs. 13 and 15. Both of these are cut from flat iron to tlie dimemsions indicated, and are lield in place with a 1/4-in bolf, which is tapped troo a lagsecew as slown in Fig. 1s. The shutrer-dog design io Fig. 13 shoutd to tiade slightly coneave so that the tharper ediges will not mar the bhutter. Hooks are also quite neressary if a semi-adjustraent of the slousten is desired. These are reallly fashfowed from $/ \mathrm{y}$-in. squafe stock, 31 shown in Fig 12, white the twiat can be made ly. meins of a pipe wrench, with the sloch inclosed in a 480 n . pipe to prevent kinking, is shown in Fig 17. The eye suil tronk are formed later.

For many hundreds of years before the advent of "modern" (and wasteful) transportation such as automobiles, planes, etc., the horse was the major means of transportation other than fool. The Arabs were probably the first to domesticate horses. After the crash, automobiles, etc., won't be much good for awhile since the sources of hydrocarbon fuels will be shut down. That's where the horse comes into the picture. Although not eeonomical for individuals, groups would be wise to latch onto some horses and muintain thern. Care is basically simple and comes under four headings: 1). Food, this is probably going to be the single most expeose of owing a horse. There is no average quantity of feed for a horse. Every horse is different and needs to be led accordingly. Some factors influeneing feeding are how much work it is doing and how old it is. Of the grains used to feed horses. Oats is the one that is used in the greatest quantities. Second is corn. Both these grains are grown without too much difficulty so your berse need never go hungry if you have a tarm. Commercial feed is a mixture of oats, corn, barley, various nutrients, and molasses. This glop is called sweet leed and is pretty sticky on account of the molsses. If you live where the summers are hot, adjust your feed level as the amounts of carbohydrates in sweet feed can cause an animal to get sick in hot wenther. 8 weet leed is about $\$ 5.00$ for 50 lbs. or 10 cents a pound.
Hay is also a consideration. Don't buy junk bay. Steer away from bay advertised as "eow hay." This doesn't mess you have to go out and buy 55.00 a bale hay. Jost make sure it is not junk. During the cold part of the year feed your horse one or twe "Rakes" la bale of hay is about 10 or 12 sections or flakes)

CONCRETE WATER BASIN FOR POULTRY

From Popular Mech, 1919

A concrete worker was asked by a farmer to build a concrete basin for watering the poultry. Having no forms at hand, the mechanic used an ordinary washbasin and a wood box as shown in the illustration. The basin was greased before it was placed in the concrete. The completed concrete basin was buried with its upper surface level with the ground,

As Ortleng Werhbeala wes Uref to Shope the
twice a day to provide roughage and nutrients normally provided by grass.

A mineral block is also necessary to provide trace minerals and salt. They weigh fifty pounds for the large size but you can get them in $5 \mathrm{-} \mathrm{-} \mathrm{~b}$. brick sizes. Put your block in a basket or some other form of holder so that it can drain properly, Pasture is usually about 1-2 acres per horse. Remember, if things get hard, horses can make people-feed, if need be, 2). Water is probably the easiest thing to come by (unless you live in California). A horse needs plenty of clean. cool water to maintain itself. A horse has been known to drink 10 gallons of water in a day's time. Keep that in mind. When choosing a watering container, try to allow $8-10$ gallons for every horse using that trough. The poor man's trough is simply a used bathtub that is plugged. 3). Shelter is the least necessary item of horse care, Sure, it looks nice to have a barn to put your horses in, but is it really necessary? Most horses prefer to stay outside. In some of the most blinding storms, a horse won't go into a stall door 3 feet away. So, building a barn can be a great waste of money; but the choice is up to you. 4). Health care, is best left to a veterinarian. However, there are a few things that can be done by yourself. Exsmples are giving injections, taking temperatures, etc. Most health care is routine, such as having hooves trimmed. But in the event of an emergency, don't besitate to call a veterinarian. Better safe than sorry.
The above is only meant to whet your appetite for an in depth review. Go to your public library and check in the animal care section. They should have some excellent material on horse care. If they don't then they should be able to order it. Good luck!

Homemade Soap Washes Clothes without Rubbing

From Popular Mechanics 1931
A soap, which will wash clothes without the usual rubbing, but only tinsing, can be made of common laundry soap cut into thin slices, 2 Jb , sal soda, 2 lb , water, 10 qt. Mix the above ingredients and boil for two hours, after which the solution should be strained. Put the clothes into a tub, adding 1 lb . of the soap to every bucket of water. Let the clothes soak in this solution overnight, after which they are thoroughly rinsed.

COMPARATIVELY few amatenr mechanics have their shops equipped with any device for operating light miachinery by power, and many others have forgone the pleasure of such machines and tools on account of their lack of power. This article describes and illus-

A Simple Oear Stiteer for Starilag ap Btopeine tha Mashinury Driven ley tin Windman Power Plaet
trates a windmill that will deliver sum. cient power to drive light lathes and similar machtines. All parts of the mill are of such simple construction that little or no difficalty aloould be encountered in its makitig.

The wind wheel proper is simplicity itsell, consisting of a wooden cylinder into which oight wooden spokes are driven. The cabvas sails are attached to the spokes in the manner indicated, and given a coat of varmish. A hole is bored tirotigh the wooden cylinder to take the roinmed end of the stabla, a pin serviog ta hold the two together.

One-inch boards are used for the windwheel lane and its hook aspport, as indlcarcd, the vertical peeces of the base beiog delled to accommotate the wind-wheel shait. A sitple gear, lisving a aquare hole through is center, is seciured to the square end of the shaft; this gear consists of a wooden disk oi suitable siee in the circumference of which lieadlest nails, evenly spaced, are inserted.

The vane, which holds the wheel to the wind, is made by sewiog canvas over a stiff-wire frame, and varmishing the same

Windmill Power Plant for the Amateur's Workshop
From Popular Mechanics 1925

as the earivas salls. The wind-wlied base gear-sfifing tever in fitted, as indicated. rests and revolves on a wooden diak To loold the gears in medt white the mamailed to ltae top of the bos support, chinery is in operation, is cateli which enptenty of dry graphite being ined between gsges the botzom of the shaft hanger is the iwo Iurlaces to labricate them.
The vertical shaft loas sonusted at its upprer end a gear similar to that on the wind-wheel shaif, with which it meslies, as indicated in the drawiag. A metal sollar and setsctetr serve ta licep the fwa gears in saesh. The power of the wiedmill is transmitied to the machisery, underneath, Dy another set of gears in the manner shown it the tnsert.

For starling adid stopptsg the machinery, a simple gear shitiet is provided, as shown in the smaller drawing. A wide groove it cut in the shafe over which the
gsges tho botzom of the shat hanger is
made, aimple meani being provided for releasing the catch so that the gear shiffer can be moved.

Of course, the operation of such a power plant it depondant entirely on the wind, but if there is any wind litowing, no swatter from what dizection. the windmill will opetate. Such and appatatus can be artanged to drive such amall machinery as churns and icecream freszeri, and the speed can the regulated by varying the size of the driving and driven palleys. The geats, bowever, for case it construction, should all be of the same-size.

IS YOUR DOG FIT TO JOIN YOUR SURVIVAL GROUP

by Ron Lank

I would like to emphasize that the lifestyle I am writing about will be only a temporary expedient. It will exist only while those people who were unprepared are in a state of panic and dying for stupid reasons, even though potential food and other means to save themselves are at hand. Soon you will have to go ahead and begin the steps to rebuild, because only by doing so you ensure your long term survival.

It is difficult for anyone to look at his or her own dog objectively, someone else's dog perhaps, but not that one special dog. You will be in no position to own a pet. Your dog will have to be cold bloodedly considered for what value he or she may be to you as a fellow Survivalist.

The job which your dog would be given would be the one it knows instinctively. sentry duty. With Fido, the night shift sentry patrolling it would be very difficult for anyone to morder you in your sleep.

On the other hand your dog has to eat. Also it would be impossible to stay inconspicuous as you must if some idiatic mutt keeps yapping as songbirds. When it comes time for you to go bunting. most extreme co-operation would be required from your dog for it to remain quiet while you stalk your supper.

The show dogs as a group can be by-passed for survival use. They are bred for looks, not brains.
The sporting breeds offer possibilities, provided that the dog that interests you
has been bred for the field, not show. Even then it would be best to avoid the very finest of these. You want an adaptable dog, not a specialist. At least the hunting breeds bave one vital ingredient, brains.

The breeds of dogs which have been deliberately bred to be house pets also offer possibilities. They are small, and ustally alert and intelligent. Avoid any dog with a stiff price tag, because as the price goes up you approach the brainless show dog strains. Many of these dogs are high-strung: avoid them. Among these small pet types you will find many Individuals, each with the potential to become an alert sentry that doesn't eat much and has brains enough to keep quiet.

Don't deliberately pass up any dog of any breed because of its small size. A cold wet nose in your ear followed by a whining snarl will have you instantly wide awake with your fists clenched around your rifle, should the need ever arise.
For general defense size would mean nothing. Even a well trained team of killer dogs is apt to see their expensive training wasted by a carefully placed fusilade of your bullets cracking over their heads and thudding into their targets.
The German Shepherd has some excellent strains, but like any of the larger breeds, it eats. The lower priced strains tend to be vicious and stupid. If you can stash away a considerable quantity of dog food, get one from a reputable breeder. Tell him you want the dog as a house pet that could provide home protection. That way you'll get a sentry with the two vital ingredients that a survival dog must have, brains and common sense.
I don't blane you if instead of visiting a kennel to pick up that perfect Survivalist, you try to make do with your present dog. Your dog may be just a spoiled mutt at the present time, but when your behavior reveals the extreme gravity of the situation. your dog will either watch you very elosely for leadership, or die of heartbreak because his good old days are over,
Your dog will have to learn to respond to hand signals. The two most important of these are the finger aver your mouth meaning "quiet," with the other hand clamped around the dog's muzzle at first for emphasis. The other is the finger speared straight down at the ground. meaning "sil."
A disobedient dog could end things for all of you with one biunder at the wrong time. It is only natural for any dog to test you occasionally, just to see what it can get away with. Such behavior must be countered by the most extreme reprisal at the earliest possible moment, preferably from the heavy belt around your waist. I realize that delivering such a beating would sicken you with its brutality. But I hardly think that death coming to you and your group in the form of starvation or a gang of looters would be any less brutal! A bit of leniency is not really leniency if it results in a few dead Survivalists.
Such strong-armed leadership will help your dog to understand the seriousness of the situation. It will show your dog that you are sincere when you give him an order and will show that you are a powerful leader, well worth following, because you are capable of overcoming the problems that lie ahead. Such leadership will give your dog a feeling of security. Your dog will very quickly smarten up and
make sure that you don't exercise such strong armed leadership too often, at least not on his backside.
There is a chance that your friends are apt to mutiny against your strong-armed treatment of your dog. There is another way to teach discipline to your dog. However. it woold be best to have your dog already familiar with it when the time comes. It is known as parade squaring the dog.
After your dog's next act of disobedience tie a fifty foot or longer rope to your dog's coltar, at one end of the discipline area. Order the dog to "sit." If your dog refuses, give your dog a swat with an empty glove, not hard enough to get people hysterical, just hard enough to impress your dog.
March the full length of the rope. uncoiling it as you go. If your dog starts to follow you, give the dog a swat, return the dog to positios and repeat the "sit" order,

March the full length of the rope, without your dog. Turn around and call the dog. If your dog refuses or doesn't come fast enough, help the dog by reeling him in hand over hand. Tell your dog to "sit." March to the far end of the discipline area with your end of the rope in your hand. Call the dog. Reel the dog in if you have to. Tell the dog to "sit." Slart marching another lap, and repeat and repeat and repeat.
After the last time you have to swat your dog. do fifty more laps of the discipline area. Untie the rope from your dog and try one last lap without it. If your dog obeys, you are done. Pat your dog and go do something else.
If your dog refuses, brace yourself. Next time you get your hands on that dog the two of you have, hopefully, only fifty one more laps to go.
No one will seriously object to you disciplining your dog this way, because of the small amount of brutality. Your dog will find this method of discipline at least as severe as the strong armed method because of that horribly prolonged monotony. Either way, your dog will get the idea. You order. He obeys!

When the time comes, your dog will have to adapt to some grim new foods when our conventional dog food runs out. He will see that you to have had to adapt to new foods. Switching over to a diet consisting of rabbit guts, and such slop, will be made a lot easier by watching you and your gang share the rest of the rabbit.

Some dogs will stubbornly refuse to accept such traditional dog food. There is no point in throwing the guts away and offering your dog something better. something that a human being could eat. Any dog thrives on such treatment, and yours would be a fool not to take
advantage if you can be suckered in. Not all dogs are fit to be Survivalists. Leave the guts alone. Let them wait for your dog. Offer no alternative food. Turn your back on your dog and the guts, and tell the others to do the same. Let your dog decide. To your dog it will be a matter of life or death. Your dog has more right than you to make the final decision.
Unless your dog has been hopelessly spoiled, he or she will make the transition more easily than anyone else. The dog that barks at the postman, and later wags his tail and prances around to greet you at the door is already half way there.

A FIFTY CENT ELECTRIC STOVE

From Popular Mech, 1919

Few persons realize what an intense beat may be developed when the globe of an ordinary incandescent lamp is tightly inclosed, largely eliminating the loss of heat. When the lamp is inclosed, the temperature will increase until the rate of radiation is equal to that at which the heat is generated. A good reflector is a poor radiator, hence, when the metal wall surrounding the lamp is bright and shiny, both inside and out, the heat is reflected inward.
To make a small stove that will keep liquids warm, melt paraffit, dissolve glue, etc, procure an ordinary $16-\mathrm{cp}$. carbon lamp, a porcelain receptacle, and a bright, clean tin can, about 4 in. in diameter and 7 in . long. Thoroughly blacken the bottom on the inside, and then solder on four small brackets, cut from sheet brass or copper, so that the can may be held down firmly, when inverted on the base. The latter should preferably be made of hard wood, with the upper edges beveled, as shown. Next bore the hole for the wire or flexi-

A. Hasdy Electric Stove can be Made at an Outing of 30 Centa
ble cord. Fasten down the porcelain receptacle, connect the wiring, screw in the globe, and screw down the tin can; the stove is then ready for operation.

Practical Food Storage

By Tommy Murphy

Some foods store a lot better than others, and the tempersture at which they are stored is an important factor. Generally, we want to have at least a one (1) year supply of food on hand. One year is adequate as it is enough to see you through the four seasons so that at some point you will be at the proper time for planting vegetables. Cost is always a factor in such planning, so it is best to use the food items that are most easily adapted to everyday use. The ordinary foods available from retail stores are not entirely satisfactory for storage. Since the storage life is not very long, these foods must be replaced on a periodic basis. They are bulky and require considerable storage space. Why consider this type of food in our plans? Well, bassically because of the low cost, easy availability, most are ready for consumption with no cooking required, and for the most part, no additional water is required for preparation. These factora have to be weighed against the short term storage life.

Since we are thinking about a one year supply, at first thought, storage life might not seem to be very important. There would be no problem if we could know that the items we wish to stockpile were fresh when they came off the shelf. Since the ftems have probably been there a short while, and in the warehouse prior to then, it is comforting to know that most of the items that we want to store have a shelf life that is longer than might be supposed.

It is easy to build up a supply of goods that are packaged in the conventional way without a strain on the budget. It is ustually quite easy for my better half, for instance, to lind, say peaches, on a super special and to buy several cans extra for our stockpile. Then she puts the date of purchase on each can with an indelible marker, and as the shelf life reaches one year, she rotates the goods into the menu and replaces with fresh supplies. This method requires a little record keeping and a little work, but it sure is satisfying to look over the hoard and know that we won't be caught short; it really creates a good feeling of security.
In planning a food reserve, good nutrition is very important. It is expected that in a survival situation. individuals will be under a lot of stress so it is best not to spring any new or unusual food on them. Stick to basic family favorites. Go to the local library and check out books on family nutrition, and have the pertinent charts and tables photocopied. Survival
demands a lot from a person, and failure to observe a reasonable halance between fats, proteins, and carbohydrates, in order to insure an adequate supply of vitumins and minerals, can cause health problems.

The storage life of supermarket foods varies. Generally the foods that are least refined are the most stable. Salt and sugar for instance, can be stored for a long periods without deterioration if they are kept dry. Certain dried foods such as beans, peas, and rice also have a long storage life if protected from insects and moisture. At 70 degrees $F_{\text {., }}$, it is possible to store unrelined foods and unprocessed cereals and seed toods for periods of time in excess of 10 years if properly packaged. Also such dehydrated items as instant coffee and tea, instant puddings and gelatin, can be stored, again if properly packaged, for 7 to 10 years.

The problem with most canned goods of high moisture content is that they spoil mainly because of corrosion and thus deterioration of the metal can. Even with this disadvantage, cannsed goods can be stored at a temperature of 70 degrees F. for a 2 to 4 year period. Containers that are made of glass are better suited for long term storage, but many food items that are available in cans, are not in jars. and of course, breakage could occur.
We have found that baying food for storage is a very good hedge against inflation. Also by buying lood in case lots we save even more. So, buy food and save more money in a year's time than you could earn on a savings account in a bank. Not only is it an economical matter to buy now and store but it ensures that you have a reserve for any emergency.
As a rule to follow in the shelr life of foods, remember that temperature plays an important factor. Try to keep items as cool as possible but DO NOT let canned goods Jreeze. The rate of food deterioration will donble for every 15 degrees increase in temperature. For instance, an item stored at 55 degrees, with a 4 year shelf life, will only have a 1 year life if stored at 85 degrees.
When choosing canned goods, reject any cans that have defects, such as rust spots, or deats. You might as well start with eans that are in good condition. When opening a package or can that has been stored for some time, carefully check the contents for edibility. Look for any change in color, odor, in texture, such as caking. curdling, or jelling, mold growth, interior rust, fermentation, etc. If it is the least bit suspect, do not use it. Sometimes a container will appear rusted or whatever on the outside, but the contents will be
perfectly safe,
The following list will give you an ided of typical items and shelf life to be expected at 70 degrees F .

	Prekage	Storage
Itern:	type:	$\cdots 70{ }^{\circ} \mathrm{F}$,
Applesauce	glass	2 分5
Apricots	сал	2 to 3
Beel Stew	can	2104
Beans and Franks	сай	1 to 4
Beef Goulosh	can	2 to 4
Beef Bouillon	glass	2103
Beverage/Base	glass	2 to 3
Coffee, Instant	glass	2105
Corn Beel Hash	can	2 tan
Chicken \& Duraplings	сад	2104
Chicken	catil	2 to 8
Cora	can	2103
Jam	glass	2105
Luncheon Meat	can	2 tos
Lima Besns	can	2 to 3
Mill, non-fat, inst.	can	2105
Peanut Butter	glas	2 to 5
Potatoes, Instant	can	2105
Peas	cat	2105
Peaches		2 to 8
Pears		2108
Raisins		2 2608
Roast Beel		- 2104
Tuna		410 B
Condensed Soups		I plas
Vegetable Oils		2 plus

Most food storage lists such as thone from the Oifice of Civil Defonse, show shorter shelf life than this ove, muinly because they consider the conditions under which most people would store canned goods, and thus are typical or average. Now the people who read THE SURVIVOR, are not typical or average. We make sure our stuff gets the very best treatiment as does any "cool" of survival.

Dried foods are in the same ballgame but come under different rules. Whiter is needed for their preparation and cooking is needed. (except some dried fruts can be eaten as is). Dried foods are usually stored ir bulk containers, rodent. insect, and rustproof galvanized cans, which can be purchased at most feed and seed stores, or co-op's, etc.
It is desirable to store grains, such as wheat, porn, rye, ete., together with a hand grinder. These items store much better in their original form than in their refined state.
Certainly there is a limit to the amount of food that you can store. The purpose of a food reserve is to get you through rough times and in good shape in order that you may have a chance to provide tor your future aeeds. There is really no secret to beting a Survivor, just a common sense awareness of how delicate and vulnerable our nationwide system of food distribution is to any upset, whether manmade or
natural, and preparing accordingly. With sdequate lood reserves as well as associated goods, come what may, you and your family have a good hedge on Survival.

By D.C. Besly

"His handwriting shows him to be treacherous!"
Nineteen hundred years ago, Emperor Nero voiced the above observations concerning a member of his court. It was the first known recorded conclusion regarding man's inner character as reflected by the mark of his hand.
The significance about Nero's statement is the paradox of the kettle calling the pot black. If history is accurate, it is doubtful if Nero's handwriting could have stood up to a searching, in-depth analysis.

Nero reputedly murdered his mother and later his wife. Rumor blamed him for the great fire in Rome, but he accused the Christians. It would be interesting to have graphic evidence of the emperor who recognized treachery in others while obviously holding a lofty opinion of himself. A universal failing that is current to many modern day politicians and others with special interest axes to grind.
The analysis of handwriting allows the analyst to sce the inner being as he really is as opposed to what he pretends to be. It strips away the veneer of shame to lay bare the truth of reality. An acquaintance to whom this writer once demonstrated an exercise in analysis later commented, "Next to a twelve-gauge shotgun, that's about the best self-protective device I've seen yetl You can really tell who the phonies are ${ }^{\text {tI }}$

Subsequent articies in the months to come will fully explore violence in youth, dishonesty, integrity, leadership, mood, emotional response, vitality, cunning. hypocrisy and a diverse galaxy of useful genres and accessories too numerous to catalog here. For the moment, some uses and history will be dealt with.

The ancient Chinese recognized the psychology of handwriting. King Jo-Hua, who lived between 1060 and 1110 as a philosopher and painter of the Sung period, observed that "handwriting infallibly shows whether it comes from a vulgar or noble-minded person."

Cardinal Richelieu observed, "If you give me six lines written by the hand of the most honest of men, I will find something in which to hang himl"

In France, every educator must have a working knowledge of graphology, not only to understand themselves better.

(2) $-\underset{\substack{-1 \\ \lambda}}{a} q \underset{i}{i}$ Handwriting Analysis

but also to determine basic conflicts in their students, the better to guide them in addition to determining and developing latent talents and abilities. Additionally, a truck driver is not employed in the same country until his handwriting is given a thorough, in-depth analysis to determine if he is a safe and careful driver, but also to determine honesty, if the job requires the handling of cash and valuable merchandise.

There are twenty-Iive distinet trait strokes that reveal dishonesty, but only four such stroices need to be present in a specimen of script to disqualify a prospective employee for a position of trust. The signature of a recent late long-time bureau chief of the nation's leading law enforcement agency revealed six strokes indicative of dishonesty. The moral being, one never knows when and where such unexpected evidence will present itself.

On the staff of every school in Argentina is a graphologist whose task it is to keep track of student progress, and to detect and root out negative traits before they become deeply rooted. The program is Also geared toward guiding each student toward his best potential.

Lloyds of London bas been using graphology in its business dealings for over sixty years, and there's no more conservative firm in the sworld than Lloyds,

The CIA uses graphology as does the FBI, who denies it for reasons best known to themselves. In certain clandestine eloak-and-dagger circles, the waste-basket contents of rival interests are gathered and analyzed to learn strengths and weaknesses about political rivals, particularly of an embarrassing nature. Such knowledge of another's intimate personality that reveals chinks in his armor could be an invaluable lever in future dealings as most everyone has a skeleton or two of one kind or another hopefully locked up in the closet.

It is only natural that graphology should have its disclaimers. Its poor image in Americe is chiefly the result of the science having fallen into disfavor through being identified with quackery, the occult, tea-leaf readers, astrologers, whose daily forecasts apply to every person in the world born under a certain
sign, and pseudo-graphologists who give one-shot analysis resulting from a punch-card machine at carnivals and county fairs.

All of the above have given the science a stigma identified with turban-wearing enigmatic "sees all, knows all, tells all" oracles sitting cross-legged in front of striped tents.

Graphology does not predict leisurely moon-lit ocean excursions to tropical, flower-scented elimes, culminating in some romantic episode with some vaporous dream idol with the inevitable pot of gold at the end of the rainbow. The only thing graphology can predict is how an individual may be expected to react under a given set of circumstances. The discipline reveals the best and worst facets of personality, and those seeking an ego trip would be happier consulting a fortune veller rather than a handwriting analyst.

Most academician and layman disclaimers deny the accuracy of the science cbiefly because of a subconscious fear of self-revelation, if the truth but be known. In addition to being a fascinating subject, graphology is also frightening, comparable to being on a par with window-peeping. As such, it isn't any wonder that those with paranoic guil-complexes about some personal weaknesses would hotly deny and shun something that reveals the true inner being. It might be mentioned at this point that it is generally agreed among psychologists that the degree of one's guilt may be determined by the vehemence of his denials. The Watergate Case is a good example in support of this theory in that many who stoutly denied any connection later pleaded guilty when no further avenues of escape presented themiselves.
Those particularly in entrenched positions do not like to have their snug ways of life threatened, and fear of self-discovery could have an ego-shattering effect by finally revealing themselves to be quite the opposite of what they pretend to be. Many high-placed individuals who demand a graphological analysis of subordinates for a wide variety of professional and business purposes do not themselves submit to a similar anslysis.

Once a student has mastered the art of conducting an analysis, no one will ever be able to deceive him again. The tragic part of becoming adept at the science is that it totally removes the aura of mystique that surrounds individualsparticularly the glamorous type-and reveals their true inner being as opposed to what they pretend to be.
In his excellent book, HAND-WRITING-REVELATION OF SELF, world prominent graphologist Dr. Herry 0 . Teltscher states: "World events and complex political situations at home and abroad demand that our political leaders possess the necessary intelligence. fortitude and character strength, and insight to cope efficiently with the vast array of national and international problems. The analysis of the handwriting of prominent statesmen and leading executives (with periodic checkups for health reasons) would be of invaluable assistance to the demecratic process itself. It is important , that candidates for the highest office of the land and other statesmen considered for sensitive key positions in government possess the mental astuteness, the balanced judgement, the emotional stability, the talent for diplomacy so essential at the conference table. Similarly, the analysis of the handwritings of forelgn leaders would ald in giving us the intimate know how in dealing with them."

In this connection, the pathology of the late President D. Roosevelt at the time of his re-election to a fourth term was a good example of how a sick man can irreparably damage a nation's future for generations to come as indicated by his decisions during the Yalta Conference. A victim of an advanced neuro-vascular disease, he should bave retired from office without further delay, as much in his own interest as in that of the nation.

Graphology, which is a social science. unlike mathematics, which is an exact science with hard and fast rules. Any science that deals with personalities cannot be exact as no two of us are exactly alike.

It seems that our Creator has subtly planted certain characteristics within our physical and mental beings that not only makes us unique, but which distinguishes each of us from our fellows, and which also provides researchers with a wealth of endless material regarding the mystery of man.
In his never-ending search for knowledge, man has found that no two sets of fingerprints are exactly the same. As a trained former fingerprint technician, this analyst has fingerprinted many sets of identical twins, and for the
most part their fingerprint classilications were at wide variances. Fingerprints are accepted world-wide in court as positive prool of identity. Similarly, the legal system of all five continents is based on the assumption of the identity of the signature, and modern money transactions would be impossible if the least doubt existed that signatures could be disregarded in money transactions.
In a nutshell, fingerprints tell who we are. Handwriting tells what we are!
Police can determine the identity of an originator of an anonymous phone call by simply making a recording of the call. later making recordings of voices of suspects, then eomparing results to obtain matching voice patterns.
It seems ooly logical that our Creator also provided man with the means of obtaining an insight into his character and personality by the evidence produced by the mark of his hand. The only mystery is why a certain stroke represents a certain trait, but exhaustive studies over the past 70 years keeps lending added weight to the fact that stroke Iormations do indeed reveal character traits.
Actually, the ferm "handwriling" is a misnomer. "Brainwriting" more aceurately describes the action because muscular movements of the forearm, wrist and hand extended to the writing instrument are only incidental to the strokes: the direet projection of the writer's thinking. As mind is the builder. whatever is predominent is one's thinking will also be reflected in script.
It makes no difference how the writing instrument is held, the results will always be the same be it the right or left hand. between the stubs of the arms of an amputee; the mouth or toes of one born without arms, or the mechanical steel hook substitute for a hand. Education or lack of same makes no difference, nor does legibility or illegibility. The indicators will always be present to the experienced eges of the analyst.
The only way handwriting can change-other than through a series of exercises recommended by a graphotherapeutist to root out corrosive negative traits-is for the persquality to change for either better or worse, or as new skills are acquired or latent talents developed.
The uses of graphology are as varied as human experience, and may be applied to determining character, personality and aptitudes. Loan companies and credit managers may use it in connection with determining a loan seeker's responsibility toward his debts. Persomnel managers can determine if a prospective employee is the right person for a particular position,
or in finding those within an organization qualified for promotion to posts requiring leadership and managership ability. Parole and probation officials can determine if attitudes have actually changed in those seeking parole, and can keep current on their progress as well as the probation officer determining basic conflicts in youths brought before the board to decide on future action.
A pre-matrimonial compatibility analysis would save much future mental, physical, emotional and financial exhaustion. Love is indeed blind, and many rush into marriage for no more reason than physical attraction during a time when the lovers are putting their best foot lorward to make a favorable impression. Quite often it is her sex appeal that is most desirable while she barters that for comfort and security. It is only after the honeymoon when guards are down that each returns to his true personality and troubles begin. Some couples are mature enough to adjust to one another while many cannot, thus resulting in all the disagreeable activities resultant to severing matrimonial Lies. This tragedy is compounded when children are involved.
Individuals considering going into partherships in a business could very well submit their respective scripts to analysis to determine if they could get along. Each could determine his best potential for their motual benefit.
Psychiatrists learned in graphology claim that they can delve deeper into a patient's psyche from the evidence of a couple of pages of script than a month on the couch will reveal.
Medical graphologists are now determining the presence of cancer through script up to three years before it is detected medically.
Dr. Robert Neglar. professor of psychology at the University of Minnesots long ago adopted graphology as one of his favorite testing devices. He states that the science has repeatedly proven to be the quickest and most accurate testing device yet known.

And last, but by no means least, graphology may also be used as corrective therapy. By changing a negative stroke that could have a corrosive. psychosomatic influence on such a writer, and replacing it with a positive stroke, the deteriorating influence will eventually be eliminated, thus enriching the life and personality of the individual.

The script of public figures may be studied to determine if they are really sincere in their promises to the public, or if achievement to high office means only a lever to achieve their own personal
whims. Tr the months to come the scripts of many past and present individuals will be closely examined among which will be the Kennedys, Nixon, Ford, J. Edgar Howver, Carter and a host of others.

By D.C. Besly

Before getting into the many specific signs indicatiog traita that alert us to the deceitfut, criminally inclined, the conartist and troubled child, it is important to understand how emotions influence all traits.
It is dangerous for the amateur to try to determine character on a one -for -one basis. That is, to point to a single stroke or two indicating a certain trait on the basis that it is representative of the total personality. All infuences must be taken inko consideration to obtain an accurate portrait of the personality. No two of us are exactly alike despite our many similarities. Each of us is unique in our individual way. This is quite evident in medicine, where one remedy may cure while another has negative side effects, This uniqueness must be taken into account in evaluating character and personality.

The emotional nature is the foundation upon which all traits in a writer's character and personality trait is rooted in the emotions; the soil in which it developes, snd which influences all other traits in the persomality. The slant of handwriting poflects a writer's emotions; indicating the degree of expression and restraint.
moztowal gades
The above is a reproduction of a transparent emotional gauge used to measure slant. One may obtsin a protractos from any stationery or office supply firm. By using the above as a guide, determine the emotional response of themselves, their friends, relatives, children, business associates or whatever.
The gauge is placed upon handwriting with the horizontal line of the gauge coinciding with the baseline of the letters. Script written on unlined paper is best. Lined paper exerts an umnatural control with many writers unable to adhere to ruled paper. The analyst draws in his own baseline, then places the gauge at a point where a letter touches the baseline at its lowest point with the slant indicator emerging at the higbest point of the letter. measuring ooly the upstrokes thus:

One hondred consecutive upstrokes are measured to obtain the predominent area of emotional response, or how the writer may be expected to respond most of the time. You may draw your own conclusions regarding the above specimen after you've read further.
For now, we will be concerned with explaining the various areas of emotional response as they influence the personality.
The F minus slant, very reclined, indicates emotional response ranging from low to complete indifference. Reactions are repressed, behavior evasive, attitude generally reluctant. Interests are chiefly egotistical. Such persons are independent, hard to get along with, difficult to fathom.
The F - A, reclined slant, indicates the introvert. A cold exterior masks inhibited feelings. Attitude will be diplomatic if seript is superior, bypocritical and insincere if inferior. In general, the backhand is undesirable. Individuals who write that way are too reserved, often indecisive, not straightforward, and sometimes contentious. Self - interest is a dominating factor in this area. These persons are chiefly concerned with how they may benefit trom others. Their attitude is not what is the best course, but "What's in it for me" These individuals ire often quite eapable of putting on a convincing act of friendliness, gregarionsness and sympathy for appearances sake, but it is chiefly a pose for effect and personal gain. It may be detected by the unnatural backhand slant, a type of script that is definitely negative while also revealing withdrawal. Backhand is not taught in any school of penmanship. Both the F minus and F - A slants are beyond poise and judgeraent. These persons construct a shell of isolation sbout themselves and withdraw from the world in general, and as in the case for women, chiefly marry for comfort and security. A test conducted several years ago by a leading international graphology society revealed that the P minus and F - A slants composed a small minority of 5.3 percent of those tested.
The $\mathrm{A}-\mathrm{B}$ slant represents vertical writing. Objectiveness is indicated. Mind over matter. The head rules the emotions. The subject has complete self-control. The attitude is apt to be undemonstrative. indepeodent, detached, even indifferent. The keynote is cautiousness. Self - interest is still the dominating factor. Such writers are more interested in the "I" than the "Youl" They seek the best course to follow.

This area of emotional response makes up about 13.6 percent of the study group. President Lyndon B. Johnson's script was chiefly objective. He was also an aggressive arm - twister as well.

B-C slant. Lightly inclined. Signifies a normally sensitive and healthily emotional, well-balanced person when handwriting is superior; when inferior it generally shows mediocrity and conformity. This area of emotional response has been described as the slant that reveals the best marital partners because it is half-way between the two extremes of reclined and inclined script: euphoria and hysteria. However, there are two sides to the coin regarding all character and personality traits. In one respect we have the controlled mind softened by sympathy. On the other hand the emotions are held in eheck by the controlled mind. In other words, we have a collision of thought and feelings, which evaluates to ambivilence. This latter can evaluate to a split personality, or schizophrenia under certain conditions. This is nothing to become particularly alarmed about as many of us have this characteristic to a greater or lesser degree from a mere trace to predominent, depending on circumstances. Research has revealed that the B - C slant has been found to be the chief writing slant of forgers and confidence artists who use their wits for deceptive purposes, and makes up about 14.0 percent of the study group slant. It is the chief slant of Senator Edward Kennedy.
C-D. Inclined. Signifies an ardent. affectionate, amiable, very sensitive and emotional pature. This slant makes up about 15,7 percent of the study group.

D-E. Very inclined. Signifies an intensively alive, ardent. passionate, responsive, susceptible individual. Often a veritable brush fire when supported by great depth of emotions. Also signifies one who frequently jumps to conclusions before having all the facts in hand, and who reacts immediately, instinctively, without thinking and upon impulse. Such a writer will often say and do things on the spur of the moment that are later regretted when ample time to cool off has passed. Such writers are inclined to over - react, and often express themselves through a variety of physical gestures. This area of response is the most predominate among individuals, and represents 33.0 percent of the study. One may witness the conduct of the impulsive at political rallies and sports events by the cheering, yelling, stomping, waving of arms, whistling, applauding. screaming, jumping, swarming onto playing fields to beat their heroes on the back or murder the opposing team. Madison Avenue advertising writers are well aware of mass childish impulsiveness,
and exploit this potential eustomer weakness to the seller's advantage with clever slogans and attractive packaging. The familiar bosomy, bikini-clad sex goddess pictured on a wide variety of men's products as always been a successful come - on promoting sales if for no other reason than to get the picture and fantasize. One need but stroll through a super-market to observe housewives impulsively grabbing with both hands to fill shopping carts to overflowing with junk foods. The traits of gullibility and submissiveness further lend support to impulsiveness. If you are the impulsive type, learn to control it. Later articles will cover such methods of control,

E and E plus. Acutely inclined. Signifies one who is fervid, excessively romantic, passionate, jealous, easily offended, demonstrative, excessively romantic, a veritable volcanos and in certain instances. hysterical. In fact, bysteria is perpetually smouldering beneath the surface awaiting the proper set of circumstances to trigger it. The occasion, Juckily, may never arise, but it is always present. It must be taken into consideration if the slant is predominate or merely occasional. One whose alant might measure fifty percent or more of the stript would be more apt to lose control than one whose slant measured less than a dozen strokes. The weaker or stronger a trait, like all other traits, the more or less likely the change of expression. The hysteric exaggerat es and over - dramatizes every ailment and difficulty, and is likely to lack deep ethical feelings. Former President Nixon had strong presence of bysteria in his seriph. Nixon's personality will be covered in a future article. Of the seven areas of emotional response found in personality, the E and E-plus is the second most predominant area of emotional reaponse, and makes up 17.5 percent of the study.

The above indicates the masses are chiefly impulsive, jumping to conclusions without having all the facts at hand, or are hysterical, having the capacity to lose self-control under extreme emotional experiences when facing a crisis. Not exactly an encouraging picture, but something which may be hopefully corrected when educators finally realize the harm that has been done for centuries by the built - in auto - suggestion inherent in the school copy-book method of penmanship that reflects the negative qualities of those who designed the exercises. After all, penmanship teachers are not graphologists, more the pity. If we are to survive, we must learn self-controll
Constantly changing slant. Writing that reflects a variety of slants indicate the
unpredictable individual. These persons are like a reed in the wind that bends every which way with each vagrant breeze. Ambivilence is present along with contradictory inclinations; to yield or to protest; remembrance of things past and hope for the Iuture, resignation and optimism; opposition and assent; selfish ness and altruism. There may be a split personality with conflieting loyalties and tendencies. Such variable slant may indicate frustration because the writer is torn between love and hate with eventual nervous fatigue. It is the sign of general inferiority. lack of discipline, laziness, erratic, capricious, agitated, nervous, excitable, fickle, indecisive, nonconforming, and lack of good judgement. Such persons will greet you warmly one day, then cooly ignore you the next. One never really knows how to take them.

SURVIVETHROUGH HANDWRITINGANALYSIS

D.C. Besly

Shortly after he left the presidency, a press release quoted former President. Richard M. Nixon as slating, "We, as a country, have to provide strength and leadership."

This from a "leader", whose capacity for leadership was about as low as it is possible $t 0$ get. and who is least qualified to discuss the subject.

Leadership, the ability to assume command is very often filled by those who do not possess the ability to any great degree. They have achieved their positions by having been in the right place at the right time when it was necessary to fill a managership vacancy with whatever material was at fand. For the most part, history reveals that the world is and has been run by mediocrities who have arrived on the basis of a small talent, or who were the tools of higher-ups, sworn to carry out the programs of special interest groups,

Leadership is the sum of many parts. First of all there should be education, training and experience. A leader cannot indulge in self-consciousness, self-centeredness, or be greedy. There should be no lust for power or to domineer. There should be a capacity for diplomacy free from the taint of hypocrisy: initiative, and the ability to organize. There should be a need for responsibility with the competence to handle responsibility. There should be broadmindedness-respect for the opinions of others-practi-
cality and unselfishness.
A leader cannot be emotionally or mentally unstable, have temper, irritability, conceit, be ill-mannered, ostentatious, vain. a show-off, egotistical, or hold a grudge even when challenged. A good leader is one who himself has first learned to take and carry out orders, and should possess no defiance to higher authority or hold resentment.
Former President Nixon possessed many of the above mentioned negatives as shall be graphically indicated. As the previous article explained emotional response at considerable length, it will be seen that Nixon's seript reveals emotions running wild for lack of control. The extreme E plus slant gives unimpeachable evidence of this. Here is emotional instability. As previously pointed out, the hysteric exaggerates and over-dramatizes every difficulty and ailment, and is likely to lack deep ethical feelings.

An over-inflated ego is indicated in the above by the super elevated capital letters indicaling at God-like self-image, Capitals two and one half times the height of middle zone letters denote the egotistical. conceited person. The higher the capitals the stronger the trait. Here is one loving display with a strong sense of exaggerated pride evaluating to vanity, Vanity is self-love, and as such admits to no faults or mistakes,

That Nixon loved display was evidenced by the pomp and ceremony surrounding White Hoose activities such as the comic-opera uniforms the security forces were outfitted with in assuming a "palace guard" image following one of Nixon's visits to Europe where some remnants of decadent royalty still exists. The band always struck up "Hail To The Chief" each time he appeared in public along with trumpeters sounding "Ruffles and Flourishes", If any president was ever a bloated ham Ior theatrics and attention, Nixon took first prize.

Additional evidence of Nixon's lack of touch with reality is found in the super-elevated small letter " d " in the first name, Graphologically, the small "d" indicates the presence or absence of pride, depending on height. In this instance, it indicates vanity gone wild. Upper loops represent the abstract imagination: plans, ideas, theories, and spirituality if other supporting traits are present. The
different height of the upper loop of the small " h " as compared with the small "d"
are inconsistent, findienting theoretical instability.

The extreme height of the "d" reveals a powerdrank vanity that is reaching beyond its grasp. Varity seals off one's guilt sense. It is pseudo self esteem. and as such is above the law that governs ordinary folks. Such a writer's thoughts are not dominated by pober thinking, while at the same lime the unusual height reflects unrealistic idealism and flighls of fancy and illusions of grandeur. Herealso is revealed a fantasy world into which such a writer retreats when he feels that the world of reality does not aceept him.

Below is an example of Nixon's signature during his final days of office. The shocking

change reveals personality deterioration, aided and abouted by an extremely emotional being who could not stand up well in the Gaee of a crisis. Hysteria oyercame the super-narcissist, Maybe someday the masses will cease to judge every uspiring politician in lerms of Simon-pure morality that is even rare among the clergy.
Just a cursory examination of Jerry Ford's signature reveals unrealistic ambitions parallel with Nixon's. Here again is the God-likeself-image of the over-inflated ego along with the small letter "d" reaching beyond its grasp, or "out of this world" 10 quote the moderns. The up and down eovering stroke of the " d " without a loop formation, indicates one who is less than eandid in keeping his innermest thoughts. feelings and plans secret. Inhibition and insincerity are the basic meanings of concealing strokes,

Like the formation in Nixon's first name, the exaggerated height of the " d " reflects unrealistic ambition and flights of fancy. Ford has already admitted that he "misses the White House". No doubt the absence of a cheering, handshaking public has made itself felt. Once a politician has fed at the public trough, he never seems to get over it, and often tries and tries again following a loss of office.

The jerky movement of Ford's script
lacks rythm, reflecting his accident prone clumsiness in repeated falls, bumping his head and dropping things.

Nixan chase his successor well. Ford's pardot of his erony was a skin graft over a cancer. Nixon put Ford in office so one hand could wash the other. Ford was the politician closest to Nixon's policies.

The glaring similarities in both the Ford and Nixon signatures give unimpeachable evidence that these twa birds of a feather were cut from the same cloth! Additionally, that weird configuration of the lower loop of the eapital "J" in Jerry, along with the triangular pointed formation of the small " y ", indicates the bedroom athlete. Any complex, diverse configurations in lower loops reveal erotic fantasy that takes unconventional forms.

For the moment, it should be remembered that any exaggeration in seript indicatesabnormality.

The diverse formations of the same capital letters: " 5 ". " E ", and " C " in the Carter signature reflects a dual, or split personality, This rule always applies when letter formations are written in diverse forms. The last name. Carter, tends to laper likea wedge from the "a" to "r". This tapering indicated presence of diplomacy.

For the most part, diplomacy has always been regarded as an admirable trait. A irait offen used lo gain one's points, evade an issue, or avoid a busted nose and loosemed teeth. I maintain the positives will take care of themselves nticely. It's the negotives one has to he alert for in order to survive this competitive, cut/throat rat race. When one becomes familiar with the negatives and how they influence character, then we are better prepared to deal with then in protecting varselves. So here goes with all the stops pulled out!

A diplomat has been described as one who "remembers a lady"s birthday, but forgets her age" Δ diplomat-whether the suave morning coated, striped pants type represenling matters of slate, or a seducer using soft soap to charm a victim-is one who is adroit in dealing with people. The diplomat is skillful in negutiations, and can maneaver successfolly and without friction in difficult situations.

The true purpose of diplomacy is to prolong a crisis by pouring oil on troubled waters. Other lerms for the trait ares dissimulation, cunning. pretense. feign, ariful dodger. machination. double-cross, chicane, hocus-pocus. knavery; take your pick. In the presence of evasion, secrecy and downright deceit. diplomacy eyaluates to hypocrisy.

Remembered statements of former Secretary of State, Henry Kissinger were masterpieces of evasion. He chiefly spoke
without imparting information of any significance. Some examples were, "We have made significant progress. Our views are in complete accord!"

Most bureau chiefs along with presidental press secretaries have a well-cultured talent for speaking bureau-cratese-that frustrating native Washing. ton dialect that uses long words and complicated sentences to convey practical. ly nothing. Regardless of any speaker's position, any listener to such verbal beating about the bush should be immediately aleried to the fact that such speakers have something to conceal.

As previously stated, diplomacy may be recognized by tapering words and letter forms, thus:

2AT - Worsen
 The Tapering of Diplomacy

Graphic indicators that lend diplomacy that taint of hypocrisy are: evasion, self-deceplion, secrecy, intentional deceit, lack of emotional control and fluctuating moods. Any one or all may color diplomacy's effect.

Evasion is recognized by the double hook in letters as evidenced in the first capital "C" in Carter's signature where the capital " E " and " C " are connected. Other graphic indicators of evasiveness may be found in the small "a", "e", " d " and "g," thus:

The evasive individual maneuvers to abtain desires not by expressing an antruth, but by evading the iruth. Its presence indicates a deep-seated feeling of insecurity which can only be overcome by the individual's acquisition of more than he actually needs as the hook formation also has the additional value of the acquisitive, grasping individual. Such individuals have a talent for "talking around" a subject.

Here too is found the over-inflated ego represented by the over-large capital letters along with the super-elevated small "t" in Carter. Here again is the unrealistic idealism and Hights of fancy reaching beyond its grasp that were so much in evidence in the Ford and Nixon signatures,

Significant is the lack of i-dots in Jimmy, revealing carelessness with details. Those who omit i-dots lack well-grounded ethical ideals. The very low placement of the t-bars reflect extremely low goals and vision so necessary toward planning long range programs so important to good leadership. Carter does not think very far into the future, a thing that seems consistent with far too many former chief executives who were more concerned with the immediate now and feathering their
own nests than with the nation's general good. The t-bars are extremely weak. showing a decided lack of will-power. Carter can be easily pressured. His choice of cabinet members and aids indicates this weakness.

1 know of no analysts who have mentioned the presence of shark's teeth in Carter's signature. Easily overlooked in script, shark's teeth are characteristic of those whose business it is to profit, broadly speaking, through people's credulity. Prominent analyst Billie Rosen states that the writer of a certain type of " m " is a dangerous person. It is typical of the person who wants to profit through the gullibility of others in outsmarting them. It takes naivete to fall prey to the shark's tooth writer, and whenever a naive person and a shark's tooth writer meet, the former is in for some quiet, systematic and pitiless bloodletting. Americans are the most gultible persons on earth, chiefly evaluating a person by what he seems to be asopposed to what he really is.

Shark's teeth may be seen in the final small "m's" in James and also Jimmy where the final top stroke ends then comes leftward in a curve that resembles its namesake. Checkmarks have been placed to call attention to the significant area,
thus:

re
 Sharl's Tooth "ra"

The spacing of disconnected letiers between the " t " and " e " in Carter, and the "i" and "m" in Jimmy reveal intuitiveness: the capacity for very rapid deduction from an instantaneous observation. Carter revealed this quality during his debates with President Ford whose performance more closely resembled an akward. tongue-tied bumpkin with an accident prone mind as well as body.
Intuitiveness infers keen and quick insight resulting from immediate perception and comprehension. (This does not mean that intuitiveness is infallible. The discoveries of intuition have always been developed further by sober reflection and logic. In ordinary life, intuition is a powerful but dangerous means of aequiring knowledge. Sometimes it can hardly be distinguished from illusion. Those who rely upon it eatirely are liable to mistakes. It is Iar from being always trustworthy, depending upon likes and dislikes, bias and predjudice. But the greal man, or aimple soul whose heart is pure, can be led to the summits of mental and spiritual life by its strangequality.)

An Effective Trap with Live Bait

t have uned a number of different kind of staps but the most buccessful if them is that shown the the trawing! Many small farbeacing ammals are fond of chicken meat. "The fox will eatel a clickea and carry it off, the mink aull weanel will ent the Itroat and bite the lieail, otc, a and a coon will batch one if lie lias a good clanice. I give them à goud chance, or at least they thark so, by fasting ny trap with a live chickert. The way I do it is to make a box about 12 ift -quare aud 3 ft loug. This box is made of ofd lember 30 that the animals will sot be suspicious of it. Each end of the box is covered with wire thesh. the wooden ends being removed entirely. The mesh at one end is atached to a franie hingerf to the box to permin putting a chicken in and tahilg it out. Twa more boxes are made of similar size with one end screened securely, and a screen trapilnor fasteneal itt the other end. The three hoxes are then taken to the place frequented by fur bearers. The chicken is put into the centter box, the hitiged end is securely fastened, and the lioxes are thenf placed in a row with the clicken box in the center as indicated. The trapdoors are set and alt is readly for the catch. At night ant animal will try to get the chicken by

Here we evaluate intuitiveness with evasion, diplomacy and shark's leeth, and the result is instinctive cunning. It will be interesting to observe the fature, Citizens should not look forward to that ever-sought eventual pie-in-the-sky paradise with great rewards for little or no physical effort. Politicians have been promising this dubious state of affairs for as far back as I can recall, but things keep deteriorating in spite of all mortal man's think tanks and brain trists can do about it.

Leadersbip? What do you think!

From Modern Mechanjes 1084

 Vacuum Powers Vertical Windmill GIXTY per cent of the power developnd by Da ave vertecat \& iminill if derivet fromo The Garnom fanged lo the vangs,The cates of the power will Irea atagen

 er in a fa mifrent lower wind.

Tho wadonill whe desimest fo nenerges

 Hires leat wale jent is mate of lightwhight

The Survival Mentality

By Parnnoid George (Co-hero of WHEFIS OF RAGE SAVING AND HAVING

"Either man must be content with poverty all his life or else be willing to deny himself some luxuries, and save, to make the base of independence in the future. But if a man denies the future, and spends as he earns (whether his earning be one or ten dollars a day) let him look for lean and bungry want at some future time, for it will surely come, no matter what he thinks. To save is absolutely the only way to get a solid fortune; there is no other mode. Those who shut their eyes and ears to these plain facts, will be forever poor, and for their obstinate rejection of truth mayhap may die in misery. Let them so die and hang themselves. But no. They take a sort of recompense in eursing fortuge. Great waste of breath. They might as well curse the mountains and the eternal hills. For I can tell them fortune does not give away real substantial goods. She sells them to the highest bidder. Men never make so fatal a mistake as when they think themselves captives of fate-'tis the sheerest folly in the world. Every man may make or mar his life, whichever he may choose. Fortune is for those who by diligence, honesty and frugality place themselves in a position to grasp hold of Iortune when it appears in view. The best evidence of trugalily is the five hundred dollaris or more standing in your name at the saving bank. The best evidence of honesty is both diligence and frugality,"

The above words were printed one hundred years ago, on May 13, 1877 in THE HUMBOLDT TIMES, At that time Humboldt County was a vital and developing sector of Northern California. In those days, especially in the western states, America was still a young and vigorous nation, peopled by energetic, practical men and women. They lived by the tenet, "If you need a helping hand. you'll find one at the end of your arm."

Neighborly sharing and cooperation were valued and necessary, but an individual's prime responsibility was to be self-reliant and productive. In that way he became an asset to the community and earned respect. People were held to be responsible for their own futures. Thus, a truly progressive society was built, morally and materially.

Today, however, Humboldt County has become modernized. The area now swarms with welfare recipients and the county is dependent on continuous Federal funding

to avoid depression conditions. And so course, by forcing those wha do produce goes the rest of the nation.

Today, any locsl newspaper bold enough to print an oditorial like "Saving and "Having" would be deluged by findignant letters from liberals and wellare recipients alike.

Our present wellare-oriented society confuses degeneration with progress. We are told that the ides that everyone should pay his own way is both archaic and heartless. That those who produce should be forced to guarantee the futures and opportunities of those who negiect to plan and provide for themselves properiy. and we sapport the yast and ever-growing sub-culture of the parasitic Welfare Class.

Indeed, the Welfare Class has become a major power block in America and its members are self-righteous and assertive in demanding a better and more bountiful standard of living. It is provided, of
to support them by ever-increasing taxes.
A century ago it was no fun to be a freeloader and all but impossible to survive as one. Unheard of were the Federally funded programs to take the misery out of poveriy and to support able bodied welfare leeches. Those who would not, or could not, produce, simply did not survive to demand a free ride from productive citizens. If a citizen was dissatisfied with his standard of living, there was every incentive to better himself by saving or learning' a useful trade needed in the community. He knew that if he didn't care sbout himsell, nobody else would.

In contrast are the arrogant welfare lice today, backed by the liberal creed and a sense of deserving. It interests me sometimes to hear what some of these pathetic parasites have to say about life
and the world. And so I found myself talking to a typical welfare brood sow who was "on the county" as she put it.
Well over 200 pounds of bloated pork, this able-bodied young woman was a second generation wellare case. She wore a garishly colored tent-like garment and her hair was frizzed out, looking like a used Brillo pad. Between sentences she stuffed her mouth with potato chips from a large box at her side. In one hand was a king-sized beer. From the next room came the foul-mouthed eacaphony of her two whelps at play, undernourished, in contrast to their gross mother.
"It's a rotten life and a stinking society," she asserted.
"Oh." I said, "And what's stinking sbout it?"
Well, if you was on Wellare you'd know how it is to be poor," she accused. "On the first and fifteenth of the moath I get my checks and I can have a good time and live right for a couple of days. But after the party's over and the money's spent, all's I got is my Food Stamps."
"All you can get with them is grub, and Tm on a diet. So I have to sell them so I can get cigarettes and beer to last me. But I think I m pregnant and at least that'll mean a raise. At least Medi-Cal pays my medical bills and I live in Government housing. But Hell, you can't spend that. I want to live decent: at least they owe me that much!"

When I suggested that perhaps she could get a job and get out of the Welfare rut, and perhaps ask the father of her kids to belp with their support, she exploded with indignation.
"If I got a job they'd eut back on my Welfare and I'd be no better than a nine-to-five chump and be working my tail off for $\$ 2.50$ an hour. If you'd ever been on the County yourself, you'd be smart enough to know that.
"And if I had some pair of pants supporting me and my kids, they'd eut me clean off Welfare. What do you think, Im stupid?"
I asked her if she didn't feel ashamed that a lot of people do work at low income jobs and get no Food Stamps or Medi-Cal, who have to pay taxes so that she could get Welfare while refusing to work.
"That's their problem," she snorted. "I have my own life to live. And don't give me any of that work ethic jive. That went out with high button shoes."
Indeed it did. And that is why today's society is saddled with a vast herd of worthless human baggage who would never have survived a century ago, amid the vigorous, survival-oriented communities of our grandfathers. People who looked to their own ingenuity to cope with disaster, not dependent on giveaway
programs to survive.
Yet. Nature has a way of cleansing itself. And when our highly technological society collapses due to its incompatibility with the laws of Nature, the gravy train will grind to a halt. Then the Welfare masses will simply starve. Also decinated will be the ranks of the unprepared, geared only for survival in the present artificial environment of our
cities. Technology will then revert to that of the 19th Century. Morality must Hikewise Iollow.
Survival will be the province of those who, like the clear-thinking and productive men and women, once built functioning, bountiful communities many years ago. They had the wisdom to realize that there can be no permanent place for parasites.

The Ticket to Mental Health for Survival

By Paranoid George
(Beginning witha short excerpt from WHEELS OF RAGE)
"When they got back to the mausoleum the other two ghouls had left. In his drawer, Paranoid George was kieking and sereaming and trying to get out. If they hadn't gone back for him he could never have gotten out.
"When they opened the drawer he sat up with his empty gallop wine bottle. He was slobbering and was out of his mind. He was so druak that when he woke up in the darkness and couldn't get out he actually believed he had been interred. He elambered out of the drawer yelling. 'Buried alive! Buried alive!
"Then be ran out to his bike and roared off into the night sereeching over and over, "Buried alive""
"Big Mike and Pinochio left Gargantua with his bent up machine and went to get the camper. They came back soon and loaded up Gargantua's scooter. Then they all went home to Big Mike's and partied the rest of the night waiting for Paranoid George.
"When Paranoid George made his way out of the cemetery he wandered around for quite awhile before finding his way back to Glendale. He was sold and drunk. Feeling a maudlin need for some warmth and apirituas comifort he stopped by a Catholic church and parked his bike.
"He went up the broad steps and opened the door and looked inside. There was no one around so he went info the lobby and peered around the corner at the altar down in front of the church. There was a priest bosy arranging some candles and a couple of worshippers kneeling in prayer.
'Stumbling around sadly like the beaten sinner he was. he found an open confessional and went in and sat down. To his credit, he didn't know where he was. When he closed the confessional door its darkness might have reminded him of the crypt but there was a grille in the side for the confessor to talk through. It let in just enough light to make the place cory.
"Soon he slumped over and went fast asleep. Sometime very early the next
morning he accidentally hit the switch turning on the lighted sign which read, 'Priest is in.' It was probably because the light was on that no real priest opened the door to the confessional.
"About seven o'clock a besutifully built girl sat down at the grille and began her confession. 'Father forgive me for I have sinned.' Paranoid George woke up to hear the girl going on to tell about what she had done with. to and for her boylfiend last night. He listened in amazement us she described pinsitions he could only imagine in a motorcycle piloup. She painted a picture that would make the average skin fick look like an old Victorian morality play,
"Paranoid George still nad no idea where he was. All he kaew was that a girl he could barely make out through the grille was telling him the horniest story and had to be hot and wanting him.
"When her message was only too clear to him he said, 'Okay, baby, let's make it. My place or yours?
"For a minute the girl couldn't believe what she heard. When it finally registered she started screaming and going into hysterics. That brought five priests and a bunch of citizens running. She pointed to the confessional and shrieked. That goddam priest in there propositioned mel'
"The citizens were shocked and the monsignor who was with the priesta jerked open the confessional door. When the priests got over their amazement at seeing Paranoid George sitting there in his black robe and yampire makeup they dragged him out and stood him on his feet.
"When the girl got a good look at him she hollered, 'I confessed to that? Jesus, God Almighty: what is it? It looks like a Muppet!
The monsignor shouted, 'Young man, how dare you sit in there and take a confession. You're undoubtedly disturbed. Made up like that you must be against everything the Lord stands for. You must be some kind of devil.'
"No I ain't"" Paranoid George raged, ${ }^{\text {'Tma Christian. I was saved at a showing }}$ of Elmer Gantry.
"Then he turned and bolted out of the
church. He hopped on his scooter and tore off down the street yelling. 'Buried alive' Buried alive! ${ }^{+}$

The foregoing is a scene from chapter seven of WHEELS OF RAGE, by Kurt Saxon. The book is about the Iron Cross Motorcycle club and our zany adventures. Those of you who have read it will remember meas an off-beat, often comical character.

But there was nothing comical about the paranoid, sometimes bizarre, thoughts and feelings which constantly tormented my fevered brain. Thus triggering most of the looney behavior which earned me the nickname of Paranoid George. Common sense will tell you that most people who have to get drunk or high before they can have a good time, and those who must indulge in hostile, anti-social behavjor in order to feel fulfilled are often tormented individuals.

In my case it was the paranoid feelings of persecution that drove me to drink all the ret gut. Red Mountain Burguady I could chug down my gullet. Also to wind up doing 90 days in the pound for stomping some naughty old coot who 1 figured was trying to get queer with me.

It you are a troubled soul, your problem might take the form of spells of depression, unexplainable anxiety, outburgts of temper, or maybe just a growing feeling that people don't show you enougb reapect. In any case, you are very unhappy. Your inner feelings may tend to result in social behavior which others see as wierd. They begin to see you and react to you in a pegative way. You sense this reaction and become even more frus(rated and begin disliking people. This of course results in additional anti-social behavioc, be it verbal or physical. Or you may just withdraw into your own little world. This syndrome is no fun, as I know, having been through it myself,

For example, up until recently I used to wear sunglasses with two-way mirrors for lenses. That's because I telt people were staring at me. In the past I'd have a compulsion to stare at a person every few seconds to make sure he wasn't staring at me. Not wishing to tip my hand by exhibiting my own odd eye action, 1 began wearing the glasses. In this way I could check out any suspected starer in, say a waiting room, up to 50 times without letting him know I was looking at him.

Unfortunately, I found that one of the best ways to goarantee plenty of people giving you funny looks is to go around wearing specs with two-way mirrors for lenses. As you can imagine, I began to find lots of proof that I was being stared at, especially when I'd show up wearing those sunglasses indoors or on rainy days.

As time went on, things got worse and I
felt that my enemies were gaining on me. Indeed, they were my best Iriends. At night I developed insomnia. Sometimes I sensed a vague warning bell inside me that the chick sleeping next to me might Lurn inte a giant spider as soon as I drifted into dreamland where aightmares were the norm.

When things began to reach their litter madness, I became afraid to be alone, Aut I was also afraid to be with people. I developed a terror of elevators, airplanes, mirrors, eancer, heart Irouble, the dark and the supernatural.

After much introspection I came to the conclusion that all my problems were the result of a black magic curse upon me by a wizard who was masquerading as a faggot in Glendale. California. When I reached the point where 1 began to have hallucinations. I defermined to put a sfop to this persecution. Afler I found that stomping him did no good, my farther plans of attack included contacting a sorcerer to make up a counter-spell which would gave me from cuttiog his head off. In a word, I was nuts.

Ufany of this sounds fike you or a friend or loved one, whether you feel you're reaching the polnt of no retura or simply exhibiting some of the milder, though unpleasant, neurotic thought patterns. lake hearl. You may be merely suffering trom a condition which you can corriel within minutes.

The chances are great that you, like myselt, can find glowjing mental bealth and tranquility. It miny come so soon and 50 easily that you may be amazed, as I was at tuy own speedy recovery. As I write these words. I sit here w/th a peaceful. snxiety Iree feeling. 1 (eel generally good these days. Gone is the erralic behavior, crazy thoughts, nightmares, insomnix. depression, and paranois. I threw my reflecto spees in the garbage last week and I leel fine.

At this point you may expect me to thank Freud thal I sought expert psychiatric help in the nick of time. Or that I'll endorse Trancendectal Meditation or even self-coatrol.

Not at all. In fact I took psycho-therapy for six months, as an alternalive to a jail sentence. But I was so paranoid that I wound up accusing my therapist, a patient and personable young woman, of being a secret bulldyke whe was plotting to get me committed to a nuthouse on behalf of womens"lib.

What did cure me, however, was fructose and niacin. As a result of taking these I've started thinking straight. And ! no longer suffer from the CHEMICAL IMBALANCE which had in lact been the real cause of my sorcalled mental problems. I have a niacin deficiency
brought on by low blood sugar.
I make no pretense to being an expert in the field of psychology or even in nutrition. I do, however, know what has caused a miracle in me and have since observed niscin and fructose work on other secret squirrels with amazing results.

I don't blame you if at this point you are a bit skeptical. My first experience with niacin and fructose came one evening when, as usual, I was going crazy and beginning to hallucinate. If someone had told me then that after dropping 600 mg of niacin and couple of teaspoonsful of fructose I'd be perfectly normal I wouldn't have believed it. Yet, that's exactly what happened.
I'd recently moved to Eureka to go to work for Kurt Saxon on the staff of THE SURVIVOR. One night I was at Kurt's place and we were sitting sround drinking beer and enjoying light conversation. For no particular reason I suddealy got the Jdea that Kurt was crazy and he planned to poison me, work black nuagic on me and In general bad ideas about doing me in. "He can'l do me in, man." was my exact thought.

Bui the most alarming thing I noticed was that his forehead suddenly seemed to be increasing in height while his face started getting smaller. At the same time, his eye movements and gestures appeared to get quick and erratic: His whole appearance was rapidly changing into that of a super-looney paycho who resembled Emperor Ming Irom Flash Gordon. The guy seemed to be going benanses right before my eyes!
"Hey:" I demanded, "what the hell is going on here'? You can't lool me. You'ro planning some rotten scheme and I won't put up with it!"

Naturally the conversation deleriorated rapidly at that point and the rectiminations flew thick and fast.

Somewhere along the line, Kurt started Lalking aboul niacin and fructose as a cure for depression and paranoin. He produced a small plastic bottle of what appeared to be aspirin and a jar of fruit sugar, or fructase. He then suggested that 1 might have a niacin deficiency. I didn't believe it. But about then 1 was ready to try anything, even if it was to prove il didn't work. So I picked up the bottle and ahook six of the little white tablets into my palm. Tossing them in my mouth, I downed them with a couple of gulps of Colt 45, followed by a teaspoonful of fructose.

The first thing I experienced was a burning sensation that felt like a sunburn all over my body and I thought Id been poisoned for sure. I looked in the mirror and saw that my face had turned beet red, exactly like a sunburn. I later learned that
this is a harmless reaction caused by the niacin releasing trapped histimines in the body. It's called flushing.

Along with this flushing I suddenly experienced a wave of carefree self-assurance and tranquility. My thinking became crystal clear. My paranoia and visions of plots and poisonings had vanished in seconds. In fact. I could recall my crazy mental process of a few minutes before and I felt free and confident to discuss my former wierd ideas. I laughed at them as the absurd delusions they were.

The effect of the niacin and fructose had been dramatic. And though I didn't know it at the time, the high that I experienced was merely the feeling which most people have who are not chronically depressed. In any case, Id been cured of lifelong depression and paranoia in ten minutes.

These days, instead of taking six niacins like the first time, which was too much, I just take one and a level teaspoonful of fructose every low hours, especially if I begin to feel low.

I'm told by a vutritionally oriented psychologist that the effect of niacin on most people is not usually so sudden as it was with me, though the reaalt is the same. Usually a reserve has to be buit up over the period of two days to a week. But it works.

So if you have periods of anxiety where you feel something is wrong without really knowing what, or get depressed for no readily apparent reason, niacin and fructose may be all you need. Tranquilizers have the same effect on depression and paranoia but they. just suppress the wild imaginings without bealing the system, as is done through the use of niacin and fructose.

Consider the probability that you may have a niacin deficiency like I have. If you do, you're actually among the lucky. Niacin ean be bought at any drug store without a prescription. It's just a vitamin and sells for a little over a penny per 100 mg tablet. Fructose is stmply fruit sugar and can be bought at any health food store for about $\$ 2.00$ a pound.

When you get a flushed feeling from niacin it simply means you've taken more than your system can handle at that time. try one 100 mg tablet and a level teaspoon of fructose. If you don't get llushed or feel better within 15 minutes, take another tablet and some more fructose. If even one tablet is too much, break it in half. In a short time you'll know how much to take to feel better without flushing. It won't be long before you build up a niacin reserve and then you can take one tablet and a spoon of fructose whenever you feel depressed, anxious, enraged over some small aggravation, etc.

Often when a person is depressed and anxious, his feelings signal his adrenal gland to release adrenalin for fight or flight. But since there is no actual problem worth fighting or running from, he is left with a feeling of impending doom coupled with impotent rage. Then he clobbers some dode, or beats the wife and kids, or starts shooting up the neighborhood and getsthe SWAT teamin. This works the same on women and is the main cause for child lattering.

What fructase does, in combination with niacin. is to block off the annatural flow of adrenalin. This simply takes away the urge for violent action against whatever petty little annoyance crops up during a period of depression. Fructose can work wonders for anyone subject to alternating fits of depression and anger.

Millions of people haye chronic low blood sugar, or hypoglycemia, as part of their physical makeup. Millions more produee this condition by eating too many earbohydrates such as breads, potatoes, ete. which the body converts to sugar. Then there is candy, soft drinks. refined sugar used for sweetening, etc. Putting all this sugar into the system causes quick highs, followed by sn equally quick low which lasts a let longer thas the origina! high. This is what people mean when they talk about low blood sugar. When your system can't handle sweets, you experience highs followed by miserable lows. This is bad enough on the miod and the emotions. But it is also a signal that you could be developing diabetes.
So knock off the excessive carbobydrates and drop refined sugars altogether.
Fructose gives you the same high without the resulting low. Adding fructose to the diet can mellow you out if you have the etratic symptoms of low blood sugar. You may find that yout can deal logically and assertively without being the vietim of feelings of anxiety and inner panic when confronted with a stressfal situation. Nor will you be in danger of losing out to a surge of irrational fary and the desire to kick somebody's teeth in oyer a trivial matter or imagined threat or insult.

When I began taking fructose 1 followed a program. On the first two days I took two rounded teaspoonfuls of the granulated fructose dissolved in water every two hours. When I went to bed I had about five rounded teaspoonfuls dissolved in a glass of water next to me so that I could drink some when I woke up during the night.
Following this procedure saturates your system with fructose and your adrenal gland gets a total rest for two days. I found myself to be totally collected during the two days and 1 reacted to all
situations intellectually rather than emotionally. The "flight or fight" responses were greatly dulled.
On the third day I began taking a level seaspoonful of fructose three times a day and that's what I take now, along with a greatly reduced dosage of niacin.
There's nothing as good as fructose for killing the urge for soft drinks or sugar. It won't make you fat. In fact, if you have a weight problem, fructose and niacin will give you a natural lift which brings with it energy you didn't know you had. You'll burn off that extra weight just in the course of your daily activities. Fructose is widely prescribed for overweight types. In some European clinics, fructose is even prescribed for diabetics.
Between niacin and fructose, I now find that I'm pretty together and I seldom have the urge for sweets, or even alcohol, by the way. Alcohol is also converted into sugar by the body. A depressed type drinks and soon his blood sugar drops and he's terribly depressed. The only way he knows to get back up agaio is to take another drink, and on and on. Niacin and Iructose takes away the depression so he simply loses the urge to keep chugging down the booze through all his waking hours. So fructose and niacin is not only the cure for depression and overweight. but it's also the only known cure for alcoholism.
If your system is shot through years of troubles, both real and imagined, you may need fructose and niacin from now on. But both substances are relatively cheap, very easy to get and can be stored indefinitely. Considering what might lie ahead; meunting tensions, lack of medicines and general chaos, a lifetime supply of fructose and niacin could keep you reasonably collected through most of the chaos to come. These two ifems could be the cheapest and most important elements in your survival program.

A Simple Wire Stretcher

A oovel arrasigesert, that is simply installed on any wire line to facilitate lowering or Rlising, or to maintain a uniform tensioit, is shown in the drawing. It is made from a hent bar of
 round iron. Sucts a device is being used, in one insiance, to keep wire clotheslines taint, so that no props or other supports are necessary. The wire is Jed through a hole in the post and fastened through a bole drilled in the bent har. Turning of the bar crank winds the wire around it and tigbtems the line. The erank is held in place and prevented froms unwinding ly a loose loop, or link, which is slipped ovet its end.

How to Deactivate a Time-Bomb

by Cyrus Dickenson

Do you hear a strange ticking? Not a loud ticking. Actually it might be more of a vibration, and one that is somehow connected to your body and heart. That's it, your heart pounding! Has someone somehow wired a bomb to your heart? No, of course not, but it may very well feel like it if you are tense, full of anxiety, and under the stress well known to Survivors.

Where does stress, tension. and anxiety come from? Well, they can come Irom practically anywhere. But that question could easily be one of the most important you ever ask yourself. Actually, tension and anxiety are the result of stress that gets out of hand. This can be the result of the stress being (1) overwhelming (ie. ten men against one), (2) too many stresses at once (ie. fired from job. bills piling up, a bad cold, wife leaves you, or she comes home, etc.) (3) not knowing what the stress or stresses are or where they are coming from, or (4) unchanging, unending stress, including boredom. Then, siress can turn to anxiety and tension because the mind and body become exhausted with no relief, no rest, relaxation, or variation.

If we are to deactivate tension and anxiety we must identify the stress or stresses and deactivate we must or fail to survive. When anxiety reaches high levels for periods lasting days, weeks, of months, our body and mind begin to fail. Ulcers, heart attacks. heart pounding, rapid breathing, ridicaloas fears, poor or unpredietble mental function, as well as a host of other troubles besiege our system. In short, we become physical and mental wrecks hardly worth saving.

Why would it be hard to detect stress when it's obviously all around us? Well, for the very reason that most people are looking all around themselves and usvally fail to look within. Now I don's mean within one's head, but within his body chemistry. Often others try to convince us that there is something wrong with our minds, but we are foolish if we accept this as the cause or source of stress.

People whose body systems are in good balance don't have anxiety attacks, II repeat, do not have anxiety attacksi, are rarely tense, and enjoy a stressful situation, as it becomes a challenge to deal with and overcome, or reduce the stressful situation. So, if you are havinga rough time coping, don't make the mistake of blaming all your problems on other people, places or things, or your mind. They are stress contributors but do not by themselves cause anxiety attacks. Only when your body is out of balance can other people and situations contribute to your
anxiety attacks and tension.
One of the best clues that the disturbing stress is coming from within the body chemistry is if the person tries to self medicate with such thingm as alcohol, cigarettesichain smokingl.drugs, or lots of sweet, goney candies, pastries, pies, cakes, cokes, br huge amounts of white bread and other starchy foods. This is an attempt to reduce stress by raising the low level of sugar in the blood strearn. This helps mementarily, only to make things much worse shortly thereafter.
Anxiety is our bodies' response to unyielding stress. Anxiety can be felt by a pounding heart, rapid breathing, beadaches, fearfulliness of people, places, or things that don't usually seare us, or just a feeling of uneasiness. Anxiety is real. We never have in guess if we are anxious or not. Stress, also, is real in every case and Is the cause of anxiety. In order to get rid of anxiety we must find the Irue source of the stress. This is our toughest and most important task:

There are two places $t 0$ look for that disturbing stress. One is "out there" stress. The other is "internal" stress. The "out there" atress I will leave to you Survivalists to deal with. I am a Survivalist alse, bat my apecialty is with
"internal stress." I am convinced that one must check out the possibilities of internal stress before exploring for "out there" stress because an out-of-whack metabolism or body chemistry can fool us into seeing other people or situations as the cause of our anxiety attacks. When this happens we waste ourselves defending against the wrong larget while the actual source of our discomfort conlinues to tear our syatem down. We could bomb and terrorize all the iddiot's or organizations we doa't approve of from now till doomsday and wonld never be satisfied till we get rid of the siress that setually is cousing the uneasiness.

What if we determine that an imbalance or internal stress is caused by our eating. smoking, drinking, or other habits? In other words, if we have located a possible source of stress on our body metabolism. how do we get rid of it?

Many people do not want to hear the answer to this, but it can be extremely rewarding. The answer is DIET. Diet can reduce or eliminate anxiety attacks and tension, depending on how strictly the diet is kept. Usually when people hear this they cringe. To have to give up "habits" sends one into a quiet panic. It
hits right in the gut. But don't take the hard way out of this by saying "Baloney that's the stupidest thing I've ever hear of"' Believe me, the easy way is to think about this through your own common sense after you carefully listen to a plan to eliminate anxiety attacks. There is no justified reason to panic. The thing you subconsciously fear the most will not happen. That lear is that you will have to give up your habit (like sugar and colfee for example) and you will feel even worse than you already do. Right?

As you read on, a plan will be spelled out to you where you can give up your habits while replacing them with specific foods that will not only avoid serious withdrawal, but will leave your body in a state of balance and feeling better physically and mentally than you can remember or even imagine. This is no exaggeration but like anything else one must have a personal experience before fully appreciating it.

Here's how it works. All food and drug habics (or cravings) are caused by LOW BLOOD SUGAR. When our blood sugar is low our body signals us to eat. The first signal is hunger sensations. If we ignore this then our body tells us in other ways like irritability, tension, aggressiveness, fatigue, light headedness, dizziness, cold clarnmy and sweaty skin, nervousness, or fear, and when mixed with other stresses that we are dealing with in our life, anxiety attacks will result.

Hunger is triggered from a drop in the level of sugar in the blood stream and not by how much food is in the stomach. The proof of this is that people are fed sugar and other nutrients through a vein, sometimes for months, without ever leeling hungry. This is why many people feel hungry or want to chain smoke, or drink etc., even if they are full. Their blood sugar level is still low. What goes in their mouth only satisfies momentarily or for an hour or so and then they feel even worse than before.

What makes some people crave certain foods, drinks, or other drugs, and aot other people? The answer is faulty sugar metabolism. Some people are born with, and others develop, imbalances in the body chemistry. For example, a special part of the pancreas, called the isles of Langerhans, can be too sensitive to sugar. This part of the pancreas makes insulin (which the diabetic doesn't have enough of). Insulin normally keeps levels of sugar from being too high. When too much
insulin enters the blood stream the supphy of sugar drops. Then we leel crummy. So we eat, drink, smoke, or take drugs which all, in one way or another, briefly raises the blood sugar and then causes an even lower level to follow for those with the imbalance. The quick rise makes us feel good, then the drop makes us feel worse.

Are you starting to see the dilemma here? The harder the guy tries to get his badly needed energy up, the worse his whole life gets. His energy is either too low or it's going up and down like a yoyo. And when the blood sugar is low the first organ to be affected is the brain. which uses a piggish 25% share of all the body's energy supply.
To make things worse, when the panereas constantly keeps the blood sugar down, other body defenses try to help out and make things worse. The adrenal glands, which are normally used only for emergency energy, release their many hormones, which make us want 16 run or fight for our life, This is confusing to others as well as ourselves. Then when we find ourselves in a real peed to defend or escape, our adrenal glands are loo exhausted to do us any good. Did you ever rip the phone off the wall during a domestic squabble? Or , seream and rant and rave over nothing? This ean happen and does when the adrenals are doing their thing at the wrong time. This kind of stress we can do without. We try to ayoid low blood sugar by eating or taking things that give us a lift. This plan backfires for those whose glands overreact. The reward is more low blood sugar. This, of course, lowers vor chances of survival out there in the rat race of life.
This lengthy explanation is necessary before sense can be made out of what to do about it. There are three basic foods: proteins, fats and carbohydrates. We need all of them to be healthy. To deactivate the time bomb of anxiety we must anderstand carbohydrates. Simply put. they are sugars and starches and would include fruits, vegetables, grains, and especially table sugar and honey. white bread and white rice. Common sugar, white bread, white rice, and alcohof are the most deadly time-bombs because they are wired directly ta a hyperactive pancreas.
In short, we must stay away from the quick energy sources we need so badly. So, we must replace these explosives with carbohydrates (sugars and starehes) that work more slowly. This includes whole grain breads and pastas, brown rice, beans, lentils, seeds, nuts which also have sufficient protein components which slow the reaction in our bodies. To this we can include the high protein groups of meat. lish, fowl, and dairy products. A normal amount of fat will be obtained in these
high protein foods even without eating the fatty parts of the meat.

What I have just described is commonly ealled a high protein, low carbohydrate diet and at the end of this article will be a book list for you to refer to as this article is limited to describing the stress factors causing tension and auxiety attacks. These inexpensive pocket books usually refer to low blood sugar as hypogiycemia: I urge anyone who suspects they have problems with low blood sugar to read these books. which caa be found in health food stores as well as other book stores and libraries.
Basically, the diet stays away from rapidly absorbed or refined carbolydrates and relies on more slowly absorbed carbobydrates and especially proteins which are not normally used by the body tor energy. Rather, they provide material for tissue building and repairing as well as nerve functions. This diet teaches you to think proteís instead af sweets, starcles, or alcohols when yos need an energy Iif. This is an excelleat diet. But one problem is that it takes the protein awhile to break down in the body and eventually be available as sugar or an energy source. Once the eaergy artives however, il lasts lor several hours. So if one eals small to moderste amiousts of protein several Iimes a day he can usually avoid that yoyo existance.
Within the last lew months an exciting new addition has been added to this diet Which quickly curtos one's desire to lake addicting foods, slcohols, and other drugs. It is FRUCTOSE, also called levulose or fruit sugar. This must never be confused with other stigars which are trictly forbidden. Fructase has been separated from sther sagar io a chemical process in Earope and is now marketed in the U.S. The beauty of this sugar is that it (1) does not stimulate the isles of tangerhans to produce insulin, (2) it gives quick energy to the frain and body. It also has the same amount of calortes as table suigar. Synthetic or artificial sogars only trick you into thinking energy is soon to come. It wan's. Fructase fill give you the energy youl need without activating that time-bomb of tension and antiely athack. Fructose will not helpif laken withost the spectal diet becaise the other sugars and slarches will still trigger the low blood sogar. Fructose looks and tastes about the same as table sugar and is slightly sweeter, It ean be purchased in health food atores and through mail order. It is expensive but casily worih trying. Prices cab range from four dollars a pound to as low as $\$ 1.30$ per pround which I found in a Coop store Tablets are avsilable for a ready supply away from your kitchen. Refer to the booklist to follow for more detsils and technical information on
fructose.
Good luck on your new diet and the new life to follow.
Abrahamson, E.M. and Pezet, A.W., BODY, MIND, AND SUGAR. New York: Pyramid Publications, 1971.
Cleave, T.L. THE SACCHARINE DISEASE. New Canaan, Conn, : Keats Publishing. Inc.

Martin, C.G., LOW BLOOD SUGAR (HIDDEN MENACE OF HYPO GLYCEMIA)
Fredericks, C. and Goodman B., LOW BLOOD SUGAR AND YOU.

Palm, J., DIET AWAY YOUR STRESS, TENSION, \& ANXIETY (The Fruetose Diet Book). Garden City, New York: Doubleday \& Company, Inc, 1976.

Yudkin, John. SWEET AND DANGER OUS, New York: Peter H. Wyden, 1972.

Folding Attic Steps

The steps shown in the drawing are particularly serviceable when the opening to the attic is located in a closet, or small room, where there is insufficient
 space for swinging
full-leng
h full-length
ladder to the celling. The upper end of the steps, or ladder, is attached to the wall with hinges, as indicated. The side rails are sawed in two near the middie. the cot being made in a diagonal direction to alford a longer bearing and to bring lesa strain upon the strap hinges by which the sections are joined. By meane of a rope and pulley, the lower section is folded inward against the upper section When the stepe are drawn up. The stepa seve held is the raised position by taling severil turns of the rope around a clest on the wall.

Insects Killed with Glue
 From Popular Mechanies 1931

A new method of exterminating insects on evergreen trees about your home is suggested by experiments at the State University of Ohio, where it was found that a solution of glue and water was an excellent insecticide. The solution is dmade by mixing हltuc, 1 Th., and water, 5 gal It is sprayed on the trees and holds the insects in the same marner as flies on sticky paper, without injuring the trees, Besides killing the insects, it also preveats their eggs from hatetring.

SURVIVING WITH MENTAL PROBLEMS

By Bill Abreu

Some recently proven theories held by doctors and nutritionalists may shed some truth on the old saying, "you are what you eat." In fact, from what tests and studies have shown, it is possible for certain foods (or lack of to be the cause of an irritable or temperamental disposition (riot to mention depression, fatigue, and a variety of many other mental problems).
Food allergies, though mostly well known for causing physical problems, such us cramps or hives, ean frequently cause anti-social behavior in masy individuals, These allergies differ from inhalation or skin allergies in that their reactions can be delayed for a period of hours or even days. When this sifuation oceups the food allergy can then be linked to addiction, on the basis that the only way in which the person can temporarily relieve the allergy is to eat more of the same offending lood.
One large contributor to food allergens is fond additives and pollutants which ean be found in cured meats (i.e. hotdogs, ham, ote,) to aet as a preservative. These additives, while giving the meat an attractive red color and stopping the growth of bacteria, can eause reaction such as depression. weariness, hyperactivity, or tension.
But other foends, apart from additives, can also cause reactions in certain people. To find a person's, allergen a dinetor has the patient fast for four to six days. At the end of that period the patient is fed the suspected lood and if a change in behayior occurs (though it may be subtle or drastie) the cause can then be diagnosed.

More specifically, salicylate, a chemical found in lood coloring the navoring agents, is a known-allergen linked to hyperactivity. This chemical causes a swelling in the lining of the brain (which is then called cerebral swelling or allergies), hence the anti-social behavion. In experiments with hyperactive patients it is shown that when salicylate is eliminated from their diets, the majority of patients calm down significantily,

The list of foods containing salicylate is quite unfortunate, being that they are the foods which many people are most fond of: eandy, cured meats, soda, and strangely enough even some children's chewable vitamins (it's amusing to think that Flintstone's Vitamins can turn a child into a tyrannosaurus rex-very loosely speaking of course).
Salicylic acids can be found largely in aspirin. This is very significant when one takes into account that 27 million pounds of aspirin is consumed yearly (enough to treat 17 billion headaches). Even worse is
the fact that tests have proven that aspirin has no more pain-killing effect than does caffeine. Furthermore, it is believed that aspirin, among other drugs such as insulin, would now bave a difficult time being passed onta the market if they had to mieel the striet standards of today. Salicylie acid, aside from causing cerebral swelfings. can also barm the mucosal cells which line the inside of the stomach. unless the tablets are buifered or if food has been vaten prive to the drug's consumption.
(If aspirin must be bought, it is best to purchase the least expensive brand, because all aspirin must pass the same U.S.P reyuirements.)

As of now you might be looking back through your memory, trying to find an instance where you ate an aspirin or hotdog and suddenly were transformed inte a raving madman. The truth is that the reactions are not that drastic nor that immediate in most people. The situation would miore likely be that the person is easily oltended or quick-tempered (which might be alien to bis normal personality) due to certain foods he has been eating for some time. Though the change to anti-soclal behavier is gradual, the process to revert bach to a more calm and normal disposition ean sometimes be remarkably lash. There have been cases where mothers have notieed prominent changes io their child's behavior within a very shorl tume, all for the better, (And what atoul Parinoid George's len minuty cure for his problems as described in Vol - 2 of THESIURVIVOR.
To find your allergen, if gou suspect that something is making you tense or itritable, can be fairly simple. First, the most likely suspected food (or perhaps a whole food farilyl is eliminated from your diet for three days. If no change in attitude oceurs then you move on to eliminate the second suspected food. Finally when a change does occur you simply check to see what food has most recently been eliminated, and obviously drop that food from your diet completely.
To treat mental problems without using standard methods, doctors will sometimes use the orthomolecular or the megavita \min therapy. There is not too much difference between the two, except that more vitamins are consumed by the patient with the megavitamin therapy ${ }_{+}$ Both of these treatments are much safer than the usual methods continuously user and in many cases they have even proved to be better. For one thing, po toreign elements, such as drugs and tranquilizers.
are introduced into the system, and those of vitamin B6 along with minerals and
excess vitamins which the body does not use are simply gotten rid of, being that they are water soluble.
However, it is not necessary to have a doctor lay out a specific diet to fit your personal needs, when it is possible for the same results to be accomplished by following a few simple and common sense methods.
The first thing to do is to have a healthy diet, This is not say that you should immediately ron out to your nearest health food store and buy sea weed, bird seed, or what have you. A well rounded diet of foods containing the minimum requirement level can be found and prove helpful to one's mind as well as one's health.
It is unwise to drop sugar of all forms from your diet as some might instantly assume (this would be difficult to do anyway, since sugar can be found in so many foods). A drop in sugar content can cause depression, grouchiness, or fatigue Also. too much sugar can over-stimulate the pancreas into pumping large quantities of insulin into the bloodstream to handle all the sugar. With all this insulin in the system the sugar's original purpose is thereby defeated. As mentioned in THE SURVIVOR, fructose is an excellent substitute for over-relined sugar which is contained in many sweets.
Minerals are also an important part of every diet and can be just as beneficial to your mental health. In a well-diversified diet, a sufficient supply of minerals will be found in milk, milk products, table salt, meats. The most abundant and important of minerals is calcium which is essential to every living cell. When a calcium deficiency is present the effects are much like those of a sugar or niacin deficiency, However, it can easily be corrected by eating more calcium-filled foods such as green vegetables, lean meat, and milk, or by simply taking calcium tablets which can be bought, non-prescription, at any drugstore. Calcium tablets are good also for relieving headaches (better and safor than aspirin), alleviating pain (two or three can be taken before dentist visits), or for curing insomnia.
Vitamin C can also be important for your survival diet because it detoxifies the effects of allergens which might somehow work their way into your system, despite precautions taken to avoid them. Often, the trouble-causing allergen can be found in some foods you might be unaware of or have overlooked.

Vitamin B6 is used largely in megavitamin therapy for the treatment of allergies to food additives, wherein the patient is denied offending foods containing additives and given large doses
other vitamins. It has been shown that hospital patients lacking vitamin B6 tend to develop depression, nausea, and vomiting. Once these patients are given dosages of vitamin B6 they quickly change back to normal with no side effects.
Vitamin B1 (thiamine) aids in produeing energy. However, this is not to say that with consumption of tiree or four of these vitamins you will suddenly be able to do heavy work or run miles without tiring. Vitamin B1 when taken with a well rounded diet of other vitamins and foods can be helpful. People without vitamins BI are fatigued, and constantly exhausted.

These vitamins, if taken properly and peanut butter. incorporated with a survival diet, can be favopable to one's physical and mental well-being. When the situation arises where getting along with your fellow survivalists is one of the main objectives in surviving after the crash. it will be best to have a complaisant attitude to keep peace in a group. Eating healthy foods ane proper vitamins can be the key to survival in such a situation.
But this situation changes dramatically when the deficiency is corrected. By way of Ioods, vitamin B1 is incloded in bread, cereals, and unrelined foods such as

Vitamin B3 is simply niacin, a vitamin which is sometimes referred to as the "morale vitamin," and is discussed extensively also in

Volume 2, of THE SURVIVOR.
In that calcium is helpful in relieving pain and beadaches, vitamin D aids in promoting the absorption of calcium. Vitamin D can be obtained from bomogenized milk and when taken in capsule form, should be consumed after a meal which might contain fat. Because vitamin D is used very little, it may sometimes be sold by preseription.

PICTURE FRAME AND TRIANGLE CLAMP

From Popular Mechanics 1915

A picture frame or triangle is quite difficult to hold together when fitting the corners. It is still more difficult to hold them together while the glue dries. The clamp illustrated will be found quite satisfactory in solving this problem, and at the same time is very simple to construct and easy to manipulate. The material list for making the clamps and corner blocks is as follows:

$$
\begin{aligned}
& \text { Pignce frome ylamp } \\
& \text { fones. is bi iv pr is io. } \\
& \text { Trianemelame or or } 3 \text { in. } \\
& \text { Trianelie clamp! } \\
& \text { o peces if by if by } 10 \text { in. } \\
& \text { Corpet block. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thes pieces musticmei se of eat. } 5+5 \text {, }
\end{aligned}
$$

> Hardwarri,
> 10 bolls, 4 bs 3 in
> $\begin{aligned} & 4 \text { belis, } 4 \text { by } 10 . \\ & 2 \text { belle. }\end{aligned}$

The picture-frame clamp consists of the four arms A, B, C and D, Fig 1. A $1 / 4-\mathrm{tn}$. hole is bored in one end of each piece, $1 / 2 \mathrm{in}$, from the end. A series of $3 / 8-\mathrm{in}$, holes, 1 in . apart, are bored along the center in each piece. The two short pieces, E and F, have two $1 / 4-\mathrm{in}$. holes bored in their centers, $1 / 2 \mathrm{in}$. from each end. These pieces are bolted to the four arms with $1 / 4$-in. bolts as shown in the sketch. A $\frac{9}{8}-\mathrm{in}$. hole is bored in the middle of each piece E and F for one of the 6 -in.

The Coriser Blochs an Both Pletare Ftime and Triangly Clampe ars ap Cocastroksed That Thary Hisld the Molding together While Fittinc the Cornert opt alse Hatd Thein Securely Whale the Glue is Hardenling

The four corner blocks G, F, I and J, Fig. 1, have a 3% in. hole bored in the center of each and a dowel glued into it with the end projecting 13 in . on the under side and level with the surface on the upper side. Fach of the corner blocks is fitted with two pieces like X, Fig. 2. Each of these pieces has one end round or a semicircle, and in its center a $1 / 4-\mathrm{in}$. hole is bored. The other end has a $1 / 6-\mathrm{io}$. hole bored $1 / 2$ in. from the end.

After making the small pieces, take the four corner blocks G, H, I and J and draw a line on the upper side in the center, with the grain of the wood, and mark the angles as follows, so that one-half the angle will be on each side of the centerline; On one end of the pieces G and H mark a 90 -deg. angle. on the other end a $45-\mathrm{deg}$. angle, on the piece I mark a $90-\mathrm{deg}$ and $30-\mathrm{deg}$. angle and on J mark a $90-\mathrm{deg}$ and $60-$ deg. angle. Mark the number of degrees of each between the sides of the angle. Place two of the pieces marked X, Fig. 2, on each of the corner blocks, one piece on each side between the different angle lines. so their round ends will be toward the center and toward each other with a space of $1 / 4$ in. between them. Clamp the pieces to the corner blocks and bore the $1 / 4-\mathrm{in}$. holes through them to secure perfect alinement. Put the bolts in and tura
the pieces first to one angle and then the other, and while in the respective positions, bore the $3 / 8-\mathrm{in}$, holes $3 / 8 \mathrm{in}$. deep in the corner blocks. Glue a dowel in each $7 / 8-\mathrm{in}$, hole of the small pieces, allowing it to project $1 / 4 \mathrm{in}$. on the undef side so it will fit in the $3 / 8-\mathrm{in}$. hole in the cotner block. Be sure to countersink the holes for the heads of the bolts. All'bolts should be fitted with wing nuts. All that is necessary to change from one angle to another is to loosen the nuts and swing the small pieces around so the dowel pins will drop into the other holes, then tighten the nuts.
The triangle clamp is made in the same manner as the piciure-frame clamp, except that the arms L and M , Figs. 2 and 3 , are hali-lapped into the crosspiece P. The bolt O is $3 / 4 \mathrm{in}$. and the head is cut off. Drill a $1 / \mathrm{d}-\mathrm{in}$. hole in the bolt, $1 / 4 \mathrm{in}$. from the end, and bore a $3 / 6-\mathrm{in}$. hole in the end of the arm N. Insert the headless bolt O in this hole and drive a nail through the side of the arm N, so it will pass through the hole drilled in the bolt. This keys the bolt in the end of the arm N.
To clamp a picture frame, set the corner blocks G, H, I and J to the 90 deg. angles and adjust them on the arms $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D to accommodate the size frame to be made, as shown in Fig. 1. Tighten the thumbnut on the bolt K , and this will draw all four corners together with the same pressure. The corners can then be examined to see if they fit properly. If they do not, saw in the joints with a backsaw until they do fit.

The triangles are clamped in the same way. The corner blocks are set to take the proper angles. The ends of the bolts should be slightly burred over so that the thumbnuts cannot be turned off.-

SURVIVAL OF

by Tom Murphy
It all began on a seemingly normal dayAt least as normal as the days had been being. each day's news being filled with near panie eveols, droughts, floods, many food crop failures, a new oil boycott. sharp rise in inflation. shortage of manufactured goods. massive power failures, increased terrorist activities, crimes of violence. People were scared and rightly so, It seemed that everything was building up to a peak. you could feel the tension in the air.
I was not too worried since 1 had made advance preparations some time ago to ensure the security and safety of my tamily. We had bought a small larm well off the beaten path. 6 acres but quite remote, the closest neighbor being a hall-mile away. We had been established over 3 years, building up a nice sized garden, a good well, and had lots of trees for plenty of firewood. My wife Susan is a vory prudent person and she believed as ! do in being prepared for any occurrance
Since were so far out in the country. wére more subject to power failures, so 1 had acquired an A.C. generator for emergency use. The deep well has an electric pump and lots of fresh) water is important, not only for drinking and washing bot Jor sanitation too. The generator is boused in a concrete building logether with drums of gasoline. lubricants. tools, and other survival supplies, as well as a small ehemical lab. Drums are not ideal for the stornge of gasoline as they tend to rust, however they will last for many years. Gasoline will kerp almost indefinitely if kept in a closed system. I's the exposure to air that causes it to deteriorate, I had on hand 8 drums for a cotal of 440 gallons plus 10 in the generator of 450 gallons. With careful use it would last for years or at least hopefully till things had stabilized. In that period of time, we would have had a dug well completed as well as expanded food supplies. So with power for the well, for communications equipment, deepfreeze, etc., we should be o.k. The generator has a good muffer system and is in a sound concrete shelter, it makes very little noise, which is very desireable. I didn't want to call attention to my little stronghold when the chaos occurs.
Over a period of years we had accumulated a good assortment of survival supplies-all with the idea in mind of not being able to get it if we didn't have it already. Travel would be very dangerous during the panic, so we decided to do without a lot of luxuries so we could be prepared. It sure is better to have something and not need it. than to need it
and not have it. Some items are critical ta life support, such as medical.
1 left work early in the afternoon. listening to the truek radio-lots of bulletins coming on from the big cities, demonstrations, blackouts, some lootingthe military had been placed on alert, and some National Guard units called out to help maintain law and order. I was going to stop by the grocery store, but the parking lot was jammed with cars and there was a large crowd in front of the store. Unbelievable-right here in a small southern town-people get seared and it's like a wildfire. I turned the truck around and headed Sor the house-looks like the time to put plan A into effect.
Susan met me at the door, with a worried look on her face - "Ton, I'm alraid it's starling to happen." I told her that I believed that also, and to start plan A-which is to notify the people that were to come to our retreat for safety and mutual defense-Sussos' parents, my parents, and John and his family (Susan's bpother), who fived 70 miles away. After quick phose calls to all. we began our own emergency preparations, which were not extensive as we had been on "alert" for weeks. I looked with satisfaction at the large store of foodstulfs, bedding, elothing. guns, ammo, tools, books, and agrieultural supplies. Wished it could have been nore bol we did the best we could in the time we had since we became aware of the situation. Commercial power was still working. so we began filling the water jugs. I cut off the butane to the hot water heater to conserve, hut left it on for the cookstove. 1 checked the gatuge, sbout $2 / 3$ full, 250 gallon tank, I had in storage four 50 gallon tanks, so cooking should be no problem for a good while.
Sure glad it's summertime, won't have to worry about burning wood with resultant smoke for at least four months, again so as tò aot call unwanted altention. With the new woodburning heater, there's not much smoke anyway compared to our old open tireplace. Checked the camping stove, two barner, 16 gallons of gas, Kerósene, 10 gallons, with two lamps, one lantern. 1 broke out the shovels and piekaxes: sure going to be a lot of digging when help gets here-defense positions, mantraps, punji holes, booby traps and warning devices. I had long ago made up duty rosters and plans for fortifying the homestead.

Considering the amount of work involved. I had thought about doing a lot of it as I went along. However, I didn't want to call undue attention to my future plans. All I needed was to have company drop in and see the field fortifications and
thus start asking questions. This oecurred once when someone dropped by my communications shack and saw a few cases of canned goods and said, "Boy, I'll know where to come to when I get hungry." There's no way to explain to this type of person-sure hope he doesn't try to show up. Hate to be hard hearted but if we share with everyone that comes along. I would be denying my family to benefit someone else who screwed off and spent their money on color TVs and boats while we did without to preserve ourselves. Everyone had the same chance to prepare and if they didn't see the need, then maybe they were too dumb to survive on their own. Nature weeds out the inferior.
I thought about my hall brother whose idea was to head tor the woods, with what he could earry on his back. I left him a slanding invitation to come be with us when he got tired of tramping around. 1 believe that be'II make it o.k. For miany manths be has been buckpacking into the woods on the weekend, lots of experience gained, as well as gelising into shape-well equipped, compass. topographical maps, etc, He koows well enough to make his presence knowa before be iries to come in. The old wild west idea-shont first and ask questions later-hard words but it's gonna be a hard life.
He bad one thought that sure seems to make sense. Some talk about "Bugging" out and including books on how to survive; the feels that experience is what counts, if you have to have constant reference to a book, your chances are reduced. I have an extensive library, but I have lots of things 1 teed to grab if we have to "bug" out. A static location is best from the standpoint of defense, with fortifications and enough people to defend it, It can be overrun, but damn hard to do, the athackers have to pay the price.
Someone's comingl It's our parents in pickup trucks with a big load on the back of exch-foodstaffs, bedding. weapons, etc., welcomed manpower and goods. Sure hope John will get here before dark. News getting worse, everything coming unglued. Had a quick meeting while I outlined the course of action-sent two of my sons out on guard duty, heavily armed, with C.B. walkitalkies for communications. I had an Army surplus field telephone system which would be used on occasions when we didn't want to transmit over the air, and "they" have radios too. A couple of folks started stringing wire, one using a garden spade to make an opening in the ground while the other put the wire in the sit made by the spade. Other wires were put down and run to stakes around
the perimeterof the land.
The chain of command tad been discussed on previous oceasions. I pointed out that this was my house and my land. and most of the supplies were mine-thus we don't vote on issues. I listen to advice and counsel, but I make the decisionssure stops a lot of problems belore they get started. It was hard for the parents to accept this, but they did. After all, they could have prepared and invited my family and ime over. Then of course, 1 would do as I was told. They didn't, I did. So that's the way it is.
Getting darker, John still hasn't arrived from the city-the ladies are in the prucess of supper, early to bed for all but guards. no lights at night. Well., no lights at all at least from commercial sources. power just failed, radio on batteries, all hell has broken toose. People going nuts, the whole system has ground to a halt-Overseas looks the same. The ceooomies of too many countries are tied up too much with that of others, one aflects the other.
Everyone into bed, 1 cut off the radio, get my rine, 45 sutomatie, and nashbight and go down to the driveway entranceSkip is at the curve of the driveway. cover ing the entrance. He's seen several cars go by, but all is quiet, Gary has the dog with him, we liear a dog barking in the distance, our's has been trained to not bark. but to give indication of "something out there." Sure dark Lonight, overcast. There's someone coming. gravel road, can hear a long ways. 1 went to the edge of the woods to take position at the side of the entrance, in a ditch. Two vehicles, a car and a truck, stop short of the enitrance. "Hey Tom, it's John"-flashlight check. sure enough-mighty glad to see them.
Both the car and truck are loaded down with supplies. John said it was a good thing they lived on the edge of the cily as he thought that they would not have made it if they had been further in. He said it sounded like the opening day of deer season. Lots of gunfire coming from the main section. There were a number of people out of gas on the roads leading out of the city, but just no way to help them.
Well, left Skip on guard duty and pulied the car and truck up to the house. Sure a lot of veticles around now. Started to unload but decided to wait until morning in order to not show lights. Also decided to take gas tanks off most vehicles and close park them around the house for additional bullet proofing. Also bad sandbags to be filled to put next to walls. Hard to get everyone settled down again. but soon quiet again-time goes last-time for guard change-quick call on the C.B. to alert guards of change-itheir walki-talkies have earphone jacks, which they are using, also squelched tight, with
short antennas as we only need short range communications and they have some freedom of movement without being tied to telephone system. In the daytime with better visibility the telephone system will be used mainly.

I'm getting some shuteye. I go on guard duty at 3 AM. Quiet night, just the way we want it to be, Sun coming up, looks like a nice day. hot though. There sure is a lot of work to be done today. Had a quick breakfast-got enough water for several days-deep freeze should keep for 3 . Listened to radio. National Emergency, President pleading for calm, law and urder-gangs of looters going amuck, stealing and killing anyone in their path. Looks like we really need to be on the atert
Weat ahead and ran the A.C. generator, put freezer on lowest setting, ran well and filled and refilled all available containers. Sure giad I soundproofed the system as much as 1 did, Can hear it running only a short distance away. Ran it for twa hours. I's a big job to get things organized, with as many people as we have (21), it takes a lot of food-the garden is in great shape. lots of stuff needs picking today. Betty (John's wife), is in charge of food, procurement and inventory. We are going to utilize the garden to the fullest extent possible and save the other food supplies for wintertime use. We have a large supply of jarn and lids, so there should be lots of home caaning this summer. The only workable way to get this done is to go back a long way-the women and children do their work, the men stand guard, bunt, and heavy work, This is the most workable system, no place for women's lib in a survival stituation. Our forefathers survived and maybe that's why.
Tve gotten the digging started. a system of defense positions first-then obstacles next to impede any assult. The only way to defend the house is to have a system of foxholes or fortified positions away from the bouse-if we tried to defend from the hoose about all it would take would be one attacker getting close enough to hurl one firebomb. By putting our main positions of defense awny from the house, the women and children firing from the house gives a good secood system, Also esch fortified position has clear angles of fire so that if an attuck came from oaly one direction, fire could be directed from all positions toward that direction. We have to stay on the alert and not be surprised.
I monitor the radio quite often, things are very bad indeed. The C.B, radio has oecasional calls for help, no way. Things are starting to settle down into a routine, and that's not good. A routine leads to complacency which leads to carelesshess. 1
changed the guard schedule up. Supplies are holding out real well, fuel consumption is low, mainly because the ladies prepare easy, quick to cook, stick to the rib type meals.
It's into the filth week now, we saw some smoke east of us yesterday afternoon, and heard some faint shooting, must be three or four miles off, there's a small Lown in that area. Don't know, but it looks bad. Stepped up the watch, that means that everyone goes around armed-believe we are prepared. The defenses look good, but I suppose could be better, but then there are limits to what you can do. I have seen signs of activity from my neighbors-looks like they've holed up like us. Being in the country, all have a good start on survival. Lots of water, from dug wells, to creeks and ponds. Again we hear the sound of gunfire. closer this time. Plan B into action. carefully, homemade explosives are taken from cool storage underground to the stakes around the perimetect, wires attached, and the charges buried. This is extra manpower to defend against an assault force. Top alert-no outside activities, guards doubled.
I have dreaded it , and now my worst fears are realized. There are people coming down the road, armed, 16 in all. There's a sideroad or two off the road before my place, leading nowhere really, and some of the group is checking each road out. Their intentions are obvious. The word is given, War Footing. everything is ready, all positions are manned. T^{m} in the command fortification with the explosive control box, each charge on a separate switch, system armed. We are discovered by two, one goes back and through binoculars I see a discussion under way. The one is joined by abother, they advance up the road. "That's far enough" I shout. They stop. "What do you want?" I asked, "Oh," they ssid. "we are just looking for supplies. Do you have any extra?" "No, 1 replied, move onl" "Sure," and off they went.
More discussion, still from the road area. A couple run up behind a seemingly natural cover and open fire on the house-and from the house comes a pitiful reply of a couple of . 22 s from the ladies. We must deceive the attacker, so that all will commit themselves and can be
destroyed. If we had committed ourselves at first, their tactices would have changed. As it was, they staged a mass assault, all at one time, which is just what we wanted. Hold your fire, hold it, let the ones in front go past the explosive charges, the ones behind are over the charges now-deto-nate-the explosives work very well, the ones in front are stunned, quickly fire and fire again. Nothing moves. A body count,
the same as were observed coming down the road. Looks like we got them all. Guards out, still max alert. I checked the bodies, a real dirty looking bunch, one has a sack full of paper dollars. What a fool! All of their worries are over, except for one still alive, but not for long.
Things are peacefol once again, sure had a job with the burial detail. We salvaged everything before burial. including the paper money. Think ril wallpaper my bedroom. There are very
few radio stations on the air, communications have really broken down. Everything is disorganized and there's no telling when the situation will stabilize, Well just stay on the alert and do the yery best we can under the circumstances. No person could ask more.

I often think of all the misery that has occurred and will continue to oecer. The old, the weak, the sick, the very young. the defenseless. all assaulted for the things they might have that would be
desirable. Once the restraints of society are oft, the dregs of the human race come creeping out of their holes, the worst side of man comes out. I am thankful we were prepared and I believe we will survive mainly because we became familiar with arts, crafts, survival information, first aid, chemical processes, firearms, etc., all add up to insure, as in nature, The Survival of the Fittest!

Five Shop Machines Fold into a Portable Box

APQRTABLE workshop containing a drill press, lathe, emery wheel, jig saw, and circular saw, which folds into a box the size of a tool chest and can be placed on the running board of an auto, may easily be devised by anyone who wisbes to take his shop with birn from place to place. It can be set up on a table wherever a 110 -volt 60 -cycle plug is available and is ready to operate within a few minutes.
The photographs and drawing show the general layout. Ordinary 14 -in. boards are used throughout. Be careful that the various parts are perfectly square. It is necessary, of course, to put cleats on the boards to prevent splitting and warping; and these should be placed across the grain.

When the shop is to be moved, the shafts are uncoupled from the motor, removed from the bearings, and secured to the cover.

In most cases regular home workshop machines of the smaller sizes would be used, but the machines showa were built by the author from parts found in junk yards. The drill press, for example, was made of short pieces of pipe and pipe attings, and a model-T Ford piston rod was used to form the adjustable table brackel. The drill press and lathe have fout-speed pulleys. A motor with a double-ended shaft was purchased from a mail-order house.

By C. A. VAN DERVEER
Popular Science 1936

The froat ad top ar cover of the box are removed and she reaalaing parte are epeosd sut fat by mosas of biages se that the wscbines asd motor may be ast up st is the druwleg obsve. The outh is also shown in the photagraph at the left

The machinea net up for use and. Ioft. how shey are packed in the bok. The shafte are untoupled and clamped to the Iid, The dutfit Iscludes a small tathe, fig esw, circular sew, criading wheel, and drill prees

CHICKEN OF THE SWAMP AND

By Jim and Stephanie Watters

I've always liked frog legs, but I'd never thought much about finding them in the city until the slump. While driving homelate one rainy night I kept seeing lrogs of all sizes on the highway. When some nice bullfrogs started jumping in front of my van. I couldn't imagine where they bad come from, but I couldn't stand to see all that good chow just hop away. I got on some streets where the traffic was slower, and just began stopping and picking them up. The big fellows would sil there starting into my beadlights and I'd slip around behind them and grah them.

That really started me looking for frogs in town. Hoeated all the ditches and ponds in the city limits. Some of them looked more like garbage cans than I would like. but when I went back late that night. I could see pleaty of red eyes among the beer bottles. In one little pond bohlad caur church parking lot. I counted nver Iwenty pairs of eyes and took home swenty fout pairs of legs. That little depression doesn'l eyen have water in it all the timer but it had plenty of frogs. The big diefies berar the local high school and unother ehureh parking lot has kept as in fron logs for the past two sammers. The hoat lammbing pads near the park are another gond place. And the people at the restawant within easy walking distance of our hoose don't know that the ditch behind their place holds better food than they soll. There are plenty of other good places but 1 mentioned all these just to starl you thinking of how many places you probably drive by everyday and never notice.

Let's say you've thought of a few places and you're ready to try your luck. How do you intend to catch the frogs? (And incidentally, they don't have to be real bull-frogs. Just take any frog that you think is big enough to eat. Leopard frogs and green frogs make good eating, too. 1 You can catch frogs with a hook and line, shoot them with pisiols, rifles, shotgums. air-rifles, or bow and arrow, or net them, or club them, or spear them. I prefer spearing, or gigging, as we call it down here. Gig heads should be a part of your survival gear, anyway. Go ahead and buy a couple or be a real survivalist and make some. For a handle, I've known some folles to get by with a broom handle, but 1 prefer an eight to twelve-foot bamhoo handle because. with it I can reach all the way across a ditch. For a light, I have done all right with just a two-cell flashlight but you'll do better with a head lamp-it leaves both hands free-or at least a six-volt lantern. Stick your little two-cell in your hip pocket for a spare, along with some
SUBSTITUTE SHRIMP
peryeter plastic bfead hags to pot your Irogs legs in. Sometimes I carry a folding wire fish net to keep them in and cut the legs off at home. thot if you're by yourself Fd recommend cutting off the legs and carrying them in hage. Cut them off at the honep where the legs join the back bone. You canr eat the whiole frog, as we have Jone, if you want to, but most of the meat in anthe back legs.

Frogging is more fun and more productive with a friend. With one of you 00 rither side of a ditch, you'th find a lot more froys, because be call see them under the overhanging vegelation ap your side and you can do the same for him. Also, a direet beans seem s to hold the frogs betier. Anyway. II's njee to have a buddy with you when you're scrounging around our clties at inght. Frogs aren't the only things that vume enotat ofght, anfortinately.

Prepariong frugs for the table is easy. Juat alice the skin actoss the bomp on their bsek, aick a finger under it and pull it off the legs the panty-home. Cut through the legs bunes at the hoopg and slit the belly back toward the logs. Cut off the feet, pull out the nerves that look like stringss so he wow't spset the wife by jumping around Whe fans. Irm around dhe rear vent if you like, and loss him ifto a pot of water to soak a mimute while I rest.

All right, it shouldn't take as long for you to del all that as it did for me to write it. 1 prefer lo soak my gaue for a while before 1 cook it, and I always like to freeze my frog legs before sooking. Believe it of not, it makrs them more tender. But neither the suaking oor frecting is really hecessary. When you've washed off those beautifal frog legs-and even your hoily-toity mother-in-law will tell you how pretty they afe-ypu may want to just toss them in the Irying par right away. That's easy enough Just roll them in Mour or corn-meal and fry them in deep fat, or just a little hot grease. Add a litule salt and pepper and try them, and you'll see why 1 'm a confirmed Frog Ireak.

Now, about those substitute shrimp I rientioned in the titles have you ever tried craylish? We call them crawlish down here, but whatever you call them, if you Fike shrimp you'll like these little critters, toos. Chances are you'll find theru every where you find bollfrogs because the bullfrogs enjoy eating crawfish, too Crawfishare easy to catch at night by hand or wilt a little mimnow net, or if you find the really big ones, a forked stick. There are other wnys to eatch them faster and in
greater quantity but you ought to be able to catch enough 10 make cray fish cocktails while you're spearing the main course.

When you get home, drop them alive into boiling water. They're ready to eat when they have turned bright red, but cook them up to 10 minutes if you're going to use them in cocktails. Most of the meat is in the tail which will be easier to shell if you take the crawdads out of the boiling water and put them immediately into cold water.

Well, there you have it-food good enough a gourmet or even your mother-in-law, You can begin now to leara imporlant survival skills right in the city. Thereare many other good techniques you can learn to incorpornce with these, if you'll jont turn off the idiot hox and get down to ii. It's not enough to read how - you have to go do it yourself. Someday the simple survival skills you can learn now may help keep your family alive in hard times. But if it rever comes to that you can enjoy a sense of selfiseliance while you chow down on that delicioun free food.

Improvised Post-Card

 Projector and Enlarging
From Popular Mech. 1919

 N outfit which may be used for either projecting picture post cards or enlarging photographic negatives was assembled as delineated in the illustration. An ordinary camera, which provides the lens and bellows, is required, in combination with a dark box which can be built in the home workshop. The method of construction is this:Make a box about 8 in, square out of

An Ordinary smati Camert, Fited with This Aktachseet. Bucomana an zelargiog and Poet-Card
$1 / 2-\mathrm{in}$. planed soft-wood stock. Nail the sides, but omit, for the present, the top and the bottom. The two openings thus left will be called the front and the back. Mount an 8 by 8 by $1 / 2-\mathrm{in}$. board, D , which constitutes a door, on the back with hinges and provide a hook to hold it shut. Cut a square hole, of the same size as that of the opening in the back of the camera which is to be used, in another 8 by $8-\mathrm{in}$. piece, E. This will constitute the front board. This front board is so cut that it fits in between the sides of the box instead of on the ends, as does the back. In the top, cut a square hole for ventilation. A hood is provided over this hole to prevent light being thrown forward.
When using the arrangement as a projector or magic lantern two 40watt tungsten lamps, A, are required. Each lamp is mounted in a porcelain receptacle held on the floor with screws. A lamp cord, one end connecting the two lamps in multiple and the other fitted with an attachment plug. passes through a hole in the floor of the box. Form the two refiectors, B , of 8 by 7 -in. bright tinned sheetiron pieces, each having holes along one of its edges to admit of attachment. The reflectors are bent to a semicircular contour before mounting. The card holder is detailed at C. It is a piece of tinned sheet iron bent to the form shown so that it will hold a post card. A hole is drilled in its center for a screw pivot, It can then be fastened to the center of the back door and can be turned into position, for either horizontak or vertical pictures.
A washer is inserted on the screw between the holder and the door. The thickness of the camera body having been determined, a slide is fastened to the front board, as diagrammed, to support this body.

Before it can be used as a projector it must be adjusted to operate with the camera of the type and size available. The adjustment, which must be made in a darkened room, having on one of its walls a white screen on which the image will be projected, is effected thus: Remove the back from.the camera and place the camera in the slide without extending the bellows. Open the shutter. Insert a card in the holder C. Light the tungsten lamps. Now move the front board, with the camera carried on it, back and forth within the box until the components are in focus, that is, until the most distinct image obtainable is reproduced on the screen. Then, illuminate the previously darkened room and nail the front board in

THE PROBABILITY OF NUCLEAR WAR

By Kurt Saxon Written in 1978

Although nuclear war becomes more pointless and suicidal each year, its threat looms ever larger. Logically, such a threat is remote. But since bureaucrats and polificians are seldom logical, nuclear war could occur at any time.

However, there are some misconceptions concerning nuclear war which makes its likelihood seem greater than it actually is al this time.

First, we are led to believe that Russia has a nuclear defense setup which would save up to 80% of its populace. Such estimates are absurd. Even if Russia had shelter capacity for the 200 some odd million people that tigure represents, this would only make matters worse.
Surviving a major nuclear attack is only the beginning. The deyastation of the cities, industries, croplands, etc .., would insure the certain death of the majority of survivors.

Many seem to think they would simply load this vast horde of survivors on transports and have them invade America. But aside Irom highlymobile weapons systems dodging American missiles on the world's oceans, Russian shipping would be pretty welf wiped out.
If the Russians got in the first punch and destroyed America's capability to fight outside our borders, so what? To destroy America as a functional system is no guarantee of any successful invasion.
The examples of past invasions of Russia and China should convince anyone that conquering continents takes more power than any nuclear survivors will have Jett.

America is vast, 2700 miles wide by 1600 miles thick. On the occasions I've flown from coast to coast, l've been impressed and even bored by the emptiness of our land. The logistics of subduing alf that space would be beyond the capability of even present-day Russia, Nuclear survivors would not even attempt it.
Besides, the Russians remember the problems facing the German Invaders and the damage done to them by guerrillas. The Russian guerrillas were amateurs, compared to Americans. And the Americans didn't have much luck subduing the Vietnamese. Modern techniques of guerrilla warfare make the armed civilian more than a match for any army of occupation.

America has more weapons in civilian hands than are owned by the rest of the world combined. Civillan disarmament is only a Liberal's fantasy. Books on improvised weaponry are so widely distributed that even total confiscation of guns, if possible, would only be wasted effort.
Total surrender to Russia by our government, before a bomb was dropped, would serve only to destroy our government and bring on nationwide anarchy. No Russian general would willingly send his men into a mess like that.
Too many people see Russia as a monolith just waiting for an excuse to attack. The reasoning is that as they get hungrier they will have less and less to lose by attacking.
This would be logical except for the Chinese. The Mongols were the most successful invaders of Russia. Their sheer numbers made them invincible. Modern Chinese see the Mongols as their ancestors, although, technicalty, they weren't. At any rate, the Chinese belleve they have a right to Siberia and other areas controlled by Russia.
The Chinese and the Russians have hated each other for centuries and no similarity of ideology will change that. Moreover, each considers the other, not America, to be the major threat to its existence.

Russia has more men on the Sino-Soviet border than in the Warsaw Pact forces. Estimates of Chinese military personnel and civilian militia on or near the border, prepared for invasion, are as high as 100 million.

Russlans are so ceriain of a Chinese invasion that they won't allow a Chinese restaurant in their land, lest it harbor a spy. That's just a little item
the position thus determined. These adjustments having been made, paint the box, inside and out, a coat of dead black, Everything should be painted black except the reffecting surfaces of the tin reflectors and the incandescentlamp bulbs. The front board having been fastened, subsequent focusing can be effected by shifting longitudinally the lens board of the camera. The image of any sort of a picture that will fit in the holder can be reproduced. Colored post cards will project in their natural tints.

To make enlargements with the same box, a few minor changes are necessary, When employed for enlargements the tungsten lamps, which are required for projection, are not used. They may, however, remain in the box and can be disconnected from circuit by unscrewing them a few turns. The negative, or film, which is to be enlarged, is held in the opening E. Where a fim is to be reproduced, it is held between two pieces of glass which are fastened to the inside of the front board with small clips. If a glass negative is uned, the two additional glass plates are unnecessary. If the negative does not GII the opening in the camera, a mask cut from heavy black paper will be required to cut off the light.

The light for the enlargement is furnished by another tungsten lamp mounted in a porcelain receptacle which is screwed to a board which conetitutes a base. This fight source is moved about in the house until it it directly back of the opening E in the front of the bow and until the light is distributed equally over the entire negative. To focus, move the camera backward or forward. While focusing, use a yellow glass, or may screen, to cover the lens. When focusiog has been completed, the shutter is closed and the ray sereen removed. Then stop down the Iens to bring out detail, and expose.

Completely Homemade

by Susan Kramer and Mike Thompson
Commercial ice cream is one of the most adulterated foods on the market. Ethylene glycol (same chemical they use in anti-freeze). formaldehyde, and rat poison are just a few of the goodies you may be eating in your luscious looking sundae. So why not take the time to make your own ice cream?

Get yourself a nut and a bolt, a quart
which happens to be true.
The Chinese are jusi waiting for Russia to get into it with America. Then they will pour across the Sino-Soviet border in waves of millions and millions, through the rain of atomic missiles, over the fortifications, and then on to Moscow.

The Russians know that a war with America would mean an automatic war with China. No matter how desperate they become for food and resources, an adventure against the Americans would only set them up for slaughter by the Chinese.

So don't be bothered by Russian threats and political doubletalk over here. But don't discount nuclear war as an impossibility.

America, Russia and China are becoming desperate for resources. Russia and China have oil enough for their immediate goals, since only a small percentage of their supply is used by civilians. But their future economy and military needs demand that they latch onto the fabulous wealth of Africa,

American politicians are just as intent on grabbing Atrica's resources as are the others, but they are not so obvious about it. Before he left office, Henry Kissinger was over there trying to get the Rhodesians to sell out and leave. His next move would have been a similar arrangement wifh South Alrica. He felt confident that with the African whites out of the way, he could make solid agreements with the black nationalists. Then, In gratitude to Kissinger for removing the whites, the blacks would sell their resources to America, rather than to the Russians or the Chinese.

Of course, the Russians and Chinese are arming the blacks and promising them all the weapons, and even foreign personnel, to do the lob. Whoever wins, it will be the same for the blacks as it was in the 19th century. Whether a mine is operated by the Americans, Russians, or Chinese, the forbigners will get the minerals and the Africans will get the shalt.

During the 19th century, Europeans divided Africa among themselves and there was ifttie friction. But three major powers who need so much will not make such divisions. Each group wants it all.
I belleve Atrica will be where it really begins. One controntation after another is inevitable. As the Russians commit more men and resourcos to Alrica, the Chinese will send more men to the Sino-Soviet border.

Sooner or later, the Chinese will invade and the Russians, tearlul of America, will try to knock us out so we can't invade. Then everyone with nuclear missiles will dump them on whatever foreign devil is handy.

This doesn't warry me since l've taken nuclear war into account. Survival shelters of my design will keep the inhabitants safe for months. In coming issues |'il detail such plans which any capable person can utilize.

Proposed and present Civil Defense survival shelters are mainly death Itaps, both the farnily and the group types, A two-week survival shelter is an absurdity. Your need for shelter and guaranteed sustenance will lasl for months, hot weeks.

The idea is to have homes with as much area underground as above. A foot of concrele, steel and earth between the shelter area and the aboveground quarters would insure a lamily's survival from anything but a direct hit.

If you plan such a shelter, here is an instance where you should nol tell your neighbors unless they loo show the same interest in a permanent underground home. In the meantime, you could still urge them to make such preparations as l've outlined before. A person who prepares for one calamity is already well on the way to preparing for a worse one.

Of course, you probably couldn't keep such preparations secret Irom your neighbors anyway. But don't worry about that. Once you are tucked in, you can wipe out anyone upstairs at the push of a button. Holocaust, fioting, famine, plague, will not affect you. You can stick your head out often enough to see how things are going.

In future issues I will detail survival homes anyone can build themselves with little money. But unlike the publicized fallout shelters, useless now except for storage, these will be livable and an actual part of the home, in this way, you won't see such a shelter as simply an extra expense in your survival budget.
jar, and any gear driven hand-drill. If you don't have a hand-drill, you may want to read instructions for a home-made one on page 122 of the "Survivor", volume one. Punch a hole the size of the bolt you plan to use in the eenter of the jar lid. Starting from the bottom of the lid. push the bolt through the hole and fasten with a nut. Clamp the end of the bolt into the hand-drill. Now fill the quart jar with an ice cream mixture consisting of creamy

milk, sweetening and flavoring. For flavoring you might like carob, chocolate, fruit or vanilla beans. Vanille beans must be cut into small pieces and heated in milk to extract the flavor. Do not use any extracts containing alcohol as this will screw up the process. Next fill up a container (four quart size is ideal) with an ice and salt mixture with the ratio of about three parts ice to one part salt. Salt in the ice makes it possible to obtain a temperature of below 32 degrees. Place the jar with the ice cream mixture into the center of the salt and ice container. Attach the drill and begin turning very slowly for the first five minutes. Then a faster speed can be maintained. You should open the jar when the mixture begins to get hard, and scrape the sides of the jar so that the mixture can harden throughout. When the entire mixture looks just like ice cream, you're done!

In the meantime, price home power plants. A gasoline or methane driven generator will supply the electricity. Several 55 gallon drums filled with fuel and water will last for months it used sparingly.
Grains bought in bulk and sprouted for humans and rabbits will insure against hunger. Good books, tools and compatible shelter mates will help pass the time.

WEATHER FORECASTING

By DON CART

Interripted communications will mean interrupted weather service. Be prepared to forecast your own weather. The U.S. Weather Bureau has prepared the following chart.
Baron'tr Windifom Weatherhdicated High and SW to NW steady.

Fair \&litule tempert ture change forl or2days.
High \&ris- SW to NW Fairlollowed by ing rapidly. rising temperatare Syin w/in2dayn.
Hefall sWioNW ing slowly Rain in 24 to 36 bours.

Veryhid SW to NW Fair and slowly falling slowly
rising temperature for 2 days.
Hildfall- S to SE Raio mithin ing slowly Hi 6 Fall ing rapidly.

S to SE . hereasing wind w/rain is 12 to 24 hours.
Histall- SEtoNE Rainin 12 to 18 ing slowly flisfall ing mpidly

HESFall. ing slowly.

Eto NE Summer, light

 winds, Iair, winter, min in 24 hours.Hisfall- EloNE Summer, min in 12 ing rapidly. to 14 hours; winter, rain or inow \& incressing winds.
Lo \&Fall- SEtoNE Rain will contihue ingslowly. for1or2days.
to \& fall- SE to NE Rain Ahigh ing rapidly.
Lo \&ris- StoSW Clearing seon \& ing slowly

Lo \& all ing rapidly
Lo \&falling rapidily.

Lo \&rising rapidly

Going Clearing acolder. to W

A home weather station will be a definite advantage to you. First you will need an
aneroid barometer. If you buy a new barometer, do not bother setting it according to the directions. All you will be using it for will be to deternine whether the barometric pressure is rising or falling. You will also need a wind direction indicator. You can use a tree ora vane. You don't need to worry about wind velocity; just note whether it is light, medium, hard, or extru hard.
You will also need two thermometers, Mercury thermometers are more accurate than alcohol thermometers, but are also more expensive. The first thernometer is to rvcord the tempenture. The second is used to mensure relative humidity.
To make the second thermometer serviceable to measure relative humidity, athach a cotton wick to the bulb at the bottom of the thernometer. Next bore a bole at the top of the thermometer fbe careful not to break the glass tube). Attach a round handle to the themometerin such a way as to allow the thermometer to swing frvely.
To use, record the temperature on the thermometer. Wet the wick with alcohol (water will do, but is not as good) and twirl the thermometer for thinty seconds. Record the temperature which will be lower. Divide the higher temperature into the lowen, subtnct the result from one, and multiply by 100%. This will give you the relative humidity. For example, if the higher temperature was $65^{\circ}-60+65=+12 ; 1-12$ $=.88 ; .88 \times 100 \%=88 \%$.

You may wish to have a mainfall indicator. Build a wooden box so that the inside height of it is the height of the beaker you will ase. Have the top slanted away from the center. Borea hole in the centerof the box, the hole being the same size as the diameter of the beaker. (Drill several small holes in the bottom of the box for drainage). Put a door in the box. Set the box with a beaker in it out in the open and you're all set.
Keep a log of your weather observations and recond them every 12 hours.

Two Helpful Hints

1. Keep your thermometer in the shade, protected from the wind for a more sceurate reading.
2. Turn your television to channel 18: turn the brightness down all the way. Now turn to channel 2. When a tornado is in your ares, the television screen will become very bright.

Utility Press FOR BLOCK PRINTING

THE design of this practical screw press is the result of considerable experience and much experimentation in the use of varisus. types of presses for lino-Jeum-bloek printing, bookbinding. vencering small panels, making in: laid pietures, and other gluing and

Making a pribe from a lienleum blotk The batron of the platen is padded with sleth thumb-tacked to the ends

presiling uperations. The bed will take work measuring $?$ by 10 in . or smaller
Either oak or maple is wsed for the wooden purts, and the total oust shoold bot exceod three dollans. The entire asembly is screwed and bolted together. Glue is used for the mortise and tenon joints, and four shelf brackels stabilise the side supports.
The working drawinas show the slize and position of all members, and the list of

List of Materials

t 6. 15 by 2 by $12 \mathrm{~N}_{5}$ in., for nutside bethon wiptans.
1 Fa. 115 by 3 by 1296 mo . loo midile butwen suppure
4 pock. I by 2 Thit by 1295 inc. foe bed.
 ports
1 pa. 135 by 3 by $111 / 2 \mathrm{ib}$, , fot top meenEer.

1 pe i by th foy 516 is., for platen cleal
Kore: This paterial is elther hak or maple.
$2-15 y$ by 19 in fres.hend tode, with Waibers tel mita
$4-5$ by 3 - 10 . wtourht sten) iapanued shell brackets with is Gatsrad black rood screas. M-ia Nos 8
1-1 by sy-ia masrebes machlon belt. threadel 0) 5 in.. with nut.
1-1/2 by 315 ins. catioran foor Alange, to be melden to Hom . machinebolt nut
1- If by 3-in catdicio fluor fange reasid iv fure sollar for beis.
t-1/4-in biack iron tee teantd to te: shive 3 ain pipe trastle and nelded to head of $16 \cdot \mathrm{ie}$ mbllize tholt
1-36 by 9 Fite black Iran pipe, thereaded beth eesis far handle.
i-3 ifin blatk iron pipe apo. Ior han. die ends.
$1-2$ by $3 / 15 \mathrm{Sas}$, ins asas lot striket plate drilled and coontersuak fop four No. 6 flatterad wood screas.
2s-1kik. Ne. 6 fiathead brikht wood stress, to lasten bed to bottoms sup. port: $5-36 \mathrm{id}$. Na . 5 sctens fot striker plate and 3 -id. foor flunge: 4- $64-\mathrm{in}$. No. 6 scress, for 32 -in. floor flaver: and 4-145in, No. 6 stides, to faster plater cleat to platen.
materials has been determined from actual warking conditions. Only two suggestions are nucesaty to assist the novire. First, the two outside bed boards are to be scribed and cut to fit tightly around the side supports; second, the platen is to be grooved at the center of either side deep enough to form a guide working against the $\mathrm{T} / \mathrm{-in}$, tods.
It is an excellent plan to oil, varnish, of shellac the wooden prarts-

A Window Refrigerator

A simple method of constructing a window refrigerator that will not obstruct the light is shown in the illustration. A boo was made the width of the window and was fitted to slides fastened outside the window on the side of the house. The exposed sides of the box were inclosed completely and the inner side was provided with two sliding doors. A handle was fitted to the side of the box so that, by reaching out of the window, the box could be drawn in front of the opening easily. Several shelves were

A. Hex Pitted on the Oumside sf the Windaw to Side in Crooves Provider i Copuinithi sud IoEspen*ive Retrigerster for Winter Uis
fifted into it and the materials stored were not easily molested. Trunk casters attached to the botton of the box improved the action on the lower rail.

How to Cut Duplicate Pieces on a Bandsaw
 From Popular Mechanics 1928

It is often oecessary to cut out a number of duplicate pieces on a batudatv. Saw. ing three or four at once means, of course, goble a timesaving, bat the pieces must he
 securely held tomether durfig the operation. All easy means to this end is to cat iws of more tapered slots, about 1 in. deep, in two adfacent elkes of the material as indicated and lleen drive a sinall wedge into each slot. The wedges will hold the pieces together firmly and prevent their stipping apart white the sawing is done.

SERIOUS SURVIVAL FISHING

By Jim \& Stephanie Watters

Serious survival fishing is based on these assumptions: 1. You need enough nish to leed a hungry family: 2. Due to some risk factor (such as hostile survivors or unsympathetic game wardens) you don't want to spend too much time at the scene: 3. Due to those same risk factors you need methods that leave no sign of your activities in the area.
These are serious problems that rule out most, conventional fishing methods. But poor folks down here in the South have been getting around them for years. Most of them use some type of trap.
One of the easiest traps to make is constricted from old automobile tiresone of Americas most plentiful unnatural resources, Lace the sidewalls together with wire or heavy string. Stand the tire up and cut three or four holes inte the tread about $21 / 2$ to 3 inches across. These will be for fish to swion into to hide or to ont the bail. Now, directly down from the big bolen you cut, gouge, several small holes into the tread, and it wouldr't burt to gouge a lew into the sidewalls if you're not very strong. These are to let out the Water when you go to pull up your trap. Keep them small or you'll lose the tasty crayfish that often go into the tire along with the catfish. perch, turtles, vels. and crabs. Tie a rope or wire around the tire at the top where you cut most of your entry holes. That way when you quiekly pull up your catch, they will not be able to swim out.
Tire traps sometimes work without baik because fish wse them for hidiog places, but they're most effective with bait. Spoiled left-over food, rabbit zuts, almosi anything you can think of will work. The worse it smells, the more attion you'll get.
Set your tire traps in the bend of a creek where the water is deepest, and conceal the rope leading to it. Try not to leave too many tracks in the soft mud and check your traps from a different approach each day. When you clean your

MINI AND MAXI SURVIVAL KITS

By Alfred Orel Norton

The mini and maxi survival kits were developed by Ron Hood who operates a surviyal school in southern California as well as teaching surviyal courses at the University of California at Los Angeles.

One should always carry the lightweight mini kit on one's person: either
eatch, save the guts a od scraps for bait; it with any small mesh wire-the smaller, dun't leave scales on the bank.

If you eab scrounge enough old wire fencing. you can make a very effeetive trap that I prefer to all others. Make a cylinder of the fencing about $10-20$ inches in diameter and three to four feet long. If have oised bigger otes but they are hard to carry along at woods pach and require mueb deeper water for complete concealineot). Over this cylinder of beavy fencing wrap some small mesh stuff like that ased for chicken coops of rabbit hutches. Close up one end of your cylinder completely.

Next, make a furmel of the small mesh wire and lastea it inve the other end. Leave an oponing in the end of the cone of $2 \mathrm{~V} \cdot 3^{\prime \prime}$ diameter. Now 10 gel your fish out more casily, cut a flap ia the small mesh wire somewhere on the side of the cylbider, und cul wot one mesh in the heavy lorm fencing beneash is. Tie it shut with three or four pieces of soft copper wire. Tie a roge ar wire iwhich is casier to conceall to your baskes (rap and head for the water with some good stinking bais tied up in an old sock or everi Labte scraps in a paper tack iso they won'L wash away too quichay). Follow same directions as with tire Iraps.

Basket Iraps are also very effective when placed in culverts or drainage pipes or any narrow place in a creet or canal. We sometiones eatel mushrats in them. If you wabl wore rats than fish, use apples and callail roots for bait, and make your imnol opening a little larger. Or you can catch big snapping turiles by using a bigger fuanei aod a bloody bait.

The moskrats arv very good eating if youi remove the musk glands is their find legs. Their fur is soft and very long-wearing. The shappers are good eatingi all turtles are edible, but the snapper is especially good. You can expect 10 eslch all kindr of turtles in a basket trap, I don't recommend stink tistles or horse turtles, but the others arent bad if you stew them.

If you car't find the fercing to make the cylinder for a big basket trap. you can make a box frame trap of wood and cover the better. Instead of a funnel opening, make it like an inverted pyramid. These traps work well, too, and are easier to conceal in shallow ponds.

If you're living out of your backpacks and can't serounge any tires or fencing for traps, you can still get plenty of fish for your family. Find a black walnut tree and pick up a sackful or a shirtful of walnuts with the husk still on the nutshell. Pound them up, tie them into your shirt or bag and with the line atlached, throw into a pond of slow-moving stream. In just five minutes you'll be able to pick up fish coming to the surface, You can use the mashed up berries and leaves from a chinaberry tree alsio. It's very common around old homesteads here in the south. I've also heard that crushed poke salad routs and berries will work but I've never lried them because I know they're poisonous to people too. Whatever you use, when you get enough fish, pull out the bag or you will destroy all the fish there, and that's stupid.
There are other methods of serious survival fishing, but these are the ones I'm best acquainter with because they are best suited for my area. In your retreat ared, you should determine which type would be best for you. If you are going to be near the ocean or even a little creek. find out how the local poor people trap fish and crabs. I got a lot of good information on Illegal but effective fishing methods direct from our local game warden! If you have the money, but a few commercial crab pots or fish traps and use them for a pattern to build more.

Whatever method you use, if you do it right, you'll eatch more lish with less work than you will with hook and line. And most important, you can do it without as mueh chance of giving your location away to roving scavengers. Here on the east coast., It is definitely a better way of getting protein under survival conditions than trying to hunt small game. It's easier and saler lor the beginner or the old expert. So save your ammo and try some SERIOUS SURVIVAL FISHING!
around the peck or in a pocket. The kit's contents may be placed in ar 35 mm . film canister. The kit is useful for general camping as well ${ }^{2}$ persomal survival. The kit's contents are: 5 windproof and waterproof matches, 2 cacte razor blades, 15 feet of Rib. Iest monofilament fish line, five qumber 14 trout books, five日.B. split shot, fifteen feet of number 24 brass wire, 4 small salety pins, five feet of $1^{\prime \prime}$ adhesive Lape, one dime, one shoe lace, five aspirin, a bowillon cabe a needle, a toy balloon (longl, a match
striker, and a whistle.
The windproof and waterproof matches, which may be split down the middle to produce ten matches, are invaluable in starting a fire. They burn for seven seconds giving off a very intense flame. Of course, one brings the small portion of a match striker to ignite the matches. If facing extremely difficult weather conditions, such as, rain with bigh wind, these matches will provide the spark for a warm fire.

One can attach an exacto blade to a
thin piece of wood by using some of the adhesive tape. The knife will aid one's cleaning a fish, and will also serve as an eating utensil. One can also use the knife to make incisions if bitten by a poisonous snake.

Since fish are a good source of protein, and in case of being marooned at sea a source of fresh water, the fishing tackle in the mini kit is extremely useful. Monofilament fishing line is strong and compact. If not used for fishing, one can use it for tying, sewing, or making a snare. The B.B. shot serve as sinkers. One can also gig the fish by hooking the fish anywhere and pulling it in. After all, your life is at stake. All's fair in survival.
The brass wire can be tied in an elliptical loop to form a snare, Also it can be used lor general tying or binding. This wire could be used in lashing stieks together to form a large spear:

The safety pins are invaluable in the repair of rips in elothing or equipment. Also an open safety pin can serve as a fish hook.

Adhesive tape helps in first aid. By forming butterfly elips, it can be used to close wounds. This means that one need not have a suture kit, complete with cat gut. One can also tape blisters which are easily formed on the trail. In winter, snow blindness. produced by the snow's reflections, can cause total disabilily for several days. The adhesive tape can be used to make snow goggles by taping over regular eye glasses leaving only a slim slit for visibility.

The dime can be used to call for help. It also makes a fishing lure, attracting fish by its reflection.

Not only can the shoe lace be used to carry the mini kit around the neck; it is also useful as a bow string for a fire-making bow. In order to use the bow. one attaches the shoe string to both ends of the branch or bow, allowing enough slack to permit it being twisted once around the drill. By turning the drill over the string the resulting heat will ignite the tinder in the fire board's notch. After the tinder's ignition, remove the board and fan the tinder until it bursts into flame.

The bouillon cube provides salt and can be used to flavor wild foods.

The needle is invaluable in removing splinters and draining blisters, By using the fish line or thread from a garment one can use the needle to sew. If magnetized the needle can serve as a compass needle.

The balloon serves as an emergency canteen It will hold up to three or four quarts of liquid. A tied-off short sleeve will make a carrying sling for the filled balloon.
help, It saves onets wind and is tmore effective than shouting.

The Maxi kit can be carried in a coffee can. Together the Mini and Maxi kits offer the full ranke of survi\&al skills. The contents of the Maxi kit are: four feet of surgical tubing, a file fialr of a 6° file), a plastic tube tent (I man), a whistle, compass, knife, thirty feet of nylon eord, a candle, a Mallory flashlight, half a road flare. 2 or 3 zip lock bags, and a small cin.

By punching two holes in the coffec can. one can insert a length of wire and carry it easily.

One can use the tube tent and surgical tubing to construct a solar still. Puncture a pin sized hole in the tem at a point which will be over a water container. After digging a $21 / 8^{-}$wide by Z^{2} deep hole, lime the hole with vegelable matter. Place the coffee can ai the cenier of the hale below the hote in the plantic. Support the plastic with rocks. Using a stone have the plastic shout iwo to three inches above the ean. Before lising the plastie pene should roughen one side using asnd or' a rock. When water begins to drip, be certaun it's falling bate the can. The surgical fobing allows drinking of the water withoul disruptimy the distilling process. Ineiden tally, the sals still will produce up to three pints of water pes day, Several still. can le made by cuiting the tube tent, for ane néeds at least two quarts of water per day. The zip fick plastic hage can be used as resurve canlevens io addition to the balloon,

The surgical tubing can be used for the motive force for snares or can be used to make traps or a slingshot. Also it will serve as a constriction hand in first aid. such as tor snake bite

The file, prelerably a baslard file can be used for fini and sleel lire making. It also can be used to sharpen knives and offers a good surface for striking matches. Finally, the file pan be used for making wood or bone tools:
The tube tent (3 ml , thick), made of clear plastic, offers shelter and sorves as a ground rloth or rain tarp.
When using the wlistle, blow thres limes-the international distress signal. Whistles are usefui for signslling other members of the party and scaring away animals, sueh as. cattle

A Silya compass is essential for navigating. Such compasses range from the Polaris $(\$ 4.50)$ lo the Ranger ($\$ 24.95$). All Silva compasses bave an adjustable bearing marker and a straight edge. This makes laking bearings, back bearings. allowing for declination Irom true North, and orienting a map moch easier-

A knife is the most important survival tool. The knife should be of high qquality, such as, a Swiss Army Style by Victorinox
an Wenger. The Buck hunting knife is acceptable.

The thirty feet of nylon cord should be at least 260 pound test. One can use it to erect the tube tent by tying the cord to two Irees and suspending the tent on the cord. One ean hang food over a tree limb, boperully keoping it out of reach of bears and wher varmints.

The camdle is useful for light. A scented candle is preicrable. He careful that the candle does not tip over, One should not have the candle in the tube tent as tents are extremely flammable. The candle Will heat a small container of food or start a fire in wet conditions.

The two cell Mallory flashlight is compact, durable, and can be held in the mouth. leaving one's hands free.

A road flare costs about 69 cents. One only needs to earry the top half end with strikes. It can be used for emergency signatling or for starting a fire in very wet conditionst

Zip lock bags serve not only as eomergericy panteens. but also as conlainers for wild food stuffs or preservim: Ireshly caught fish.

The small cat nerves us a container for ofher Maxifit sompronents. It also can be used as a canteen or as a cooking pot.

In order lo cut costs, make four or five kits. One can Include In the Maxi kit a wire kaw for cutting firewood and construetimy a sbelter. Also one can bring some Chia seed in a small salt or pepper shaker. Chia seed is high energy concentrated Indian food.

Lola and David aassett in tront of home.

Family living in plastic house

WAHKON. Minn. |AP) - David and Lois Bassett and their three children are snug and warm, even Dhough several layers of plastic sheeting is all that separates them from temperalures os cold as 48 blelow zers.

The Basselt lamily is spending one of the coldest Minhesots winters on record in a shelter made of tret branches covered with polyethylene sheets.
Bassell, 25, said the winter weather scared the family a littie, but they thanted to get onto their own land so he built the shelter near Mille Lacs lake in central Minnesota in Novernber,

Kinks on Accurate Drilling

From Popular Mechanics 1928
I have been using a few kinks in laying out jig work for the drill press with great

Sharp Toala and the Appletation of a Prem Mandy Kinks Will Heid in Onbling Accurate fletor
succes. A large ruagnifying glass, held by a clamp se thas she-worker's lawds are fece, is better than a small voe Ore mettrof of troliting the glass is shown io Fig. 1. It can he set to any angle. If no precision center panch is available, the surface gauge or a V-block tan be bsed as in Fig. 2 . This Keeps the punch at right augles to the work, A llat seriber of the kind slown ir Fig. 4 sloulil be isvel, av a round one someflome cabses ibaccarate work. The panch shoukt loe aceubates kround to a share point, which will facitifate marking the work as the intervection of two lines: Uhe a center combination drill of a diameter smatier thinh that of the center-punch mark, and make the angle sharper, For instance, if the center punch has an angle of 00°, that of the drift should he about 70°. Thet follow this up with a drill lite the one shover it Fig. 3. This has in tendency to make the drill follow the lole. If diviters are used, keep then sharp at all tines. Whenever possible, use a scale grachanted to fiftieths ot frandredths of an inch. because the lines ori these seales are finer than those on thore eoarsely gratuated tules. Such fite graduations enable you to set your dividers more accurately, If you are not sure of the accuracy of a layout, drill smail noles, that is, smaller than the finished size, insert the drill rod of the correct size and measure over all with a micrometer. If there is any errot, use a round file to enlarge the holes so that the next-size drill corrects the error. I have found that it pays to blue the work, even though it costs more than rubbing bluestone on it , as this enables you to see the lines more clearly. If the above rules are strictly followed,

SURVIVAL AND THE PARANOID

by Kurt Saxon

"One suggestion; you should have the newsletter folded the opposite way. The large title allracts the attention of the mail people and people's tamily. I don't want everyone to know that I'm stocking up and thinking they can come to the for help. So please have THE SURVIVOR folded backside out"
"I'm also wondering if it is possible to have a subscription to your publication. THE SURVIVOR, and/or back issues, sent to us in plain envelopes, First Class, it necessary, Inasmuch as we live in a very conservative community, receiving your publication in a plain envelope would prevent alarming our local postmaster!".

The above two writers may not be elinically paranoid but they demonstrate the simple inconvenience of paranoia. Both are so afraid of their own neighbors that they witl miss out on THE SURVIVOR. No big thing in itself. But what eise are they missing out on just because they don't dare let their neighbors in on their preparations?

The term "paranoid" is used constantiy but hardly understood. The clinical definition of paranold is one with delusions of grandeur coupled with leelings of persecution. (A lesbian is a mannish depressive with delusions of gender-pass it on). A paranold belleves he has gotten to the hidden truths of matters most important to him. He also believes that such knowledge makes him dangerous to those actually running things.

Elelieving there are enemies all around, lantasizing about plots and such, gives him a feeling of importance, of being in the know. But that feeling of importance is counteracted by the terror of the realization that one's enemies will step on him like a bug once he learns enough to be really dangerous to them.

Paranoids car'l accept our social decline as a result of cilmatic change, surplus population, reducod resources, mental delectives and other natural influences which have been knocking out civilizations throughout history. No, paranoids see a plot behind the whole thing.

Some group, easily identiflable to the initiated and aware, is manipulating civilization. Our collapse is imminent. THEY are destroying everything THEY can't control when the time comes. Then, THEY will step in, run up THEIR flag and assume complete control. THEY will then destroy all those who anticipated THEIR fiendishness.

Of course, these Agents of Darkness have sympathizers in every neighborhood. THEY are also entrenched in the Justice Department with links to every local police station and dog pound in the Unifed States.

So the ides of surviving civilization's collapse is actually incomprehensible to the paranoid. He may play at survival but THEY will win in the end. Of course, it all depends on security.

To the paranoid, his only chance lies in secrecy, Il a few hundred of the right type can survive, In spite of all the traitors planted in their midst, good will eventually friumph.

The above doesn't fit every paranoid but 100 many hold to this general pattern.

When I began THE SURVIVOP, an old man wrote to me about his homemade security system, his advanced age and his ability to survive whatever adversity might strike. I thought he was suoh a fantastic old man I wanted to share him with others as an example of selt-reliance in old age.

I printed his letter and address, thinking he would like to correspond with elders in like circumstances, or young folk needing a granddad figure. As soon as he got the issue with his letter in it he sent me a screaming note about how I'd exposed him to the worid, lowered his property values and generally put him in jeopardy.

I answered saying that no one alse within over a hundred miles of his town took THE SURVIVOR. If his homemade security system was offensive to a
and the tools are kept in good condition. no trouble will be experienced in drilling holes within limits froms 003 to $.005-\mathrm{in}$. center-fo-center distance.

Fixture for Forming Wire Links
From Popular Mechanics 1928

An inexpensive fixture for forming eyes or loops in wire links is shown in the accompanying illustration. It is designed to be held in a bench vise and consists of a block, A, into which are fitted two pins. the distance between their centers being equal to the distance between the centers of the loops or eyes to be formed. Two smaller piris, also driven into the block, locate the preformed wire centrally with the eyes. A hole, D, equal in depth to the length of the wire forming the cye. is drilled in the end of the block, and an adjustable stop, E_{k} is tapped into the end as shown, and locked by a nut. The lever L . which is used for forming the tink eyes around the pins, has a pin, G, and it is drilled at F to fit the link-forming pins.

The process of making wire links is as follows: First cut off the wire to the developed length of the links. Next insert one end of the wire in hole D and bend it until it touches stop E. Repeat this bending operation at the opposite end of the wire, being careful to keep the lends in the same plane, so that the partiy formed link will jie flat in the fixture. At this stage of the forming operation the link is shaped as shown in the detail. The lever L is placed in position on one of the pins so that pin Gengages the wire and the eye is then formed by rotating the lever about the pins, after which the forming operation is repeated at the other end of the wire, producing the complete link as shown in detail 5 .
realtor or a potential buyer it could be taken out with no loss of property value. Nothing I said mattered. He was going to sue if I didn't take his address out of the survivor.

I told him his address would be out the next printing, he had no case and he ought to get his head read. This might have calmed him down except some reader had to go and send him a letter. This started him olt again and we had another go-round.

Nowadays I'd just have thrown his letters away, cancelled his subscription and forgotten him. But then I was concerned. I fell I had caused him anguish and wanted to make amends.

However, ance you've gotten on the wrong side of a paranoid, there's no making amends. I'm now a part of the plot.

Anyway, my point is that paranola is not funny. It is also a serious drawback to anyone's attempts to survive or to better himselt on any level of endeavor.

Paranois is simply exaggerated and useless fear. Normally, everyone is afraid at times. Normal fear leads to normal caution. But when fear becomes obsessive caution, distrust and universal suspicion, it becomes paranoia.

For Instance, say you decide to become a tightrope walker. If you are clumsy and awkward and hung over and strung out and normal, you will fear falling because of a lack of abllity. If you really want to be a tightrope walker, you'll go over your shortcomings and eliminate them, thereby fitting yourself to become what you want to be.

But it you are peranoid, you will disregard any of your own short-comings. You will reason instead, that the Circus World is controlled by people who will feel threatened by any success you might achieve. Lest you become a star in their private world, they'll hire someone to shoot you off that highwire.

So the paranoid is actually a self-imagined winner, beaten betore he starts. If he isn't actually mentally III, he has an overactive imagination, putting non-existent obstacles in his own path. Instead of developing his abilities, taking his lumps and successes as they come, he relleves himself of the challenge by stacking the deck against himself. He's really just a cop-out artist.

Usually he has MBD (Vol. 1 p 64) which keeps him in a state of arrested development. He's Ilke a child who imagines himself the hero of his fantasies but sees his parents and elders as blocks to any successes he might achieve. An aduit with this problem has lofty fantasies but replaces his elders with various authority and power figures who might feel threatened by his achievements. So he doesn't really try to improve his circumstances, in his fantasies he feels iltie guitt about being a loser. Alter all, if he weren't so magnilicent and superior, would the forces of International Crud be united against him?

Every paranold, however, has sane moments the same as I do. He realizes that whatever is really keeping him back, he's far behind and he's not very happy. Maybe something got in his way during childhood which made him stop testing the system. That's the key to it all; testing the system to see what one can get away with.

All chidren do, and if their elders understand and don't over-punish, the child will have a good idea what he can get away with and how far to go in finding his limitations. But if a child has overly strict parents, or MBD. punishment might be so severe, or seem to be, that testing the system is not worth the effort, or it may even seem downright dangerous. So the guy reaches adulthood, either not trying anything, as an individual, or becoming such a Secret Squirrel no one will ever know what he's doing.

This would be all right except the paranoid often tries to impose his own fears on others who share his stated goals. This can be a drag, especially in my case.

Years agol saw books hinting af do-it-yourself mayhem. They promised a lot more than they delivered but suggested that any stronger stuff would be suppressed. Well, I'd dabbled in paranoid gulter politics for years and didn't believe such material could be suppressed. I set out to write, publish and sell the most outrageous; potentially destructive manual ever created on this

A HORSE DRAWN SOD CUTTER

From Popular Mech. 1919

The cutting of a considerable area of sod is tedious work when done by hand, and it is difficult to make the sections of uniform thickness and size. These important features are provided for by the use of the homemade sod cutter shown in the sketch. To start a cut across a meadow or lot, a notch is cut in the turf for the blade, and the device is set into place, stamping it down to give a good start. The operator stands

Wita This Deyict Sod may be Cut Guickly asal af Usifurms Width and Thiklones
on the plank in front of the blade, and a little practice will soon determine the best position for ease in operation. When a cut has been completed, the cutter is dragged to a fresh starting place, the driver turning it over on the upper side. The strips are cut into suitable lengths and piled conveniently for removal with a stone boat or wagon.

The device may be made of any suitable width; 15 in between the inner edges of the blade, and the latter set to cut a depth of about $21 / 2$ in., being desirable. The board is a $2-\mathrm{in}$. plank, about 4 ft . long. The blade should be set with the cutting edge slanting slightly downward so as to make the device "bite" into the ground. A smaller cutter may be made for use by boys, several of whom may draw it.
planet. If interested parties had the power to suppress knowiedge, they would suppress the work you know as THE POOR MAN'S JAMES BOND.

Well, first I was talked to by the D.A.'s man and our local FBI agent. Interesting. Then I was subpoenaed to a Senate Hearing in Washington, D.C. They paid my plane fare both ways, put me up in a hotel room with TV and let me rave at a panel of bemused Senators. I had ever so much fun and got a lot of laughs.

There was not one cequest that I stop publishing the material; there was no threat to my person, my freedom or to my economic security.

I've sold about 40,000 copies of the work over the past five years with no interterence from anyone, Yet, I still get orders for the PMJB which are wrapped in aluminum loil so Federal Agents can't read them by X-Ray. Some orders are so coded to protect the identity of the one wanting it that the book comes back marked, "Addressee Unknown". Paranoia!

Common sense might suggest that since it's legal for me to write it, publish It and sell it, a custorner can legally own it. Despite the fact that, to the best of my knowledge, no one has ever been hassled for owning the PMJB, paranoids around the country consider ordering it the last thing they will be allowed to do betore being led away.

No matter. What realify bugs me aboul paranoids is their atfitude toward THE SURVIVOR. THE SURVIVOR isn't an underground publication. It isn't political; it doesn't advocate any sort of criminality or extreme social activism. Nor is it pornography. THE SURVIVOR is a family publication. Plain envelope, indeed!

Anyone really interested in Survival will have to drop all his paranoid fantasies. The ones who inspifed this editorial are too alraid of their neighbors to have an effective chance at surviving.

Survivalists must examine each fear and eliminate it. There are enough real things to fear without being hung up on irnaginary fears.

Every feat is an unconfronted weakness. I'm no longer afraid of the calamities which lace the general populace. I faced my fears and eliminated their cause

At one time I thought my mail might be monitored. Inslead of trustrating the monitors by going out of business, I called my posimaster and had a long talk about it, wherein it was explained to me how mail was monitored and why mine wasn't.

Ithink overyone gels llashes of paranoia where he entertains irrational fears. But rather than give in to such lears and work out elaborate habit patterns to reinforce them, one should go slraight to the source and confront it.

Such an action not only eliminates a fear but makes il harder for new fears to settle in. Practice makes boldness and the Survivatist must be bold.

Cont, page 574
Windmill Powers Grinding Wheel Thru Cable

HElles a bew angle on monve power for operating a small eanery wheel- lay hote of on old muto speedometer cable ansl hook onic cad of it to your wind mill (if you bave osel and the ather to the griadiag wheel of coorse, the whesel will liave to be geared abl about \% to 1. but this will be a simple task. The wheel can be used in any position and ean easily be carried albout.

One Man Operates Irrigation System

Modern Mechanics 1932 A NOVEL and highly eflicient one-man irrigation A systern is in use in many of the horthwestern sfates. The scheme entails the use of a vinegar barrel, which is supporied between the ends of two 2×4 toch pieces 16 feet long by means of lag serews. Two 2×4 inch pieces are then driven into the hrak as close to the edge of the water as possible to support the arms. The ratio of the length of the arms should be approximatety 1 to 4; that is, the barrel end shuuld be 4 feet long, the operating end 12 feet long The barrel is pivoted one inch above center so that it can be inveried easity. To operate, the arms are raised, lowerigg barrel into water.

Capturing Insects for Livestock Feed

By Bill Abreu

In feeding fish, chickens, or whatever animals you might be raising, the best source of food to use is insects. Insects will provide them with ample protein. resulting in a healthy livestock. Also, insects cost nothing to capture and they need not be bought in stores, thereby leaving extra money leftover for survival needs.
Before you go ahead and start your search, however, it should be knowa that mobarch butterflies and furry caterpillars can be toxic when eaten, 50 it is best to avoid these. But flies, grasshoppers. beetles, and small insects are excellent in feeding animals and the supply is always plentiful.

One way to eatch insects is to go out and capture them in their own habitat using a set, The drawing helps to illustrate how a simple net can be constructed using household objects, such as a broom handle, thin eloth or panty hose, and preferably thick coathanger wire for the net's frame. For eatehing small insects which thrive in the grass, a sweeping motion (back and forth) just under the top of the grass blades may be employed.

When trying to get the insect from the net into the container the netting can be lifted, as most insects have a tendancy to Dy upwards to escape. Dnce at the top of the net, the jar or container is slipped inside and placed over the insect. The lid is set oyer the top of the jar and the netting slid out of the way, allowing you to tighten the lid. Another way of getting the insect out of the net is to use an aspirator which will be discussed more fully in a moment.

II slightly stronger material is used in making the netting, aquatic insects can easily be captured. This method is
especially simple in streams, wherein the net is placed in the water. Tetting the current sweep the insects into the net.

An aspirator is a device used for drawing an insect into a pill botule container. A straw or sfiff cubing is placed through one end of the bottle and a nexible tube of desired length is pushed through the other end. On the end of the rubber tubing is attached a small piece of screen to prevent the insect from escaping. The tube with the screened end is placed inside the mouth and when an insect is spotted, one strong inhalation breath is taken, sucking the insect directly into the bottle. A slightly improved aspiratur ean be used when clase to an electrical outlet. Instead of using a nxible fube, the suction end of a vacuum cleaner is olaced over the open pill bottle end. This system will allow you to pull in more insects at a much faster rate. Of course. the manual version must be used when there is no electrical supply present.

If this is too much work for you then there is an alternative. Rather than going out to catch insects, you can have them come to you. It is no secret that at nighttime insects are attracted to lights. There are different theories as to why they do this lope is that they copfuse the light with the moonl but this is unimportant an long as you know how to make use of this instinet.

A white sheet is strong out against a wall and a light bulb placed in front of it. After a short while many insects inot just moths) will gather on the sheet where they ean then be easily collected using an aspirator or nel. A eardboard box can be used as a trap if the light is placed inside it and a small opening made at the bottom. Once the finsects are tnside they will remain trapped until thoroing when you are ready to collect thens.

A trap for capturing ground insects can be constructed using a coffee can and some bait. First, a small pit is dug in the ground and the can placed inside so that the pit's depth matches the can's height. The insects are attracted by the bait's scent and they fall into the can, unable to climb back up the smooth melal walls. The best bait to use is a form of decaying vegetables or a sweet substance. \AA mixture of brown sugar, beer luse only a little so that you have enough for your next party), and molasses is stirred in a sauce pan with a medium flame until it forms a thick syrup. This bait can be placed in the above mentioned trap or can be applied, in patches, to walls or trees. When applied to these surfaces it should be placed where the odor will travel the best.

When looking for insects it should be remembered that they can be found almost anywhere: on trees, under bricks or stones, on leaves, between cracks, burrowed in the ground, amid moss, in streams, or in old houses. If you live in the city it is best to use the light and sheet method to attract them to you. Often silverfish (which are actually insects belonging to the thysanura order) can be found in bathtubs or sinks and though they can escape quickly, it is wise not to rule thern out as a possible food source. If you have a garden you can find many small insects living there, in which case you can use the vacuum method (as meationed on page four of THE SURVIVOR) as long as the vacuum bag is empty.

Another way to keep up your supply of insects is by breeding (or rearing) them at home. To raise crickets and grasshoppers a large container-like an aquarium or large can-is filled with four inches of moist sand and some pieces of shredded newspaper are scattered around. A screen is placed over the top of the container so that the insects will not jump out. About twenty to forty fully grown crickets are caught and all are placed inside the cage. half of which should be females: identified by the lance-like protrusion coming from the end of their abdomen. A water-filled pill bottle with cotton stuffed in its open end and placed on its side will provide a constant supply of drinking water for the insects. After about twenty or more days baby crickets will begin to appear and in approximately two months they will be fully mature.

When the temperature drops below seventy degrees a light bulb should be suspended inside the cage without providing too much heat. Because crickets and grasshoppers are actually clean animals, the cage should be cleaned Irequently of uneaten food and fatalities. For an idea of how many insects to expect. the female cricket lays 150 to 500 eggs in one or two months. For more information on crickets look on page 197 of THE SURVIVOR in the Chamber's Encyclopedia.

Now for the last (and for some the fun) part of preparing insects as animal feed; once you have what you need the insects must then be killed without poisons or insecticides for obvious reasons. The other alternative is to drown them in hot water, though for beetles this takes some time, as this species dies hard. You can place the insects in a wire cage or a cloth bag and then submerge them in a sink or bucket of hot water. For moths, butterflies, or other large insects a pinch between the thumb and finger can be
applied to the thorax ithe segment behind the thead). Sometimes this takes practice but its advantage is that is kills the insect instantly. Is disadvantage, however, is that it takes a brave-or foolish-person to use this method on bees or wasps. Aside from crusting the insect to a disgusting pulp, these are the only two procedures which can be applied.
Using insects to feed your livestock can be proficable and will leave you with more food lor yourself, your family, or your survival group.

Unarmed Combat [Combato]

by Bradley J. Steiner

Cont. from Vol. 1, page

Last lesson we discussed the basic low side kick, applicable to any sort of frontal oncoming attack, except the sort where the enemy is armed with a firearm. You also larned basie front choke-hold counters, and I fouched upon some rudiments of serious personal defense.
Sparring is woefully inappropriate as preparation for actual hand to-hand combat. There are many reasons why this is so, but I want to mention just one, for now:

The high kieks, the leaping jumps, the spinnigg, wheeling and acrobatic lunging techniques you see in the kung fu flicks (and at martial arts demonstrations) are strictly for "show" and for exercise-and I don't care what the black belt "experts" say. Ask some fancy higb kieker what he'll do in an elevator, on a stairway, in a hallway, on an fey street or in a crowded store, etc. when tronble starts. Ask him if he'll stari his showy moves when some junkie cut throat is slashing at his neek with a razor, Or, will he simply GOIN, and rip and tear and punch and elaw for the VITAL ZONES? t think we both know the answer. Anyway, for unarmed self defense, forget the fancy stufl. Remember that a fight starts fast and close, and that if you intend to win it, you'd better get it over with before 20 or 30 seconds ${ }^{\circ}$ time passes.
Im going to stress three things this month-

ELBOW STRIKES

KNEE KICKS

HEAD SMASHES
-all elose-in weapons, intended for ose in a serious fight where you can't afford to fight fair.

Even a small man, or woman, can deliver powerful elbow, knee and head smashes, with a little practice. Using a heavy bag for strengthening one's blows is a good idea, but it's not 100% necessary. Remember that VITAL ADRENALIN

131

FLOW will automatically speed up when your life is threatened, and youll be both immune to less-than fatal injury, and quite capable of delivering sufficiently strong blows with the "natural" weapons you've got.
Don't wait until your enemy is in the process of landing his sixth blow before you go into action. People, just like animals, have a "sense" for danger. When your SENSE tells you that physical assault is immediate HIT FAST, HIT HARD, and HIT FIRSTME Give no man an even break in a light! Never hold back, and GIVE NO QUARTER, once violence
is upon you.
KNEE BLOWS
It helps to seize the opponent's shoulders and pull him toward you as you kick. Drive your knee up AS HARD AS POSSIBLE, AND REPEATEDLY, into his testicles. Keep kicking until he collapses. You can apply this counter when a man grabs your lapel and yanks you in towards him. If a close-in choke hold is taken about your throat, this knee blow is also appropriate. Any encumbering, under or over-arm body hold provides you (if the opponent grabs from the front) with a perfect set up for the knee blow.
Alternative to the knee blow administered to the groin, the FACE makes a dandy spot for a nice, vigorous knee kick. This is the sweetest answer to a front dive and tackle attempt. It can be applied even when the opponent is

standing in front of you, erect. Just grab his hair or ears or head, and knee his groin, Then yank him forward and down, HARD, as you push his face down into your knee kick. Kick twice, just to be sure. ELBOW BLOWS
Keep the fist very tight, and bead the arm fully. Swing the elbow HARD, exactly as illustrated. Whenever possible, try to execute your blows against an opponent AS HE COMES IN TOWARD YOU. This magnifies and doubles the strength of your blow. Elbows make strong, vicious surprise weapons, and can deliver blows much harder than you'd probably realize. Practice is essential, though. Get "floid" with fast, accurate elbow smashes.

HEAD SMASHES

Get into the habit of butting che nose of your antagonist with your head. It won'? hurt you a bit, but it will provide a super opportunity to gain "elearance" for throat attacks, kicks, etc. Use whenever the enemy grabs in close, especially when he pins your arms from behind in a bear hug, Snap the head back HARD.

Girls should greet an unwelcome "Rorneo" by first PRETENDING TO WARM-UP TO HIS ADVANCES. AND 8MILING AS THEY "PUCKER" FOR A KISS. Suddenly, WHAMMOt Bash the bastard's nose hard, and drive knee to groin. Most persuasive.
Well, I've left you with some nice ganies to play until rext issue, Be careful in practice, puhleeze, I accept no responsibility for injuries or accidents you or your partners (or your atlackers) incur.

One last thought, before I sign off for this issue: YELLL LIKE A MADMAN

Reflex-Building for Self Defense

> (How to reduce your reaction-time for personal defense situations) By Bradley J. Steiner

Knowing what exactly must be dope to meet and deal effectively with a physical assailant is one part of the answer to having an EFFICIENT response ready in your personal defense repertoire. HAVING THAT RESPONSE UNDER PERFECT CONTROL,TO THE EXTENT THAT IT CAN BE "TRIGGERED" INSTANTLY , at your opponent's attack-is the other part of the answer. If your reflexive-response to an attack is slow, then it might just as well not be made: for it will begin long after the opposition's attack has "landed"t

One major purpose of my self-defense system, Combato, is to SIMPLIFY, to the greatest extent possible, the TYPES OF RESPONSES one trains witb, so that the

time required in the learning process to become proficient is reduced considerably. This is also why I am opposed to sparring and competition. These aspects of practice only increase one's GENERAL ABILITY TO TRADE BLOWS WITH ONE WHO FIGHTS IN THE SAME, PREDESIGNED MANNER AS ONESELF. ACCORDING TO THE "RULES" THAT HAVEBEEN DRAWN UP BEFORE THE

CONTEST OR MATCH. The important thing is to DEAL WITH THE ACTUAL SITUATIONS, work out the best responses. then "internalize" those responses, so that they come into play with lightning rapidity when they are needed. This means DRILL. It means repetition of technique, until the stage is reached where an opponent's onsiaught will "trigger"-WITHOUT YOUR EVEN BEING

THE SURVIVOR Vol. 2
560
THE SURVIVOR Vol.

AWAREOF 1T:- the appropriate response.

In past articles I have dealt with certain basic personal defense ("Combato") applications. In future articles and books, I will deal with many more, in addition to training suggestions, body-development skills, etc. For now, I want to explain how you, the Surviver, can condition yourself and hone your reflexes to a razor's edger so that whatever techniques we've so far discussed, can truly become "your own"-i,e. become "internalized" and imbedded within your subeonscious mind. Once this is accomplished, you will react IMMEDIATELY and CORRECTLY to whatever sudden attack your opponent thrusts upon you.

THE GROUND-RULES OF TRAINING

The followitg are the general all-encompassing "basies" that apply to techniques of combat I've covered in past issues of THE SURVIVOR, and to techoiques and combinations that will be covered in foture issues.

1. KEEP YOUR DVERALL LEVEL OF PHYSICAI. CONDITION HIGH: TAKE CARE TO GET AND STAY IN GOOD SHAPE-strong, fast and flexible.
The shape you're in enables your hody to DO what your mind LEARNS. It is a glorinus myth that stremeth and cundition don't matter in the martial arts! Don't helieveit, brothers! Armehair self-defense experts nften end up in wheelchairs. Or warse:
I wrote a book on physical conditioning specifically for combat and survival ("FIT TO FIGHT! COMBAT CONDITIONING FOR PERSONAL DEFENSE AND SElf.survival!" ${ }^{\text {a }}$ Paladin Press. P.0.Box 1307 Boulder, Co 80302 should have this manual available within a few months. Meanwhile, do everything you can to get in shape-and stay that wayt No serious student of defensive skills of even survival can afford to neglect basic fitness. Mike Brown's articles on budget equipment and fundamental fitness training are great. They're as good an introduction to PRACTICAL and SIMPLIFIED physical training as you'll find. In addition to Brown's work, let me urge that you: Learn to jump rope, and then do so, for about 5 minutes every day. Do push-ups. leg-ups, sit-ups and some chinning, as well as jogging, or even running in place.
Being in good all-round shape permits personal defense skills to be learned more easily, applied more effectively and "remembered" by your nervous system more surely.
2. BE VERY CAREFUL TO SPEND YOUR TIME LEARNING ONLY SIMPLE, PRACTICAL TECHNIQUES.

This is not merely a plug for my COMBATO. It is a warning that could save your life. DONT, if you are purely defense and survival oriented, involve yourself with complex. "showy" skills. These detract from your focus on the practical, simpler methods, and they SLOW reaction time, by giving you an ASSORTMENT of maneuvers from which your brain will be obliged to "choose" in a critical emergency. Keep things simplesimple SIMPLE! Get thase few fundamental moves that ALWAYS WORK, and drill them. Drill them until they ${ }^{+}$re coming out of your ears!
In these artieles in THE SURVIVOR, I will enumerate, over a period of time, a wide variety of effective, simple, proven defease skills. These moves will lack the beauty and grace of, say, classical Aikido or Karate; and they will lack the finesse. possible. of many widely taught jue jitsu techniques; YET THESE ARE THE SIMPLE MOVES YOU NEED WHEN YOUR LIFE IS ON THE LINE 1 urge you again: KEEP THINGS SIMPLE. Unless you are in the martial arts for sport and play, DO NOT clog up your mind and ceflexes with a quantity of "pretty" but nonetheless questionable moves. By narrowing down on, say, two and only two simple choke deferises, you ean DRILL these to the point where they will become SO FAST, SO STRONG, 80 EFFICIENT and So ACCURATE, that they will be virtually 100% guaranteed to work. Any opponent thus assailing you. will be triggering his own demisel His attack will serve as the igmition sparh that sets into blindingly-fast action your predrilied defense combination. Every attack against you will become the first step of the wouldibe attacker's destruction!
3. PRACTICE THE ACTUAL PHYSICAI. TECHNIQUES EVEN IF YOU MUST DO SO ALONE. WITHOUT A PRACTICE PARTNER.
The art of Karate has an aspect of training that is as poorly understood today, as it is widely practiced: KATA. We hear instructors and students say that Kata is "essential because it is traditional". We hear others say that it is "unnecessary because it is senseless and primitive". And so on. The truth is that KATA. when properly studied, is the surest way to develop potent unarmed combat skills. The reflex-building and training of the mind and nervous system for combat in Kata is simply fantastic.
Kata-practiced PROPERLY enables the Karate student to IMBED both the reflexive/mental responses and the muscular/physical responses to all possible attacks DEEPLY IN HIS "BEING". The catch of course is that
traditional Kata requires many, many months or even years of study, before it produces the desired results. This is because it covers HUNDREDS, even THOUSANDS of techniques, and must be reviewed and drilled DAlLY, for success in actual combat to be the result of training.
Today, in Combato, what 1 do is use a form of MODIFIED or SIMPLIFIED KATA that narrows down and very simply deals with select, necessary defenses. The exact same movements are either drilled with a practice partner (eautiously) or by oneself, PROVIDING YOUR MENTAL STATE IS CORRECT, you will be preparing yourself periectly for the "real thing", What is important is to fully understand the physical techniques movements and then PUT YOUR BODY THROUGH THOSE MOVEMENTS, REGULARLY.

While going through the techniques it is necessary, especially when practicing alone, to VISUALIZE AND VIVIDLY dMAGINE THAT YOU ARE ACTUALLY UNDER ATTACK. This means that practice must be, and also must not be, mechanical repetition. It must be repetition, in the sense that practice must be DRILL: but it must not be "mechanical", in the sense that repetition of technique without "feeling" and without "emotional immersion" cannot "Lake". Only practice that VIVIDLY CONDITIONS YOU, AND PUTS YOU THROUGH THE EXPERIENCE, SO TO SPEAK, can prepare and traio you.
4. WHEN YOU PRACTICE IMAGINE THAT IT IS "THE REAL THING", AND WHEN YOU ARE NOT PHYSICALLY PRACTICING. TMAGINE YOUR SITUA TIONAL RESPONSES AND COMBAT TECHNIQUES. The human nervous system is both strange and wonderfol. Believe it or not, the vivid IMAGINING of an event can produce within one the convietion (within the nervous system) that one has "experienced" that event. Thus, if you sit down quietly in a chair. every day for five minutes, and concentrate hard on imagining, say, your defense maneuver against a frontal choke hold, and ACTUALLY SEE AND FEEL your satisfactory, trained response to the attack, you will be doing something just about as effective as actually practicing the technique! I say "just about" as effective, because unless you do something other than imagining to keep your body fit and strong and flexible, you'll not possess the CAPABILITY of doing the defense maneuver under fighting conditions-even though you might well "know" it perfectly.

The more your mind's eye SEES you going through the right defensive tactic,
the more that defensive tactic will imbed itself in your mind and nervous system. Keep programming yourself, regularly, patiently and, of course, WITH THE MOST EFFECTIVE TECHNIQUES, and sure enough, your reaction-time will reduce itself to a hair's breadth! You will in not too long a period discover that an aggressive approach from anyone under any circumstances AUTOMATICALLY, without your having to "think things through", brings your physical and mental powers into efficient defensive play.
In essence, what I'm speaking of here is my modernized or "updated" version of the mental state inherent in Karate KATA performance.

ANOTHER ASPECT OF THE PROBLEM

There is another aspect of the problem of building fast defensive reflexes. It is this:

Too many basically decent prople have, what I call, a "stop-brake" within their minds that automatically "prevents" them from taking IMMEDIATE aggressive. violent action. This, ironically, is the penalty a decent person pays for not having the psyche of a criminal or thugt

You see, violent criminals are conditioned to act/feel or think and decent people are conditioned to think or feel/act: 50 there's a problem in self-taught reaction-timing. A punk or a thug looks at you, then mashes your face in. You, on the other hand, unless you've been correctly selficonditioned, look at and see the thug, then YOU REQUIRE A MOMENT OR TWO TO "REASON OUT THAT, INDEED, THIS CREATURE "DESERVES" ROUGH TREATMENT, BEFORE YOU KICK HIS CROTCH IN. All very, very noble of you, I'm sure; but potentially a fatal policy, I'm afraid!

Reaction on your part to aggressiveness must be INSTANT VIOLENT COUNT. ERATTACK! Nothing less, nothing slower, nothing but IMMEDIATE, VIOLENT COUNTERATTACK.

There is no way to achieve this "change in your psyche" unless you will devote some attention to cultivating a NEW thought pattern, regarding violence and violent threats. Learn to distinguish between PEOPLE and violent CRIMINALS, People deserve, it is true, careful and thoughtful responses, based in part upon your considerations of justice, ethies and fairness. Violent aggressors DO NOTI There is a difference.

INLEARNING TOBE COMBAT. READY, THE SURVIVOR MUST LEARN TO BYPASS THE THOUGHTPROCESS WHEN HE DEALS WITH

THOSE WHO, THEMSELVES, REFUSE TO THINK. THE SURVIVOR STUDYING SELF-DEFENSE LEARNS THAT THERE IS NO OBLIGATION WHAT. EVER UPONHIM TOBE "REASON. ABLE", "JUST", "ETHICAL" OR "FAIR", WHEN HE IS DEALING WITH THE SCUM-ELEMENT WE KNOW AS THE VIOLENT CRIMINAL.

Hesitation is a great retarder of proper reflex response. If you wish to learn effective personal defense, learn-if you are attacked.NOT to hesitate. Go right into action-at once! Immediately! No delay!

Practice, so Jong as you are convinced that it is incumbent upon you to be fair, will do little to decrease your reaction time. Until you have settled, once and for all time, the question of "should you or shouldn't you go all-out, and do so at once" in the face of violent attack, you are working at awfully-reduced efficiency,

Some years ago, in New York, a tournament-winning black belt karate practitioner was knifed to death while riding home from a date, on the subway. Why? Not, cerlainly, because he lacked the knowledge of what techniques he should have used to protect himself. He died at the hands of two scummy misfit animals BECAUSE HE GRANTED THEM THE SAME TERMS OF CONDUCT HE WOULD HAVE GRAN'T. ED A NORMAL HUMAN BEING: HE TRIED TO TALK REASONABLY TO HIS ASSAILANTS WHEN THEIR INTENTIONS WERE INEVITABLY APPARENT.

The youth, a fellow named Hamirez, tried to REASON with the two varmints who sat beside him on the train and threatened him, while they demanded money. Witnesses said that the young
black belt NEVER EVEN MADE AN ATTEMPT TO FIGBT BACK-even when the chance to do so was glaringly open to him.

HESITATION. THE ERROR , thinking that what is appropriate with one's neighbors is appropiriate with violent. human for 1 should say, sub-human) pestilence. Had Ramirez responded to the demand for his money by rising from his seat and kicking in the face of one of his assailants, as he ripped out the eyes of the other, he would probably be alive today; and there would be two less ounces of scum-rot inhabiting New York and cluttering up her streets.
Ramirez had been trained to SPAR, to COMPETE: not to fight-not to SUR. VIVE!
Once, a student of mine is young girl of about 14 or sol was walking home from school, when she was accosted by sone stump of rot. He stepped in front of her and reached to take her arm. Two seconds later she was grinding ber beel into the side of his face. She didn't HESITATE. She didn't STOP TO DEOIDE. Whem the threat came, she RESPONDEDI NSTA NTLY\#

There is nothing spectacular about basis personal defense-COMBATO. It is simple, based upon simple technigues, applied vigorously, with not a second's delay between the materialization of the attack, and the materialization of your defense. The two are ones like, to use a classic Oriental illustration-Yin Yang. One follows inevitably into the other, even an the other comes into being. With one, there is the other. When the aggressor's attack becomes a reality, your defensive combination is there at once you cope with it.

The development-of the true fighter's

reflex.reactions is NOT beyond your grasp. It is possible to you, and it will provide you with the self-confidence and security you need-IF you take the trouble to work for it. I assure you, it is worth you white.

Get and stay in good shape. Narrow down your technique-repertoire, to include only the best and simplest. techniques. Practice-practice-practice those lew, simple techniques. Use vivid

INVISIBLE INK

Ammoniunt chloride, "'sal ammoniae** dissolved in 15 to 20 times ita weight of water makes an ink that is invisible, but bucumes dark brown of black when pressed with is hot iron, or held at a distance above a swall flame. This is As good a sympathotic ink as may, is onsy to propare, and is not dangerously poisdnous.

The nalt of aeveral metals have long heen favorito materinls for nympathetio ink. These ialts gre not all colorless whet in the salid form, or in strong nolution, bot itivistble marks made on paper with very dilute molutions can be developed by suitable meang, Among thene ailto sre leal acetate, ferrie sufphate, mercuric chtoride (corrosive aithLasate, dangerous to hendle and very poisgaoua), copper sulphate, cobalt chloride, and niekel chloride, In addition to being turued brown or black by the fumes of ammonism sulphide, writiog with any of the salta can bo developed by heat, nod still other means can be omployed with some of them. For in stamee, if the fok is made with ferrie mulphate, a solution of gallic or tannic acid will turn the writing black, and potassium ferracyauide will form prussilen blue.

Of the srites juit meationed, cobait
imagination and concentration to prepare mentally and to program your nervous system and, finally, work toward the development of a rational, self-serving survival philosophy that encourages you to differentiate between bumans and scum, and, most important to ACT accordingly. In the face of aggression, this means to act INSTANTLY!

Do your best to assimilate the message in this article. I would not have written it
if I did not know that it was crucially important to every survival-conscious individual. In issues of THE SURVIVOR to come I will elaborate upon many, many good battle-proven techniques. If you really learn to apply what Tve said bere, those techniques will inevitably become an effective addition to your "survival repertoire ${ }^{\text {" }}$,
ing. Writing with a solution of soap becomes yellow or brown because the aosp aboorbs iodine vapor more easily than paper does. This color soon vanishea because the iodino is so volatile. Copper sulphate and lead acetate are colored temporarily, while marks made with mercuric chloride show as white on a background of yellow paper. If the writing is done with dintilled water, iodine vapor will color the letters a little more strongly than the background. The water diaturbs the sizing at the surface of the paper, and thus allows the iodine vapor to be abaorbed more rendily there than elsewhere.

Anotber type is as follows:
writiog vaniah beccinet the bloe salt regains water of eryatsllisation and turus red. Thene changes bick and forth esin be repested many times, but if once the secret writing should be heated too atrongly when waroisg it, the ehloride will chat the paper, and the writing will then be permanently black.

As a means of developing writing done with a viriety of inks, iodine is interesting. It in preferably wied as the rapor givea off by the solld element at ordinary teoperntures, though the tineture diluted with water can be employed. If a thin solution of boiled starch is used for the writing fodline will tura it blue The color disappeart after in fime, and more quickly, by gentle warm-

KNOW YOUR ENEMY

By Martin Domaelly

In an old war that happened once, the generals and their staff psychologists used to tell us that we needed to understand the motives of our opponent. This was just great, except that we never got to know him onilil the fungle growth parted and there he was with his bayonet already only inches from our chests. Many of us, on ships and inaircraft, never even so much as stw him at all.

Unhappily, sometbing of the same sort may take place in a survival sitoation, if in a different way. Herc the enemy may be all around us, and we won't recognize him even when face to face.

There are, bowever, some standards for fudgrent though they may be far from infallible.

One psychological characteristic of an enemy of societ y is an exclusive devotion to
seif. Call it self-centerediness. Such a man is often amoral, that is, congeoieally lacking in any consciousress of moral responsi bility. This type may be hard to spot. Blot there are symptoms. He will be reluetant to cooperate with others in a survival group, unless there is direet and immediate benefit to him. He will tend to hoard his nwti personat resources, nol share. Perhaps only in little ways but delectibly. he will take rather Chan give.

Beyond the amoral man is the true psychopath. Here is a elinically disordered personality. He literally foes not know the diflerence between right and wrong. Such a man is extremely dangerous, for the very reason that his motivation is so simple. He goes straight toward his objective-his own self preservation-because he is incapable of thinking of anything else. A ad, by the way, this man may be very good at survival, again as a result of concentration upoa sell.

Now, it's one thing to judge a member of a group. who can he observed. But what if you meet a stranger'? You do not know this man, and have no way of judging him. Here your only recourse is to be open and Iriendly, but guarded. Open and friendly, so as not to arouse suspicion on his part by showing suspicion on yours: remember that he will be judging you too. Guarded, so as not to leave yourself open to exploitalion.

There is no easy answer to the question of the stranger. In a survival situation we nieed each other, we have to trust. We can noly try to a void trusting blindly.

To further complicate matters, there is yet another consideration. We have spoken here of other members of a group, and of the stranger, as possible enemies. But the true enemy may be within yourself.

Here is the frost difficult problem of all. For to know one's self is very hard indeed. Self examination takes great moral
courage. Yet we all of us have faults that bag that had a sticking zipper. The sudden should be taken out of the dark recesses of our minds and looked at. The ability to withstand stress varies greatly between individuals, and depends upon just what sort of stressit is.
One example occurred during a military arctic indoctrination exercise, A member of the group suffered secretly from claustrophobia, the fear of confined spaces. but thought be could handle it so told no one. He came awake from a dream at night. alone in a cramped snow shelter he had built as part of the drill, and in a sleeping
feeling of intulerable confinement panicked hims be tore the zipper apart with his bigernails and ran blindly out onto the ice of the Bering Sea. His action endangered others and nearly cost bim his life.
It's no disgrace to acknowledge a personal problem. Most of us are good at noe thing, not sog guod at another. The thing is. we need to aecept and to give belp. And fo try to anticipate, for good or had, what we may expect irom oneanother.

None of this is to say that you should be looking over your shoulder all the time.
fearful of others. Nor need you bo too introspective and fearful of yourself. True that in our civilization we have hecome too faterdependent, and that survival requires self-reliance andan attitude of watehful. ness. Rut it also mandates coopreration. between individuals and groups. Most people, in the final analysis, will recognize that they must help earh other,
We need naly to learn and andersland the frailities of boman nature, including our own. Th know fur enemy, whicher without or within. so that we may all survive,

OINTMENT FORMULA

by Stan Anderson
It is well to know how to prepare a good ointrment which may be used for many things from boils to burns. When one prepares such an ointment, one may be assured as to the aetual contents and if it is made with various herbs there is little chance of the harmfal side effects of some of the commercial preparations that are on the market today. Besides this, there is the satisfaction of gaining some worth while dode yourself knowledge as well as the joy of productive work.

For best results it is well to commanicate with the spirit of the plant, tell it what you plan to use the ointment for and thereby gain its blessing upon the project. It has been found that more beneficial results from the ointment will be bad if this procedure is followed first,
For the majority of ointments the following plan is suggested as it has produced good results for all who have tried it.

Place into a double boiler pan one und a half pounds of lard (preferably beef lard as it has good drawing properties) add two ounces of bee's wax and place the pan into the oven at between 180 and 225 degrees until the lard and bee's wax is melted. The lower the temperature used to melt the
wax and lard the better. Make sure that the pan is stainless steel, earthenware, unchipped enamel or glassware as certain metals will precipitate toxic malerials into the ointment.
To the melted tard and wax add a pound of fresh or one half pound of the dried herb or combination of herbs that you desire to use. You will know when you lave enough herbs by pressing them dowa firmly so that the liquid barely covers them. Place the pan back into the oven at the same temperature for three to four bours. After the first half beur press the herbs back inte the liquid so that they remain covered. Alker three houra liff the herhs
with a fork 10 see if they are getting brown and brittle. When this happens the lard as a catalyst has drawn the value out of the herbs and they may be removed.

Strain off the liquid into a measuring ctip and pour such liqoid inte small wide mouthed bottles to cool. Ia warm climates more bee's wax may be added so that the ointment does not religuify. When no more liquid eas be poured from the mixtare, place the berbs into a potato
riecr or wrap them in a clean white sheet and squeeze them in order to extract the rest of the liquid. In the eveat that some of

A New Survival Gun

by Martin Donnelly

Before we get into any arguments here, almost any kind of weapon can be a survival gun and we all know it. If I were pressed, the 300 year old wheelock in my collection would do. Or we can, any of us, roll our own, given a length of metal tubing and some wood and wire and a handful of matches. Also true.

But let's be reasonable. Ym not going to walk around with a thermonuclear missile slung over my sholder, and neither are you, although it would be handy if we are to survive against man. But if we're talking about survival against nature.
with an emergency capability against man, then the problem gets cut down to size. We need a gun that is light in weight. easy to pack, durable, and effective. Within the limitations these criteria inexorably impose.
The true survival weapon is a product of the air age. It came into being because airmen needed a compact weapon that could be earried in emergency packs during flights over unfriendly terrain. One of the best of these is the still current "Explorer" Model AR-7. in its civilian version, made by Charter Arms. This is a magnificant survival arm. It's a
the ointment hardens on various utensils they may be placed in a pan and replaced in the oven to re liquify so as to not bave sry waste.
I.abel the jars as to the contents and proper usage and place a couple pleces of seotch tape over the labels so that they will not come off.
Ointments are for external use, use no more than is necessary unless it is covered so that the grease dues not rab off
One combination of herbs which has proved to be quite effective in many situations is Comerce, Plontain, Golden Seal Boot powder and Myre: Using the above method. fill the parl with half Comirey leaven and half Plantain leaver, add twe heaping tablespoons of Golden Seal root powder and two heaping tablespoons of Myrr powder.
The Plantain and lard have a drawing effect, the Comirey sooths and heals. while the Golden Seal and Myrr also heals as well as produces an antiseptic effect. This ointment has proved to be effective in burns, cuis, boils and absesses, blood poisoning. poisanous bites and stijgs, itching, infected wounds, rasher and external uleers.
Good lock on your ointment preparations and don't forget to include a jar of the above multipurpose ointment in your survival pack.
semi-automatic . 22 Long Rille, weighs only two and a half pounds, takes down so that its barrel and action can be stored in its hollow stock, and it floats. With this rifle I can fire a two-tuch group offhand at tify feel, and Γm no expert shot. I can't fault this gun in any way, as a survival weapon.

However, times change. Soniething new has come on the scene just recently. This is the Garcia "Bronco" 22/410 over and under, distributed by FI Industries of Washington, D.C. This combination gun is all metal, with a skeltonized stock and pistel grip, and a unique rotate-open action. It isn't pretty. But it's rugged, simple, and inexpensive. And it shoots.

It'll get you a one-inch group from rest.
with the rifle harrel, at twenty five yards. The shatgun barrel will pattern a good 5009 al thirty yards with $7^{1} / 2$ shot. This is shooting.
The gur takes down. almost instantly with a twist of the wrist. The package measures twenty inches. It weighs $41 / 2$ potinds. The action opens by rotating or twisting the paired barrels to the left, a method so simple that it makes nonsense of claims that an over/under action

SODIUM CHLORATE FROM SOLIDOX

By David Metz

With poiassiom chlorate both difficult and expensive to obtain. I sel about looking for ways in which the survivalist could peoduce his own supply. So far, that line of experiments has not worked. Instead I have discovered a cheap easy source of sedium chlorate.

Sodium chlorate and the more familiar jorassium chlorate are chemically almost the same. Both contain the chlorate ion, a combination of the gas chlorine with the gas oxygon. The oxygen is the important part: The difference is that the atom of
 an storn of sodium metal. Since both metals have some similarities the two

Thoro are some differences; I'll cover these later.

Our cheap source of sodium chlorate is Solidox pellets. These are sold in hardware stores for three to four dolhars is two prund ean. Solidos is used as is source of osygen gas for as small portable welding set.

The Solidox pellet is about $I^{\prime \prime} \times 4$ " and ts black in color. They are made in slightly different formulas to provide oxygen at iffferent rates to suit the different selting of the welder. The oxygen gas is produeed by harning the pellets in a apercial eatnister.
The formula of the pellet appears to be B0es sodium chlorate to provide the oxygen. The rest is glass fiber to hold the burning pellet sogether and black powder that appears to ber a mixture of powdered charcoal and manganese dioxide. The eharcoal serves as the fuel to burn the pellet and the manganese dioxide acts as a catalyst to increase the amount of bxygen released.
absolutely must be enormously complicated and expensive. The weapon is all steel, and has a near-rustproof black crackle finish.
It might be argued that the Bronco over/under is so much of a compromise, with its limited two-shot capability and diminutive calibers, that there's not much left to go with. I wouldn't take it out for elephants myself, nor would I feel exactly confident about its man-stopping effect

Our job is to extract the useful chlorate from the rest fo the mixture. Luckily lor us the waste materials are all insoluble in water, The desired chlorate is very soluble in water,
The first step is 10 break up the pellets so they will dissolve easily. Break up the pellets inside the bag they come in. Avoid breathing the dust as sodium chlorate is toxic.

Dissolve the now powdered Solidox in hot water. Start with about two quarts. Stir the mistore well to dissolve as much of the chlorate as possible.

Next prepare the filter. I used a large funoel made qf ylastion The funol is supported with a wire hoop over a kettle. The filter material is ordinary cheap payer towelling. Piok the kind that does not have boles in it and use two layers.

While your Solidox solution has been sitting in its container, most of the waste material will have settled to the bottom. Pour the liquid through the filter funnel. The resulting liquid should be clear. If it's not. filter it again.

Dump the black glop from the filter into the container with the other undissolved waste material. As before, let it settle after you have added some hot water to it. This lime just use a pint. Then filter as before. This last step tosures that all of the chlorate has been dissolved.

Al this point. discard all of the waste materials. If your separated chlorate solution is still cloudy, filter it again.

There are two ways to remove the water from your chlorate solution. Since moderate heat will not break down the chlorate. the last way is to boil the solution until a thick paste is left. Then spread this paste on paper towels to dry out the last of the water.
against an enraged Phillipine Mora tribesman. But it'll get you a lot of small game. And there aren't that many Moro tribesmen around these days; I think that your average aggressor, if he has sense enough to be walking around by himself, will not like the thought of a . 22 LR hollowpoint in his chest cavity and a . 410 shotload in his belly.

The other way is to evaporate the water. Place the solution in a shallow pan in the sun. If the pan is dark colored it will absorb more heat and the drying process will be faster. Note that the chlorate solution is corrosive like most salts. Use plastic or other lined containers that do not rust easily.

If you were careful you should now have a litile over $11 / 2$ pounds of sodium chlorate for your troubles. And at a price of less than $\$ 2.00$ per pound.

Here are the differences between the two chlorates. Firss, sodium chlorate is TOXIC. It is used for killing weeds. Be careful, do not get it on the skin or ingest it. Unlike potassium chlorate, the sodium compound will readily absorb water, Thus anything bolding it must be carefuny water-prooted. When sodium chlorate is used in pyrotechnics it burns with an intense yellow-orange flame.
Note that when sodium chlorate burns it releases its oxygen and becomes ordinary table sall. Expect it to be very corrosive if used in primers and propellants.

Like potassium chlorate, the sodium compound ean be used in igniters. It works perfectly in sugar/sulfuric acid system igniters. It can also be used mixed with sulfer to make percussion caps. Note that not all formulas may work with the sodium chlorate substitute. Sodium is not as reactive as polassium.

The possibility exists that a simple exchange reaction will convert sodium into potassium chlorate. If 1 can make this work, I will report it in a later article. LAST SAFETY NOTE: When evaporating any chemical solution, do not boil it to dryness. Impurities present could cause a fire or explosion.

Homemade Cut Press
From Popular Mechanics 1915
The person who has a little ability in making wood cuts with a knife will find it very interesting to make the press shown in the skelch. A fair job of printing can be done with the press, using printer's ink spread on a piece of glass with a hand ink roller, such as can be purchased cheaply of any dealer in printing supplies.

The press may have a base, A, of any size to suit, but one $11 / 2 \mathrm{in}$. thick, 6 in. wide, and 12 in . long will be found to serve best for most purposes. It must be smooth and level. Hard wood, such as maple, beech, or birch, is best for all parts. The post B is $11 / 4 \mathrm{im}$. thick, 2 in . wide, and 5 in . long. Be lore setting it, slot the upper end for the end of the lever. This is dobe by making a saw cut, $14 / 4 \mathrm{in}$. deep, \% \% in. from cither side and cutting out the core to make a slot $1 / 4$ in. wide. A $1 / 4-\operatorname{in}$. hole is then bored through the prongs to recelve a stove bolt that connects them with the lever. The post is fastened wiftr screwy and glue in a notch cut in the center of the base end.

The lever C is made of a piece of wood $1 / 4$ in. square and 10 in . long. At the forward end the sides are pared alway to form a tongue, or tenon, that will pass between the prongs of the upright, and a hole is bored through it to match those in the prongs. The entire upper surface of the lever is rounded and the under surface is rounded, beginning 6 in from the tenon end. Glue to the under side of the lever a block, D, at the end of the under, flat surface. The block should be about $11 / 4 \mathrm{in}$ square by $11 / 2 \mathrm{in}$. long. If the under side of the base is crowning,

Unoge Ondisaly Priewtiv Ins
either level it with a plane or nail cleats across the ends for leet. A
washer is used with the stove bolt in connecting the lever and post.

The cuts are made of small blocks of wood, about $3 / 4$ in. thick and of a size to take the characters desired. These blocks must be level and the printing side made smooth with very fine sandpaper, or a scraper, before the characters are laid out. Boxwood is best for cuts, but pearwood, applewood, birch, or maple will do very well. Mark out the characters backward, using the pencil very lightly. Then, with the small blade of a knife, made as sharp as possible, cut around the outlines, holding the knife slanting, and remove the adjacent wood by cutting in at a reverse angle to meet the boundary cut. Gradually deepen the cuts around the characters until they stand in relief about $1 / 8 \mathrm{in}_{\text {, }}$ then score V-shaped grooves, checkerboard fashion, across the remaining bigh surface that is not a part of the design, and chip out the resulting amall blocks to bring the entire secondary surface of the block to a uniform level with the portions adjoining the characters.

A touch of glue to the back of the cut will set it securely enoingh to the bottom of the block D for printing, and allow its removal without injury when desired. To get a uniform impression in printing, place paper on the base, as at E, to the thickness required. For controlling the printing position on the stock paper, pins or tacks can be stuck into the base and each sheet to be printed laid against these guider.-

A Power Windmill
From Popular Mechanics 1915

The windmill shown is somewhat different from the ordinary kind. It is not a toy, nor does it approach in size the ordinary farm windmill, but is a compromise between the two, and in a good strong wind, will supply power enough to run a washing mas chine, a small dynamo, an emery wheel, or any other device used in the home workshop. The wheel is about 5 ft . in diameter, with eight blades. The over-all length is about 6 feet.

The windmill is easily made and the cost is within the means of the average boy. There is not a part used in its construction that cannot be
found about an ordinary manual-training shop. The most difficult parts of the construction will be described in

The Huly Contiate of Two Parsy, Hach Havisc Fear Armas Iffr Holding the Blelen
detail. Symmetry and smoothness of design should be preserved and the parts made as light as possible consistent with strength and durability.

The Wheel
As shown in the drawings, the wheel has eight blades. Ordinarily the use of eight blades makes it difficult to

construct a bub of sufficient strength
\qquad
to carry theni. Where so many blades radiate from a common center it is almost impossible to provide an anchorage for each blade. To provide a maximum of strength coupled with simplicity of design, the plan of using two hubs of four arms each was adopted in the construction of this mill. The ordinary hub of four arms is simple to make and quite strongFour pieces of straight-grained ock, each 16 in . long and $1^{1 / /}$ in. square, are used in constructing the hubs. The manner of notching ench pair of pieces rogether is shown in Fig, 1. The slope for the blades is made to run in opposite directions on the ends of each crosspiece. The slope is formed by cutting out a triangular piece, as shown.

The two hubs. thus formied, are mounted on the shait, one behind the other, in such positions that the arms will be eventy divided for space is the wheel circle. These details are slrown in Fig 3. The blades, Fig 3, are made of thin basswood or hard maple. and each is fastened in its place by means of two Hhein. bolts, in addition to which a iew beads isfe driven io to prevent the thio blates from warping

The Gram

This windmill was designed to tranamit pover by meins of shales and gear wheels, rather than witi cranks and reciprocating panap rods. such as are wied on ordinary farm mills. To obtain this result, an old sewing machule henit was uned. Suelh a part can lee oltatimed Jrom a junik dealer or a sewing-machime agent The tead is stripped of its lase plate with the ahuttle gearing; likewise the needle rod, presser foof, elc, are taken trom the front end of the licad along with the faceplate. The horizontal shaft and gear wheel are taken out and the bearings reamed out for a $1 / 2$ in. shaft, which is subatituted. The shaft shonid be 2 ft , in length, and og or 10 in. of its outer end threaded for the clamping nuts which hold the two hubs in place, as shown at A and B, Fig. 9. The gear wheel is also bored out and remounted on the new shalt,
The supporting standard is coostructed of oak, with mortise-atdtenon joints, as shown in Fig. 4. The width of the pieces will depend on the kind of sewing-machine heal used, It may be necessary also to slighitly change the dimensions. The machine head is iastened on the support with bolts. A sleeve and thrust apring are mounted on the shaft, as shown. The sleeve is made of brass tubing, of a size to fit snugly on the shaft. A cotter will keep it in place. The sleeve serves as a collar for the thrust spring, which is placed between the sleeve
and the standard. This arrangement acts as a beffer to take up the end tbrust on the shaft caused by the varying pressure of the wind on the wheel.

The Vane

To keep the wheel facing the wind at all times, a vabe must be provided. It is made of basswood or hard maple, as shown in Fig. 5. It is not built upy solid, air spaces being left betwren the stats to reduee the wind resistance. Untess buitt in this manner, the vane is Bahle to twist off in a gale. The horizontal stats are $1 / 2$ in, thick, and the upright and cross braces is in. thick, while the long arm eonnecting the vane to the supporting standard is $1 / 5 \mathrm{ia}$, thick.
The supporting standard, carrying the wheel and the vane, must revolya about a vertical axis witls the changes is the wind, and this vertical axis is supplied in the form of a piece of gas pyle which runs through the supporting standard at the points marked C and D, Fig \& Ordinary pipe fittings. called danges, are bolted to the frame at these points. The coupting in the gas pipe beneath the sypporting stantard serves as a stationsry collar to support the weight of the whole mill. The vane should be placed correctly to balance the weight of the wheel.

The shalt passes through the framework of the tnill on the inside of the pire as shown at E i $1 / 5$ ins. softsteel or wroaght-iros rod is satisfactory for the shath, as so weight is
supported by it and only a twisting force is transmitted. The use of a larger rod makes the mill cumbersome and unwieldy. The upper end of the shait is fastened to the shaft that projects from the under side of the machine head by means of a sleeve made of a piece of $\frac{3 / 3-\mathrm{in} \text {. pipe. Two cotters }}{}$ hold the shaits and sleeve together.

At the lower end of the shaft, inside the workshop, the device shown in Fig. 6 is installed. The purpose of this appliance is to provide a horizontal shait upon which pulleys or driving gears may be mounted. The device is constracted of another sew-ing-machine head similar to the one already described. The head is cut in two and the separate parts mounted on suitable supports. The gap between the sawed portions permits a pulley to be fastened on the shaft to serve as the main drive. The wheel propelled by the treadle of the sewing machine will make a pood drive wheel. The small handwheel, originally mounted on the machineliead shaft, is left intact. This arrangement gives two sizes of drive wheels. Heary sewing-machine belts will serve to transmit the power.

The Tower

The tower can be buile up in any manner to suit the conditions. Ordinarily aticks, 2 in . square, are subtable. These are well braced with wire and fastened securely to the root of the shop. The arrangement of the tower with the mill is shown in Fig. 7

waiting to bring them out at the next big anything else, you get out of it what you political rally. At any rate, they can be put into it.
made even more devastating with the Good luck on your new hobby or home addition of a few ounces of lead in the tip. business!
So there you have it, my friend-lathe- Books for further reading: Anderson, work can be an interesting and profitable Edwin P. HOME WORKSHOP AND hobby, or even a home business. Like TOOL HANDY BOOK; Bower, Clifford

Thomas THE BOOK OF THE LATHE; A PRACTICAL HANDBOOK FOR ALL CENTER LATHE USERS; Gustavsson, Ragnar CREATING IN WOOD WITH THE LATHE.

Put Your Garden in the

T

This will not work,

From Popular Science 1937

By RAYMOND B. WAILES

OW is your garden growing" If the plants appear sichly or underdeveloped, a borticulturlat would look first for Injurious insects. Then be would examine the soll to see whether it is the type that the plants need.

Perbaps the earth should be a tittle more acid, or alkaline. Possibly it seeds more of certain plant foods such as phosphorus or nitrogen-for all kinds of house and garden plants, as well as shrubs, trees, and farm crops, have their own favorite finds of soil. Plants die and crope fall, all too oftes, because the grower does not know their soil needs, or becanse no means of testing the soll is at hand.

However, any amateur chemist can readily test the soll of his own garden. Only the simplest of chemical equipment is required. Just one special precaution need be taken. Test tubes, testIng plates, measuring devices, and even the experimenter's hands must be
scrupulously clean-in the chemical, an well as the ordinary, sense of the word. Every trace of ncouring powder or sosp wed th wasbing up your botme-laboratory ware, for example, must be carefully rinaed away; otherwise the nstursi alkalinity of thege substancea would ruin the dellcate teat that detertnines whether soll is actd or alkaline.

You might imagine that a simple way to test the acidity or alkrallinity of the earth from your garden would be to break a molst Jump of it in two, press strips of blue and red lltmos paper between the halves, and obsarve the final color of the test strips.

Ploce a halffecspoonful of the sarth in o fost tube and add a small amount of water

THIS SIMPLE TEST READILY REVEALS THE PRESENCE OF PHOSPHORUS

Now add one drop of "one-to-three" acetic ocid (one part glocial to three parts water)

After shaking the contants of the test tube for holf a minuta filter into a bsaker
be used if necessary; to insure accuracy, however, it is always preferable to use distilled water in making up reagents, or test solutions.

Brom-thymol-blue solution responds to an alkali, even in small amounts, by turning blue. When the dye solution is made neutral-neither acid nor alksline -it takes on a dark-green hue. In the presence of an acid, it turns yellow or orange, according to the degree of aclaity.

For soil testing, the solution should be neutral or dark-green. Therefore, the yellow solution you obtain from the solid dye must be neutralized with clear, filtered limewater (calcium bydroxide solution). A few drops should be Bufticlent. Don't attempt to judge the color of the brom-thymol-blue sofution by looking at a bottleful or beakerful: pour a sample of it into a teat tube, and hold the tube between your eyes and the light. If you have added too much Hmewater, the Hifuld will be blue. A drop or so of extremely dilute acid (taken from a solution, say, of one drop of strong sulphuric acid in 300 eubic centimeters of water) may then be added to the entire batch of dye molution to bring back the correct color, If you use too much neld and the solution becomes yellow, add Hmewnter again, and bo ow, until you finally obtain the dark-green color that you want.

Keep the teat solution, if posaible, in a bottle made of the kind of glass used in transparent oven ware. Ordinary glass is alightly alkaline and may turn it blue; however, ita color may always be corrected immediately before use, an just described.

To teat the aoll la any garden or field with your solution, collect bits of earth here and there and mix them thoroughly to obtain a repreaentstive sample. Then place a pinch of the soll upon a glazed white porce-
lain plate, a bathroom tile, or ua artigt's slab. Add enough of the neutral teat solution to the soll to make it watery. Also place a few drops of the solution elsewhere on the plate, for comparison and to make sure it has the proper dark-green color. After half a minute, carefully tilt the plate, allowing the liquid to drain from the soll and flow across it. If this solution fo now yellow or orange, the soll is acid. If the drained IIquid is blue, the soll is alkaline. Gardening books will supply the rest of the information you needthe soil requirements of various plants. Azaleas, rhododendrons, mountain laurel, and broadleaf evergreens, for example, prefer an acid soll. If they are planted in a

Put a plece of sheot or lump tin in a lit. tio of the filtrate and add tont solution

If a blue entor appeorn in the liquid, the toil contaies the devinoble phosphorus

Trapa for intoets ars made by ipreeding a poisanevt enixturs in jor lids and battle sopt

The dyo solution uned in festing soif for ocidity or alhalinity should bo mode noutral by adding limewoler or a waol acid solution, as nonded, unfil it tokes on the characlariztic dark-green hue
soil that ia alkaline-say, one containing limestone, buliding plaster, of the they will surety die. The soil may be replaced with earth from the woods or may be treated with applications of ammonium sulphate, aluminum isulphate, tannic acld, or flowers of sulphar, to put the plants in their proper enviromment.

Your brom-thymol-blue solution will also corae in handy for teating the water of your outdoor lily pool and your Indoor aquarium. This water ahould be taintly acid, if your tish

TESTING THE SOIL FOR ACIDITY
Place a pinch of the seil on a bathroom tilo and add enough of the terit solution to make it polery. After half a minute. drain off the liquid and observe the tellitale color

To prove that soil readily obverbe petorstum, let a solution of potassium chloride or poloniom carbonate senp through soil in this opporotus. The liquid that comes out contaiat hardly any of the potosilum

are to thrive. To a ten-cublo-ientimeter sample of pool or aqusrium water, add baif a

©e solution used far lasling tho acidity of your sail alse wifityell you thether water in your indoer aquarium is asid or allatins. It should bs faistly acial
port Insh Mres bot not as well us water that id very alightly aeld.

Phosphorua contributes to the fertaity of soll, In the form of phosphates of calcitum, magnesium, and lron. You cen test earth from your garden for the presonce of phonphorus with an easily prepared reagent. Dtisalve about two and a half grame of ammoniom malybdste crystals in twenty-flve cubte centimeters (about seven teaspoonfals) of tistilied water using beat to hasten oolution. Flltor the resulting ligutd, if it in turbid. Then pour it into twenty-five cuble contimetera of pure, atrong nitric acid. F1nally add fifty cphio centimeters more of dintilted water. Keep the golstion in a glask-atoppered bottle.

$\mathrm{T}_{\mathrm{a}}^{0}$OTEST soll for phosphorus, place a bout a hatf tearpoonful of the earth in a test tube and add water to make a total volume of about thirteen ouble centimeters. Now add one drop of "one-to-three" acetic. acid (one part of strong or "glacial" acetic acid to three parts of water). Shake the contents of the test tube for half a minute, and hiter. To one cubic centimeter of the intrate, or liquid that passes through the aiter, add a piece of clean sheet or lump tin (not "tin" foll from a candy bar, which is actually aluminum) and flve cubte centimeters of your ammonium molybdate test solution. If a blue color appears-a reaction requiring about half a minute-then the soll contains the needed element phosphorus. The depth of the shade of blue indicates the amount of phosphorus present.

Plants require nitrogen, too, and get it from nitrate compounds in the soil. You
can maike a nitrate tent solution by disalving three one-hundredths of a gram of in orpanie ehemien? known as d)pherylamine in twenty-ave eubic centimetera of struing, chetuleally pure sulphoric acid. Keep thla atrongly corronive Ifquid in a stasestoppered bottler. If It In color changes in true to blue, brown, or plok. it it worthlese for your purpose and a bow batch must be made up.

To toat noll for riltrates follow the same praliminary procedure as in tentine for phoaphoras. That is, ptace haif a teapporiful of the soll in a test tube. Hill with diatiled water to a volume of thirteon cuble centimeters, add a drop of one-to-three asetic actd, shake for half a minute, and fiter, Now place one drop of the filtrate on a glazed white porcelain plate and add six dropa of the diphenyiamine teat solution. A bloe color develops if nitrateg are present.

POTAssivM, or "potash," In various torms of chemical cambinntion, also mervea as a valosble plant food in the boll. Solutions contalning potassium give a yeltow precipltate when treated with a reagent known as sodium cobaltinitrite.

To prepare this, mix two cuble centlmeters of a ten-percent solution of nodium nitrite
(not nitrate), flive or six drops of a diIute (siry, ten-percent) solution of cobalt niltrate, and one cubic centimeter of strong (glactal) acetic seld.

With thla reagent, you can show that a fertilizer rich in potassium, such as potassium chloride or potassium carbonate, can be applied to the soil with the assurance that little of the compound will be carried away by dralnage or excessive rainfall. Disbolve about a gram of either of these potassium chemicals in a liter (roughly a quart) of water, and let the molution seep throngh ordinary garden soil in a vertical glass tube of about oneinch diameter. The 'iquid may be admitted a little at a tlme through a "choked-stem funnel," made by plugging an ordinary glass funnel with a short strip of rubber tubing and using a pointed glass rod as a stopper. The bottom of the one-inch tube containa a wad of absorbent cotton that hulde in the soll and allows the solution to fller through. Test the liguld that has pasaed through the woil with your sedium cobaifinitrite reagent. You will observe iutle or no yellow precipitate, while the original nolution givee a conapicuous amount, abowlog that the soll effectively absorbs the protasalum.
ANTS can be a sulanice both in the $A_{\text {graden and in the home. You can }}$ make s good ant trap by first dissolving about three quartera of an ounce of ordinary whating soda, and then about an oance of arsentoun oxide (called aloo white a raenic), in in quart of water. This mises a solution of sodium aracnite. Since it id polsonowa, do not use any hounehold utensil in making it up, but employ a tin can that can be thrown away sfterward. Mix one fluid ounce of your aolution with about a pint of honsy or molasses, to serve at bait for the ante. Pour the mixture over pleces of wrappling tifsetie, or excelafor, reating in old preserve-jar lids, and place the trapa about the garden and the house.

Incidentally, you can readily destroy silverflab, the Insect prats that play havoc with beoka by eating the pagea and the binding with the gatme sodlum araenite aolution. Instend of mixing the 1 Iquid with honey or molabnen, however, combine it with starch or flour to form a paste, and smear the mixture in old botthe capk, where it will harden. Place these litule polsonotu diaks about the bouse wherever the Insects are foundbut be sure to keep them astely out of reach of chlldren, remembering eapeclelly that a crawling baby deltghts in putting every concelvable object in iti mouth. The polsonous ant trape, of

spreadd-out amount

Easy Designs in

Orramental Iron Work

From Popluar Mechanix 1913
Many an industrious lad has made money manufacturing the common forms of wood brackets, shelves, boxes, stands, ete., but the day of the scroll saw and the cigar-box wood bracket and picture frame has given way to the more advanced and more profitable work of metal construction. Metal brackels, stands for lamps, gates, parts of artistic fences for gardens, supporting arms for signs, ete., are among the articles of modern times that come under the head of things possible to construct of iron in the back room or attic shop. The accompanying sketches present some of the articles possible to manufacture

First, it is essential that a light room be available, or a portion of the cellar where there is light, or a worlcshop may be built in the yard. Buy a moderate sized anvil, a vise and a few other tools, including bell hammer, and this is alt required for cold bending. If you go into a forge for hot bending, other devices will be needed. Figure 1 shows how to make the square bend, getting the shoulder even. The strip metal is

secured at the hardware store or the iron works. Often the strips can be seçured at low cost from junk dealers. Metal strips about $1 / 2 \mathrm{in}$. wide and $1 / 8$

THE REAL ENERGY CRISIS

by Kurt Saxon
A while back, President Carter admitted to the nation that by 1985 the world will be using more fuel than it produces. This was a promise of doom for the majority of the Earth's population, but few understood it as such.

Consider: Unrenewable fuels maintain world civilization. The world's standard of tiving has been dropping steadily for years due to the increasing scarcity and consequent higher costs of fossil fuels. The cheap and easy to get fuel has all been gotten, except for various limited government and privately owned reserves.

Now drillers go deeper for oil. They go to undeveloped areas for it. They drill under the oceans for it.
Coal companies must dig deeper for coal. They must move more earth to get it even if it is close to the surface. Stripped land over coal beds must be replaced at high costs.

Oll and coal must be transported greater distances, adding to its cost.
All this is pricing many home owners out of the tuel market. Prices for manufactured goods go up constantly as a result of higher energy costs.

So as bad as things are, they will get worse. Carter implies that by 1985 the home owner will have gone as far as he can go. At that time he will be one of the priorities dropped in favor of industry. This also applies to gasoline for privately owned vehicies.

So in 1885, when more energy is being u5ed than is produced, the private individual won't be able to buy petroleum products at all and the coal for homes will cost at least three times as much as it does now.

So by Carter's figures, your world ends in 1985. Of course, he's onlv a poltician and isn't expected to know anything for sure. His understanding of the problem comes mainly from other politicians, wishful-thinking Liberal trash, for the most part, who don't dare tell it like it is.

They collect the statistics and set the deadline for real trouble always an election or two in the future. The present figure of 1985, eight years in the future, is childishly optimistic in light of the worldwide climate changes. Another super cold winter will knock off a projected year due to more emergency fuel use. Then the turning point year will be 1984. If the following winter causes still another fuel drain, the projection will then be 1983, and so on.

And don't lorget the drouth. Going deeper or farther afield for water takes enormous supplies of energy.

No politician can accept the death of his constituency any more than your average fiea could comprehend the death of his dog. The worse things get, the more a polifician will implement purely political solutions. This involves transferring responsibifity from one agency which can't handie a problem to another agency which can't handle it.

Thus, everyone looks busy and the public is pacified for a little while longer. Then the optimists stan beating the tired old drum about shale oil, offshore oil. Alaskan oil, more effective use of coal, solar power, wind power, etc. By 1985, they imply, new sources of energy will replace what is running out now.
in the case of shale oil they estimate 600 bilition barrels. But companies that have investigated the costs of wringing it from the rock are balling out. A plant capable of producing 100,000 barrels of oil a day would cost $\$ 1.5$ billion and could not sell the oil for less than $\$ 18$ a barrel. Arab oil costs $\$ 12$ a barrel. You can be sure that by the time Arab oil goes to $\$ 18$ a barrel, shale oil will cost even more.
These figures don't take into account the fact that the shale oll deposits are in an arid region. It takes massive amounts of fresh water to process shale olf operations. The area has barely enough for agriculture and public use. Forget shale oil.

If you want a laugh, or a good cry, consider offshore oil. Leaks and blowouts from offsnore rigs are an ecological nightmare. Blowouts have happened before and still, a prolessional crew can put a blowout preventer on

THE SURVIVOR VOI. 2
in. thick are preferable. The letter A indicates a square section of iron, though an anvil would do, or the base of a section of railroad iron. The bend is worked on the corner as at B, cold. If a rounded bend is desired, the same process is applied on the circular piece of iron or the horn of an anvil. This is shown in Fig. 2, at C. This piece of iron can be purchased at any junk store, where various pieces are always strewn about. A piece about 20 in . long and 4 in . in diameter is about the right size. The bend in the metal begins at D and is made according to the requirements. Occasionally where sharp bends or abrupt corners are needed, the metal is heated previous to bending.
Although the worker may produce various forms of strip-metal work, the bracket is, as a rule, the most profitable to handle. The plain bracket is shown in Fig. 3, and is made by bending the strip at the proper angle on form A, after which the brace is adjusted by means of rivets. A rivet bole boring tool will be needed. A small metal turning or drilling lathe can be purchased for a few dollars and operated by hand for the boring, or a common hand drill can be used. Sometimes the bracket is improved in design by adding a few curves to the end pieces of the brace, making the effect as shown in Fig. 4. After these brackets are made they are coated with asphaltum or Japan ; or the brackets may be painted or stained any desired shade.

In some of the work required, it is necessary to shape a complete loop or circle at the end of the piece. This may be wrought out as in Fig. 5. The ase of a bar of iron or steel is as shown. The bar is usually about 9 in. in diameter and several feet in length, so that it will rest fitmly on a base of wood or stone. Then the bending is effected as at F, about the bar E, by repcated blows with the hammer. Aiter a little practice, it is possible to describe almost any kind of a eircle with the tooks. The bar can be bought at an iron dealers for about tocents. From the junk pile of jumk shop one may get a like bar for a few cents.
A converient form for shaping stripmetal into pieces required for brackets. ferces, gates, arches, and general trimmings is illustrated at Fig. 6. First there ought to be a base block, G, of hard wood, say about 2 ft , square. With a round point or gouging shisel work out the grobve to the size of the bar. forming a seat, by sinking the bar, H, one-half its depth into the wood as shown. In order to retain the bar securely in position in the groove, there should be two caps fitted over it and
upside down, as happened in the North Sea. That caused 8.23 million gallons of oil and mud to spew out in eight days, creating a 4200 square mile oll slick. First reports indicate little ecotogical damage. But all that oily mud settling on the spawning beds may just ruin hundreds of square miles of tishing grounds.

Phinilps Petroleum lost $\$ 120$ million on that blowout. That will be passed on 10 you.

Ecologists are against alomic energy because of the risks. The risks in oftshore drilling are far greater,

Alaskan oll was touted as the big oil crisis bailout. Now it is acknowledged to be only a temporary stopgap, if that.

Greater use of coal is seen by many as a way to relieve the fuel crisis. Coal is not the answer. It is becoming harder to get all the time, which makes it increasingly more expensive. Companies using it will have to install scrubbers to remove most of the sulphur and other pollutants, adding more charges to everyone's bill.

Mosi average people with some foresight resign themselves to the eventual use of coal over oll. They say coal was used before oil and will take over after oil is no longer available.

This sounds tine except that coal is a major pollutant. It was replaced by petroleum largely for his reason. In 1870 the sulfuric acid given off by burning even high quality coal having the least sulphur content was eating away the buildings in New York City. (Sae editorial, page 46).

In 1870, New York City had a population of 942,292 . Today, New York City's population is about ten times that.

Even with scrubbers, coal burned for about ten million New Yorkers would kill them all. White House Energy Advisor, James Schlesinger now says that New York City and Los Angeles won't have to burn coal. This would have to apply to just any city with smog problems.

It your cily has a smog problem, you should realize that even scrubbed coal would intensify the problern to the critical level. So since city dwellers, largely unemployed, can't maintain the rising utility costs, the cities will die.

It coal were used nationwide in quantities Carter envisions, coal pollution would be catastrophic. In 1870 our population was only $38,558,371$ and coal pollution was a serious problem. There are about 200 million more people in the U.S. today:
Concerning solar and wind energy, read my editorial on page 36 ,
Over the weekend, the TV carried a story of clam bed pollution off Long Isiand in New York. Health officials had extended the off-limits zone for clamming another 300 yards out.

Thls was due to the sewage New Yorkers allow to run off into the Atlantic. Clamp pirates were violating the area and taking potentially contaminated clams to sell to their fellow New Yorkers. Aside from the pirates, most clammers were either digging clams further out or going out of business.

Loglc would suggest that the sewage should be kept out of the ocean, both for the salety of swimmers and to insure the purity of the lood taken from offshore waters.
Now York has a smog problem and a sewage pollution problem. By diverting the sewage Into methane generators, one problem would be solved and another eased, The methane from the sewage would go for cleaner power and the ocean food would be made sate.

> Friends or Allies: Choice for Survival

In the 1950s, several thousand people had nuclear fallout shelters built, usually in their back yards. At first they met only ridicule by those neighbors who considered themselves above such hysteria.
In time, however, it occurred to those neighbors that something had changed in their relationship with the shelter builders. Often, those who had
set-screwed to the wooden base. These caps may be found in jurk deaters* heaps, having been cast off from 2 -m. shaft boxes. Or if caps are not available, the caps can be constructed from sheet metal by bending to the form of the bar, allowing side portions of lips for boring, so that the caps can be setserewed to the wood. Thus we get a tool which can be used on the bench for the purpose of effecting series of bends in strips of metal.

Since the introduction of the laws requiring that signs of certain size and projection be removed from pablic thoroughfares in cities, there has been quite a call for short sign brackets. 50 termed, of the order exhibited in Figs, 7. These sign-5upporting brackets do not extend more than 3 ft . out from the building. A boy can take orders for these signs in almost any city or large town with a little canvassing. The sign supporting bracket shown is merely a suggestion. Other designs may be wroughtost in endless variety. A hook or eye is needed to sustain the ring in the sign.
The young man who undertakes to construct any sort of bracket, supports, frames or the fike, will find that he will get many orders for lamp-supporting contrivances, surch as shown at Fig. F. It is hardly necessary to go into details

for making these stands, as every part is bent as described in connection with the bending forms, and the portions are simply riveted at the different junc-
been triends for years came to despise each other.
It usually started like this; Sam would say to Paul, the shelter builder, "Paui, I don't belleve there's going to be a war. But if it happens, I'll know where to come:-

Paul would say, "But, Sam, it's not a matter of belief. If it happens it'll happen and if it doesn't happen, it won't. Neither of us believes our homes will burn down some night. But we both have fire insurance. So my shelter is simply my nuclear war insurance.
"What if you had fire insurance and I didn't? If my house burned down, without insurance, I could never rebuild. Would you allow me to move my family in with you on a permanent basis?"

Sam might say. "But that's a poor analogy. I'd be glad to put you up for a few weeks and even help you to rebulld."
"But," Paul would reply, "We both make about the same wages. What if I bought a boat instead of tire insurance, thinking, "What the hell, I'd rather play with a boat than sit around home worrying about an unlikely fire. Besides, good old Sam will bail us out. He's our ace in the hole.
"Would you want to be our ace in the hole if we leff our welfare up to you while we ran around in a damn boat while you sat home worrying about a fire?"
"Harping on the boat again," says Sam. "I sald you could use it,"
"Forget the boat," says Paul. "The point is, that you considered the boat more important than nuclear war insurance. You have all kinds of insurance but you don't seem to know what insurance is. It's not negotiable. You have hospital insurance and I don't and I get sick; tough on me. You buy fire insurance and I don't and my house burns down; your insurance company wouldn't reballd my house.
"Like your life insurance, my shelter is nuclear war insurance which covers only my famity, If you want that kind of insurance, buy it. Don't expect to use mine."

By now, Sam is seeing that friendship has its limits and he resents it. "Okay," he says, "Just suppose your war should break out. So I haven't prepared. But we've been friends for years and I never put you off when you needed halp. And you've always been on hand to help us. But now, when it's a matter of life and death, our Ifiendship isn't worth a bo-diddly? is that what you're telling ma?"
"F's not a matter of friendship." says Paul. "My shelter was built for my tamity of tive. It's for two weeks; maybe four if we absolutely had to stay longer. You crowd your family of five in there and we'd all be dead in a week."
"Maybe so," says Sam, "but the point is, you would just keep us out, knowing we would all be sprawled around the door, dead as mackerals. (He breaks into sobs.) And my littlest, Jenny, she's only five, you know. Before rd let you close her out, tod come with a gun."

Such arguments would go on to the point where the neighbors were no longer friends. I never heard of a case where, rather than break up as triends, the other neighbor bullt a shelter.

Telling the improvident their time is running out seldom motivates them to prepare. The improvident are the improvident. That's their nature. They know their basic helplessness, but will seldom admit it. They are more likely to react with hostility to survival advice than to begin their own preparations.

The difference between one who prepares and one who doesn't is more important than a difference of opinion. If you prepare to survive, you deserve to survive. Those who can, but won't prepare, don't deserve to survive and the species would be better off without them. It you have the kind of intellect that's geared to survival, it may be a matter of genetics. Your neighbor may lack these survival genes. Therefore, becoming his means of survival could not only doom both of your lamilies to death, but if you should make it, you would have enabled a non-survival type to further pollute the gene pool. That's a no-no, although you might take in one of his brighter children if you really have enough room. If you are really in a position to save someone, you
tures. Both iron and copper rivets are used as at 1, in Fig. 9, a cross sectional view.
The best way is to bore straight through both pieces and insert the rivet. In some cases the rivet is headed up in the bore and again washers are used and the heading effected on the washer. Copper rivets are soft and easily handled, but are costly as compared with iron riyets.
Good prices are obtained for the guards for oper fireplaces made in many varieties in these days, The return of the open fireplace in modern houses has created a demand for these guards and in Fig. 10 we show a design for one of them. The posts are made

sufficiently stiff by uniting two sides with rivets. The ends at top are looped as shown, while the ends or butts at the base are opened out to make tha feet. Rings are shaped on forms and are then riveted to the base cross-piece as illustrated. Crosses are made to describe to central desigr and the plan in worked out quite readily with the different shapes.

The making of metal fire grate fronts bas proven to be a very interesting and profitable occupation for boys in recent
ought to be seleciive. But don't be too callous. Without basic human compassion, you might nol be worthy to survive, yourself. Aside from making you seem callous towards others, your preparations puts you out of the Good-time-Charley field and you are seen as a part of the establishment. You are then no lorger a buddy, but someone to use when things get rough. It's hard to explain but it's sort of like when you go into business for yourself; your wage-earning friends tend to drop away, You have a kind of securify they can't aspire to. So they either drop away as friends or become actually hostile.

So you see, friendship ends when you establish a permanancy and security your friends can't aspire to. Maybe they don't care to put out the extra effort or money. Maybe they're just lazy or stupid. It doesn't matter why they drop away. Just recognize the fact that Survivalists are likely to see their triends drift away.

So don't expect to impress a lriend with your preparations. It's far better to get him sold on the idea of making bis own preparations.

It's very likely you can't get your friend to exert himself to make any survival preparations. Serious preparation would upset his whole lifestyle.

Mosi neighbors would rather rationalize away the danger than do something about it. Say you bought a house on an earthquake fault. So a guy comes and tells you you'd better move or get shook to pleces.
So there you are, with everyihing you have threatened with destruction. A Survivalist would move, taking his losses in money, enargy and time.

But the average person would rationalize away the danger and never bring up the subject again. It he was smarter than average he would try to unload the property on some sucker, of course, never mentioning the fautf.

So if you broach the subject of suryival to a lfiend and he gives you the horse-laugh, Just think of him as one who knows his house is bull on an earthquake laull. Hell give you nothing but rationalizations as to why nothing will happen, Elest fost to oase awsy from him and tell him nothing further of your plans.

Since survival is the most important subject today, and only a tew recognize it, you can't waste tirne with friends who have littie potential as alties. The time is coming closer when it a neighbor isn't an ally, he's highly likely to become an anemy,

Only those who are working on their owh survival programs are fit to associate with at this point. I'm not suggesting you snub your friends or give up on non-survivors altogather. This would be rude and stupid. Besides, an intelligent friend might finatly come around to your way of thinking as things get worse.
So just be businessilike wher talking survival. It's very serious, so the drinking buddy would be more inkely to be offended than interested.

In survival programs, an ally is worth any number of friends. In the coming months, you will learn io sort out your allles, who are aware of the coming crash, from youe friends, who thunk you're a nut if you worry about anything but where your next baseball ticket is coming from.

As you come in contect with more Survivalists, you will be bored with your ofd buddies, anyway. And they will be bored with you, too. So don't feel panicky at the thought of your old cronies drinking without you.
Ot course, your lirst choice of allles should be among your triends, especialfy neighibors, if you and your neighbor both-had a roomy, livable shelter, you could link them up with a tumnel.

Such a setup would enable yoo to share the burden of buying supplies. Tools, books and the various items of hardware could be shared, rather than having to bay two complete sets Ior two families.

Linked shelters would also permit visiting for moral support and economy. They would also be handy to resist assault. If one's shelter were under assault by the mob, the other could go through the funnel and help fight thern off. When the mob finally gave up and went off to die of radiatior sickness, life in the shelters could become downright social.

In this way you can see how a neighbor who is an ally can be of great
the survivar voi. 2
times. Not long ago it was sufficient for the ingenious youth to turn out juvenile windmills, toy houses and various little knickknacks for amusement. The modern lad wants more than this. He desires to turn some of his product into cash. Therefore we present some of the patterns of fire grates which boys have made and can make again from scrap iron, with few tools and deviecs, and find a ready market for the same as soon as they are made. Figure 11 is a sketch of a form of fire grate bar or front that is constructed with a series of circles of strip metal. The best way is fo go to the hardware store or iron dealer's and buy a quantity of $1 / 1-\mathrm{in}, 1 / 2-\mathrm{in}$, and $3 / 4 \cdot \mathrm{in}$. iron, abont $1 / 3$ to A-in. thick. Io lace re-in. metal would do in many cases where the parts are worked out small in size. The $1 / 6$-in. metal is very strong. Then after getting the supply of strip metal in stock, procure the usual type of metal worker's hammer, a cheap anvil, a 9. $\mathrm{-tb}$. vise, a cold chisel, a file or two, and a round piece of shaft iron, about 3 in . diameter and 2 to 3 fe long. This piece of iron is represented at B, Fig. 18.

The iron is held in position by means of the straps of metal C. C, which are bent over the shaft tightify and grip the board base with set or lag serews as ahown. The wooden base should be about 2 in . thick and large enough to make a good support for the iron shaft. The process of bending the rings in this way is as shown. The piece of strip fron is grasped at D. Then with the hammer the iron is gradually worked cold about the mandre! as at E antil the periect form is acquired. After the form is finished, the strip at the lerminus of the ring is cut off. In order to get a steady base the wooden part may be botied to a bench. In Fig, 13 is shown the method of clipping off the completed ring. The cold chisel is held upright, and by delivering several blows with the hammer upon the same, the point is caused to chip through the metal and release the ring. The shaft or mandrel is marked G. The cold chisel is indicated at I and the position where the hand grasps the strip is at H . The final operation in shaping the ring is by driving the protruding cut, lip down, to the common level of the opposite point, thus giving us the finished ring with the lips closed on the mandrel as at J, Fig. 14. These rings can be turned out in this way very speedily. The next operation involves the process of uniting the rings in the plan to shape the design. The design work is often worked out ahead and followed. Some becomie so proficient that they can develop a design as they proceed.
benefit. But a neighbor who depends on you to save his bacon is not only not an ally but he could become your worst enemy.

One way to help a neighbor to become an ally is to introduce him to other Survivalists. Then he will feel that you're letting him in on something. Also, if you have three or four guys in your home talking survival, your neighbor wilt feef he's the isolated minority in his stand that this is the best of all possible worlds.

Even if your area is an unfikely target for a nuclear bomb and underground shelters are not in your plans, the ally principle is still very important. You just can't waste time with a friend who is of no use in your survival plans.

An ally can be a person you don't even like, socially. But if your aliy shares your enthusiasm for survival, he will be far more useful to you than a friend who agrees with you on everything but sunvival.

PARAMOID, FROM PAGE 556

A guy hiding his survival preparations might as well torget it. His neighbors are more important to his chances than any survival gear. The neighbors i'm talking about are working people who are acquaintances and potenlial triends. Im not suggesting one share his plans with welfare bums, winos, dopers and general trash. No. I'm talking about decent people who simply don't share our views at this fime. These people will come around to our way of thinking in time.

The Survivalist's early proparations will give him status in his neighborhood as things get worse. The neighbors will listen to him in the near future it he will only give them the chance to agree with him now. But it he automatically writes them ofl as hostile and potential looters, that's exactly what they'll be when things get really bad

Ithink some of you get survival preparations confused with having a tallout sheiter. It you had a shelter and your neighbors didn's, you would be severely mobbed in the avent of a nuctear war. Your neighbor's lives would depend on getting in. But an extra supply of tood, weapons and frade goods in your home would not give rise to panic. There would be nothing immediate about it,

There won't be a government message saying that everyone with a slock of survival goods. will Ilve and those without will die, period. There won't be a slampede to your place. Before things get bad enough for your neighbors to loot you, they will still have time to imitate ycu, aithough not as cheaply or with your wide selection.

But let's say you're a real Sectet Squirrel and have made your home a storehouse of arms, lood, etc. No one knows and linally the system collapses and your reighbofhood goes through the turmoll you might expect.

Now your neighbors, who you've considered enemies, have managed to light oft some bands of tooters and are setting up neighborhood defense and heip organizations. instead of being among the leadership, you are simply one who shares what they have because they think you are in need.

You're in real trouble because it your neighbors find out you've been holding Dut and taking help from them, they'll shoot you. If you don't take their help. they'll find out why and shoot you for holding out.

Your only real chance now is 10 give your neighbors the benefit of the doubt or move to an isolated farm. In any event, the more allies you have, the better your chances. But il all you see now are enemies, that's all you'll see when you need friends the most.

Survival Shelters and the Dependent Aged

By Kurt Saxon

"Dear Mr. Saxon:

"1 really enjoyed Vol. 2, No. 6 (Pages 235-250)
of THE SURVIVOR. Especially the article "Survival of the Fittest," by Tom Murphy, and "The Survival Sheiter," by yourself. However, at the end of your shelter article you wrote something that is very disturbing to me, regarding older people.
"You state, 'Steel yourself to keeping her out. Better to reject anyone whose life in nearly over.' Later you mention the elderly, unbelievably to me, along

Figure 11 is a design of grate front used for various purposes in connection with grate fires. The series of rings are united by a rivet between each at the joining point. With thin metal the holes can be punched with an iron punch and hammer on an anvil where there is a hole to receive the point of the punch after the punch penetrates the metal. For the heavier forms of metal a drill is necessary. A metal drill and brace can be purchased very cheaply for this work, After drilling the holes, the parts are erected and the rivets inseried and headed up as each addition is made. Thas the series of rings are united and then the side pieces are similarly fixeted. The points at the top are then worked out and joined on These points are filed down to the neeessary faper after the union is eftected. The finishing work involves smoothing rough places with a file and painting Asplialtam makes a good black finish. Same of the best destgns of grates are bronzed. Some are silvered. The different designs are finished as desired by customers.

Figure 15 is another design of grate in which the process of shaping the rings is like that in the first designt. There are some half circles in this pattern and these are framed by shaping

with the retarded, criminals and perverts, as 'unfortunate and helpless.'
"Mr. Saxon, I could hardly belleve what I was reading. I had to check again who it was that wrote the article. I was disappointed to see that you did. Is this all you think of older people? Let me speak in their defense.
"First of all, who can consider anyone over 70 years old as anything but a Survivor? What about all the priceless knowledge they have accumulated? These old folks lived the very life that we Survivors will face some day. Who better to have in a shelter with you? Did you ever meet an older person who didn't know about animals and gardening? I never have. Old folks need very little sleep and very little food. It not senile, most of them are walking encyclopedias and history books.
"In short, they have been where we are going. How can you suggest that we turn such valuable resource away from our shelters? I would sooner have an old man or woman with me than nearly any useless young punk or bitch.
"To think that you, of all people, would classify old folks as parasites really makes me think twice about where your head is at.
"Well, you've done so well otherwise that I will allow you this one mistake, drastic as it is. Please think about it, Mr. Saxon.

Sincerely,
Ron B. Calif.
The above letter is typical of many idealistic Survivalisis. Without love and compassion for others, society would be a worse jungle than it is. However, I think a lot of my readers may just doom their own hopes of survival by Including in their programs those whe could not survive without our modern technology, anyway.

A person of seventy who is hale and hearty, has his wits about him and is making his own survival plans; may have a better chance than most younger Survivalists. Such a one would be more likely to keep the out of his shelter than the other way around. Im not worried about the self-reliant elders, who make up a big proportion of my readership.

The type of olders I suggest excluding are those who have given life their best shot years ago. They are retired, feeble and given to dozing when not watching soap operas.

Increasingly, we read of elders stealing food from stores. Never on a police blotter before, but now they are brought in for pelly theft. Others scrounge for food in garbage cans. These are the improvident. Their whole working lives were spent earning wages from others. They were never self-refiant in the first place. They end their days in miserable littie rooms, rest homes or in a corner of their often grudging children's homes. All such elders are too dependent on a given system to survive without it.

Being old is nothing to be ashamed of but the sanctity of age for its own sake is a myth.

The Granddad image I've Iried to project through so much of my writing has nothing to do with old people. "Granddad" was a young person, 20-40, Ilving in the nineteenth or early twentieth century. The most important quality he possessed was self-rellance. Self-reliance has always been the individual's best guarantee of survival.

In those days there were no supermarkets and people did have to know how to do a lot tor themselves. Only the affluent paid others to do services around the home. The average person had to do for himself or do without. Today, the average person will call in a $\$ 15.00$ an hour plumber to pot a washer in the sink faucet.

As goods and services became more available and cheaper, more people became less self-reliant as a matter of course. This is normal. A woman who would scrub floors on her hands and knees with all the labor savers on the market would be stupid. A man who learned a dozen household skills just to save money would be just as stupid. (For other than a faucet washer, I call a plumber).

In the last century, survival skilis were not simply a person's trade, but consisted of home maintenance, food processing and such. Later, a man
the same abont the mandrel with the hammer. In order to get the shoulders close and the circle complete it is neeessary to heat the metal. A coke fire can be made in a bole in the ground. Then procure a tin blowpipe and blow the flame againat the metal at the point to be bent. This metal will become red hot very spom, and can be bent readily against the anvil and the circulat iorm. Let the metal cool off on the ground after heating. Fig. 16 is another design which can be wrought ont. The middle adjustment is wire seseen work which may be bought at a hardwate sture and set into the position shown. Fig, 17 shows a chippine off device asefol in connection with this work. Metal chippers can be bought at any tool store. The chipper is placed in the jaws of the vise as at K, and secured thete The strip of metal is process of cstting if marked M. The hammer head is eauned to atrike the mielal jost oyer the cutting edge of the ehipper. The quick; hard blow causes the cutting edge to pentrate lar enough to sever the piece. Bonding colid pith a wooten form is done us in Fyy 18 . The woolew form is marked P and is ahoun Bin . wide and 7 in high, lofoting a one-sided oval shape. There is a pio k net isto the base boand of the aval form and the atrip of melal loy liendigg I grasped at S and the oher end y. imserted back of the pin R- By applying preoure, the strip of metal is heost to the form.

Figure 19 slows the hour-glass wood bending lotto, mode by selecting a piece of bard wond block, ahout 6 in . aquare and borigg through with an inch bit. Then the hole is shaped hour-glass like. The view is a sectional ont. The block is placed in a vise and the strip for bending is inserted as at T.

The strip of melal is grasped at W and can be bent to various forms by exefting pressure. Fig 20 is another type of fireplace frint, constructed by uniting the shaped retal pieces In fact ant altuost endless variety of designs can be wrought out after the start is once made. A good way to figure the price on the grale is to add up the costs of the parts and charge about 12 cents per hour for the work.

PLANING
 ARROW STICKS

From Popalar Mech. 1919

While making some bows one day I diseavered I had no suitable dowel sticks for the arrows, so I started to make them out of $1 / 4-\mathrm{in}$. square stock. I found it rather difficult to plane these pieces until I hit upon the scheme
could be free of most of this drudgery at ilttle cost. When people no longer needed most survival skills, later generations never learned them in the first place.

So what's all this about an older person being a goldmine of information? Take a 70 year-old person; born in 1907. By the age of $20 ;$ starting a family; well into a trade. Year, 1927.
By that time, the only survival skills the average American knew was the job that gave him his lliving. This was especially true in the towns and cities.
Women in the cities of 1927 were little more able to cope with gut-level survival situations than are women loday. They didn't raise livestock, make butter, soap, etc., and they bought mosi of their clothes and just about everything they needed. Farm women bought every labor saver they could afford from their Montgomery-Wards or Sears catalogues.

So the person who is 70 years-old today is hardly likely to be an encyclopedia of 19th century cralts. There are lar more young people of today learning such skilis than there are elders with any usetul memories of such skills.
An old person is just someone like you or me who has lived a lot of years. If you stop learning after you establish a frade, you'll be no smarter at 70 than you are now.
At 45 I know many oid people. I tived with old poople during my cotlege period when I lived at the Wino Arms in Long Beach, Callf. There were a lot of retired old fellows there, just waiting to die,

One was Cap, an ex-skipper with a memory which kept me amazed. He could remember every word that passed between him and a ruined woman he took up with on the old Bowery. He could detall the complete action of a brawf that happened in a Singapors dive in ought-seven.
But when I tried to pin him down to any relevent thing aboulthe old days, I'd draw a blank. All he and the others could recall was personaltrivia, having no practical or historical value, Later, when I got into this Reld and quizzed many elders about common old skilis I lucked out completely. They all remembered people wha knew' such things, and some even remembered having done such things themselves, But when if came fo detailing the process or updating it for today's use, torget it. They had no need to retain such knowledge, don't you see? So over the years they forgot critical steps in the processes they had had some knowledge of, the same as you or I would.

So put the matter of the old person in the shelter in its proper perspective. It you consider saving an elder under any survival biroumstances, don't do it because you will need that person. With rare exceptions, you wor't. If you save an alder it will be because you love that person.
Now that we've estabilished (as lar as I'm ooncerned) that saving an elder is mosi likely an act of sheer altruism, let's see what this would involve.
First of all, an elder is sel in his ways and faced with the idea of going underground and then coming up to total chaos, he'd probably rather take all his prescription medicines at once and finish himself off.
Let's say, however, that he means to ride it out. (And when I say "he" I mean Granny, 100). So the elder goes down into the sheiter, finds it uncomtortable and boring and simply dies. In's as simple as that. When you are all battened down and the elder dies, as you must realize is almost a certainty, what would you do with the body?
Actually, the saving of persons whose furiher enjoyment of life would be cut off by such hardship would be cruel. Better to put a fittle something in the tea. Besides, it there is reatily room enough in your shelter for a person of little or no value to your survival programs, common sense dictates that that person should be a nelghbor's child. At least a child has,potential:

The quastlon of whom to save in such a circumstance is largely academic. Who knows what horrible decisions an individual will have to make at the last moment?

There is a book that is out of print but which you might find in your library, it is "Flight in the Winter," by Jurgen Thorwald. This deals with Germany during the invasion by Russians at the end of WWII.

Paning the Cornera irom Syuare Stoek by Macina shown in the sketch. I procured a piece of ordinary tongue-and-groove flooring and clamped it in the bench vise, then drove a nail in the groove to act as a stop, and in no time I had the sticks planed into arrows.

How to Bake a Fish in Clay

A clay-liaked finh is so simply prepared, conipared will cooking it in camp, that it well be haded syith delight. The best kund of elay to tise for the purpase is the grity elay fenerally fornd alone sorearis. but in the absence of this, oritinary real clay will anower. The fish is cleaned and washed, stalfed if desired, und sewed ap In the osdinary way, the liead of the bist may be teft on. The Elay is packed around the fish su that there will be a 2 in . thickriess of it at pil peiris, and it is then ready to be sueked into the tire. Terviously, a liot hardwwod fire Aas been kept going; ash is to be preierrod biscause it produces hat coals that lase a long time. It is generally a good ifea to convert the exenitar canpfire into as heas of doall for the purpose. The fast is phaced at the hottom of the cuab, 50 v creft, and left overnight, It the mathing the coals are scraped away, and the liard-baked clay eruss hroken away with the catip hatchet, exposing the thoronghly cooked fish, ravory and palatable to the last morsel. A 5 or 6 - 16 , fish makes an iffeal bake.

A Candle-Shade Holder

From Popular Mechanics 1915
A holder for either round or square shades can be easily constructed from a piece of heavy copper wire to fit on a

Twe Ferme of Shaide Hositer Mate of Cosper Wirt for a Candiestlel
candlestick. One end of the wire is looped around the upper end of the candlestick, then bent so that the main part will be vertical. The top end is shaped into a circle 2 in. in diameter or a square having sides 2 in. long, as desired.

Aside from Hitler's National Socialist doctrines in that period, the German people then, before and since, have been close in culture and attitudes to Americans. They were a very stable people, for the most part.

Thorwald recounted an instance of gut-level survival, to which I'm afraid most Americans would act similarly.

As the Russians moved in, looting, raping and murdering civilians, there was this last German ship leaving a certain port, headed for an area the Russians wouldn't reach. (I don't remember the ship or the port, as I haven't seen the book in years).

Germans swarmed in huge crowds trying to board that last ship. The captain announced that only people with children could get on. As the word spread, people went around the town stealing children for use as boat tickets.

Many lucky adults actually threw their own children over the side to wives or husbands waiting 40 feet below on the dock. Most children who were caught, died from the impact. The greal majority fell into the water or onto the dock itselt.

Just as a sidelight, that packed ship was later sunk by the Russians, making it the greatest loss of civilian IIfe in any single ship disaster.

If the Germans, supposediy the most disciplined people in the West, could act like that, what will you do when it's every man for himself?

THE GENE POOL \& SEXUAL SURVIVAL

By Kurt Saxon

A deer herd is led by the ablest buck. He takes all the does and fights any challenging bachelor. Bachelors may never breed, but they stay, giving alarms and fighting off predators while the does feed in the guarded area. They are still in the gene pool. When the leader weakens or is killed, the best bachelor lakes over.

The ablest wolf in a pack is usually the only breeder, Pack bachelors hunt and guard the leader, his mate and pups. Females born to the pack leave with the strongest bachelors and begin their own packs.

Sex among wild animals is only a driving urge to survive genetically. The male is not turned on unless there is a nearby female in heat. The urge being seasonal, the animals are peaceful for long periods between mating. Humans are not regulated by seasons so they are ready Just about all the time.

Primitive groups of men were regulated basically the same as the deer herd or the wolf pack. The best man had all or most of the women to himself. But since the procreative urge was fairly constant among both sexes, there had to be rules, lest constant infighting destroy the group. Humans had to ritualize, traditionalize and rationalize sex.

The Bible is the most explicit record we have of primitive peoples; nomadic herdsmen and small village groups. Here is graphic evidence that primitive peoples replaced the animals' natural sexual restraints with the taboo.

These taboos were just as strong with primitives as biological regulation was with animals. The human bachelor, too, had to wait his turn for an available female. He could only find gratification through winning a female in battie or buying her from his chief.

When Jacob consldered himself worthy to reproduce, he went to his third cousin, Laban and asked for pretty Rachel. The price was seven years of servitude. Then Laban gave him his older daughter, Leah, instead of Rachel, Genesis 29:21-26, saying he wanted to get rid of his firstborn first. Laban got Jacob to work stilf another seven years for Rachel.

As hard on Jacob as that was, it shows that he accepted the rigid sexual taboos of his culture. Like the animal bachelor, Jacob was resigned to celibacy until his mating was approved. As most men in his culture, he had to struggle to pass on his genes.

As agriculture developed and more people could survive with less effort, cities came into being. Here, there were not the controls faced by deer, wolves, and simple herdsmen like Jacob.

The cify fathers had the best and the most females. Males without property

Drillprose Improwised from a Vise and Electric Motor

Beall Chack oa Placirk Motor sad a Vha Yava
puabes the wark against the drill. This arraggement is quite satisfactory for odd jobs where the work does not justify the atpenste of a regular press.

DETECTOR INTRUDER

By Tommy Murphy

Electronies can be put to many uses in the situations that will contront i person in a survival situation. Electronics makes it easy to have a bunch of seatries to stand guard for you. An advance warning system can consist of simple materials, some thin copper wire, a few staples, some conductor wire, a battery and slarm, either visual or aural, or both. 1 prefer both as I do not want to be tied up by watching light. If the perimeter is penetrated, I want to know instantly about it.

I would suggest that a number of automobile headlights be rigged up on high beam and put in locations that will give you a circle of bright light. The sudden glare will blind an aggressor and give you an edge if the intrusion oceurs at nighttime, You cluster the lights as it is quite possible that an attempt would be made to shoot them out. Then of course, that would pinpoint the location. Notice that I use a 12 volt car battery, car headlights, and as many other parts from automobiles as possible. There will be lots and lots of cars and trucks laying around to salvage from. Also the electrical system can be used in a homemade wind generator to keep those batteries charged.

Now if we are going to use electronic equipment in our little stronghold, it stands to reason that we should learn as much about it as possible. You could keep
or influence took the leavings for wives or had access to prostitutes, Prostitution may have been encouraged by the leaders to keep bachelors away from their harems. Homosexuality may also have become tolerated for the same reason.
Thus, the leaders controlled the gene pool, so did not feel threatened by the vices of common folk. At any rate, with the institution of cities, sex became associated with pleasure.

Sex was not fun to Jacob; it was just a rellef of his natural urge. To his wives and concubines, it was only for the conception of children, a primitive woman's only chance for fulfillment and recognition.

The fact that Jacob didn't even know he was mating with Leah instead of Rachel, Gen. 29:25, shows that the act was as simple and one-sided as the sex act can be. This is reinforced by the tale of Judah and his daughter-in-law, Tamar (Gen, all of chapter 38). After the Lord killed two of her fusbands, Tamar despaired of being got with child. She then played the prostitute and seduced Judah on his way to shear sheep.

Now, Tamar was around the house constantly, but Judah didn't recognize her when he mated with her. No kissing or foreplay. Just wham-bam-thank-you-maam. That was sex among primitives-

On the woman's pari, there was no involvement. She was just a vessel; an incubator. In Deuleronomy $25: 11$, the law states that if a woman touches a man's "secrets", even in detense of her husband's Ilfe, her hand was to be cut off. This taboo concerning the male organs was just a reinforcement of a woman's non-involvement in the sex act.

Non-involvement for the female was essential since the husband was often away. Had she considered sex itsell as pleasure, she might have been attracted 10 other men. So sex among primitives was only for relief and procreation. Oniy in the cities had sex become a way of life, rather than simply a part, and therefore a vice.

In primitive, close-knit socielies, violations of sexual taboos had consequences understood by all If a mares aon look up with prostitutes or other men. his lather was denied grandchildren, It a bachelor deer should choose the best young buck for a mate, when the lead buck was out who would fight for the does? A lesser qualifled buck would pass on the genes while the prancing bucks fed with the girls. End of herd. It a bachelor wolf frisked with the next in line for succession as pack leader, on the death of the leader a lesser qualified bachelor would take over and the pack would die out. In Jacob's group, life was so hard and infant mortality was so high that no one could be spared Irom contributing to the gene pool. Had he took up with a fellow herdsman, he wouldn't have worked fourteen years to get Rachel and then the Christmas card business would never have had a chance.

As primitives became less primitive and more chlldren llved, it became easy for them to lose sight of the importance of the gene pool. So elders set about codilying the sexual taboos into law. But since sex is usually done in private, the laws would have been hard to enforce. The best method known to them of enforcing genetically proper soxual behavior was to say that the laws were given and enforced by the local diety. This worked, after a fashion, but as people merged and traded gods back and forth, the sex laws became adulterated and their real purpose was generally lost sight of. This was especially so in the cities.

Enforcement of the sex laws was in a large part responsible for the Israelites' antagonism to clty folk, their loose ways and their many gods. They teared any influence by loreigners and their often more sexually liberal gods.

Today's people seem ignorant of the natural laws concerning their gene pool. This is especially so in this country, where homosexuality is promoted as a purely private matter and an individual right.

Opposing thls growing attitude is Anita Bryant and her Save Our Children campaign. I admire her stand and that of all her supporters. But her main emphasis seems to be on religion. Primitives have almost universally been anti-homosexual, regardless of what gods they worshipped. To ascribe a
lots of spares but the better way is to learn to keep what you have going. If you are going to use a survival tool, learn as much about it as you can. Electronies for our use does not have to be complex or difficult. The simpler something is. the less parts there are to go bad. With this perimeter detection device lanyone can make it) yet it works as well or maybe better than many sophisticated warning devices. The important thing to remember is secrecy in the installation. Hide the trip wires well.
The major disadvantage is that the circuit is live and uses battery power all the while it is in operation, However, the eurrent consumption is small. The thin copperwire is strung around the area you wish to have covered in a double-loop, so that you have double protection just in case someone gets by the first section of wire. The wire can be stapled to stakes or trees throughout the perimeter area. As long as the light on the system is on. then the system is alright. When the light goes out, the buzzer will sound, and to tell if it is just a bulb failure or not. there is a

built-in check for light failure. Note that six volt bulbs are used in the system, because of the voltage drop that oecurs in the long run of warning wire.
The relay is of the type that uses very little current and is quite sensitive. The relay is held in a pulled-in position by the voltage through the system. If a break occurs, the relay will drop out and cause the buzzer to sound as well as the indicator light to go out.
Now you are using electronics, in a simple form but very effective. With just the use of your hands and a few bucks, you
purely genetic law to a specific god obscures the purpose of the law.
Anita says that since homosexuals can't reproduce, they must recruit. This is her most valid point and conforms to the law governing the gene pool. Since recruitment is epidemic in our time, this point should be elaborated on almost to the exclusion of other arguments. But in quoting scripture so often, she makes homosexuality a Fundamentalist Christian issue. People who aren't Fundamentallst Christians and have no concept of the gene pool, simply consider anti-homosexuality to be relligious bigotry.

That this is not at all the case is proven by the attitude toward homosexuality by Russia and Red China; communists and therefore atheists. In Russia, homosexuals are sent away, seldom to be heard of again. In China, homosexual seduction is punishable by death, as it should be here.

As a Survivallst, you may consider our culture too far gone to be concerned with a bunch of perverts taking themselves out of the gene pool. You may belleve they are natural defectives and so the species would be better off without their genes. Also, with so many more people than the nation can properiy handle, the less children born, the better.

The truth is, however, that homosexuals are not necessarily natural defectives. And concerning the surplus population, to call robbing the gene pool "birth control" is Insane,

It homosexuals preyed only on inferiors there would be some positive results. But whereas the normal male wants the prettiest, healthiest girt, the homosexual is attracted to the best looking, healthiest boys around him.

Psychologists have tound no evidence that any virgin is naturally oriented foward homosexually. There is no such thing as a born homosexual. Homosexuality is a learned preference. Also learned are the effeminate mannerisms and speech patterns.
Homosexual seduction usually occurs when a young person has passed puberty but as yet has had no real sexual experience with another. He is often lonely, confused and alienated. He is then befriended by a homosexual and seduced. Since it's his only sexual experience and part of a friendly relationship, il can become his preference, and then he's out of the gene pool.

Not all youngsters are approached. Not all attempted seductions are consummated. Otten, a lad is approached by a stranger and given a particularly disgusting proposition or is oftended by unwelcome physical confact. In his ignorance he believes inere was something about him that told the pervert he would be receptive. Doubting himsell from then on and wanting to remove any such doubts from the minds of others, he becomes a "aveer baiter". The queer baiter often contributes to homosexuality. Not content to insull obvicus homosexuals, he will taunt a virgin lad with "fairy", "sissy", etc., because the boy may be gentler and quieter than other boys. If the taunting gets to the boy and makes him doubt himself, he may be a pushover for the lirst homosexual he meets. A father who nags his son to go out lor sports and be a "man", often drives the kid right into the arms of the coach.

Homosexuality is indeed epidemic in our land, Los Angeles alone is reputed to have at least 30,000 or more little boy prostitutes, some preteeners. Homosexuals say they aren't interested in little boys. They would have you believe the real culprits are child molesters-pedophiles.

These wretched pedophiles sometimes kill their victims and most often injure them physically and lor mentally. The victim of the child molester is usually traumatized and so is hardly likely to seek more of the same treatment.

No, the 30,000 little boy prostitutes in Los Angeles and elsewhere were seduced by predatory homosexuals who treated them gently and paid them. And 30,000 fittle boy prostitutes couldn't get by in the trade without a large clientele of active homosexuals who do indeed like little boys. There are at least 200,000 homosexuals in Los Angeles County and over 100,000 in San Francisco. Homosexuality is addictive and since it is spreading like a plague, you might even say it's contageous.
get a security system to surround your entire house. A system in your home is good of course, but that means that they are getting mightily close. This way you have a little time to give them a greeting.

PARTS LIST

II-ALARM LIGHT-Use 6 volt bulb in system due to voltage drop through loop. Radio Shack $\# 272-318$ or $272-319$ bulbs. Light-Radio Shack H272-324 or 272-325.
R1-RESISTOR-82 OHM. Radio Shack H271-008, $1 / 2$ watt.
S1-PUSH BUTTON SWITCH-Radio Shack \#275-1547, normally open.
RELAY-Miniature type. Radio Shack H275-230 or 275-004.
B1-BUZZER-Radio Shack ${ }^{\text {®273-051. }}$
BATTERY-Any 12 volt-prefer automobile.
WIRE-H26, Radio Shack H278-005.

With the new tolerance toward this vice, every child is more vulnerable now. Especially when he sees perverts parading across the TV screen to the cheers of Liberal "heterosexuals".

One such Liberal is Jim Dunbar, a San Francisco talk show host. A while back, I heard him say he was encouraging his fifteen-year-old son to be tolerant of homosexuals, I was glad to hear him say that. Anyone who has done as much as Jim Dunbar to spread the acceptance of perversion deserves to have his line die out.

On the same station, I saw Chip Carter come out publicly endorsing "Gay Rights." When the son of the president of the United States openly approves faggotry, who then can say it's wrong?

There is Iltile you can do about the national gene pool. But you must guard your own family gene pool. You should tell your youngsters that if any adult gets overly friendly and tries to pet or fondle them, they should come home and tell you. Now with homosexuals agitating to teach as identifiable perverts, our national gene pool is in even more danger. If I had a kid whose teacher was an admitfed homosexual. I'd see that teacher on the road or under the ground.

How to Make a Bow Trap

From Popular Mechanics 1928

A bow trap is easily made and is very effective for killing rats and mice. To make one suitable for rats, nail together four boards, 8 in . long and 5 in . wide. Drill two holes, 1 in. from one end, to hold the bow as shown. Also cut an opening. $21 / 2 \mathrm{in}$. from the opposite end, for the trigger. Drill two holes, 2 in , in front of the trigger hole, for the noose, which should be made of fine wire. The bow is then attached; it
should be quite supple and strong. Whittle out the trigger and catch. and rail a small loop of string to the box to hold down ane end of the catch, the trigger being used to hold the other end. Tie strings from the bow to the noose catch as indicated, carefally taking

up all slack from the noose. Adjust the eatch string so that the noose will fll the space in the box opening when the trap is

Any Boy Can Make This Bow Trap Iar Catehiag Kati
apad Mien

BORAX DELAYS SETTING OF PLASTER OF PARIS

Plaster of Paris may be used for patehing cracked casts and similar work without undue haste if powdered borax is added in the proporlions of 2 oz , to 1 lb . of plaster. Mix the powders well in their dry state and then add cold water until the resultant paste is of the consistency desired. The plaster will take almost twice as long as usual to become set and unworkable. This is a formula often used by dentists and doctors.

581

It's Easy to Tool LEATHER

DECORATIVE leather fooling is so wimple that the veriest amateur can do a pleasing job, Alshough we work cin be done with only a nutpick, a small thumb-shaped modeling tool will greatly improve the original jah by brieging it into sharper reliel, and, as the begimer gains skill, an assortment of homewade stamping dics, punches, and other foots, as shown in Fig. h_{1} may be added to obrain a yariety of pleasing designs.
For a bilfold, unly fore toado are requitud. " nutplek a inotstoris stampink the for the hordes and a leatber putheh. The mout satio lactory mafociat is Krgetish toolitie salf, wheds has a velpery sutfice amt Fwhine ter prevsions teallily. Oave kallskin of aptir cow hate with go2e timish are alon semable. A lest of propier leatier is is jordent it with the rkamt nail th the impression is retained, the mareridissuirable, Afer obfaimiog ile leather, lay out the dewign shawn. or any ather of your selcelion, ne a slieet of paper. To chousing teo sign, plek une fot which the bite. are wot tou intelcate bof roo-close togetber. It is best to cus the leather ncersite and trim it dowe after the tooting has beetl inne, as the begimber may pull the piece out of true shape Bestidet, al litte extra leathet permits the tice of thumhtarks or paper clips in tracing, withow mannwe the edges. Get a piece of lysivy plate glash, such the part of a windshield or a slah of smboth state or pulfilied marlbe, upot which to lay the woth. It tracing the penciled designe you call fastes the work to s smonh bucked with Hemeltacks. Eifher a bard perticil of a ontprich is spitable for tracing, leaving the ilesign plainty visithle on the Teather. If the poomt

[^0]of the nutpick is sharp and has a tendency to scratch, round it off slightly with a file and smopth with fine emery paper or an oilstone. There should not be the slightext roughness on any of the rools. A modeler can be made by eutting off $29 / 2$ in. from the pointed end of a spike, as in Fig. 7, Hariening and bending the end, and then grialing it round, sonvewhat in the shape of a tiny thwmil. Set it in a hardwood hardle, Fig. B, so that the end extends about $1 \% / 4 \mathrm{in}$. While making this tool, you may as well add a pebbling die and a flower stamp. as shown in Fig. 8, as they will rome in handy on subsequent wark. The pelibling the is merely the end of a Hattened bolt of spike, groseved with a Daree-cormered hile. The fower design is made in a similar manher. Ortier dies in great varioty can be atded from time to Eime, among whict in sur is ofron quefut. With tho desien envect ow the Jrather decpen has liews with the melpick as showes in Figi 2. haviog Tiest mossteried The leativer wisth a wat ponge, and keep
 with the work; Afigr the linet bage leen Tradvatorb we the apodeler to prows slown the kesolier arombl the main muslayn uf the despar rond so worla is inta roliot, as showe be Fogs 7. Do not atcewpi itos, howswer, where fiers are chose ingether as in dee Thing of the lion's mates ive picalt of Móyert abis lesace, etc. The backproind around the fogure car ciflier be pebbled wish the metpret of wirt the petstion tant, For lage surbapes, the later malias for Joss heavy work, altheagh tlie formet nay perliape give a more plevering effeer. After the coolines line heon comptetod. ont the picke to figuslied size. layne if flat on a traat and wing a slanto (bin knifeblade agaros a toptat rate be staightedge

Foit a bithorte suft a plato piece toe abroc size an the towled piese. Scote the looled pieco tighety whore if is to bed folded, then fold tho two plecet along the fine, (the us (he lisedwond ctemec shawn in Fig. io Nobe that the intues prece will then cripnd slighty lieynnd the numsifie tec sians: itifio fle former fouh Wher stirs th. slone. the hilliold sall fold matistally, whhosit in hulge on thi fuside picce. With a pair of alwidera, or a rule and sharp pencil, lay ont centers of the boles for the lacing on the tooled piece. They stroald not be over $1 / 4 \mathrm{in}$. apart on centers and $1 / 8$ in. frum the edyes Use a learher punch of about Thein, diameter, and punch holes in the inver and outer pirecs, as well as the sard-pocket flats, at the satue time so hat all heles will register. If you cantest buy thongs vut to sotiable sime from the shoemaker or leather-supply hoosse, lay at long atrip of calfskin oft as smopth linacd. with
entire piece is ennboised as shown in Fig. 5. The petals and leaves can be brought into very prominest relief by asing an embossing tool around the edges, as int Figs. 6 and 12 . This tool consists of a spike with the end flattened, bent to a curve and then ground to the shape shown. It is worked around borders of the design and tapped with a cowhidecovered stick, as hammer blows would he too sharp for this work. The depressions can be made even deeper by first using the pebbling tool and then smoothing out the marks with the Hat-sorfaced emboss-
ing tool. After the embossing has been completed, a buckle and straps should be sewn on by a cobbler to insure a first-class job. The background of the design can then be darkened with black leather color.

An endless number of useful and attractive objects can be made by the amateur as he gains experience.
the grain, and run the knife along the edge of a ateel raler. elutting off serips about ten of K in wite spliciog ren be dione by tapering. the ents 1/4 Itr and asiog leatber ce. ment. The lacing is shuws in Fige 9 At the reargets. the thang slough be passed theough the bole I wice.
Enbossiote a beh is mot of all difficult. bus requires time and patience, Of cours. it ean be ruoled by the methoul hust ile scribed, hut the exifousing will not be as distines as when a die is usend Buy a strap- of cowhide, ooze Einsty, ahoul 1.4 in. wide and the reguired leagth. with an extra 5 -in, tength of hexyier cowhide to setve as a die. Lay out the flower desigh. as shown in Fig. 4, on the latter piece and cut it in outline with an incising tool which is groand from a round fite, has a $30^{\circ} \mathrm{V}$-shaped edge and leaves a very distinct incision. See Figt 11. Hold the tool with a firm grip nearly vertical, cutting to about Ka in. or more in slepth. Next lay the belt strap flat on the marble of glass slab, moisten it, place the die over it and pound with a hammer as in Fing 13. This presses the belt leather down between the incisions of the die and forees it up alomg. the lines of the design, leaving shem in sharp relief. The slic pratiern is osed successively along the length of the belt untal the

Bottlenecks Make Serviceable Insulators B OTTLE perks, being made of glass, are ideal for insulators when secured firmly to a pole or inserted through a walt. The easiest method for separating the nedk from the body of the bottle is by the use of a gas soaked twine, as described in the handikink itemb "Emergency loe Bag from Inver Tube, Mason Jar, ${ }^{H}$ To make an outdoor suspension insulator use a milk bottle neek, secured to the pole with two nails driten in as shown in the accompanying drawing. For a lead-in insulator, the nock of a medicine bottle serves beat. It should be slanted downward as illostrated. A little putty will hold the glase firm in the wall-

How Much Will a Mother

Cleveland
 New York Times

Most of the time at the Bainbow Bables' and Children's Hospital here. the doctors talk about children and their morhers. But sometimes, they talk about goats.

Goats provide an extreme example of how nature makes sure that offsping are protected. In the first ten minutes of her kid's fife, a goat mother identifies it as her own and becomes firmly attached to it. But if the kid is removed for those early munutes, the goal mother will reject it.

Two pediatricians - Dr. Marshall Klaus and Dr. John Kennell - assert that something similar, although less extreme, happens when bumans are bors.

From their own research and clint cal experience and from studies theis work has spurred elsewhere, Klaus and Kennell have concluded that the contact of human mother and child in the first hours of a baby's life - perhups in the first minutes - may have a longtasting effect on how attached the mother will be to the child.

Although a mother's attachment nearly always does oceur anyway, Klaus and Kenhell say that in mariy women it may not form as easily or as obvtowily without extended early periods with the baby,

They say the firdings are espectally imporfant for mothers who are more tikely to have diffleulty becoming close to their babtes = because their chtldren are malformed, premature or unwanted.

The doctors, who are both protessors of pediatrics at Case Western

Love Her Baby?

Reserve University, which is assocjated with the Rainhow hospital, say that in one carufully controlled experiment they studied mothers who had had hours of early coniact with their bables and compared them with others who have had only brief contac.

A month after the children are born, mothers who have had more early contact with them are demonsirahly more affectionate - they fondle their children and gaze into their cyes inore than do the other mothers.

At one year, when these mothers ure observed at the doctor's office, the same affectlonate ones haver ahout their childrea more, soothing them. They are less eager to leave ther chudren with arryome

At two years. they spenk to the children with a greater number of words and questions and with fewer cominands than do the other mottersa findug that could have implications for intellectual development.

Kennell says the studies indicate that "The earller you put mother and child together for extewded periods, the more powerfal the effects will be" Increasing contact any tifue in the first three days appears to be effective. But both Kennell ant Klaus are convinced that there is something especially im portant ahout the time mother and child spend together in the first hour or 90 minutes after birth

Durine that time they say, the baby and mother boiln seem to be in an

Bnusual state of musual receptovity. The mother, if she has not beoll made drowsy by drugs, is at the peak of excitetnent at the same time. the baby is mure alert in the first foour than he will be later. The baby's eves may be open for as much as 45 minules later they will he closed 90 per rent of the time.

The halry's wakefulness is importank Klaus says, "because the mother can' make love to a baby unless the bahy makes love to her."

The lovemaking the pediatriotans describe ss a kind of primeval dance. The trother gazes info the intant's eyes. for increasingly long periods of time, all the while talking to the ehild in a highpitched volce - because the mother is somehow aware that bahies are more receptive to lugher pitches.

The votce m the damee music, The baby's movements often synchronize exnetfy with the thythmi Now-motion pictures reveal an eevie preciston in the infani's hody movements as the mother talkst And the intant is following the mother's face, 100.
sonce early contact appears to be powerfut in affucline the behavior of mothers, say Klaus and Kemmel, why tmake the attachments more difficult to form by using procedures that keen mother and child apap?

So they support the recent trond toward "family-centered" childhirth that allows parent and child to be logether immediately.

You Can Write on Metal

with this easily made vibrating electric pencil

A battery or a small Eatalermer suppliev the surrent required ta operate the peptotl

By KENDALL FORD

TOOLS and othet mecal bibjects may be permanently marked for iderfification with a homeniade sitical. ing electric pencil of she type illustrated, It may be easily made Irom polds ami eads.

The handle is shaped as in Fig. 1 Irom a plece of cloot-grained, round woul 解 in. in diameter and 6 in. long. A picce of maple dowel forms an escedlent handle. but if is is not available, a satisfactoty sthistitute may be made front an old brooms handle. Drill a fort boke in the laree end
of the bandle to a depith of $19 \mathrm{~h} \mathrm{in}_{\mathrm{in} \text {. and as }}$ $5 / 52$-in Wole to a further depis of k x in. af thown. Then out a rea ess in ote side of the handic for the twomarese spfleg.

Obtain a prices of $50 / 1$ iron poid, $5 / 32$ in in diemoerch, and cut tothe size and sthape indicated in $\mathrm{Fig}, 9$. A 12 -penny nad has an zplroximate drameder of $5 / 32 \mathrm{im}$, and will serve satibfactorily; for this puige.

Apprasimarely A If. of \$o. 20 deable colron-covered wire wit be requited for
the cuil
Pace it sarrow
sttip of iefiction tapu or sone and slarl the the pointud und. The placed ocer the bape whick the end of 2 be over the wire. When roil is completed, if folded end of the tape and secure the
alone the Tran rod, stibiling S. in from end of the wite is (Itin. 10), after tape is foided lack the fiest turat of the will pass over the
starting lead fimly in place.
Contmue winding until within $1 / 6 \mathrm{in}$, of the opposite end of the core. Then fold over the tape and begin the second layet of the coil. As the second tayer is started, place a narrow strip of friction tape on the opposite side of the core and proceed as in wioding the first layer. Three layers of wire should be wound on the core, with the ends brought out as shown in Fig. 3 . Sbellac or paint the coil to serve as a binder.
Obtain a piece of No. 26 gauge spring brass. or phosphor bronze, 14 in . Wide and $2{ }^{2} 4$ in. long. Mark of sections and drill as shown in Fig. 4. This piece, logether with those shown in Figs. 6 and 8, serves as the armature and point holder. Drill all the holes with a No. 40 drill, except where a No, 44 drill is indicated. Shape the spring as shown in Fig. 5. Cut a piece of No. 20 gauge soft iron to the size showe in Fig. 6 . dill and thread as indicatech, and bend to the shape shown in Fig. . Fivert pieces 5 and 7 tagether with a plere of solt lran wire, as shown in Fie. 3.
A piece of No. 26 gavge solt trast ar tin should now be cul to the size shown in Fik. B. Drill as fedicated and beod so as

The h siotit, the amenbled ubochink paiets and delails is spmoheis, sprlag, asd otbpr peris
to form a ghoone for haldine the needle or copper point secirely (of the armature. Secarc the aecdle holder to the end of the amutare with a $\mathrm{Na}-4-46$ machloe screw.
Joset the coll in the handle and bring the sarting lead to a mpall Fahostork of Inatcry chip, as thenw in The 3, A clip
taken from an old radio "B" battery will serve. When securing the clip to the woeden handle, take care that the wood screw does not extend into the coil. The end lead of the coil should be brought out through a small hole previously drilled from the spring recess to the end of the large hole in the handle.

Fasten the armalure to the handle with a small wood screw, and solder the end lead of the coil to the screw, as shown in Fig. 3. Glue a piece of tape or thin cardGoardover the spring recess, and paint the bandie a suitable color.

The voint may be an ofd phonograbh needll of a pointed piece of copper wire, but since the effect of each varies on difierest metals it is advisable to experiment with both. In using the pencil, one wise from the source of supply is connected to the artucle to be marked, and the other wite is connected to the clip on the pencil. From four to six volts will be requited to operate the pencil, and this voltage may be obtained from either a battery or a small transformer. The pressure applied to the pencil should not be so heavy that it will not allow a free movement of the vibrator,

SURVIVE IN THE CITY

By Boyd Hill

There are a great number of people who, when the balloon goes up, can not or will not got out of the bigger cities. Take ine, for instance: 「im old enough to be your grandfather, aeverely damaged physically. totally dependent on special medicines, and unable to get out or stay out io the boondocks to survive.
Yet I intend to survive. Here's how....
Not everybody can bug out when the time comes for rioting and looting in the cilies. The elderly and the ill are chained to urban existance. Yet even under the worst conditions they can give themselyes a better than 50% chance of coroing through alive and well.

But first of alf dismiss any thoughts of nuclear problems. Chances are a thousand to one that nukes will be like gas-mueh feared, much talked sbout, but never used-in major conflicts, that is-because, like biological warfare, it ean rebound too terribly on the first user. For that matter, if it ever comes to such bombings just forget survival planning, Living through it will be a matter of luek, and nothing else.

Civil disturbances are a different matter. They have happened already, and will do so, more and worse, in the fuzare They also will spread out into the countryside, particularly so long is gasoline is a vailable.
But remember this: No matter how terrible the conditions may be, they cannot last forever. If the government is strong

Cenvogh, is wail pat dowa all the trouble inaide of ten days. If the govermmental force iv absent. the dstwrbances will burn themselves mut inside of three weeks. So if you are prepared to live tsolated and protected for only 20 days, you will almest coriainly survive the viobenee,

Alsa romember that efylt disturbances alfenst alwiys give plenty of warning. Tenstom foilds ipp, shot there are many small riots belore the big one. Even so vintent a time as Watts lasted much less than a wepk Anybindy can survive a full week whomit any preparation, so long as he has a home thac eannet be borned out througb mixadveniare Juat stas inside with the door lonked and barticaded, and all lights out all the line, and wait untll your radio telts ymu the At Cleat is in effect.

A toilet kank and bowl bolde enough olear, sterlized water it's the same that corres nut of your kitchen tapy to lase two peopter combortably for a wrek, for drinking, cooking and scanty washing purpeses. In the hot Sonah Pacife in War Two the lits managed perfectly well on two ranteensfall two grarts each day. Anybody who is worried about a littles contamination in a Loflet luwl and tark can puta teaspoan of Chlerox or Purex in each. and be thereby easy in the mind.

Fhoul really is no shart term prohlem. Pracuically everphody above the Lotal poyerty levet has far minre edithles stowed on their shelves than they realize And besides, face up toin; a person ean go for 30 days withoue evept sntretimec to their
physical improvement. Just live days of cansed edibles on the shelver can be strelched. by quarier rations. inte 20 man diy ywol food.
Sanitation will be mest important when anm is cut aff from the worid and running water Bun the nolvtion becheap and simple, Get an inexpensive plastie bueket with a Sixht sealing lid. a thaen or so strong Phatir haves larkef than the huckel. a bottle of deodorant-disinfectant such as Pine-Sol, and a fow of the wire "twisters" used to close brendbags or other plastic containers. Put is bag in the bucket, lapping the b ag's edges over the rim of the bucket. After usings, put in a squirt of the disinfectant, twist the bag closed and seal with the twister wire, and put the top on the bucket. Each new use, untwist the bag top, then re-seal. A dozen bags will last two people more than a month. So it may smell a little? That's better than being dead. Dead people smell a lot-and a lot worse, for that matter.

Riots are not continuous, nor do they stay in one location. They flare up and down, and move from place to place. When the trouble dies down around your place, join the looters or the lawful, to augment your necessary supplies of water, food, disinfectant, ammunition, medicine, or whatever

And if the edibles have been swept clean from your market, look in the pet food section. Canned or dry eat or dog iond-along with dog biscuits- are nutritiious provender and some of them (so I'm
told) are reasonable tasty.
Being ready takes little time or money. Have, or be able to get, containers for 10 gallons of water per person; have your sanitary bucket, bags and disinfectant stowed under the sink; keep a week's supply of eanned goods on hand, and a bag or two of dry dog food.
Be able to close your door securely, Get a doxen lag screws and, when the time comes, drill the door so it can be screwed shut all the way around from the inside.
Make up a sign on yellow paper or cardboard: if you have access to an IBM Selectric typewriter you can prepare a very official document reading:

STAY OUTIDANGER! QUARANTINE

This dwelling has been exposed to BL BONIC PLAGUE death. Do not open until
fumigated.
// /Joseph Blow. MD
JOSEPHBLOW, MD CITY HEALTH OFFICER

Put this on the outside of your dour with thombtacksor tape, and it will probably be better thari a barricade against prowlers.

So lock yourself in, keep your lights off, don't try to cook. don't go near the windows unless they are shaded, and just settle down to sweat it out, Chances are excellent that the disturbances will expire before you do.

SCOTTISH SUING STICK

Take a wooden stick, abont a halfinch thick, Cuta flat spot about an inch from the
vop Tie a soft leather pouch to the flatened tip, and run a looped thong from the pouch to about six inches trom the other end. Hold a small rock or such in the pourch, against the flat spot of the wood, hoiding the rock in place by tension in the thumb holding the other end of the stick.
Swing the thing as pleases you best, and relcase by slacking your thumb. These slicks can be made as long as one likes, with an increasing power and range. However, if they are much longer than ahout 14 (hichice after a few dozen casts you'll deselon a sore arm and shoulder you'll revert lur a lonctimes.

It is open to debate whether fishing

HUNTING FISH WITH A BOW

For thousands of years, men have been fishing with bows. In some countries. bowfishing predated the rod and reel. Even today, bowfishing still has a place in these days of graphite rods and computer designed lures. Whereas rod and reel fishing is a largely passive sport. bowfishing allows you to actually huat your lish, rather than waiting for it to come to you.
All that a bowfishing rig consists of is a reel or other device attached to the bow to bold the line, and a barbed arrow attached to the line.
Some states permit archers to take the so-called "rough" fish, while other states forbid bowfishing entirely. It's always best to check your local laws, lest you tind your gear confiscated by an uncooperative game warden.
If you don't already have a bow, get a good target or hunting model with at least a 30 pound draw weight. You won't need a powerful hunting model as the shooting range is nearly always under ten yards.
In the equipment category, the next thing to get is a reel and line. Sporting goods stores and mail order houses sell the protruding ends upwards and snip the excess wire to complete the barb.
reels for as lible as three dollars, ineluding line and the wire frame you tape to your bow below the handkrip. I's easy to make gour own, though. You don't even have to use a reek; coiling your line in a plastic drinking eup works fine. A paper clip holds the line fusually atbout 75 yards worth) in the cuy until the arrow is shot. The line shoald be al least 60 pound test. as the arrow always comes to the end of the line with a great yank that will snap weaker line. Be sure to tie the end of the line to the bow.

The best cand mnst expensivel fishing arrows are made with shafts of solid aluminum or glass. They are best becaase of their lack of bouyancy, which gives them more bitting power than wood or hotlow aluminum: 'If yod're hard up for cash, it's okay to use wood arrows. But they will deflet more and hit with less force.
You can buty harbed arrows at the sporting goods store, but in's much cheaper to make them. Just sharpion the head of a regular field point, then drill a hole through the shaft an inch below the tip. Insert some stiff wire and bend it a single turn around the shaft. Lastly, bend
arrows need fletching or not. The short range involved usually negates any stabilizing effect feathers might have: nevertheless, some bowfishermen swear by them anyway. It's your choice. If you opt for fletching, there are sprays available to waterproof the arrow's leathers.

About the best way to attach the line to the arrow is to drill a couple holes through the arrow's shaft-ope a litte behind the lip, another near the arrow's end, below the fetching. The line goes through both holes, resulting in a more stable flight thun it you had just used a single hole.
Most states that don't entirely prohibit bowfishing allow archers to take "rough" fish-gar, eel, suckers. mudfish and carp. Carp is the bowfisherman's favorite prey and is found in waters all over the U.S. They can be stalked, like deer, or shot from a pier or boat. Whichever method you use, get as close as you can before the shot.

Another favorite prey are frogs. More common than carp, they are small and elusive fargets but stay on the surface for minutes at a time. For instructions on preparing them for eating, see Jim and Stephanie Watters' article on page 190, 44. I doubt if you will run into any problems with your local Fish and Game man while hunting frogs. It beats shooting them with a shotgun, anyway.
The most pressing problem in bowfishing is light refraction. Because of it. fish look closer to the surface than they actually are. Also. an arrow starts deflecting upwards the moment it hits the water. Therefore, you'll have to aim below your target in order to hit it. Practice with weighted balloons in shallow water before you go fishing-itll pay off at dinner time.

Mechanical Toy Pigeon Made of Wood

 Popular Mechanies 1919When the head of the mechanical pigeon is lowered the tail rises, and

Draw on the Wire and the Head and Tall Bab Uy
the reverse. It is constructed as follows: Make paper pattems for the parts, which consist of two body pieces, a head, a taif, and the foot piece. The shape of the parts is shown in the sketch, the front body piece being removed to show the connections of the rubber and wire controlling the movements. The view above shows the fastening of the parts with nails. The main sizes of the parts, which are made of $1 / 3$ to $1 / 4-\mathrm{in}$. soft wood, are: head, $13 / 4$ by $31 / 2$ in. ; body, 2 by $51 / 4$ in. ; tail, $11 / 4$ by $31 / 4 \mathrm{in}$. ; foot piece, $1 \mathrm{~g} / \mathrm{6}$ by $11 / 2 \mathrm{in}$. Mark the shapes on the wood, cut them out, and mount them, with a rubber band connecting the head and tail, as shown. Nail the foot piece between the body pieces, and pivot the head and tail on nails. Connect the head with a wire, having a loop on one end. Make the holder, and cut a slot into it for the draw wire, operated with the finger.

A TOY HORSE THAT WALKS

Popular Mechanics. 1919

This toy, amusing for the youngsters, and their elders as well, will repay one for the making of it. Use a cigar box for the carriage, making it about 10 in . high, and shape it in the design shown. Nail a piece of wood, $1 / 8$ by 2 by 4 in. wide, on each side of the carriage, and drill $1 / 8 \mathrm{in}$, holes in them for the axle. For the horse, take a piece of wood, $1 / 2$ by 4 by 6 in . long, and draw an outline of the head, neck, and body. Cut this out and drill $1 / 8$-in. holes where the legs are at-

FIRST PRINTING OF THENIGHT BEFORECHRISTMAS"IN A PERIODICAL
HARPER'S
NEW MONTHLY MAGAZINE

No. XCI.-DECEMBER, 1857.-VOL. XVI.

Frpan "Tib Fozar or the Ninethesta Cintohy," Bvo. Suporidy Hllustrated. Harjer: Irother:

A VISIT FROM SAINT NICHOLAS.
CLEMEVT C. MOOAE
TTWAS the night before Coristmas, when all through the house
Not a creature was stirring, not even a mouse;
The stockings were lung by the chimney with care, In hopes that St. Nicholas soon would be there; The children were nestled all snug in their beds, While visions of sugar-plums danced in their heads;
And Mamman in her 'kerchief, and I in my cap,
tached.
Cut the legs as shown, about $31 / 2 \mathrm{in}$. long. Attach them with small bolts. or rivets, allowing space to move frecly. The wheels are made of pine, $1 / 2 \mathrm{in}$, thick and 3 in . in diameter. The axle is made of $3 / 10-\mathrm{in}$. wire bent to the shape indicated, $1 / 4 \mathrm{in}$. at each offset. Fit the wheels on the axie tightly, so as not to turn on it, the axle turning in the pieces nailed to the sides of the carriage. The horse is attached to the top of the carriage by a strip of wood. A 3 -it, wooden handle is attached to the back of carriage to guide it. Wires

The Toy jo Pushed by Mesat of the Handle.
are attached to the legs, connecting with the offsets in the axle, 0

Adjustable Stilts

Popular Mechanies - 1915
The beginner with stilts always selects short sticks so that he will not be very far from the ground, but as he becomes more experienced, the longer the sticks the better. Then, too, the small boy and the large boy require different lengths of sticks. The device shown makes a pair of sticks universal for use of beginners or a boy of any age or height.

Stilis Haviag \$tirrups That cant be Set at Aay Desired Hrieht
To make the stitts, procure two long hardwood sticks of even length, and smooth up the edges; then luegin ar a point 1 ft . from one end and bore 12 holes, $3 / 8 \mathrm{in}$. in diameter and 2 in . apart from center to center, If there is no diestock at hand, have a blacksmith, or mechanic, make a thread on both ends of a $3 / 8-\mathrm{in}$. rod, 12 in . long. Bend the rod in the shape shown, so that the two threaded ends will be just 2

Had just settled our brains for a long winter's nap; When out on the lawn there arose such a clatter, I sprang from the bed to see what was the matter. Away to the window I flew like a flash, Tore open the shutters and threw up the sash. The moon on the breast of the new-fallen snow, Gave the lastre of mid-day to objects below, When, what to my wondering eyes should appear, But a miniature sleigh, and eight tiny rein-deer, With a little old driver, so lively and quick, I knew in a moment it must be St. Nick. More rapid than eagles his coursers they came, And he whistled, and shouted, and called them by name; "Now, Dasier! now, Dancer! now, Prancer! and Vizen! On, Comet ! on, Cupid ! on, Donder and Blitzen ! To the top of the porch! to the top of the wall! Now dash away! dash away! dash away all!" As dry leaves that before the wild hurricune fly, When they meet with an obstacle, mount to the sky; So up to the house-top the coursers they flew, With the sleigh full of toys, and St. Nicholas toor. And then, in a twinkling, I heard on the roof, The prancing and pawing of each little hoof-
As I drew in my head, and was turning around, Down the chimney St. Nicholas came with is bound. He was dressed all in fur from bis head to his foof, And his clothes were all tarnished with usles and soot; A bundle of toys he had flung on his back, And he looked like a peddier just openiug his pack. His eyes-how they twinkled! his dimples how merry ! His cheeks were like roses, bis nose like a cherry! His droll little mouth was drawn up like a bow, And the beard of his chin was as white as the nnow; The stump of a pipe he held tight in his teetb, And the smoke it encircled his head like a wreath; He had a broad face and a little round belly, That shook, when he laughed, like a bowlful of jelly. He was chubby and plump, a right jolly old elf, And I laughed when I saw him, in spite of myself; A wink of his eye and a twist of his head, Soon gave me to know I had nothing to dread; He spoke not a word, but went straight to his work, And filled all the stockings; then turned with a jerk, And laying his finger aside of his nose, And gising a nod, up the chimney he rose; He sprang to his sleigh, to his team gave a whistle, And away they all flew like the down of a thistle. But I heard him exclaim, ere he drove out of sight, "Happy Cliristmas to all, and to all a good-night ?"
in. apart fromi center to center. The thread on the straight horizontal end should be so long that a nut can be placed on both sides of the stick. A piece of a garden hose or small rubber hose, slipped on the rod, will keep the shoe sole from slipping. The steps ean be set in any two adjacent holes to give the desired height.

A Porch Swing

(FROM POPULAR MECHANICS 1919) The seat of the swing consists of a board, 30 in . long, 14 in , wide, and 1 in. thick, with holes bored in each cor-

ner for the ropes. The rail at the top is made of lour oak pieces, two of them 30 in . long. for the sides, and the other two 18 in . long, for the endst all 3 in. wide and $7 / 8 \mathrm{in}_{\text {. thick. The ends of }}$ these pieces are finished rounding, and holes are bored in thenf for the supporting ropes. The supports for the rails consist of four pieces of $2 / 4-\mathrm{in}$. pipe, 15 irt . long. The ropes are rum through the boles in the ends of the rails, down through the pipes and through the holes in the seat board, where they are knotted.

A rope tied to a convenient post or screw hook makes a handy way to give motion by pulling. To get into the swing, raise one of the side rails on the торе.

A Wire-Walking Toy
Popular Mechanics 1919

A Christmas Story

I was in Australia a lew years ago and found that Christmas came in suenmer. It was still December 254h but Australia is on the bottom side of the Earth and seasons are just opposite to what they are in America. When it's winter here, It's summer down there. They celebrate Cliristmas there, too, but since it comes in summer there is no snow so they don't bave the same kind of Christmas stories we have. In lact, il didn't seem to me to be like Christmas al all but Australians are pretty good ai pretending and besides. Australian kids weren't going to
be left out of the gift-getting business, show or not.
I decided to write a Christmas story which would fit them and thought you might like to read it.
Australians speak English, but not like Americans, at least with a lot of words Americans haven't thought up. Also, a lot of them don't pronounce their H's. A long time ago many Australians were miners always digging for gold and opals and such and were ealled "diggers", The angels in the story are called diggers because of that.

SANTA'S KANGAROOS
 by KUR'T SAXON

It was Christmas Eve in Australia and all the kiddies were waiting for Santa Clause.
Sorne of them had been very good for a little while during the past year. They were looking over lists they had made with just about every toy you can imagine written down.
Those who had been naughty nearly all last year were waiting just as eagerly. They figured Santa was an old softy (and he usually is) and would only remember when they had been helpful. Like keeping out of Mum's way when she was picking up their toys or telling Daddy when they threw the kitty down the well so that he could rescue her before she drowned.
Yes, they were all waiting. And, to be sure, Santa was coming.
His sleigh was piled high with koala bears and boomerangs and cricket bats and proms with dollies in them and ever so many other things. A daring wire-walking periormer It was very dark that night so Santa had his red nosed reindeer to guide who, unmindful of the fact that a mis-him. This deer was very good at this sort of thing and had brought him
step may mean destruction, kepps on through the worst weather for years. But there was something up ahead

Adapted to Wintow Pipplays. This Amssiag Toy Ilas an Advertiang Vaide
that boys can make easily. The wire is stretched, not across Broadway, but between two 1 by 1 -in, stardards, held apright by guy eords, or fixed to a baseboard. They are fitted with forked tops, at A and B, and pulley wheels, C and D. A wire, F, is lastened to two of the prongs, at E, ant a black theread, G. runs over the pulley wheels. A catriage, I_{1} is formed from a $12-\mathrm{in}$, length of stiff wire, sind weighted al L. To balance upon the tighe wire. The fogure K is cut from stiff paper, and mate io turn upou the carriage upright J, and braced with thread, at H . Thus the figure is always drawn forward, revolving on the support J at the end of each ttip. Power to burn the thread is transmitted from a hard crank or motor, M, by means of the double pulley wheel at

Mechanical Toy Alligator of Wood
Popular Mechanics 1919
A toy alligator that opens its mouth and wags its tait as is is pulled atong can be made of wood by a boy, with a jackkoife. The varioths parts, as shown, are cut fromit soft wood, $1 / 2 \mathrm{in}$. thick. The method of fastening the parts is shown in the side sectional view. When the wheels turn, the cams A. set on the crank porions of the whee axles, raise and lower the jav and tail. The upper jaw is 1 im wide at the widest part, and 3 in long. The lower jaw is sroaller, and the same length. The body is 6 in . lorig, and tapering in width from $11 / 4$ to $3 / 4$ in. The tail is $43 / 4 \mathrm{in}$. long, and $3 / 4 \mathrm{in}$. wide. Holes are drilled in each piece near the edge, at joining points, through which wires are drawn, and clamped, as at B . The legs are shown in detail. They are atached to the body by drilling a $1 / 1 g^{-i n}$, hole in each, and a hole through the body, through which the fastenings are passed. The lower end ot the legs are fastened to the base,
that the guide deer didn't know about and so wasn't looking for.
It was an artificial satellite. That's one of those chings the Americans and the Russians have been shooting up into the sky so they can hear it say "Beep. Beep, Beep," I'm not saying whose it was but they should have taken the nasty thing back down. At least, on Christmas Eve!

Well, you guessed it. The guide deer didn't see it and the sleigh ran right smack into it. Santa was knocked out of the sleigh and the toys were scattered all over the clouds and the sleigh's runners were all bent out of shape.
As if this weren't enough, the reindeer were frightened out of their wits. Now, as you know, reindeer are very nervous animals and get upset over the littlest things. Anyway, they all jumped out of their traces and went as fast as they could toward the North Pole.

Well, there was Santa, just sitting on a cloud wringing his hands. He was wondering what all the Australian kiddies would think when they didn't find any wys that morning.

And the satellite was hovering around his head and going "Beep, Beep, Beep?" Beep, Beep, Beep?" Santa grabbed it and sent it spinning in the opposite direction to what it had been going. "That should make whoever put it up there nalk some pretty funny questions," he thought.
But there he still was. With the toys all out of their sacks and his sleigh runners all bent. Now, it's a scientific fact that a sleigh won't fly through the sky with its runners all bent. Anybody knows that.

While he was sitting there, a Digger angel named Frank appeared and sat down beside him on the cloud.
"You got troubles, Mate?" asked Frank.
"I sure do," said Santa. "Look at this mess, How'll I get them all togvther again? How'll I fix my sleigh? I think I'm going to be sick."
"Don't worry. Mate," said Frank. "I'll get 'elp-and we'll fix you up straight-away:
Then Frank gave a whistle and three more Digger angels appeared on the cloud They were all got up just like Frank with floppy hats with big, broad brims. But so you could tell they were angels they had on white gowns and big wings. Two of them had bushy red beards and the other one had great moustaches which hung down on both sides.
"Mates, this'ere's Santa Clause," said Frank. And to Santa he said "And these 'ere are the "Arrigan brothers: 'Arry, 'Erbert and 'Umphry."
"Pleased, I'm sure," said Sants.
'Arry, 'Erbert and 'Umphry grabbed their bats by the tops, raised them a foot off their beads and let them drop back down.
"Now, Mates," said Frank, "we got to get the toys back into the sacks and straighten the sleigh rumners. 'Arry and 'Erbert, you round up all the toys whilst I and "Umphry works on the sleigh."
'Arry and Erbert straight-away bounded off and began picking up toys and cramming them into the toy sacks. While they were doing this, a Quantas jet liner came into view just below them. 'Arry immediately threw a boomerang at it. The boomerang looped down in front of the plane and barely missed cracking the pilot's windscreen. The jet liner seemed to go out of control, then, bucking up and down and swerving from side to side.

As soon as it got back on course 'Erbert appeared in its path pushing a pram with a dolly in it, like a woman crossing a street in traffic. Again the plane bucked up and down and swerved from side to side. Then it turned around and flew back to the Sydney Airport.

As soon as the plane landed the pilot was called to the office to explain his return. "Well, Sir," he said. "here I was, sixteen thousand feet up, mind you, and a boomerang whizzes past my windscreen. Of course it upset me. I lost control of the plane for a minute then straightened her out again.
"Then, just up ahead, I sees this bloke in a floppy hat and with wings on and he's pushin' a pram with a dolly in it. Sixteen thousand feet up in the air and nothing under him. And pushing a pram with a dolly in it. Of course I turned around and came back."
which is 3 by 9 in. long. Square holes. 1 in. wide, near each end, are provided for the cams A. The axles and wheels are made as shown. The axles fit

The Ailizper is Drawn Alaag, whith a Sarigg aad the Jawi ind Tais Fip Cp and buen
tightly in the wheels, so that the latter can move the axles around with each turn. The axles are made from $1 / 8-\mathrm{in}$. wire, bent as shown, and should be long enough, after passing through the bottam, to extend through the wheels on each side.

He was going to tell the story all over again but some nice men took him to a place where he could rest.
In the meantime, 'Arry and 'Erbert had got the toys all back in their sacks. Frank and 'Umphry had straightened the sleigh runners and everybody was happy but Santa.
"Now you're all right, Mate," said Frank. "She's just as good as new and not a toy was lost."
"That's fine," said Santa, "but how can I go without a team? My reindeer are probably half way home by now."

Frank thought a moment and said, "Well, Mate, we'll just bave to outfit you with kangaroos."

The 'Arrigan brothers seemed delighted with the idea and immediately disappeared. Santa didn't much think it would work but since Frank disappeared just a moment later he couldn't ask for explanations.

The four Digger angels scrounged the outback around Alice Springs and soon caught eight bouncing roos. They had to drag them back by force because the kangaroos didn't have any Christmas spirit at all.

But finally they got them to the sleigh and all hitched up. They even gave them names: Bunyip, Geelong, Pimba, Gympie, Roto, Quilpie, Joe and Sam.

As soon as they were ready Santa shouted, "Giddyap," and off they went, hopping through the sky as nice as you please, But it was a dark and stormy night and Santa sorely missed his red-nosed guide deer,

He had hardly gone any distance at all when 'Arry and 'Erbert appeared with another kangaroo. They called him Fair Dinkum and his nose was even redder than that of Santa's guide deer. They had got his nose like that by filling him up with good Aussie beer.

Then Santa started off again led by Fair Dinkum the red-nosed kangaroo. And soon the job was done and every city, town, village and bush camp in Australia had been visited.
When Santa got to Darwin and left the last of the toys he found his reindeer waiting for him. They had gotten over their fright and had gone back to look for him. But when they saw the sleigh pulled by those jolly kangaroos they figured they could take a rest during his Australian run.

When Santa got to them they welcomed him heartily and frisked about his sleigh. Soon the kangaroos were unhitched and replaced by the reindeer.

Then Frank, 'Arry, 'Erbert and 'Umphry waved goodby to Santa and disappeared with all the kangaroos. Santa yelled "Thank you and Merry Christmas" toward the spot where they had been standing.

Then he turned his reindeer north and headed home.

The End

CHEAPLY AND EASILY MADE TOYS

Here is another selection of toys any parent can whip up for the little ones which will give them lots of playing time with less breakage and at practically no expense.
There are more such homemade toys in Volume one of THE SURVIVOR.

TOY-MAKING

OMEWHERE in your house there must be a corner where you may have a little
workkhop of your own. With some packing boxes of different sizes, soch as you can buy at a grocery or dry-goods store, you can make a bench, a stool, and a shelf or two, like those shown in this sketch, and so make a beginning. For tools you will neef a ssw, a hammitr, a try-square, a good jackknife, a plane, a ruler, and compasses. A pair of stout scissors will do for cutting paper, cariboand, leatber, tin, and so on; and a pair of cutting pliers will be usefal for cutting wirs. Perhaps you cannot get all these tools at once. Never mind; begin
with a jackknife, a saw, and a hammer, and add other tools as fast as you can pick them up. As soon as your lamily know of your enterprice, they will be likely to remember it in making Christmas and birthday presents. Begin, any-

bow. Your shop will grow, and your love of it will grow. There is no satisfaction quite
like that which comes from making things with your own hands.

A dart is a good thing to begin with. Find a piece of straight-grained shingle two inches wide, and eut it as shown in Fig-1. Aiter you have sharpened the lead end, balance the dart on the edge of your knife-blade and at the balancing point cut the notch. For a whip handle you will need a springy stick such as you can tasily eut foom a roadside thicket. Cut it two and a half feet long, and a little less than an inch through at the butt end. A stout string or thong a toot long knotted at one end and tied to the stick at the other will complete the whip-bow. Holding bow and dart as in the picture, sling the dart with a notion sueh as you would make if you were to whip a frend and had but one chance

In the making of even this simple dart you will have learood twe things at least. One is that it pays to save and store away in your work-

shop odd pieces of wood, string, rawhide, thoc-leather and such like. Part of the fun of ${ }^{*}$ a workubop is the chance it gives you to gather materials that will come in bandy at one time of another. The other - a very different sort of thing -is that wood splits. along the grain. Of course you knew that to start with; but no matter bew skillful and experienced a woodworker you may become, you will always have to, take account of the grain of your wood, whether whituling, or planing. or carving, of sandpapering, Working with the grain is like smoothing a cat's fur the right way, - all is serene and as it should be; working against the grain, -well, yous know how the cat likes it!

The plan given on this page is for a Panome-whers: ER of the stem-wheel type You know that on shallow rivers and on mivers in which there are sand bars to go twer, like the Mississippi and the Ohio, stern-wheelers are much in luse. They go pretty well in bath-tuhn, too. By comsulting the plan you will see that the hall should be fashioned from a $1 /$ inch slab of solf wood, the outline being patterned ou a piece of 3 by 8 inch paper folded Irngthwise ba make both bow curves juas alike, matked on the wood and cut oust with the soroil saw.

Renieniter lo cutting oar the speare inside comers of the fisalle opening not to force the sww but to leap it working up and down while you ture the woed slowly. And then when yoe come to the serond inside cornet you will have to lack oat and make the last rat from the eatide, wind you lave a scroll saw large enough to allow the lenget of the boat in pawe fietween its shaske
The copstruntion of the rest of the foat is made
 clear in the diagram A tack-hammer will be found usefol in pailing the parts of the pesdde-phed togrothen. If one of these parts spolits, koep patient and try another.

You can add realism to the short voyage by sticking a math Christmas candle into the bole of the epool and lighting it.
the other boards accordingly. Tack the three together, the thinnest one in the middle, with three small brids: and smooth the three parts into we gun-itiock.

Whittle or saw out D and E, the trigger paicoes. Then pry sff one side of the gun; and, baying the trioger in position, riark lines / and g. and coi out of the middle piece a piece along these lines. Then pry off part F of the middle plece, and remove $1 / 8$ inch inves its upper edge. Hevel the eiges of the thin pieces

Here are draminge that show yod how to make a solt cus, with which much fon may be had during lomg fidoor winter evenings. A description of the making is on the next page.

To make the gin. get two pieces of very thin pine or shitesood board. $1 / 6$ inch thich, a feet long and 5 inches wide, and another boand of the same length and width, but $1 / 4$ inch thick. Oa one of the thin beards draw the cartine of the gun. When this has been shituled of scroll-saxed out, use it as a pattern and out

so that when the perts are brought together again, the barrel will fook like the section drawn at $\mathrm{H}_{\text {, }}$ end view. Then put all the parts together, ruaning brads through the two trisger parts in such a way is to pivot them properly. You will set the wisdom of
marking the points at which these pivot brads are to enter, before you finally fasten the stock parts to gether.

By means of a staple, fasten to the end of the barrel a good spunky rubbet band, 3 inches long and $1 / 4$ ivech wide With

Chis you can throw bolts of wood as straight as a rifle-ball acruss the room at a target of paper pinned upon a rug thrown over a chair; and moderate care in the aiming will do away with any risk of damage to the vases on the mantel.

There is a wide fichst m ranse when it mans on selectiog aml asaking the amimuls that are Bo ter the intubolanis of hus ark. Hert un thrs page are pirm sletgos fan whet $101 /$ the anrely a suffiont muntion to stant wob. The oullions are extrcomely fieficic, and tor vileat is emertithy ted when the Gogater ati maile sip of Pliree thitoresesseo How tory will siomil.

Fitst or all finte somb portemb If you socide 40 mate the commily at fast the the fimbit in this prec, rाve of thor oultive (ex srry thim japy soul leander them Wi ithe woat by bent cit. bunf pager yal sithe pueces of very thin wroal, and solect thoos gitroes Dhat will manb the rreiy wefl ion der lial wion it the digures. You may hols to kive fores of lite Wourl sate at the shoud thath lose affer. is a fandy pouge lor obly weil. Nool (her pirin Mobely rojplter mith wroll lepaty, Jod Dog aill the fanum on fir ky piem That cut wit nी flom ?
 gether. Tho pieres ure lious ou he tales apen.

 noers of the to it Tent fract to 20t swoy, stong the fim bmiund io the tlisgrame white tie mblide paee itcoult hay the liesd lefe an,

 Hde mioh Do : ivey the leg Where there
 Whece the pive atc at ont ajorifige to ithe. sulume. thay thembl The gharil fiofther, and

 fare to ay. Finally comes the evfiring. This Mowit io dow mith ed molst prebenhly, is tiece colen buce a mut eqparnice is is betrer iunt lo liy lo makr viay gradations in

His 9. NoatisArk

The Noan's axe is not so hard to make as might tie linaginet, and it is a nost delightial toy. Begin with the bottoms of the brouse, two by five inches, and build around that. You will need two dapllate gable ends and two sides and two roof pieces, alased everything being twe by two in this ark at ahould be the case in every mell. regolated ark. You will wotice that one roof puece is bailed in place, while the other is left removable, and is caiased to alay fa place by masm of ab extas piece ghanf to his wider shle (seo dotiol lise in end view). The troit is sowod and shapot from a /6" board. The parts idould all be put togertber sith torsh Doce to
gether, the ark slould be painied in bright olfors. The deck, as yue will see it the thastration, may be lined out with different colors; and there choold be as painted window at each end, or how could the dove get out? It would be a pity pot to have Noah and his fimily, as vell as the animule wilch are to be explained on. the next page, and do you think you could whithe them out? It कि not difficult. Short pine aflda are eally carved.

Hete is an atco-coaster thal mill give you $12^{*} \times 5^{\prime}$ bottom board of one-inch plankalmost as mach fan in summer as a bob-sled or tigg. The board anost be raised sufficiently double-ruriner will in minter. from the front axle, by means of a "riser"
The first thing to do is to find a puir of stout block, to lse level, the front asle being lower wheels. These are to be fitted to the than the rear. This "riser" carries the king-
bolt or pivot of the front pair. To the under side of the bottom board and four inches from the end screw iwo strips $8^{*} \times 2^{*} \times 6^{*}$, with a groove cut to receive the axie. Extending beyond thest strips fasten two lirake-straps, $3^{*} \times 2^{*} \times 8^{*}$, each provided with ar groove $1_{2} /^{*}$ by $7^{\prime \prime}$ by 4^{*} to admit the brakes (see 4 in Figs, A and D). Two and 4 in the Figs. A and D may be mode in one piece; but remember that the measurements here given are for 14^{*} wheels, so that a change in the length of the strap and the location of the groove would have to be
made if your whects were oI a difierent sise lamps are to be bolted in place in a sinoilar may. Use cans with stip tops that may be replared after the bolting has been dons. Mrasurements for the seat can be taken from the diagram. The roanding top is made of a cheese bos with the froet rut and straightened out. and the sides tapered. Two sorts of brakes are possible, but the foot-brake is to be preferred. Puint the car ted, and don't forget the tail-number. If you wich, you can fix your dark-lantern within the search-fight can.

When "of." the brake thuuld reat ate itwh trum the wheels.
 The beards ate to bo remoned cistotuty ind replaced when the bersends haver theen shayed as seen in Fig B . Hefore gorting the lisis
 light an The srarilitaghe is a 2 il). eoth. Thirough it and thimigh the jofoth blink 11 ${ }^{\circ} \mathrm{z}$ $7^{\prime \prime} \times ?^{\prime \prime}$ and the top beard of the hool lous a hule for the boit, which shwuld be set just liktit enough sa allow the lighty dor tori the sate

INDEX

Sbetfers and tive Nged. 3nooting oidien Eluwne, llimo holu, sylk-5creen Priat tov siong stick. Noan, Horw-Nale Sind futbers.

\&idduring Mixtuce - 5 sp
Solderay to Make $1.1 .+11.1 .1304$
sore Bock, Morset wionti... Aly
spavin. Heren.
3plifit, flareve Ais.
5pªin. ${ }^{504}$

stilts, Aajust ithe. 5 Sa?
Stove fross ofs arum....
strech.
yervival kis.s.

5urvival of ther Fictal survival Touse.
surcive in bue Dl thentiret
swione Morthe 1 y $+\cdots+6$
Sving. Parth. 581

Trap, Dow.

Trap. Live Baitsiv
Treee and Ralural4...-.......|ini
Toy A2ligheorsg
Toy Morbar
Toy Kantace.
Ioy Pigeon.

Toy sire Walker...............501
I-Squares, Kaking qui

Tunars.+

Wayhing Hase Rasy
Waterproat Cjath.
Hptorpropting abtoos.

heather Yarecaeting. 550
WinAnill.4TB, 527,535, A5
प्रlre Linke, for=ing. 519
Wire stretctout.
Hood, Like Kahogany......... 50
vibres in humans 50 .
Writes an Metal. ${ }^{\text {. }} 83$
Yeast, Dry , 1................. 309
Yeaet for Aread............., 509
Yeast, to trake.

No-soil garden

SYRACUSE, N, Y.-The navy cooks at Argentia, Nfld., are getting a year-round salad garden.

It will be in three trailers, each 12 by 42 feet. One will grow tomatoes, one lettuce, and one cucumbers.
From that growing area the cooks will pick enough vegetables to make 400 high-quality salads every day, forever.

All that from 36 by 42 feet of garden? How?

It will be a "total control" growing system, developed here by General Electric Co.
Destined for use one day in apace habitats. GE's new concentrated gardening may revolutionize vegetable production.
The Pentagon has Just signed a contract for a movable system for the U. .S. communications base at Argentia. If could be parked anywhere, from the Arelie to the deserts, and still function.
THE: GE ENGINEERS and horticulturalists here say they have seen amazing improvements in the.production of vegetables.

Compared wilh greenhouse crops, they are getting 20 times as much lettuce, nine times as much tomatoes, and six times as much cucumbers, measured in pounds per square foot of growing area.
The comparison with field-grown crops is even more spectacular. Forty times greater for lettuce, 30 times greater for tomatoes, 50 times greater fot sucumbers.

The plants are grown in open-topped troughs without soil. A thin film of recirculated nutrient fluid trickles through their roots from one end of the trough to mother. The troughs are mounted on Christmas-tree type racks so the vertical as well as the horizontal dimension is filled, to take advanlage of all of the carbon-dioxide enriched atmosphere. The racks are movable, so space for only one sisle is needed. The "sun" is a combination of high-intensity electric lamps. The temperature and humidity are controlled. You enter through airlocks.

THE ARGENTLA system will have a fourth trailes to house the nutrient tanks and pumps and other machinery.

Happy with their success, the GE engineers envision modules in other sizes. A refrigerator size, to hold ormamental plants for offices or possibly a yearround small garden for homes.

Commercial systems might be in the five-acre size, said Engineer Lewis W. Fogg. He is manager of the controlledenvironment agriculture task force set up four years ago by Thomas L. Paga-

Hydroponic growing technique

nelli, vice president who beads GE's electrónie systems.

A live-acre tomato system would produce 8 million pounds of tomintoes the lirst year Output would rise gradually to it million pounds a year.

Foge envisions three such Iive-acre plants spotted around Chicago to take care of Die metropolitan area's entire need for "premium-grade" somatoes.
THE GE CROPS are of milform high quality and the system can be adjusted to produce varying tastes,

GE grows lettuce to standard aized heads of threequarter pounds in ar days from the time the seeding is transplank. ed. But it added another six days and produced a bead weighing 2.2 pounds and 30 inches In dismeser. Too bly for the home relrigerator but ldeal tor the restaurant market, Foge Uhinks.
The engineers keep the quality fugh when growing giant lettuce and cucumbers. They think four-pound cocumbers that don't have to be peeled could be marketed wrapped in pieces.

Fogg said his group is using 'physiolopical manipuiation" on the plants.
"WE EXPOSE the temato planta when they are seodilings to cold shock, 10 days in a much lower temperature than normal," be explained. "The plant 'thinks' it is going to die, so is life processes speed up. When we put it in the warm mocule, it is well ahead of
normal. It throws its first cluster about six inches from the root and becomes a very short, flyck-stemmed plant with three clusters at six-inch intervals."
The short plant is suitable for the rack-lype growing struoture.

GE is going into orfamental plants to supply a company in the "plant party" business.
"That's a geranium we grew from seed in 6 weeks," Fogg said. "The greenhouse operator normally takes six monthe."

Pharmaceutical companies have asked GE to grow the digitalis plant to climinate silica impurities and get a uniform, hopefully higher percentage of the vital elkaloid.
"WE HAVE GREAT coafidence we can increase the alkaloid by use of nutrient factors and growth regulating," Foges said.
Although economical on water, the process is electricity-Intensive, with 30 per sent of the cost going for power. But Fogg said in total energy of all kinds consumed per pound of product, "We are very competitive with the California farmer."
Some people can't believe GE is producing live tomatoes.
When a Syracuse supermarket operator offered some to marizet-test the quality, saying GE had produced them in its plant, one customer reported back that they were "botter than real tomatoes."

TARHS ARE Coming

COPYRIGHT 1948
by
Earle Augustus Spersaki
(Practial Hydroponics)

An interesting, if illegal, example of indoor growing is the detailed article on page 23 of THE NEW IMPRDVED POOR MAN'S JAMES BOND, "Marijuana Grower Shakes DEA". The grower spent about $\$ 75.00$ per unit on two $41 / 2$ $x 21 / 2$ foot units he built largely from easily available scrap. His plants matched a normal six month's growth in only nine weeks from seed. His lighting was by regulat fluorescent shop lights and used only about $\$ 5,00$ per month in esectricity.

This same method can be used to grow tomatoes or other plants.

PREFACE
The present world wide interes in liydropmios, jadging from the many letiens whids lave cone to ibe writer's desk, stens from the agewld desire wo baye in hand an abou-

 thowing $=$ holf-moture tanoto ton be veen grabing neal to the mall $\&$ the fred eg-
tank. Photogroph by Mr. Ray Brvite. tank. Photogroph by Mr. Ray Bruct.
dut supply of fresh, tasty Food. The world is still hungry. And in those places where ic is either dangerons or impossible to grow vegetables, many have come to took to hydroponics as a possible relief from the diffeculties.

But, in spite of this itterest, there is little of practical value in the excellent bolletins and books on the subject which the average individual cas use to advantage. The first objective of this volume is therefore to translate some of this raluabie information into a language understandable to anyone with intelligence enough to ralse a good garden.

The present systems of hydroponics were desigued and developed in the interests of fundamental research. It was never expected that they could be used by people in general. A recem visit with mose of the important investigators conliems this opinion. These systems are about as perfect in performance as could be reasonably desired, and are to be higbly recommended for use in greenhouse establishments, and by anyone having the scientific and technical skill required to operate them. But for the man with limited time. training and money, it is generally agreed that they cannot be made practical.

Considering the abose named conditions, the writer began, several years ago, the development of a hydroponic s)stem whid would do away with most of the mechanical and seclitieal features. yet allow the evident advantages of the nther sstenus. The second objective is, therefore, to explain in detail how to construct and operate this simplified form of hydroponicum.

I have tor attempted to make zhings easy, or wo oversimplify. I lave deliberately tried to make centain sections imetesting reading. The book rats have litsle interest for those who wish to make a plaything of hydroponics, or to grow plants for amusement. It is inteaded for those who wish to eat better through their awn efforts. The language is not for the plant-physiologist, or the tedmeatly trained.

It is for the gardener, whether be be a protessionat or one who eapoye his liate back yard.

These bo another group for whom the book is written. inguch: those individuals who wisf to make a living growing regetables and ilowers for the bome market. This group constets of people who intend to dn thicis wwit work and narkenther owes prodnce through foeal dealers. In lact, the sysue0 to be described was developed in precisely this way. If is expected that in a generation or so. through this system, Evect s (hage rown and city will te supplied with the major portigan al ite perishable foed supply.

The thard objective of this thook is- tinerefore to lay out N) per perest patten for froture hydroponic development in the worlh, and to induce serious minded people, everywhere. for loggin laying in this generation, the foandations for this sevelopment.

Thil Fook is an onlargenent of a mincographed edirion anbinded and dimbutced by reques in 1947, uthder the title
 Dhe fortitiof five "1.stoms" Thengh these lewans, this simphitiod fonm of bydrepontics is mour it equeration if every

 indicotict the beight of the winds Photogroph by De. Chailss Deeseck.
major country of the world, by one or more individuals, Some of these have consented to make reports on their success or failure, and to give weather conditions. Photographs on pages 49, 135, 143, 155, indicate the success of "students" with the use of the type of hydroponicum in be described. It is hoped that through this means, among those of us interested in baving hydroponics become generally useful throughout the world, an interchange of valuable information will be possible. Indeed this is necessary, since up to the moment no Departments or Ministries of Agriculture have taken practical steps to satisfy the present desire for information.

An explanation might be given here for not emplasizing what is commonly known as "deficiency" troubles. The ofivious answer is that if we propose to give a plant what it needs, there won't be any deficiencies. Thus, why worry the beginner with sucls matters? But there is another reasont. The information published is often contradictory, and thus confusing: or, it was derived from observations made on greenhouse material. These conditions do not necessanily hold in outdoor growing, in regions where weather changes are often violent.

E. A. Stessard
Conway, Arkansis
U.S. A.

CONTENTS
Chapter Page1. HYOROHONIC SYSTEMIS NOW IN ELE
\qquad1. The ItharabersA. Public Reariont to New Ideat,1. First SiepeC. Itydroponia for Experis
1
A. The Jitaniy Problems
B. The Operatof's Friblems
III. The Hrweorend SvarimA. The Geride Syatem碓. The Akragate System2 A UNIT-TVPE HYDROPONICUM FOR GENERAL USE1. IstanketiosA. For Whinm Intended
A. Primary Requirement for a Practical System.
Derisquas ar Usit tin
A. The solution or Nutrient-Uni
nit
III. Semeriox $\begin{aligned} & \text { A. Light } \\ & \text { B Waler }\end{aligned}$Supply
C. whaterpply-
D. Acration of Plants
E. Direction of UnitIV. Matraill Rrocmer sow Onr UNTA. Cement and SandOne Untr-

III．Apjustive rem Acipity \mathbf{y}
1V．Lise Mabe of Ashatonems Nrtente 37
V1．Transplatitici ihe Growing Ukit 58
VII，Inptigixg Rogrs 10 Gmow Dotwiwakt 40
VIII．Fizmang scitruede 11
A．Daily Feeding
A．Daily Feeding B．Variationes12
Fin Young Planes 4
For changer in weathes 14
Duing Heave Ramball 11
For Water limsIte Alfility of the Growing．Grit Salucinen41
45
Diring Ifigh Temperatiok and tatene Smalight
Fis Specific Kinds of Tlants 16
18．Ls of Ortenton＇s Teus is
A．TIE TIX GAN HNDROPGNICINT 19.51
I．Alatralas Nrgise
I．Alatralas Nrgise 31
The Typer of Cans － 31
The Maierial lar Filline Cams 31
31
Pafine
31
31
The Chemirals Kerpured
51
51
Aid＇Tallng．
31
-82
-82
11．Pemorbuar bi Orewahios
11．Pemorbuar bi Orewahios
D．THE EKSENTHAL ELFNESTS THEIW CHEMICAL 30.52
SOURCES
SOURCES is
1．Istrunecruos ＊
A．Cbemical 19
15．Eerilizer
39
39
C．Escatial Elemen！ 60
III．Chimbeads Ms．Fenthmes，Conmpeatay Coms fil
A．Emential Jiements if Eeribliet 61
I．Exsential Elemens in Chemíals 0
 56
Fi PaEn Pix Milion，Tin Shavy of Concestexnow A：
Taldes I and II，the
Fasentat Etemena 0460
6．CONCIPTIONS AND MIACONCDITIONS H KGAROINO FORADLAS 0399
1．Genaral Compiofantioss 13
A．＇The＂Prifer＂「 Furmula 81
II．Precical Beynirements for a toont Insmela 7
III．Djesi oi Vikintion in foebrisu $\%$

A．Estremes in | 70 |
| :--- |
| 74 |

 76
A．Nirogen 䜤
Frum Nitrate is Vrotea）
Frum Nitrate is Vrotea） $\frac{10}{10}$
Geciong Nitrogen Intio the Plant 8
fow Suragen Shaitage Coract Slow 85
Prartical Use of Hoht Doncmintions
H
H
Iligh＇Teroperatore 65

Sumamser of Nifregen leetiong 87
77
1．Pobasejem
9．Mraptranat क）
E．Mfagnesdum 9
E．Sutphos 56
G．Trais \％
H．Manganes 96
96
t．Bore：
t．Bore： 95－99
7．Forknitilas 150.12
f．The Hask Foantily of Grajoche
tow
tow

（N）
（N）
 Staticin （10）
 Stafion
10
10
 星 星
 1ess
 Hs nserpostery 168．705
Chart 5 Fonusilas in Tems of FWM 106
Chan 4．Fonmulay if Termiry of Atnurlolite，Jank 106
Trate Elvinenta Sictumbirients，Use of 108
118
6．HOW Ta I／SE THE CIIEDIICM TABLE＇S
118－121
118－121
1．Draber Merthey an Carimatiow 111
 113
111 Segrifisg пит Cofmeses （t）
Iractital 5ungetioms 1）
 It
V．Srfactos rah Sricial．Revans 158．
V1．Vabiations to Fexity of Chemicale 127
9．WHERE TO BH：V NEEDED SUTPLAES1⽟ㅡㄴ 129
11 Sriclal Arparuzen 101
10．GROWING FOR FOME－I＇SE AS＇D FFGHIT 127104
 127
if．Fissscing मot 5wats．Oreantal 191
 131 181
11．THE TANKS ARE COMIING 14．75
 111
II．The Hvmenrostc Fivere 117

34511．Caware of Furzext Jats
（10）／ater－ 1
2 Cour on Pras lign betco

N
2 O
1

3．Dernax Tife Fonarge Ians
45
Cussmats
is
 191 140
6．A Geont of Kecos．ang
6．A Geont of Kecos．ang
 15t
 18
10．A vorika IFsy bo I＇oix Lres Itsond
10．A vorika IFsy bo I＇oix Lres Itsond 191 191
 Ros per Jity＋ito
115
115
12 A Cant of Cramua ey 178
 134
 （a）

CHAPTER I

Hydroponic Systers Mow in The

f．THE BAGKGROIPI

 first leams that a new and practical sevioe fors－gpreaced ready for ite it feceives the bews with argor van bepopo，and waits to see who will lirs te foul enought ta De in oni．Dming this intiat period the＂surkef baitery lave drefi Wule darge． and the suspid victims come．io ome，is womlet awe mone why they were so casity＂Bhen in．＂But a tow wal work quietly at texting the hew deviek．woffe bie des of bringing it into general use；petfaps，of ingmuvite il so las ir heell with hydroponics since its intredartion o o the puldic by EPlis and Swatey，1988；Tumer and Temy，1980，Saricer． 1910. and Lawfie，1940，tirrought theil upataig troubrno slie sabject． In thone references the rader walt thet the nowos of some of the many people who lave，in nee way or athithen cumribs uted to the developmert of hydroponits，as wall as itie prinid， pal universities and experimert Gations in the V inted States and Canada，where the signifirant wort if hyvenplonils ivos initiaked and cartied to complenion．

What the public does noi koow is tian fen ax Jeast at decade before any of these bools wew pabishent，gonwing plants higdroponially for commentas ise hwl leed prog on in a few places Alos，it tarely leanico That hank of ull hydm． pouics are two renturies and a half of agnd vientil experi－ mentation in the plan labopatorios of the surbl let us then set down the pringipat stepo whith iove latro it hong－ ing bydroponios to its present state
 like trying to lind a needle in a Lavsabl．Sinmpanc sprgested receidy．in a magarine article．that the thinme getolemin
who lives discovered by accideat that beans would sprout in a wet sack, staried bydroponics. Unfortumately, the man ate the sprouts, thas failing to prove that the beans would reach maturity in the bag habitat. He contributed mach to the beansprour industry and chop sucy, but precisels nothing to hydroponics. No doube Leonardo da Vinci had a hand in it, but there is no recond of it, to the writer's knowledge. The first real steps in hydroponics were taken by scientists called plant physiologists. These are the dhings they did:

1. Showed that plants are as alive as animals.
2. Prosed that water is alsorbed by the rooss. pases through the plant and escapes futo the air through pores in the leaves.
3. Proved rbat plants ise oxygen in respirationt, as do animals.
4. Showed that plants take up chemical salts in solution from either soil or water by means of their roots, carbon dioxide from the ait by their leaves, and oxygen by means of their roots,
5. Determined twhat kjinds of elements found in the various chemical salts are actually used by the plant to make its body and do its work. These they named "The Essential Elements."
6. Fonnd out fiow to balance these elements when Ied to plants in nutrient solutions of water and shemial asles.
7. Established the proper acidicy of the notrient solution.
8. Worked ont formulas For making lap nutrient solutions.
9. Demonstrated that plants coold he grown fo maturty in the nutrient solution alone, or in sand, gravel or other material floshed with the patrient solution.

4
1 et me repeat for emptasis, it took these scientific met and women 250 yeats at least to establistr these few simple facis about plants. Why so long? Plant plissiology is in many respeets a mach more difficult science than the othess. Plants have no nervous mechanism for revealing their needs and their uoubles. They have no circalatory system from which plant "blood" might be tested quickly for a diagnosis. Their sap is in no way comparable to bloot. The plants we ordinarily eat have so short a life span that any study we make of one individual is recessarity incomplete. To argue the point is not our purpose. It is desired only to point out that to learn a lew simple things about how plants live is a mose difficule task. The nure items given above are not the only ones, of course, which have been worked out in plane physiology, but they are the ones which had to be done before hydroponios was possible.

The second step was also done in the laboratory. To get oxygen to the roots; to keep the water-stream going through the plants, regardless of the amounts of elements the plants might use; to keep the acidity of the solution favorable to the plants; to keep high temperatures from ruining the roots-all
these problems had to be met through devising proper mechanical systems for landling a large number of plants at one time, and equally. Otherwise no proper conclusions could be drawn. Plants have to be grown in numbers, and under as like conditions as possible, for correct results. Out of all this work came the use of such things as sand, gravel and other substances into which the plants might be set, and through which the nutrient solution might be run and aerated. The second step, comsisting of the mechanical details for doing all this, was, therefore, also developed in the laboratory.

The third step was to apply the findings of the laboratories to commercial growing. In 1921. Pember and Adams. at the Rhode Island Experimental Station, began applying mutrient solutions to growing camations in sand. By 1929 Gericke in Califormia had denonsurated the practicability of growing vegetables and flowers lydroponically, and received nation-wide recognition for his work. Two others, Biekart and Conners, at the New Jersey Experimental Station. grew flowers successfully on a commercial basis during the next ren years.

In a way, these were all epochal events. For they demonstrated that plans could be grown commercially by methods used in the laboratory. The next question was, could this be done economically? Gericke, as well as 'Turner and Henry. proved that it could.
C. Hydroponics remained for a long time in the hands of experts. Only well-established greenhouse firms with enough capital to maintain the expensive equipment, as well as skilled personnel, could hope to operate the systems devel oped in the laboratory. It should be emphasized that in a laboratory, expeuse is not the first consideration. There, it is the scientific result which comes first. But in growing things comorercially, expense is of first importance, both in constrattion and in operation. The next significant step would be, therefore, that of bringing hydroponics into general use by redacing its present complexities.

If we go on the principle that after a certain point is reached, precision becomes a luxury, it becomes a practical necessity to eliminate in hydroponics all machinery which does not pay its way. The problem then resolves itself into one of doing away with the non-essentials without destroying the advantages obtained by hydroponics. It was this problem which the writer assigned himself some years ago. The technique developed, and the system adopted as a consequence of this study, are hete reported for the first time. It is hoped 5
that in this system we now have a practical method for growing plants hydroponically, the world over.

11. The Hydrofonic Problems

These may be grouped conveniently under two general
headings. The first are those fixed by the nature of the plane's way of life. The second are those of the operator, and arise becanse he is trying to induce the plant to do its work under a set of conditions not entirely natural to it.

Of the odd million kinds of plants growing on this earth, mily a Few hundred are cultivated for use. Left to themselves, they rarely grow in sufficient abundance at any one place in prowide a dependable food supply for man, But man thas been cultivating the choicesi ones for so long, both by agricultaral and breeding methods, that they respond fairly well to intelligent care. Since hydroponics is supposed to be the most intelligent way, so far devised, for growing plants, the one who attempes to masker the technique of this method stould first acquainc himself with the plant's problems, like any good gardeuer would. For, unless he firsr undersands what the plant is dying to do, he is more than tikely to get itr its way. In such cases, the plant invariably gives up whatever ghost a plant may have,
A. the Plant's prosiems. In general, these are the sme as yours; namely, to grow up, protect iself against its enemies, and to leave offspring. It has no way of enjoying itself, or of being concerned about iss own welfare. What it does is done amomatically, precisely as you do, with respect $t 0$ purely bedily procesess. If you do certain things a plant tiever does, so a plant does at least one thing sou never do Before a plant caft grow, it must make its own food. You appropriate food either from animals or from plants. Buez plant cannot do this. This fact fixes certain prohlems which one who grows plants must recognize. Let us now list the

A
plat's sjecific problems which we may help it solve bydroponically:

1. A living green plant does work. This requires that energy be dvailable to lee used up or transformed,
2. The ouly source of enetgy availabie is sunlight.
3. Tn capture the simfight the plant lias to "pickle" it inside a cheroical particte, called sugat.
4. To be able to lock up sonlight requires that the plant first have water, carbon dioxide gas, a suitable temperdture, and the greeb-colored substance, called chlorophyll. Any plamt that does not have this matetial cannot lock up sunlight.
5. It frees this locked-up energy by bringing it oxygen for burning the elements, carbon and hydrogen, in the sugar particle, thus turning these back again into carbon dioxide and water. The energy, thus liberated, is heat.
6. This heat is then ased by the plant in various ways.
7. To furnish the oxygen for burning, the roots must be able to absorb it, precisely as your lungs take it in during respiration. This is a very important thing to remember in hydroponics.
8. To build its body, the plant must also absorb mineral and nitrogen-bearing chemical salts in solution, through its roots.
9. To distribute these to the parts needed an exua supply of water must be absorbed through the roots, and in sufficient quantiry to provide an tubroken water-mass from roots to leaves.
10. The plant's food is the same as yours, namely, sugar or carbohydrate, fats, proteins, minerals and vitamins. But before it can "eat" it must first take in the things named above, and from them manufacture its "food." Thus. T
stricily speaking, we do not accually feed plans. They feed thembelies from the food they mannaczure On probleu is tocely to make if possible for them to do this.

This distinction is not merely an academic one. It loss practical significance. A considerable auount-of literaure is going the rounds, chargugg daat plants "naturally" do not require "minerak" It is stated that plans growat on tand entiched with " mineral ferilizers, jrotise puffy and tastelens prais." Sude statements are erdirely misleading. The fact is that very litule "organic" matter is alosorbed and used directly by green plants and rasselestiess has been shown to be due, in some imstances at least, to a lack of certan elements rather than to them presence, as alleged. If mincrals ane categorically "hamful" to planes and bumans alike, then the hmman race has been making an awfal mistake in its eating habits for the past million sears.

In bydroponics we ase minerals exclusively, with the normal supply of aitrogen included. The soealled special beselits of "organic farning." which the average objectors worry about so inconsistently, are provided tappily in carbon dioxide, water, and nitrates in a hydroponicum. Planis seem to be wiable to prejudice themselver against the carbon, bydrogen and nitrogen found in these substatices. They hold the same attraction for hydroponicallygrown plants as if they had been born and bred in a manure or compost heap.
B. The opinator's problyms. These ate of course, to provide temperature, light, water, oxygent, carbon dioxide. and minerals, together with nitrogen-containing salts, to the plant as it needs them. These are precisely the problems, in general, of any good gardener. The problems peculiar to hydroponics are:

1. Keeping the roots constantly supplied with oxygen.
2. Keeping the roots constandy supplied with water and chemicals in solution.
3. Kecping the concentration and acidity of the nutrient favorable for plant growth.

The problem of what to feed plants in a hydroponicum
is like that of any other type of gardening. Plants use the same kind of materials for food making, whether grown in an ordinary garden, the field, or a hydroponicum.

Hydroponic "farming" differs from other kinds of farming only in the mechanics of operation. Instead of plowing or spading, you flood the tank with water or sterilizing solotion and stir the sand. Instead of cultivating with a tactor and shovel, you may use a frogetig for light stirring: and if you are really good at the thing you omit the froggg. Instead of hauling and spreading manure or other "fertilizer" you dump a pound of dean salus into a barrel, let it sit a while, fest for acidity, open a faucet or pulf a wooder plog. and let the sand soak the solution up.

Sinee the problens of bydroponics are escentially the same as those in ordinary gardening or larming, it is strange to lind that so many are frightened at the idea of ameospting it. After all, is there so much difference between the expres sion 4.12.4 on a bag of "fertilizer" and the exprexion KNO_{3} ? If one has to learn a few simple things in hydroponios to lie successful, does he not also have to learn more thingo to garden successfutly? Give the same intelligent care to a hydres. ponicum that you do to a good garden: ger sceastomed to opening a faucer instead of dragging a plowa ger into the habit of saying "essential element" instead of "Fertilize," and the imaginary difficulties of hydroponics disappeary Accually. the number of people who rry to raise a garden and fail cad year is enormous. Yet these same dupes will persiss though 9 half a lifetime of semi-failare withou- onte orying 10 sliminate failure by learning hydroponics.

Arother problem mist be menuoried at lbis point. Thete is an impression that insect and fengos diseases aie eliminated in bydroponics. This is nor the case Dowever, such pesss are much more casily courrolled in a bydroponicum, and at lower cost in latior and maternale. If heavy sprase ing is necessary. the excess may le washed from the roows quickly, thus avoiding poisoning from this source. All in all. the crop-care, fequired in ordinary gardening, remains in a hydroponicum. But (and this is most important), the heavy labor and expense of plowing and cultivating are eliminated, The problems of too much or too little tain are, of course. practically eliminated.

The most acute problem in ligdroponics is that of securing food-grade dhemicals at a reasomable cost. Earlier writers painted a rather rosy picture. They speak of buying chemi. cals in carload lots. Now anyone is perfectly aware that only very large operators could possibly afford to buy in this manner. The "little fellow" has either to buy at "drugstore" prices or use a combination of better grade "fertilizers." In the first case, the cost is too high, and in the second, his formula becomes rather cumbersome. This in turn makes is impossible to be as precise in Ieeding as desirable for best
results. "Fertilizer," "chemical," and "essential elements" are not identical ietms, as the reader must learn. See Chaptets 3.5 and 7 .

It is toped that by the time this book is ready for press. positive steps will have been taken to improve the present farilities for distributing food-grade chemicals to operators of bydroponica.

The rcader should be informed, however, that "fertilizer" companies and "ehemical" companies operate under differeft Iegal requiremens. He should, therefore, not throw blame on eibher one if he finds shem hesitant to supply bis pariculat tequest. The fact is, up until now, hydroponica bas beef either in possession of a lew experts. largescale operators, of the armed forces. Chemicals are available to these groupe. The "ferulizes" companies. on the other hand, have had their hands full. trying io make up stuff that routh the appilied oo suil growing exclusively, and be distributed legally. There simply has leen no comparable demand so Lar, los food grade chemicals. because there are too lew fydro: punics in opecation. Theretoré, thäse who should and will be inverssed in this urade have not yet appreciated the probs. lem. They will in time, as hydroponics grow, you may be sore. There are a few distributors who buy up food materials for growing per bouschold plants. Bue they sell them at prices tor high to be considered in hydroponiea except those haed as hobbich and where cosis are not a consideration. If short, the mmall opetasor of a loydroporioum has been lelt out in the cold, with respect to tuying his chemicals easily and reaponably,

Anothe problem, and att importani one in wopical and mbetopical arcas. is that of keeping mospuito larva, dysensery amoela and typhoid bactetia out of the tanks. This is the same problern ercountered in soil gardening. But in operatiog a hydropobicum these organioms are easily conrolled thes making feeti vegetables available anywhere on earlh. provided the proper type of hydroponicum is selected.

Let as row consider the various systems which have been devised to meet the plant's problems by hydroponic techniques.

iII. The Hvproponic Sisteas

For practical purposes, we may group the various hydroponica types on the basis of the mechanical arrangement for 11
getting the plant supplied with chernical salts, air and water. All of them, to be comsidered suctesstul, must stand up undet violent changes of temperature, light, wind movements and tanafall. The one that does this best is the one to use, pron sided it om be built and operated econonically.

There are dhree lasicsystems, which may be converiently hamed: (A) Thl Gericke System: (B) The "Aggregate" Svstem: (C) The Spessard Sistem. They have in common
a tank, or "basin." in which the plans to bee growen, are placed. This is filled cither with nurrient valution aiones or some "aggregate" such as sand, gravel, cinders, elay pellecs. or even rock wool, over which the nutrient solatiou is passed from a storage on mixing tank.
A. the gakicke svstas. The essemial feammes of this system are:
f. A tank for holding the narient solution. This may be reinforced concrete, wood in metal. It must he watesproof and leyel.
2. A "litter or seed bed," pade to cover the "Jasin" or tank. It consiss of chicken wire stretched accoss the top of the tank, mid over this, a kooden of metal frame is set.
3. Litter to fill the liuter bed. This miay be excelsion: sawdust, dried comatalks or other plant material. Anyzling will do, in Gact, provided it does not decas too quickly and will keep moist, It is in this bed that ibe plants to be grawn are set.
4. An air spece between the surfice of the nowient solu tion and the bottom of the litere bed.
5. Or, in addition to the air space, an sutoratic minct inserted in the soludion of the "basin""
6. A means for spaying the liter leat tot maiowan the desired moixture conditions.
7. A meanv of keeping the plants from sinking though the liteer bed into the solution below, as they grove older, of for keeping them in place until their roots make proper contact with the nutsient solution.
8. A means for tesing clanges in concemration of the solution, as well as clanges in acidity. A teclmically trained individual for doing this.

The remarkable success aflained by the sothor of this system deserves serious study by aby operamor of a bydroponicum.

Probably no one has consistently secured as high prodectivity with both flowers and vegerables as has Professor Gericke with this system and his special technique for operating it.

Its chief difficulty is the delicacy of operation required in maintaining the liter bed in proper condition.

The chief virue of this sysem is its lack of mechanial incumbrances, and its versatility for growing a varicty of crops under skilled hands.
B. the aggregate system. This system eliminates items two to seven of the Gericke System and adds the fol. lowing:

1. A storage or mixing tank of reinforced concrete, waterproofed.
2. An "aggregate," which may be either sand, gravel or
stimilas tanterial. This is placed in the growing-tank. The plapts are sel an transplated inno this aggregate.
3. Either a system of containers for dropping the soluvion or top of the aggregate (sand), or a pumping and drainage system of pipes and tiles for flushing is at regular Intervals.
4. An electrical motor for driving the purtip.

15
5. An asailable elecrical current.
6. A timing device for keeping the pumping system in upetation at the stated intervals.
7. A technician for haudfing and repaiting the machinery.

In shor, white this sysem eliminates sume features of the Gericke Sysem, it adds several more, thus alding to the cost of romssucting and of operating. The prowipol features of the system wese developed at Purdoe and Obio Universitien and the New Jerser Experinem Station, for reseaich parposes. It is in many respects the ideal set up for a bydror ponicom for greentowes. Its chief drawback for general use ir the expease and techatical experience required to pperate it,

Both the Aggregate and the Getiche ststetus have beeti ised exemsively io growing vegetables and flowers. The Uloned States army intalled one or the other of these systems at various places during the las war. The system, as well as the coaval describing its operation, were designed and writen by Dr. Rober Withrow, mainly. The army adopted, rather than developed fydroponics.
C. tiel sposikn syanem. The essential features of this aystere ate:

1. A growing tank, with sand as the aggregate. This is tbe same as in the Aggregate System, hut the tank is consurucred differendy.
2. A miximgtank. or feedfingtank. It is of small capac-ity- and of a unit site to provide for a unit area of growing bod. The solotion is not reurned to it as in the Aggregate Syatcm, butt it may, if so desired. Thus, all testing and pumping systems are eliminated. This tank and the growing tank are constructed, of may be constructed, as a single structure.

4
The detaifs of this system will be given in the following thapser. Its chief features ane simplicity of construction and operation. flexibility in the use of aggregate, chemicals and fertilizers adaptability to variations in weather conditions the trorid over, and low coss.

As far as it has been tested/ it appears to be as productive of firse class vegetables as the other systems.

Once construcred, it will last a century or more with little or no sepair.

15

 ChAPTER 2

 ChAPTER 2

 A Unit-Type Hydroponicum

 A Unit-Type Hydroponicum

 For General Use

 For General Use

 I. Jstrodichion

 I. Jstrodichion}

Before describing the Unis-Type Hydroponicum and how it operates, a word sbould be said about what it was designed to do, what objectives were considered to be of first imporianee, and what of secondary importance.
A. Tor whos intexdeb, The system was designed for use by anyone interested first in growing food for his own use tbrough his own efforts; second, for growing planes mo be sold on the loeal market; thifd, for thase who have reached that age when so be able to work at something without exhausting latior is a peccions privitege.

Such people are located all over the would. There are regions where the poptlation is greater tian the fand to support it. There are regions where it is coo cold to bring plants to maturity becuse of a short wason. There are other regions where tropical conditions make a garden leoth a difficule and a dangerous affair, because of pests and of chease Learing organisms. If it is possible through a simple hydropunioum and teconique to enable people in smeli regions to overcome the difficulties named, thent by proper eduationic a syotent such as the one proposed here should become ail important contribution toward solving the problems mentioned.
B. phimaky kerumpigets yok a bactical svimem. Since the system is not iofended for research parposes, it should meet the following practical requiremens:

1. It should be so simple that asyone with skill enough to grow a garden mighe operate is sumessfully.
2. It should cose a reasosatily smatl amonat of money so enable a beginner to constrict a large cuiongh buthe for learning the proper techaique of operation.
3. Its operating costs shoutd be low enough to enabie the owner, alter learning the technigue, to repay the original cost of construction in one year of operation.
4. It should be operable under all sorts of tseather bonditions during a pormal growing season, as well as urider greenhouse conditions.
5. It should allow the tuse of a great tariety of chemicals or ordinary ferilizers, subce thete is no standard set of such substances available at all places. It would be expected that chemical salts of proven worth would be preferable to an assortment of readily arailable fertilizers.
6. The technique of operation should be precise enough
to assure a good crop regularly, yet not so precise as to increase costs of operation or of construction. For precision carried too far, is a liability rather than an asset,
7. Ir should take into account the fact that growing plants are soleramt of rather lage variations in concentrations of the nutriem solution used, and of the kinds of ehemicals wffered whem:
8. It should provide a rapid simple and corvenient means for measuring ont the chernicals.
9. It should climinate expensive mechanical details.
10. It should reduce chemical testing to the minimum.
11. Directions for operating it should be in the simplest Janguage possible.

II. Definitios or Unit

A. Growing-Usm. The growing-unic is that area of the system in which the plants are grown. It consists of 200 ejuare feet of growing space,

This is provided by a concrete (or other suitable maserial) bed or tank, 50 feet long and four feet wide, ousside dimensions. The inside depth of the tank is eight inches. The walls are two inches thirk. The bottom is aloo two inclies thick, untess constructed in cold regions. In the latter case, it is reinforced and is three inches thick, being set on piers sunk to below the frost line. with a space between the ground surface and the tank botiom. In tropical regions also, the bottom of the tanks may be raised above the ground leyel to avoid insects and infestation with disease-producing organisto.

The unit may be built also as two 25 foot or five 10 -foot ranks, with other dimensions as given.

The specifications for building the growing unit are given in Figures 15. Section VI. page 27 of this chapter
B. sownow or nutrient unit, This is one 50 gallon barrel. This is chosen because it is a familiar unit to people of the United States and many other countries. It is also a simple fraction $(1 / 5)$ of the physiological units commonly used, namely, 1,000 liters, or $1,000,000$ grams, or five barrels of solution. Finally, one bartel of solation is the amount which will daily provide the nutrients required for one growing unit, having 200 square feet overall area (see A), when fully planted. This was determined by expriment.

This amount of solution is calculated to give plants in ope growing-mit their daily ration at the time of maximum requirements, which is near the peak of their growing period. For tomatoes, this amoum would be sufficient for approxi18
mately 130 plants in the unit area given above. Smaller plants would cover the same area, hut would be more in number, of course.

The actual construction of the solution-unit provides for three bartels rather than one, for this reason: During the early growth of plants in the growing area less nutrient solution is required than when the plants are approaching maturity. Therefore, it is convenient to make up three barrels at a time, rather than one. A greater amount than this, experience has shown with this system, is undesirable. As the season progresses and the temperature increases, mote and more water is given off by the plants. Therefore, although the daily ration of chemicals remains fixed, there has to be a provision for giving the plants more water. Since the minimum of solution in the tank is one barrel, and the total capacity is three, we have two barrels of extra water which may be provided if necessary in very hot dry weather. If the tank contains two barrels of solution, there still remains one barrel capacity for providing extra water at the time of feeding,

The dimensions of this nutrient-tank are, therefore: 34 inches long, 4 Ieet wide, and 28 inches high, outside dimen. sions, with 2 -inch-thick walls.

Specifications for building this unit are given in Figures 1.5. page 27.30,

The unit, therefore, from the point of view of operation, consists of a feeding-unit and a growing-unit to form a single working whole. It may be redefined as a unit of solution (one barrel) which will adequately supply the growing-unit (200 square feet) with the proper amount of nutrient solution daily, when it is filled to capacity with plants at the time of maximum growth.

19
The two may be constructed in one piece, with the feeding unit at one end of the growing-unit, or with the feedingunit placed at the midway point between the enids of the growing-unit. The essential feature consiss in having a growing area no larger than the barrel of solution will provide adequately. The size of the growing-unit was determined by experiment in the region of Conway, Arkansas. There is no apparent reason to suppose that it would vary from place to place.

In later discussions it will be the unit-asa-whole, which will be considered. Once the operator learns how to operate one unit, he may then double or treble or otherwise enlarge his plant as desired. The details remain the same whether one or a hundred or more units are built.

111. Selection of Site for One Unit

A. Light. The unit may be placed anywhere that the amount of light available is sufficient for the growing needs of the particular kinds of plants to be selected. Vegetables require more light, as a rule, than do flowers. It is a common misconception that in hydroponics one may use an attic, a
cellar, a closet or any sort of ill-lighted place. This is not so.
Many believe also that there is need of ultra-violet light. It is the blue and orange-red portions of what we call white light which are used in greatest amounts by green plants. The amount of light, both as to length of daylight period and intensity, is of great importance. Some plants do best when the days are short, others when they are long. Fortunately, most vegetables offer no difficulty on this score. Plants may, to a certain extent, protect themselves against too intense light and ultra-violet light.

When the light intensity is too low, the leaves tend to enlarge, as though in an effort to make the green material

20

(chlorophyli) cover as large an area as possible. When the light is too intense, the leaves may wilt or even burn, because of internal disturbances connected with using the substances given them through their roots.
B. water suppi., The unit must be placed where a constanc supply of water is available. This may be near a faucet beside a pond or stream, or below a dam through which the water may be led to the hydroponicum by pipe or other mears. The ideal locations of large hydroponica would be on the hillsides below the great water-control prajects throughout the world.

1 estimate that the maximal amount of water required to operate my own system, regardless of the number of units built, is 22 gallons per square foot of growing area per 100 -day growing period. Most crops mature in this time. This may be put in another way, by saying that the amount required is the equivalent of 36 inches of rainfall. If we take a region in which the annual rainfall is 10 inches, then by collecting the rainfall over an area 3.6 times the size of one unit and storing it for use as needed, enough will be available for growing one crop on one unit. Again, in a desert with an amnual rainfall of six inches, the water collected and stored from an area of only 1,200 square feet should be sufficient to grow a crop on one unit. In other words, by proper water conservation, growing vegetables for home use by hydroponic methods is practicable. It is the common practice in many regions to thus conserve water for bousehold use. An extension of this idea to include a small hydroponicum could scarcely be called a difficulty. There is hardly a site in the world, where people must live, with less than six inches of rain annually.

This estimate of the amount of water required may be lowered in regions where the rainfall is heavy. Indeed, the rainfall may so seriously dilute the nutrient solution as to 21
bring about temporary starvation of the plants, unless proper precautions are taken.
C. shading. In hot arid regions, in order to reduce evaporation, as well as to avoid excessive sunlight, shading
is necessary for some crops. Likewise, an occasional sprinkling of the surface of the growing-unit with water may be necessary to prevent accumulation of chemicals at the surface, and to wash out wastes which tend to collect in the sand, in the absence of rainfall.
D. afration of plants. The supply of oxygen for the roots is discussed elsewhere. But there are regions where the air is very humid. In such places the unit must be so located as to allow free circulation of the air through the leaves. Overcrowding of the plants must be avoided, or fungi will attack the plants and destroy them rapidly. There is another reason, quite as important as the first, namely, making conditions favorable for the evaporation of water (transpiration) from the under surface of the leaves. If this does not occur, the plant has difficulty in obtaining a sufficient amount of the chemicals offered them, and fail to use properly what they do get. Circulation of air, if not excessively violent, is necessary.
E. direction of unit. There is no reason for believing that the unit must be placed north and south rather than in any other direction. But it should be obvious that in whatever direction it runs, it is necessary to observe that tall plants must not be allowed to shade low plants, unless specifically desirable.

1V. Materials Requiked for One Unit

For the convenience of those who wish to make an estimate of what it would cost to build one complete unit in ${ }^{22}$ their particular locality, an exact list of the materials required is given here.
A. Slightly more than two cubic yards of mixed cement and four cubic yards of washed sand for filling finished growing unit.
B. Lumber: 210 linear feet of eightinch-wide and 216 linear feet of 10 -inch-wide material for forms; 100 linear feet of two-inch by four-inch material for bracing lorms; 100 linear feet of one-inch by threeinch material for screeds or guides; 14 linear feet of one-inch by two-inch material for making screen to cover the nutrient-unit tank.
C. Two pounds of nails, assorted sizes; one box of carpet tacks. Metal screening, with mesh fine enough to keep out mosquitoes; one piece 48 inches by 30 inches.
D. Three 3 -inch nipples; one 8 -inch nipple; one elbow; two caps for nipples; two hydrant faucets. The diameter of the nipples should be small enough to accommodate the faucet thread.
E. Ten gallons of asphalt paint (not tar).
F. Ten pounds of glass wool, or some material which will allow water to seep through freely, but not allow sand
to pass through. Newspaper will serve. Rock wool may be too alkaline.
G. One hundred pounds of chemicals. It may be necessary to buy this much of each major kind, used in the formula chosen.
H. One glass graduate for measuring acid. One acid tester, with color indicator and exura rolls of paper for renewal. One tin can 10 cm . by $5.8 \mathrm{~cm} . \mathrm{m}$. diameter for measuring chemicals.

1. One five-gallon bucket, One garden hose.

2
J. Ten 7-foot cedar or other posts for building a superstructure for tieing up crops like pole beans, cucumbers, and somatoes: about 200 feet of poles or lumber for frame attached to the posts; 150 seven-foot-long pieces of wire of weight used in an ordinary fence, to provide each plant a support suspended from the cross poles or frame.

It is assumed that the operator will have the unit built by a contractor, who will know how to make forms for pouring concrete. If the operator does this work himself, he will have to know, of course, how such forms are constructed.

The materials listed provide for making one unit and operating it for one crop. Only a partial renewal of the chemical supply will be required for further operation.

The reader should be reminded that if he has to fight insects and fungi, proper spraying materials will also be required to save the crop grown, precisely as in ordinary gardeting.

A greenhonse is unnecessary, unless the operator wishes to lengthen his growing season by transplanting, or wishes to grow plants early, or desires to have produce for use when the outside temperature is low. For transplanting. I use tin cans large enough to allow the plants to become sufficiently well-advaticed that one month of growing time outside is gaibed. The capacity of such cans is about one gallon. It requires one can for each plant to be transplanted. There are several advantages to be gained through the use of this size can rather than some other. First, tomatoes may be transplanted when in full bloom. without harming the root system. Second, they may be spaced to prevent crowding, simply by removing every other can. When not used for transplanting purposes they come in handy on many occasions. The most important use is to substitute them for the large growing-unit or cement tank. Plants such as beans, tomatoes, and beets may be left in this size can and brought to maturity simply by pouring the nutrient solution over the contents by means of either a dipper or a hose. See the tin-can technique for details, Chapter 4.

V. Principles on Which Total Unit Works

 The unit is designed to meet four practical workingrequirements. These are: First, providing adequate air for absorption through the roots; second, providing adequate supply of chemical solution to the roots; third, meeting additional water requirements as needed; fourth, maintaining the proper acidity of the solution about the roots in the growing area.

By means of two sand-retaining walls set on the bottom of the growing-unit, there are provided two open chamels, one of which may be filled with solution, which then flows under the retaining wail, while the other receives the solution as it flows from the sind area, and serves as a drain towards the end of the growingtank and away from the feeding-unit. The flow is regulated by properly sloping the botom of the growing unit from the first, or feeding channel, to the second, or drainchantiel on the upposite side.

The solution is delfivered into the feeding-channel from the feedingrunit by means either of a faucet set in the wall of the feeding-unit eight inches above the bottoms. or by means of a aipple set in the wall of, and at the botwon of the feeding tank. See Figures 2 and 4, pages 27 and 29. The later is the quickest way to deliver the solution into the feedingchannel. The former allows the solution to be aerated as it falls the eight inches into the feeding-clamel and the bucet is less likely to become clogged with debris from the feeding tank,

Acration is provided partly as described above, and partly by alternately allowing the solution to fill the spaces berween the particles of sand through capitlarity, then permining ain to percolate downiward from the surface as the water is used up, or drains away.

The unit type of hydroponicum differs from the types mentioned in the first chapter in several important respects. First, the solution is delivered fresh to the plants each day, and is not used over again. This may seem to be a waste. However if a solution is made up in large quantity and used repeatedly. all of it must be thrown away sooner or later and be replaced. In the unit type under consideration we throw it all away, as in the case of the other systems, but do it gradually rather than at one time. The principal advantage gained is in not having to make chemical tests. When the feeding is done skillfully, it is found that only a few gallons are discarded daily, but in doing so the effect of a constant flow of nutrient is approached. Also, the acidity of the solution in the regions of the roots is kept fairly constant, a very important point to be considered. However, over prolonged periods of extremely high temperature, it is more conomical to sprinkle the sand surface with water actasioually, or with slightly acidulated solution by means of a hose attached to the faucet of the feeding tank.

Another difference to be noted is the lack of any extra provision for root acrationf. No pumping at regular intervals and too air bubbling system is required, It has been found thar during very hot weather the solution may be lefe in both the feeding and drain channels to a depth of two inches Ion a whole daylight period without becoming stale, and without the plams showiog injury fiom onygen shortage. However, this is not advisable, since the solution around the roots, lacking a flow movement, tends to become alkaline withina day of 30. In periods of wet weather this trouble is not encountered.

27
VI. Structural Detains of Complete Unit

Figure 1. This shows a lengthwise section of the unit, through the middle. Each growing-unit (P.T.) is 25 feet long, with the end walls and side walls (not shown) eight inches high inside and 10 inches high outside. The solution tank (S.T.) is 34 inches long, running with the bottom of the whole unit, and 28 inches high, ontside dimensions. The width is considered as running crosswise with the growing: unit, which is four feet, ouside dimensions. (S.L-), sand level.

Figure 2. This shows a lengthwise section through the feeding-channel side of the unit, with a faucet (F.) and a capped nipple (D.N.) leading from the feeding tank to each of the two feeding-channels, each 25 feet long.

Figure 3. This shows a lengthwise section through drainchannel (D.C.) side of the growing unit, with a nipple (D.N.). ${ }^{28}$ and an eight-inch nipple attached to this. This makes an adjustable structure which provides for both opening and closing the drain. In the upright position, (U.P.) as shown in the sketch, the drain is closed, and the tank may be filled with sterilizing solution, water, or nutrient-solution as desired. In case of continuous rainfall, the outside nipple may be lowered so that its opening is an inch or so above the inside bottom of the unit. This allows for an overflow in case of sudden rain, and also permits a certain amount of solution to remain around the roots of the plants constantly. At such times, by increasing the concentration of the solution in the feedingunit, or by scattering some ordinary garden fertilizer over
the surface of the sand, the growing plants survive very wet spells nicely. This of course conserves the water, and lowers the estimate given in (III. B).

Figure 4. This shows the unit as a whole as seen looking down on it. The retaining walls (R.W.) are made of four-foot slabs of cement, one to two inches thick. These are set on the bottom of the tank and hold the sand in place, while allowing the solution to flow underneath them and over the bottom of the growing-unit. In case sand flows under them, or between the joints, glass wool, or paper, or asphalt rooting must be used to seal them loosely, being careful to permit a free flow of solution under them. See (S), Fig. 5. This is of
utmost importance. The retaining.wall should be so placed is to allow a feeding-channel (F.C.) three inches wide, and the drain-channel (D.C.) one inch wide. A little extra space in the feeding-channel, at the place where the feeding faucet and nipple below it come through the solutiontank wall, is very convenient. It permits free use of the hand, a pair of pliens or small wrench. The retaining-wall is held in place by the proper use of spreaders, made of any convenient material. Brickbats are excellent for this. The use of spreaders may be avoided by tilting the retaining-wall against the tank-wall. If this is done the slabs should be made 9 inches high.

Figure 5. This shows two cross-sections of the growingunit with the bottom sloping $1 / 2$-inch across from the feedingchannel (F.C.) to the drain-channel (D.C.). The space between the retainingiwalls is filled with sand, which settles down about two inches after being wetted thoroughly, to its final level. This makes the sand depth six inches and allows a two-inch space above the sand for preventing splashing of the sand out of the bed during a beavy rain.

In (A) the normal arrangement of feeding and draining is given. In (C) is shown a variation of (A), in which two open-bottom troughs (T) are sunk down the length of the growing-unit. These troughs offer a very convenient method for introducing the nutrient-solution. It flows downward,
increasing aeration of the roots and aids in replacing any highly concentrated solution which may accumulate near the surface. It also distributes the solution more evenly to all the plants. This arrangement is especially effective when

30

the bottom of the growing.bed is made to slope both ways from the middle to the sides, making both channels, drain-ing-channels. This arrangement is preferable to that in (A) in hot, dry regions. The feeding channel is unnecessary if the troughs are used. (B), detail of draining channel.

VII. Funchonal Details of Complete Unit

Let us now see how the unit works in operation. Let as assume that the growing -unit is filled with sand, is planted, and that the plants are of size requiring feeding. Let is assume also that the feeding unit is provided with nutrient. solution, and full enough to make a feeding.

First, either the faucet or the cap on the nipple in the wall of the feeding-unit (Figure 2) is opened. If both sections of the growing -unit are to be fed, of course both faucets will be opened. The solution flows down the feeding channel (Figures 2 and 4) until it is full, as shown in Figure 5A at F. C. The solution flows under the retaining -wall, out of the feeding-channel, into the sand-filled area of the growing-unit. Here it spreads by capillarity in all directions through the sand and comes into contact with the roots of the plants growing in the sand.

From the sand area the solution finally flows under the opposite retaining -wall and into the drain-channel, Figures 8 and 4. If the drain-nipple (D. N. Figure $\$$) is in the up-posiLion, the solution will flow into the drain-channel until it is $1 / 2$-inch deeper on that side of the growing -unit than on the feeding-channel side. When the drain-nipple (D. N.) is in the down-position, all excess solution not taken up by the sand and the roots will drain out of the unit.

The faucet at the feeding-unit is closed when the feed-ing-channel is full. or when any other desired amount has been introduced into it.

In the event that the growing-tmit is provided with the troughs (T, Figure 5, C), the colutiout is introduced into them rather than into the feeding chanel.

In the event that the plants growing on the feedingchannel side grow more rapidly than those on the drainchannel side, it means that the slope across the growing-unit was not correct for the type of sand used. In that event, two solutions of this difficulty are possible. Either the trough (T) in Figure 5 B may be added or a crosschannel from the feeding-channel to the drain-channel may be cut through the retaining walls and sand, straight across from where the faucet is located. Thus feeding can be done in both channels at the same time by keeping the drain-
nipple (D. N.), Figure 3, closed until the amount of solaton introduced is taken up by the sand and roots, and the channels then emptied of any unused solution. Care must be taken to see that the drain-nipple is then returned either to open or overflow position so that the growing-unit will not be flooded in the event of a big rain.

The feeding-unit is filled, of course, either from a water main faucet, by gravity through pipes from a pond, by pumping from a well, or by hand, according to the conveniences available.

The most economical arrangement for conserving the water supply is that shown in Figure 5. C. page 30.

This chapter ends with information on how the unit itself operates. The next chapter will tell how to operate it. In other words, we have been discussing the mechanics of the unit. Now we must deal with something which has to do with the judgment of the one who tries to make the machine work.

3
 CHAPTER 3
 How to Operate the Uniit-Type Hydroponicum

In order not to frighten the beginner who is seriously interested in building and operating successfully a unit type or any other type of hydroponicum, all technical details have been reserved for later chapters. Nevertheless, such things may not be put off indefinitely, if one is to increase his understanding of what is going on and what he is really trying to do. It will be assumed that he is anxious, perhaps overanxious, to begin growing something in the hydroponicum he has set up. Very well, let us see how one goes about growing a crop of tomatoes in a unit type of hydroponicum such as has beep described in the last chapter.

1. Chemicals You May Use

In Table I, page 68, you will find a list of chemical substances which have been used by one expert or another in making up satisfactory formulas for your use. In Chart 2. page 99, you will find some of these as used in various formulas. As a test, we will choose Formula VIII for our present use: Potassium chloride, sodium nitrate, ammonTum nitrate, monocalcium phosphate, magnesium sulphate. lime and nitric acid for the bulk chemicals. For the trace elements we shall use ferric ammonium citrate, manganese "chloride, boric acid, molybdic acid, copper sulphate (blue vitriol), and zinc sulphate. These will give us everything the plant needs. We shall assume that you have all these on hand and have the acid testing supplies mentioned in the last chapter, page 22.

11. A Practical Method yor Measuring Out Caemicals

The following method is to be used for mixing up one barrel of solution, which is the unit defined in the last chapter. It is based on the idea that a given weight of a chemical will have approximately the same volume regardless of atmospheric moisture which it picks up and loses from time to time.

1 use a till can 5.8 centimeters in diameter, and 10 cm. high. Each chemical was weighed out according to the formula and its volume marked on the side of the can by punching a hole through the tin. Thus a chart showing the level of each volume of chemical used is easily made. The can is filled to the desired level determined fot each chemical used. It is better to have a can for each formula. But the formula should be marked on the can.

35

See Chart 2, page 99. The amount of nitric acid required to neutralize the lime would be about 20 cc .

Once the cylinder is prepared it is used as follows: It is filled to the level of the 20 mm . line with monocalcium phosphate. This is then poured out into a container of convenient size. Next, the can is filled with lime to the 33 mm . level for lime. The can is again emptied. The operation is complete when each chemical is thus measured out in its turn. The order of measuring is not important. Incidentally, one may use any size cylinder, no matter how much larger, and mix up any quantity desired so long as the levels remain as given. The whole would then have to be mixed
very thoroughly, however, before using. I frequertly mix up 100 pounds at a time, including trace elements, except iron. If this is done, slightly less than one pound of the mixture would be used for each barrel of solution made upe. But let us proceed with making up one latrel of solution, by adding the trace elemens.

For copper, use two or three drops of solution made by dissolving two pieces of copper sulphate the size of a pea in a quart of water. For molybdenum, use enough of molybdic acid powder to cover the period of this sentence. Do the same with zinc sulphate for providing the required zinc. Of, if you bave an old wash tub or bucket filled with wood ashes which are covered with water, a spoonful of this will do. On, in most cases. it might be just as well not to bother about zinc. Enough boron will be supplied if you acover the word boron with boric acid crystals or borax. Enough manganese chlonide or manganese sulphate to cover the word "acid" will be sufficient for the amount of manganese desired. For iron, enough ferric ammonium cirate or ferrous sulphate to cover the word "ammonium." would be sufficient to prevent iron deficiency in most cases.

All these chemicals, except the tron, are now put into the barrel of water and stirred. It is perhaps best to put the acid into the water before any of the other chemicals are added, although it may be done afterwards. However, never put acid on the undissolved chemicals. Also, never put water into the acid. This is particularly true when sulphuric acid is used for it gets very hot when it is mixed with water. The
acid used here is to neutralize the lime. To decide exactly how much to use, make a preliminary test, Dissolve the lime you measured out, in a gallon of water. Then add acid slowly, stirring it frequently. Test with the paper after each stirring. When the paper shows a $p \mathrm{H}$ of 6.5 you are through (see III below). Note exactly how much acid was used. That is the amount to use. It should be around 20 cc if nitric acid is used, and 10 cc . when sulphuric acid is used for Formula IX.

IIL Abjusting for Acidity

You now come to a very delicate problem. You must adjust the solution to its proper acidity. Don't do this until six hours after mixing. This is called "pee-aich." $p \mathrm{H}$, and is indicated as $4.5,5.6,6.0,7.0$, and so on. You are aiming to adjust the acidity to 6.5 . Above 7.0 the solution is alkaline and few plants will grow in it. Below 7.0 it is acid. Most plants prefer a slightly acill solution. None will do well If the solution is at 4.0 for a very long period. It should be stated that the acidity of the solution about the roots does not remain 6.5 for very long. Whether it becomes acid or alkaline depends on several factors. However, we shall begin by giving the plants a solution reading 6.5 , or slightly less, and later test it as it comes out of the growing unit or by sinking srnall wells down in the sand deep enough to fill with some of the solution about the roots themselves and then test this solution.

37
The solution in the barrel is adjusted by adding acid drop by drop until the paper reads 6.5 after thorough stirring. If too much acid has been used, the mistake may be corrected with a little lime or lye water or wood ashes. It takes practice to make this adjustment easily. In practice, the solution should be nade up the evening before it is 10 be used. The acid adjostment may then be made the following morning. If you complese the steps given in Section II correctly, no adjustment will be necessary. But check.

The iron is added to the solution just before feeding and after the adjustment for acidity has been completed. Otherwise it will precipitate out of solution partly and the plants will show signs of iron starvation in spite of the fact that it has been used regularly. Ferric ammonium citrate is preferable to ferrous sulphate for this reason.

You now have a barrel of solution made up according to Formula V111, which I used during the past season and which produced on one 200 -square-foot growing unit 746 pounds of marketable tomatoes between April Ist, when the plants were transplanted to the growing-unit, and July 12, 1947, when the bed was replanted in Lima beans.

IV. Use Made of Ammoniem Nitrate

The reader may have noted that ammonium nitrate was
not included in the levels of measurement on the tin can. although it was selected to be used. This chemical will be used in our test to add nitrogen as desired. Ammonium nituate is a liquid. The form sold in bags has a coating which rubs off easily when used on cultivated soil. In a hydroponicum one is never quite sure just when it becomes available after being put into water. It is used because the ammonium part is more quickly used by the plant than the nitrate part, when protein is being made. For this reason it

3
is difficult to manage. It is easily possible to give too much nitrogen at once by the use of this chemical. I have found. however, that if one adds gradually increasing amounts, beginning with 5 mm . in the can or cylinder, no hann is done. The very maximum would be 100 mm . This is done only on clear days, as these grow longer, when the temperature is in the eighties or nineties. I never use it on dark days. The whole problem of feeding nitrogen is discussed in the more technical Chaprer 6, Section IV, prge 78.

V. Preparing the Growing-Unit yor Transmlanting

Before the tomatoes are transplanted to the growing-unit the sand in it must lirst be properly prepared. If washed sand was used, it is first made to sente down by flooding the growing-unit with tap water. It is then thorougbly drained. Properly done, this leaves the sand in a level condition. After draining, the sand is allowed to dry out at the surface.

The sand is then thoroughly wetted with nutrient-solution from the solutionstank unit. The details of this procedure are given in Chapter 2, Section V11, page 31. However, a word must be said here. You are now face to face with several problems. First, you want to supply enough water and chemicals to the roots of each plant for proper growth. Second, you want to allow enough oxygen to get to the roots so that they will not sutfocate. This means that you must not allow the roots to be covered with the solution for too long a time. Remember that without oxygen ${ }^{a}$ a plant cannot live and everything else we may do is useless unless we provide this element,

This is accomplished by filling the feeding channel full enough so that with the drain-nipple closed, enough will flow under the retaining-walls to soak up the sand to within a quarter-inch of the surface, and allow none to remain in the feeding-channel, and only a very little in the drain channel. Since the botom of the growing-unit slopes one-halfinch across, and since the sand on the feeding side has the first opportunity to soak up the solution, a little time must be allowed for the sand on the drain side to soak up its full amount. Otherwise, the plants on one side will receive more of the chemicals than on the other and will grow faster. After this time has passed what little solution remains in the dram channel may be allowed to pass out. It may be col-
lected and returned to the solution-tank if desired. I rarely do this because it is less expensive to discard a little every day than to bother testing it, since in time all of it has to be discarded anyway if it is reused.

VI. Transplantinc to the Growing Uxit

If you have bought your tomato plants from a nurseryman or if you have grown them from seed yourself, the plants are transplanted as you would do in a garden. I make it a practice to grow my own plants from seed, transplant them into gallon cans three-fourths full of a mixture of compost and sand, or of dirt and sand, and transplane from these to the growing tmis. The emtire contents of the can is transplanted. The roots are thus not danaged, and some time is saved. The plants are set just deep enough to bave the roots, with the contents of the can, extend down to the moisture levels of the sand, but not with the stem more than an inch below the surface. I tind thar deeper planting causes the old roots to die, thus causing a delay until new roots are formed. I have not found that deep planting makes for sturdier and more productive plants as some growers elaim.

If there is danger of the stems roting at the surface. as sometimes happens in humid weather, it helps to wrap each stem with a small wad of tock wool soaked in a little copper sulphate, sulphur and lime, at the region barely be low the sand level.

The plants are set in thee rows down the length of the growing unic. They are spaced about 14 inches in the row. the plant of one row alternating with that of another row. This permits the use of about 130 plants to the growing-mit.

Once the transplanting is tinished, the drain-mipple is then closed, and the growing-unit thoroughly wetted again with nutrient-solution as described in Section IV above.

VII. Induging Roots to Grow Downward

After the plants are properly set in the growing area and fed, the next problem is to induce the roots to grow as near the bottom of the sand as possible. If the sand is kept wet at the surface, the lower roots will die of suffocation and all the toots will spread out just beneath the surface of the sand. If this is allowed to occur, many diffioulties will be encountered later. To avoid this situation we proceed as follows:

First, the plants are not fed again after transplanting until the surface of the sand has begun to dry out slightly. If it happens that the season turns out to be very wet at this time, it may be impossible to do anything to prevent the surface spreading of the new roots. But let us assume that the season is, at this point, reasonably favorable. As the top portion of the sand becomes less wet, the roots will tend to
follow the water down and may even go as far as the bottom of the cement tank. During this period the plants are given just enough soletion to kcep the bottom of the two channels moist bot withobt allowing the solation to stand in them. By rumning a little inso the feeding-channel three times a day, the trick is acoomplished. It takes at least one week to do this.

41
Cauliflower, for exanuple, set out in mid-summer when the temperature was 95 degrees $F_{\text {ra }}$ and the sand surface 110 degrees F, for seteral hours during the day, recovered without scrious wiltong in 24 hours. After that time they endured full sumlighe with a daily maximent temperature of 95-105 degrees F. for two months. The plaits were not previously hardened but were grown in sand on the nutrientsolution used in this discussion and tramplanted without the loss of roots. These plans were given Formula VIII for the first two months and brought to maurity on Formula 1X. Cucumbers. grown in another anit at the same time, were similarly treated. They were given a litte ammoniom nitrate and some extra potasunm chloride as fruit began to form. Sample plants of both the cauliflower and the cucumber showed, when pulled up, that the roors had developed nicely and tovard the botom. If ahould be poimed out, however, that surface roots must also be developed. The upper roots serve to absorb the oxygen, while the lower roots serve as feeding rooss.

Thus we achieve a situation like that in a wet garden, where by ridging up the rows, the surface layers provide oxygen and some chemicalk, while the lower and wetter layers provide water and chemicals.

Vill. Feedne Schedule

Beginners want to know first, what to feed the plant, and second, how much. Third, they want to know how often. In the Gericke system feeding is continuous. In the aggregate sysem, it is cither continuous or every eight hours. In my own syrem it is once a day. In all the systems the plants are feeding conbinuously. It is the number of times devoted to renewing the solution that varies from system to system. To go further on this point would require that we become iechnical.

12
If the reader is prepated to understand that no matter what spstem is used, certain changes must be made in applying the basic tedinique employed, because of vatiable factors, we may proceed. Rain dilutes the solution in the growing aren. Highs winds and temperature cause plants to take out the water faster than the chemials are taken out of the nutrientsolution. Dark, clonds petiods upset the plant's needs for one kind of elemest of another. Thus the number of feedings is linked up somewhat with a number of factors, By striking for an average and hoping for a little luck, given a sound formula and a barrel of solution properly prepared,
we may expect rather fair results.
The general schedule then, keeping the above remarks in mind, is as follows:
A. fexd zach morsisg. Use enough solution to make the sand moist to very near the sand surface alter the feedingchannel becomes emplied. If this requires a whole barrel, use that amouns. If it requires only a quaster of that amounc. that is sufficient. The plant carmot use any more than the sand will hold. Also it cannot use what you carelessly let run out of the drain by insisting ou using up the whole barrel of solution. On the other hand, don't be stingy. If for same reason the sand requires two harrels to wet it properly, give it two. (See B 4 below.) You have used enough, generally, by the time the solution reaches across to the drain channel.
B. variations. There are several situations which require clanging this daily routine which is followed, ordinarily, rain or shine.

1. When the plank are small, and their toots have not yet spread out to their normal extent, leas water and chemicals are being taken out of the growing-unit. Therefore, you may not need to feed more than once a week during this initial

ILUSTRATION 4 A wiew of one prowing-unit shewing the feading-chanmel to the right and the drainchansel to the laft. Corn is prowing es a mecond crop in the farsgrownd, whe the srop of egeplonth, one of which is shom in Hluatration 4, is growing in the beckgresend. This is net e desirable arrangement, since the food recaireloents for the two kinda el planh differ. The coen turned out to be a failure. Phologioph by Mr. Chorlas A. Stuck.

44
2. The weather may change, so that the temperature is in the 50 's and 60 's. Your plants will do nothing. Daily feeding then would not only be wasteful but it might kill the plants. Feed only enough to keep the plants from wilting.
3. You might be faced with a week of heary rains, even before you have succeeded in getting the roots to grow down (see VII). You may do several things to get out of this difficulty. First, double or treble the amount of each chemical you put into one barrel and feed as usual. In this event, you would keep the opening of the drain nipple at a partial up-position, so that two or three inches of solution would temain in the bottom of the growing-unit, and at the same time allow the excess rainwater to flow out before it floods the growing-unit surface. Or you may leave the drain-nipple open at down position and sprinkle some good grade garden fertilizer, such as 4.12-4, over the surface of the sand between the plants. Since the rain dissolves this slowly, and at the same time brings oxygen into the sand, the plants are both fed and aerated. In this event, you simply omit all use of your feeding-unit until the weather clears up. Or thirdly, you may feed as usual (see A) by keeping the drain-nipple at the overflow-position. This is what I do, if the roots are fully developed, and have grown down to near the bottom of the growing-unit.
4. Water loss. The plant uses up water independently of the chemicals it uses. As it grows larger, and as the daily temperatare rises, more and more water passes through the plant and out into the air through the leaves (transpiration). Water also evaporates from the growing-unit. At the same time, however, the plant is also taking up the chemicals more rapidly. How then are we to keep the concentration around the roots favorable? Again, a full explanation here would require that we become technical. It is enough to say 45 that if you increase the concentration suddenly, the roots will be killed. If you decrease it suddenly, the roots will not be hurt as quickly. What we try to do is to keep enough water in the solution so that the chemicals in it will not become too highly concentrated for a long period, and second, to keep enough chemicals in the water so that the concentration will tot be excessively dilute. This brings us to the practical way for solving this problem.

If vou note the moisture of the surface sand carefully. you will come upon a time when one barrel of solution is not enough to make it moist. Here is where the three-barrel feeding tank comes in handy. Make up two barrels in the feeding or solution tank according to directions in II and

III above. Now dilute this by filling up the tank to its threebarrel capacity. This gives you two barrels of food and one extra barrel of water. Now feed as usual. If this dilution is still not enough to satisfy the demand for extra water. make up one barrel, and fill to capacity. This makes your concentration only one-third what it would be normally. But the plants will soon take up the extra water offered them. This is, of course, a matter of using your head rather than a rule. If you had a garden you would use a hose for watering. Since you have a hydroponicum instead of soil to handle, you simply add the water at the time you give the plants their daily food ration.
5. Change of acidity in the growing-unit. The acidity of the solution in the region of the roots changes. This may become alkaline for several reasons. One of them may be that you have not discarded quite enough of the used solution. Another may be that not enough solution has been used to allow each spot in the growing area to be flushed with fresh solution. To test this, dig small wells in the sand deep enough to allow them to collect a litele solution soon after filling the feeding-channel. Test this solution with your acid testing paper. It will show 6.5 or slighty less in all probability. By adding a little acid to the solution belore it is fed into the feeding-channel, so that the paper shows a $\rho \mathrm{H}$ of 4.5 that is, a liule more acid than what is wanted for proper growth. then, by the time the solution reaches the roots, the $p \mathrm{H}$ will be correct. It is the pH , or acidity, in the growing tunit that is important, rather than the $p \mathrm{H}$ in the solutionstanh. Regular feeding is most important in keeping the $\rho \mathrm{H}$ correct, as well as proper dilution of the solution, to take care of water loss by transpiration and evaportion.
6. High temperature and bright light. You may have a month or more of high temperature when the thermometer hovers above the hundred mark. This will require that you not only dilute the solution to provide the extra water required, but may require that you feed morning, noon, and evening. Plants sometimes wilt, even though they have plenty of water available. But plants also wilt if not enough water is available. This is partly due to the fact that in the region of the roots, the chemicals accumulate, particnlarly at the surface of the sand.

Several things may be done. First, the growing-unit may be sprinkled with water in the late evening. Second, the solution may be fed over the surface of the sand between the plants by means of a sprinkling can, a bucket or a hose. Enough would be put on in this way to have a few gallons flow out of the drain-nipple. This is also a very good way to correct the acidity in the solution of the growing-unit if this is found necessary.
7. Finally, you may be growing a plant like a cucumber, which requires more water than a tomato. In that
event you would feed the unit at least twice a day, and probably three times, being careful, of course, to dilute the solution so as not to overfeed the plant with an excessive amount of the chemicals.

Let us sum up by saying that sou are aiming to provide one unit, when fully planted and when the plants are growing to maturity, with between one-half pound and one pound of chemicals daily, on the average. This is less when the plants are young and small, and more when they are mature. The directions, if followed, will provide for these requirements quite satisfactorily. Or, putting it another way, a tomato plant will not use up more than a half pound of chemicals during its normal growing season. Our task is to give it not more than it can use to mature properly, but to give it enough so that it grows and bears fruit. That this schedule is satisfactory, is bome out by the production report given above in Section III of this chapter, last paragraph.

IX. Use or Yoin Time

The actual time and labor required to operate the unit is very small. Much more time is taken in tending the crop, and crops differ in the amount of attention needed. But a few words should be said here on liow to conserve what time is needed for tending the hydroponicum itself. Following is my procedure.

First, the growing unit is examined to extimate how much solution might be required. Next, the solution is tested for acidity. Then the laneets are all opened for the six units I now have in operation. I generally use the nipple at the bottom of the solutionanit, since the feeding-trough fills in about three minutes through it. Each unit varies from the others, to some extent, in the time required for the solution to pass over to the drain side. As soon as this happens, I turn off the faucet for that unit and lift up the drainnipple after a gallon or two have escaped into the disard. 44
It takes about twenty minutes to go the rounds of the six units, waiting to have the solution flow into them, then closing the faucets.

During this time 1 gencrally find an opportunity to measure out, in separate containers, the chemicals for the next mixing and for each of the six units. As soon as one unit is fed, I note how much was used up. If exactly one barrel, and if no more feeding will be done that day, 1 turn on the water. put in the chemicals, and do something else while the tank is being filled.

Some hours later, perbaps six, I open the drain-nipple to down-position, allowing whatever solution has not been used up to escape, thereby assisting aeration of the roots. Thus, no time is wasted. Rather, the same time is used for several jobs, or for just sweet rest.

ItLUSTEATIOE 5. The Bincon hydroponicuen of tle Apolo Pipe Monotorturieg Conpeny, mi senstruited by Mr. A. S. Jocebsens, of Ris de Janario. Sraza. The plant grawing in the cien are saybeons, The cam ond diccacied caibide sembisars sat in hell.

4
 CHAPTER 4

The Jin Can Hydroponicum

Afer ull, a large growing tank is little more than a glorified tin can. The main difference between the two is in having the solution offered to the plant. delivered through the bottom of the tank, while that offered to the plant growing in a tin can is delivered at the surface of the sand, or soil. in which it is growing.

Everyone is tamiliar with the use of flower poss and of tin cans for growing plants. But not all are familiar with the lact that nutrientsolutions, made ap by any closen formula, may be used as successfully by this means as by the use of a large hydroponicum such as has been dexcribeil. In fact, it is this sort of small sinit that is used quite extensively for research purposes at the New Jesey Experiment Station particularly. This method is ideat for the house holder who has only room for a few plants in his back prod, ont a roof, or in any other small area which is easily accessible.

This tectneique is described for those who would like to grow a few tomato plants, some Kentucky Wonder beans, a cuctumber vine, letuce or beets near their kitchen door. The cabs may be set at any convenient place where there is adequate light. The plants themselves will cover up otherwise ugly spots about the home while doing their work of provid ing some food for the family. It is an ideal way to learn the first principles of hydroponics. ${ }_{5 t}$

1. Materials Needed

1. One tin can of a little less than onegallon capacity. for each plant to be grown. Seven or eight $1 / 2$-inch holes are punched through the bottoms with a road pick or other blunt instrument. The cans are then painted well with asphalt
paint and allowed to dry thoroughly.
2. Materials for filling each can to within two inches of the top, after settling. This may be good garden soil which does not pack when watered, pure sand, half sand and dirt, half dirt (or sand) and well rotted compost or old plant debris, excelsion and sawdust, or even roch wool. I use some kind of rotted organic material, mixed with sand and any kind of dirl, equal paris of each. This is mixed very thoroughly with a shovel. The cans are all filled at once from the pile, which is kept renewed continuously. Filling the cans to the top, then watering them, settles the material down to about the proper level. The cans are then sterilized, if desired, and stacked for ose as seeded. The material used is accumulations from old weed patches, the lawn and the kitchen, piled up, sprinkled with a little lime and wood ashes, or better still, with a little ferilizer having in it some nitrogen and phosphorus. If this is allowed to rot for six months it is good for use. It should be kept wet, but the rain should not be allowed to wash it.
3. Asphalt pain, for dipping the cans or painting them as indicated in (1).
4. The chemials as given in either Chapters 3 or 7 .
5. The add-testing equipment as given in Chapter 2, IV.H. or Chapter 9.

The only difference between this type of hydroponicum and the unit type is the use of individual cans as a substitute for the growing-anit. The solution is kept in a barrel. 52 painted with asphalt paint, and is delivered by band to each can by means of a dipper, or a garden hose attached to the faucet set in the barrel.

II. Procedune

1. Plant the seed in the middle of the can as prepared in (1). It is best to plant two or three. When they come up. pull up all but the best one.
2. Press the dirt down with the fingers about one inch from the edge of the can, so that a shallow trench runs around the now slightly raised place where the seed was planted. Fill this trench with a dipper of water or of nutrientsolution from the barrel. Use enough so that a few drops come through the botom.
3. Collect some of the solution that has dripped through the bottom of the can in a saucer (clean and without trace of soap). Test this for acidity as explained in the last chapter. This sbould be 6.5. If it is more than this, flush out the can with solution made acid to slightly below 6.5 , or even as low as 4.5. Do this until the reading of the acidity of the solution coming through the bottom is 6.5 .
4. Do not water any more until the plants come up. If
the cans are protected from direct sunlight the material will not dry out, and thus prevent germination of the seed.
5. Dust the place where you intend to set the cans with a little DDT powder. Dust the top of the material in the can also.
6. Now arrange the cans together and cover them as a protection from heavy rain.
7. After three days inspect for signs of germination. It may take fourteen days for some seeds to come through the soil. As soon as germination begins, space the cans as desired at the place where they are to remain. Protect them from dogs and birds by chicken wire.
8. As soon as the plants are up, begin feeding them a pint of solution once a day. Use more if necessary to keep them from wilting. Dilute with water.
9. As the plants mature, space them so that none will crowd another, or shade it. Protect the cans from becoming too hot through direct light hitting them for long periods. A little hay, straw, or newspaper will be sufficient to protect them, if laid up against the side of the can exposed to the sun.
10. Climbing plants will have to be furnished with proper support.
11. When you pull up a beet or a head of letuce, or any other planf, stir up the contents of the can, add a litule more if necessary, and plant another seed of something. In this way, you may begin your can garden inside the house two weeks to a month earlier in the spring, and carry it through the whole summer. I always have 25 cans of sweet corn ready to set outside after the danger of frost is past. These supply me with roasting ears during the month before the crop started outside comes into bearing. It is thus possible to have a continuous supply of corn, lettuce, beets and beans. with cauliflower, celery and a cucumber vine in addition.

It takes about twenty minutes a day to feed 100 such individualean hydroponica, by means of a garden hose attached to the barrel of solution. Most people waste ten times this amount of time about the home.

If the cans are set on the lawn, they must not be moved. For the roots will fill the can and, sooner or later, find a hole through the bottom and start going down into the ground.

54
After the growing season is over, all the cans are emptied on the compost heap. Next spring this material is used again.

Beets and beet greens, which ate particularly high in vitamin A, may be kept throughout the ssmmer, and remain tender, if kept partially shaded. Lettuce will produce large crisp and green leaves if treated similarly. The green let-
tuce is richer in vitamin than is head lettuce. Care must be taken to inspect for aphids and other insect pests.

Here is a type of hydroponicum that even a child may operate and enjoy. If a constant drip is provided for adding the solution to each can individually, an added interest is furnished.

This method is recommended particularly for certain regions in the United States and Canada where mining is going ont. There, gardens are frequently destroyed by a sudden shift in wind, which covers the garden with poisonous fumes sufficiently long to kill the plants. It is possible to stagger crops in such a way as to have a new one going, on a small scale of course, if such an accident occurs. Again, such plants as tomatoes, if properly supported, may be moved quickly to a safe spot until the danger from gas is over. This would be impossible, of course. lor large groups of plants. But there are many bouscholders who have an interest in only a few plants, but who would also like to save them in an emergency. This method will serve their purpose nicely. I have found it possible to move 200 cans in a half hour, to protect planis from an unexpected frost. It is worth the litule trouble it takes. Incidentally, a number of families in mining regions in Canada are now trying out this method for saving their little, but precious, gardens. It was at their suggestion that the remarks above have been offered.

55
 CHAPTER 3

Essential Elements-- Their Chemical Sources

1. Introduction

Since what we are really trying to do is to supply the plam factory with raw materials for manufacturing proteins, fats, carbohydrates, vitamins and the like, it is clear that out of the many possible kinds of substances available for this purpose we must sift out those most agreeable to the plants we wish to grow. We do not select a chemical because we bancy it, but rather because the plant requires it.

The list of chemicals necessary for growing plants sucressfully is not large. Shive and others bave used as few as three. But to do this requires much skill indeed. Generally, four or five buik chemicals, and as many for the trace elements, are sufficient. The list given in Tables 1 and 11 is larger than required to make up one formula. The reason for this is simple. Some chemicals are available, while others, equally serviceable, are not. Therefore, if the reader masters the few technical details required, he may make up a satisfactory formula, using what chemicals are available to
him, anywhere in the world.
Plants do not discriminate between substances offered them, by means of taste. To them, nitrogen is nitrogen, whether it comes from ammonia, nitrate or urine. But they do differ much, both as to chemical needs and the conditions under which the chemicals are offered to them. It is not generally appreciated that there is as much difference 36
between a tomato and a radish as there is between a man and a herse. Men occasionally eat out of a horse trough, and horses liave been known to eat food off of a man's table. We are not surprised to find, however, that as a rule each gets along better on the kinds of victuals to which their bodies are, by nature, accustomed. But we are surprised to find, strangely enough, that while some plants do well planted side by side, others do not. Why? This is a complicated question, and the answer has, in all probability, little to do with the phases of the moon. One plant may want more ligbr than another: one may require more acid than another; one may require an amount of boron that is would kill another. So it goes. Would one feed a baby pork chops, because is father, near by, required them? Would an expectant mother be atlowed the same diet as a girl of six years? Let us cease this chatter in favor of something more important,

Many people have the impression that the chemicals used in hydroponics are dangerous to human health. It is human nature to fear what is not understood. In this insance, the difficulty comes partly from the inability to reconcile reports on cancer research, with human consumption of food; and partly from reports by individuals engaged in forms of what might be called fetish farming. The latter give out the impression that plants grown in certain specialized forms of compost contain no chemicals, and, therefore. cannot harm people who eat the plants 50 grown. The crusade against "chemical fertilizers" is on. Chemicals are supposed to be so "unnatural" as to be a positive danger. It is time that this propaganda be countered with more complete information. If a "little knowledge is a dangerous thing." it might be added that a little ignorance may be a calamity. As a matter of fact, it would be difficule to find anything more natural than a chemical. It would be impossible to have a compost heap without them.

57

Your body is made up of chemical elements. Nothing else is in it. So also is that of a plant. It matters not whether the plant is grown in a hydroponicum, a garden, or in a compost heap! Either of these may be deficient in having certain essential elements, and cither may furnish the plant with too much of a given element. The consequence in either instance would be either a tasteless product or one having less health value than desirable. It is not the way you grow a plant that gives it value or makes it harmful, but rather the chemicals which that particular method is able
to supply. Growing plants with the use of compost is one of the most reliable methods for growing plants ever devised. It requires a high degree of skill to practice this method successfully. But it is entirely false to say that compostgrown vegetables contain no chemicals.

This fear of "chemicals" is very real in the minds of many. A correspondent from one of our seaboard cities writes: "My goodness, Doctor, these chemicals frighten me! What if I happened to drink some of the solution in your hydroponicum?" When assured that there is nothing of an atomic-bomb nature, or poison pill, in a head of lettuce, a roasting ear, or a tomato grown in a hydroponicum, the good lady very sensibly settled down to the quiet regime of gardening the "new way."

Birds and insects drink out of a hydroponicum and appear to suffer no harm. I never do. I prefer to take my minerals and other elements in the less raw state of carbobydrates, proteins, and vitamins; and in the form of lettuce, fruit juice or tomato. The latter demand their Epsom salts. I do not.

What, then, are the elements which a plant must have in order to function as a living thing? They are: carbon, hydrogen, oxygen, nitrogen, potassium magnesium, manganese, phosphorus, sulphur, calcium, iron, copper, molybdenum, boron, and zinc. The number is fifteen. Some would say more, some less. But to keep blood pressure normal, let us keep out of the argument, and stick to the fifteen. That satisfies most plants-why not us? One of the fifteen may be doubtful. It is said that the lack of molybdenum causes flower-drop. To decide the question is more difficult than pronouncing the " d " in the word. Also, it should be made clear that flower-drop may be due to a number of things. One should not jump to the conclusion, therefore, that the addition of molybdeaum to his nutrient solution will stop this exil. One has to investigate, in order to decide which of a number of possibilities is the correct one. A woman may, for example, lose her teeth either through improper eating habits, decay, or simply by having them knocked out by her lover, in the light of the moon, as a sign of engagement.

This bit of humor is intended also as a mite of warning. You will be sure to have some trouble with plants if you work with them very long. So many things have been said about the elements plants need that you are likely to feel, in the face of your difficulties, some element must be missing in the diet. You will in all likelihood jump to the wrong conclusion, and proceed to kill them with an overdose of this or that. Look first, in case of trouble, for lack of oxygen about the roots, and the $p \mathrm{H}$ of the solution about them. Or, perhaps, you may be either overfeeding them or underfeeding.

We come now to the first real stumbling block for most people interested in hydroponics, and who have no knowledge of chemistry. What are "elements," "-chemicals." and the like? It is said that "rroubles come not sirglenanded, but in battalious," So it is with elements. They come not 39
singly, as a rule, but in those "batealions" or combinations commonly called "compounds" by shemisis. We do nos give plants "elements" on which io ruminate, Jut coms. pounds of elements. It is their jobs to get the elements out of these compounds as best they an. They are experts at doing this. But they can't fake obi ab elerom if it isn'I in the compound we offer it. First, ler us get oir teras sleared up-

11. Devinitions of Teerms

The chernist uses the terms "chemical" and "elements" The farmer and gadeney use the tetra "Ientilizer." The plant physiologist, who is responsible for deciding what substances may be used in hydroponics, uset the tem "essential element." Without being technical about it, let us attempt to make a practical distinction between them.
A. chemical. This is a foose expression, meming either an element or a compound of several elements. Water, for example, is a compound chemical. made ip of the two elements hydrogen and oxygen. Ortier eximplea, to twen tion only a few, are urea and carbon dioxide, wherh ave compounds, and sulphur, nittogen, and gold, which ave elements. Perhaps the simplest way to say what is meant by an element. is to put it the way a child would. natrely, one of thome substances used to make a chernical compound. Since this is not intended as a treatise on chemistry we shall let the matter stand at that.
B. Nertmizer. A fertilizer, on the other hand, nay be anything which has in it at least something a plant may take in and use for making is food. In otber words, it contains some substance used for building the plans or enables it to do its work. It is neither a chemical compound nor a chemical element. It is a mixture of many chemicals, and is made up to satisfy the legal requiremems for distributing to gar(b)
deners and farmers just three essential elements. The only essential elements ordinarily officially accounted for in "fertilizer" are nitrogen, phosphorus and porassium.
C. essential element. This term means exactly what it says. It is an element essential to the well-being of a plant or an animal. It is an element for which no other may be substituted. Not only does it have to be available but it must also be present in a definitely minimal amoum. This needs explanation. Suppose, that to grow at all, a certain number of corn plants, for example, require, as determined by experiment, at least 26 pounds of nitrogen. They would grow better, obviously, if 27 pounds were made available.

They would not grow at all if only 25 pounds and 15.99 ounces were available. In other words, although the essential element nitrogen is present in our hypothetical experiment, still the corn must die because it lacks 0.01 of an oumce of having just enough nitrogen to stay alive. In practice, if a plane refuses to grow, one simply puts enough "ferrilizer" on the soil to make it grow. Two mistakes are possible. If 100 much of a good thing is added, the plant, not knowing a thing about balanced diets, may make a hog of isself, and suffer accordingly. If the rule of the minimum is ignored by the grower, the plant will die in adolescence. In either case the operator is out of luck, and the corn crop is "trumped" in the midst of a promising career.

Fortunately for the operator of a hydroponicum, the techniques involved, as well as the laboratory findings on this poinc. make it fairly easy to supply each plant with the minimal amouns of the elements needed. This is often extremely dificult to attain in soil farming. It is someLimes impossible.

At this point a word should be said regarding the essential elements for man. It is man and his domesticated animals that eat the plants grown. But it is probably not an ecaggeration to sate that more is known today about a plant's requireinents for essential elements than about man's. Because a plant requires certain elements, and in certain minimal amounts, it does not follow that the same requiremeoss hold for man. When Nebuchadnerzar sook to eating gram. the silicon which is a necessary part of the vitamio-rich type of forage le ate, was of no earsbly use to the king of the Babylonians. Since it is known that man does require certain essential elements, and that the soils of the world are in many rases deficient in those elements, it follows that if these may be supplied in a hydroponicum, then the food thus grown must be preferable to that grown on land deficient in such elements.

111. Ciemicms is. "Fertilizers" Comparative Cost

It would seem to be an imposition to a respectable plant to offer it materials it cannot usc. It is a helpless sort of thing, this creature we call a plant. Just as a dog cannot resist taking into its blood stream a bit of arsenic which has been mixed with its tmeas and swallowed, so cannot a plant heep from taking into its system the odds and ends of chemical debris thrown at it in manure, compost and "fertilizer." Much care has been exercised in the past to reduce this offensive material to a minimum. But unfortunately it cannot be entirely avoided. There is, however, another aspect to this question of useless material, namely, the cost.

Let us now reduce the cost of "fertilizer" and food-grade chemicals to common terms, and compare their values. The common term is the amount of essential element bought in
each case, since that and that alone is what the plant uses.
A. essential elements in "fertilizer". A 100 -pound bag of fertilizer is marked, let us say, 4-12-4. This means 69
that there are 20 pounds of fercilizer and 80 pounds of other material in the bag. Of the 20 pounds of fertilizer, there are four of nitrogen, 12 of a phosphorus compound, and four of a potassium compound. Only 5.3 pounds of the phosphorus compound is actually phosphorus. The remaining 6.7 pounds is oxygen. In the case of the potassium compound there are 2.8 pounds of potassium and 1.2 pounds of oxygen. Of the total 20 pounds, therefore, four are nitrogen, 2.8 are phosphorus, 5.3 are potassium, 7.9 are oxygen.

It so happens that the plant uses very little. If any, of all this oxygen. This essential element is taken in mainly through the roots as water, or as the elemem itself dissolved in the water. Therefore, the amount of this element found in our bag of fertilizer must be considered as so moch waste. This leaves us, then, but 12.1 pounds of esential elements which may be used by the plant.

If the 100 pounds of fertilizer cost $\$ 4.00$, or four cents a pound, the 12.1 pounds of essential elements alro cost $\$ 4.00$, or 33 cents a pound. In other words, by buying our essential elements as fertilizer, we pay much more per pound than is generally believed.
B. essential elements in "chemicais". Let we buy these in 100-pound lots as in the case of our purchase of fertilizer. A quotation tor one bag, furnishing potassium and nitrogen, with only two pounds of miscellaneous waste instead of 80 , and 47 pounds of useless oxygen, leaving 51 pounds of potassium and nitrogen, may be bought for $\$ 12.00$. The essential elements therefore cost 21 cents a pound. To get the phosphorus for comparison, another bag containing 2 pounds of miscellaneous waste, 58 pounds of useless oxygen, and 40 pounds of the essential elements, phosphorus and calcium, may be bought for $\$ 8.50$. The essential elements in the bag cost, therefore, 22 cenes a pound.

Of the 200 pounds of chemicals bought, we acquired 51 pounds of potassium and nitrogen and 40 pounds of phos phorus and calcium, making 91 pounds in all of useful material, for $\$ 21.50$. To buy the same amount of esential elements as fertilizer would cost $\$ 30.03$. Or purting it the other way around, for the same amount of money, one would get only 45 pounds of essential elements.

Obviously, if we are intending to grow our vegeables hydroponically, it is much cheaper to buy the essential elements as chemicals rather than as fertilizers.

Two conclusions might be drawn from the result of this calculation. First, it would appear offhand that the people of the United States who use fertilizer for their farms
are paying twice as much as necessary. Second, it might appear that somebody is being gypped. Now let us see in what extent this is true or untrue.

Farmers and gardeners have at their disposal all the land about them. Land is mineral matter. If it contains essential elements, and if these are suitably mixed up with humus or the dead remains of plants and animals, and if, furthermore. this mixture is inhabited by minute living organisms, the land becomes soil, fit for growing plants. In other words. in good soil all the essential elements are present. The gardener or farmer has only to do his work properly, keep his soil in condition, and his plants will thrive as well as in the best hydroponicum ever invented. But the record shots that farmers in general, the world over, have not been dever enough to do this, It is an alarming fact that soil bas deteriorated throughout the world during the rapid industrial developtnent of the past two centuries. The consequence is that while farmers and gardeners do not have to buy all of their essential elements, they do have to purchase some of the most important of them. Of the fifteen named at the begiming of this chapter, most farming areas require that the plant producer supplement his soil's essential element content with purchased nitrogen, calcium, phosphorus, potassium, boron, manganese, sulphur and copper. In some regions, magnesium and zine must be added to this list.

We are now in a position to decide whether or not the cost of essential elements is too high for the farmer; whether or not he is being imposed upan by those who sell him fertilizer. First, it the essential elements were delivered as chernicals to him, he would almost certainly burn up his crop. This has occurred. And, as a consequence, dealers in fertilirers lave been sued successfully. In other words, in order to protect both the farmer from ruining his crop, and the dealer of fertilizer from being perpetually called into court, the essential elements must be mixed with a great deal of wase material. Obviously, then, the farmer is not necessarily being gypped. He is only paying the necessary freight imposed by ao unfortunate circumstance. He who buys his mineral water in a bottle over a counter must pay more for it than he whose house rests by the spring.

This rather tedious discussion seems necessary, if we are to arrive at a reasonably true comparison between the costs of farming hydroponically and the usual way. For one of the important items is the cost of essential elements. If the gardener or farmer has to pay iwice as much for essential elements because of unavoidable circumstances, then it would be part of national wisdom to grow food by some method where the cost of essential elements would not be conditioned by this circumstance. Hydroponics would appear to be that method. However, if the lower cost of essential elements is offset by unnecessary mechanical and technical expense then
there can be no gain by adopting hydroponics. But let us leave this point for later discussion. So far as the cost of 65
essential elements is concerned, hydroponics has the advantage over other methods of growing plants.

Not only from the cost angle would the operator of a hydroponicum use chemicals rather than fertilizers, but also from the point of view of safety. Manufacturers of fertilizers seem to feel that they are in possession of precious secrets. Actually, any second-rate chemist can determine without much trouble the kind and quantities of elements in any fertilizer ever mixed. It is to be hoped that this mediaeval attitude of imaginary secrecy may be educated out of the minds of those responsible for making available the essential elements required in all forms of agriculture.

In hydroponics, "fertilizers" may therefore be recommended only in an emergency. In a 100 -pound bag of it, the 12 -odd pounds of essential elements may be courted on. But it is just as likely to be chuck-foll of plant poison. Any use made of it is possible only atter experimenting with each "secret" kind, and long enough to determine how much of it a plant will endure before giving up the struggle. A further difficulty is encountered when one desires to double. let us say, his nitrogen without adding to his potassium. If the bag of fertilizer says $4-12-4$ that is all the nitrogen which be can get out of it, If he wants eight of nitrogen, be must buy two bags. And if he does he must thereby take the potassium that goes with it. Buying chennicals gives him the chance to buy nitrogen without the potassium, if desired.

However, there are occasions when chemioals cannot be purchased. Then fertilizers must be used. It is necessary at times to make a compromise between what is desirable and what is practicable. During the war chemicals which were imported became suddenly unavailable. Those manufactured in this country became short of both nitrogen and phosphorus, since these two elements were required for ammunition. Since not all types of hydroponica pertmic the use of ordinary fertilizer, this point must be taken into consideration before adopting one for use.

IV. Chemicals Suitable for Use ix a Hydroposicuy

There are two types of chemicals which may be used in a liydroponicum, "pure" grade and "food" grade. It is assumed that the bulk of the chemicals used will be of food grade, and that when these are unobtainable, the pure grade will be substituted. The calculations shown in the tables will be made for both. In those cases where minute amounts are used, only pure grade chemicals are listed. In order that the operator may have a choice of several chemicals, in case the one desired may not be purchasable, several alternatives are given.

It is assumed that the reader is not a chemist. Therefore, the tables give only the information he needs to know in order either to interpret properly the formulas given in the following chapter, or to modify them to suit his own demands, In order to make it unnecessary for him to perform them, all necessary chemical calculations have been made and the results tabulated in the tables. The tables are therefore to be used as a handy reference rather than as a source for complicated calculations.

To manage the chemical aspects of a hydroponicum one has to understand only two things. First, he must know what chemical substances (or "salts," as the chemist calls them) furnish the essential elements that plants need. Second, he must know how much of each essential element it is possible to get in a given weight of the salt. This is what the tables show. The amounts are stated in grams. To convert to ounces multiply by 0.0352 . As a further convenience, in the chapter on formulas, the amounts actually used will be further reduced to practical volumes, in terms of a tin can. And for those in Coreign countries, who lave no acquaintance with this American household container of green peas and the like, drawings are made on paper for cutting out and making a container which is familiar. Everyone recognizes the reetangle and the cyllinder, whether or not he knows grams or ounces. Thus, to use the formulas, the reader does not have to weigh. He needs only to take, as directed, a half can of this, a third of a can of that, a pinch of something else, and throw the amount into his barrel of water. It has been found that for all practical purposes the average plant grown has a tolerance for this variation. On the average, the operator's errors will cancel out, so far as the plant is concerned.

Since the essential elements required by plants may be available in a number of different chemical compounds or salts, the list given in Table I includes the number generally found in books on hydroponics, and in textbooks on plant physiology. The reader must now refer to Table I.

V. The Term eor Measuring Concentration of Essential Elements-Parts per Million, or PPM

If, what we buy is either a fertilizer or a chemical, and if, what concerns the well-being of the plant is an essential element, then it seems sensible to agree on some easy way for deciding just bow much of any essential element is to be found in a given portion of the substance we buy.

Since the earth weighs something, and since the earth is made up entirely of elements, then the elements must weigh something. But what? There is no way of knowing, except by weighing one against the other. This you won't have to do. It has been done long ago. Let us arrange

TABLE 1 ． CHESICAI．S WHICH MAY BE USED，BITH AWOUST OF ESSKNTIAL ELENENTS IN EACH

$$
\begin{aligned}
& \text { Colims t } \\
& \text { Reladre weleMe } \\
& \text { In crivs }
\end{aligned}
$$

Column 1
Kames of Chenteats and Symbots

	Fare－ ＊raifo	$\text { coloren } 1$	cood． snide
Anmonlumi nitrale，NiteNOs	50	81	58
Calchurn mitrath $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)$ s	144	$\begin{aligned} & \mathrm{Ix} \\ & 206 \end{aligned}$	$\frac{30}{10}$
Silirle meld（mensaire in ce，，HNOL conc．	61	＊＊＊	ep．
Potasilum nitrale，KNO	111	136	55
Sodium nitrate NaNO_{4}	36	98	37
	131	148	24
Calcmm aniposur Casor	176	136	E． 1
（1ypsum．Cnsion． 315 O	178	198	95
	54	＊＊＊	ef
	125	131	12
	15	180	16
Epsiom salts，Mraberithe	214	36	45
Potnasium mulphate Kasot	131	200	50
	342		$\begin{aligned} & \hline 75 \\ & 45 \end{aligned}$
	118	149	9
	Iis	485	45
Petnantiom ehlartam，KCl	75	K	通
Limen，CaO	19	S	Se（\％）
TUna win approsimatoly fl Ese marie selat			

Selumin 4
Heluilke weights lis grams of elemeni （IStend to rigts in each cane．）
Intleg my formula

Exsenmal						Eabse		
N	51 6	Me	Ca）	8	O	H	Na	C1
It					48	4 ）		
2k			40		58			
18	1	1			481	11		
14	129	C 1	\square		48.			．
13	\square				481		28	
28	$1+1$	1		$32]$	64	8		
	$1-$		46	321	$64)$	1		1
			$40 \mid$	3：	951	41		
		1		1E	64	$\frac{1}{1}$		
	1	241		12	54］			I
	1	25		$3{ }^{\text {I }}$	K01	21		
	1	84		12	1761	141		
	3	1		22	64.			
	11.		46		144	5		
	11123				B4．	81		
14	31？				（i）	6		
	128							35
		1	407		361			

TRE THACE EGEWEISTS

									An	
Ferrie cirath，Frcatroy	241	＊＊＊	et	54						
	31	＊＊＊	ef	36						
	29	\％	Wil	515						
Perrle entortat，Poc\％	161	＊＊＊	Ep	38						
Jtaressant entoride，Ratcy	125	\cdots	CD		55					
	3 Ha	＊＊＊	D．${ }^{\text {P }}$		116					
	［15	＊＊＊	¢0			11				
	245	＊＊＊	er				（1）			
Amme amplath 2nv0	315	＊＊－	＋ 0					55		
Wely inta acta， 153 Snot	13 E	＊	CP						\％	

TABt． F i6．
 Mi－NHESTE

		cirshis el chemeral men			revinired	spakelip	
	2"ure	$\stackrel{1}{i m i m}$	$\frac{8}{8}$	$\frac{6}{50 m}$		$\begin{aligned} & \text { fe } \\ & \text { min } \end{aligned}$	$\begin{aligned} & 160 \\ & 5 y m \end{aligned}$
NTTHOEEN：N．							
Ammonlam sillite	95%	2.85	ATE	17．25e	$\text { E. } 316$	$142 z$	3516
Pothonian neireta	96	7.30	15.72	55.29	1250	331	110
Calelum nitrale	97	6.45	1285	21.35	54.20	214	
Calchar Moralo	79	8.85	12.70	44，25	18.50	441	485
Gudium sitraie	97	5.00	¢t 08	1000	5 Eme	310	\％es
Ammonlum sulghate	95	5.90	10.00	25．86	1900	170	500
josoammonium ploosphace	55	9.56	1980	4T36	95.8	6：5	330
Pocanshum silpase	95悊	E325	5.548	14．1．15e	85.310	$\frac{148}{\text { T2t }}$	
Pesasium mulphate	90	2.35	5.10	1275	2350 10.60	$\frac{125}{109}$	$\begin{aligned} & 255 \\ & 105 \end{aligned}$
Totaselum，ehlothle	85	2.95 8.50	4.10 +00	1625	20.60	102	105
Monepolasslum ghusphate				1tse	3510		
Monoealeram phosphate		$\begin{aligned} & 5.00 \mathrm{z} \\ & \mathbf{4 . 0 0} \end{aligned}$	$\begin{gathered} 15.396 \\ 509 \end{gathered}$		Steot	$\frac{2505}{200}$	500
Monopotasaluni yhouphase	27	4.50	0.00	it．59	4589	雍1	419
Stoncammonisim phoisphate	35	6.35	570	21.75	2550	215	325
Magnesbam stalphaia Kleserlte	325	$\frac{6.358}{7.55}$	$\begin{aligned} & 10 \% \% \\ & 15 \% 0^{2} \end{aligned}$	28， 758 17.508	$\begin{aligned} & 52.506 \\ & 75.00 \end{aligned}$	3846 315	3852
Epacom saltir	45	10.15	21.70	5425	10250	545	1095
CALACIUM．Ca							
Calclum bilirate	48%	5.50	3.60 g	22，50e	45．00c	$\frac{123}{125}$	45 Me
Calclum	t．p	2.15	8.70	26.75	15.89	168	125
Gypsurs	55	5.00	10，90	25	3×85	250	50F，
Sponocalclum phowntule	75	tis	15.50	28.75	17．59	388	775
390nocalclum phowneme	35	5.25	121．80	91.25	\％Est	213	425
Lime	9017）	1.50	3.60	7，54	15.00	23	159
SULDHVE，g							
Ammonitsm gulphas							
Gyparm	35	5.00	1200	20．95	¢0．09	369	405
MagneatumWenerise	38	4.05	8.10	2625	崖590	295	455
	76	5．50	11.00	27.56	8580	275	558
Epsom salis	46	8.10 8.95	1626	40．54	81.90	409	319
Potasstum sulphate	90	6.25	12.30	21.15	63.80	211	625

TIIE TAACE GLENESTA

1150N Ye Petric colrile Merrte efrionlusn clivale Perrupe sulphate ictoperias？ Ferrie chboride	C．f． 0．5． CD CD．	$\begin{aligned} & 0.50 \mathrm{~g} \\ & 6.69 \\ & 6.00 \\ & 2.75 \end{aligned}$	$\begin{gathered} 11.106 \\ 11.20 \\ 10.09 \\ 5.96 \end{gathered}$	77.595 25.00 25.05 14.76	58.00 E 56．00 50.00 25.56
5ANGARETE ME． Masigutese cujorlis Sknpanew mulphaip	C.D	$\begin{array}{r} \mathbf{2} .20 \\ \$.20 \end{array}$	$\begin{aligned} & 4.56 \\ & 5.60 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.50 \\ & 17.50 \end{aligned}$	$\begin{aligned} & \frac{21}{12}, 60 \\ & \frac{11}{2}, 60 \end{aligned}$
BODKON，H Borte ach \qquad Baras fumes 1．en burie bes3）－	CR．	$\begin{aligned} & 5.50 \\ & 8.50 \end{aligned}$	$\begin{aligned} & 11.16 \\ & 11.16 \end{aligned}$	$\begin{aligned} & 27.50 \\ & 27.50 \end{aligned}$	$\begin{aligned} & 55.00 \\ & 55.00 \end{aligned}$
लOPFELE Copser oulghute（Mion vilirhot）	Cf．	2.96	F．80	15 ${ }^{\text {娄0 }}$	18，60
$\begin{aligned} & \text { 1TYC, In } \\ & \text { phe endinese } \end{aligned}$	0.9.	2． 49	4.58	17． 15	24.90
HOGYIFDRNEM．Mo． Morblatie setid	E． 1	1.55	3.16	7.80	16，80

Thee dis takie to tind the smusnie of any chermicat to be welsbed out， er you laver hoe rasny paris per mililion of a eiven element is dewirsd is Ery Sorneth
the elements you will encounter in the order of their relative weights:

Cinat 1. Refative weighls of thrmionl elementis.

Manganese, Mn-- 35Jron. Fe	
Copper. Ca	
$7 \mathrm{me}, 7 \mathrm{n}$ - 6	
	Malylaleaum, M0-96

Suppose, for example, we consider the chemical called nitric acid. Column I of Table I indicates that it consists of hydrogen, nitrogen, and oxygen. Furthermore, on observ. ing the symbol for this compound we find that one part is H , one is N , and three are O . This means that by weight there would be I of hydrogen, 14 of nitrogen, and 3×16 or 48 of oxygen. The toal would be, of course, 63 . This number would then be the weight of nitric acid relative to that of any other chemical compound. For comparison, let us take potassium nitrate, found in the same column. In that compound there is no hydrogen. Instead, the element potassium occurs. The other two elements remain as in nitric acid. But, since potassium weighs 39, the relative weight of potassium nitrate is 39 For K .14 for N , plus 3×16 or 48 for O , making a total of 101 .

If you had 101 parts by weight of this substance, you would therefore have 39 pats of potassium, 14 parts of nitrogen, and 48 parts of oxygen. Now then, suppose you substitute the word "gram" for the word "part" in the previous sentence. Obviously, in every 101 grams of potassium nitrate you would have 39 grams of potassium, 14 grams of nitrogen. and 48 grams of oxygen.

Since we bave adopted the word "gram" as synonymous with the word "part," a million parts of water would necessarily mean a million grams of water. How much are a million grams of water? About five barrels, each of 50 gallous capacity.

Suppose, finally, that we fill the five barrels with water. then throw in the 101 grams of potassium nitrate and let it dissolve. What concentration have we? Precisely 39 ppm of $\mathrm{K}, 14 \mathrm{ppm}$ of N , and 48 ppm of O ; or, if we consider the salt as a whole, 101 ppm of potassium nitrate.

Table I gives the relative weight for each chemical listed. In column 2-A the relative weight is for pure chemicals, and in column 2-B, the same for food-grade chemicals. In column 3 the percent of purity is stated, to identify chemicals when being purchased. In column 4 the weights of the elements found in the compounds are given. Note, for exarople, that kieserite, Epsom salts and magnesium sulphate are three dif-
ferent grades of the same thing. They differ in percent of purity, the water being considered as impurity. Note again that in column 4, under Mg , the same relative amount of magnesium is found, namely, 24 . To get 24 grams of magnesium one would have to use 260 grams of Epsom salts (columen 2-B), or 180 of keiserite, of only 130 gramis of mag. nesium sulphate of 92% purity.

All this means that if the latter costs twice as much per pound as Epsom salts, since you would need to use only half as much of it as of Epsom salts, your final chemical bill for magnesium would be the same in both cases. But you would have to pay twice as much freight on the Epsom salts, which would make it cheaper to buy the purer chemical. Note also that in buying 24 parts of magnesium you are also buying 32 parts of sulphur, another essential element found in Table 1, column 4-S.

You may wonder why we select a million rather than a thousand or billion grams of water as the basis for mixing our chemicals. The answer is simple. The plants prefer it. A linte table salt (sodium chloride, NaCl) added to a glass of water improves its taste. But a tablespoon full of it would, upon being introduced to the stomach, cause that organ to assume a rebellious autitude. Experience shows that the roots of plants do their work of absorbing chemicals best when the total concentration is between 550 ppm and ${ }^{2.000} \mathrm{ppm}$. In practice, formulas are made up so as to keep within these limits.

This brings up another point. All waters used in hydroponio commonly come from streams or lakes. These waters already have some salts dissolved in them. This may vary, as Gericke has pointed out, from 100 ppm to $8,000 \mathrm{ppm}$. This must therefore be taken into consideration in using a given formula. Some waters contain so much magnesium and calcium, for example, that it is unnecessary to put these essential elements into the solution. Indeed, to do so might be very harmful. If in doubt have the water tested, and make proper allowanices.

73
 CHAPTER 6

Conceptions and Misconceptions Regarding Formulas

\author{

1. Genfral Considerations
}

Let it be emphasized at once that, contrary to general belief, a formula for growing plants is not an equation. It is more of a guide than an unalterable rule. Many beginners seem to feel that if they only had a formula to go by they could, with certainty, grow anything from mushrooms to pineapples in the same jug of nutrient solution. Unfor-
tunately, that is not the way of life, any more for a plant than for a happy human being. The best way to kill cither the spirit or the body of a human being is to feed it the same thing day after day. So it is with a plant. The plant has no spiritual needs which must be satissied, of course, but the needs of its body requite one thing at one period of its life, and something else at another period. Some things it requires all the time. Until the operator of a hydroponicum realizes that he is dealing with a living, rather than with an inanimate thing, he can never quite realize that applying a formula is not as simple a thing as applying the law of gravity.

Therefore, let us consider some maners which form the basis for constructing the formulas to be given io Chapter 7. The reader will then be in a position to compreliend why they vary as they do.

11. Requirements for Making a Fokstola bon Growing Plants

A. The perfect formuld. This exists only in the imagination of the novice. I implies that all plants tequire the same materials, and in equal amounts, througlose their whole lifetimes. Neither is true. It is only the novice who. as he approaches this business of growing plants hydropenic ally, makes as bis first demand a formula that requites no thought in its application. He wants one that will meet the needs of any plant, at any time, in any place. whether it be spring or winter, and whecher it be cloudy or sumny weather. There are those who find is profitable to have people believe this. Let ic be restated, as a matter for emphasis, that there is no such thing as a perfect formula. The best we can hope to accomplish is a compromise between the plant's requirements, the kinds of chemicals available, and the climatic conditions existing where the plant is grown. For all prastical purposes the best formula is the one that works.

B. practical requmements for a good formula.

1. It must provide the essential elements as determined by testing in a reliable plant-physiology laboratory.
2. It must have in it the fewest possible waste elements.
3. Any unavoidable waste elements must be such that they will combine to form harmless substances, or will not prevent growth, or will not cause the solution about the roots to become acid or alkaline quickly.
4. It must be sufficiently balanced, so that one element will not interfere with another, or give the plant a chance to over-absorb a particular element it needs.
5. The number of chemicals used to provide the essential elements should be as few as possible.

75
6. The total concentration, after the chemical ingred-
ients have been dissolved in water, should be between 500 parts per million and 3.000 parts per million or lower.
7. It should allow the operator to grow several kinds of plapts, when used, with a minimum of alteration as the scasm progresses.

The first tequirement mentioned provides, of course, the things a plant heeds in order to grow properly. The second is an economical proposition. One hates to pay money for waste. Besides, it takes less time to bandle chemicals of this nature. The third applies to such cases as, for example, the use of potassium chloride and sodium nitrate instead of potassium nitrate. The latier is expensive, and sometimes camot be bought, while the other two can. But these two contain chlorine and sodium, both of which are not required by plants, and both are poisonous in certain concentrations, If we use them in such a way that the two unite to make common table salt, we prevent their poisonous effects. But we also make, thereby, another substance which the platt cannot endure in very high concentrations. By washing this out of the sand occasionally, or letting the rain do it, we get along very nicely. Requirement four is a techaical one and wilf not be discused. As for the fifth, it also is concerned with economy of operation. The final requirement is inserted for making the feeding task less troublesome in running a hydroponicum. If one can be taught to grow several things at the same time without extra bother. he will the more easily leam the trick of making the more delicate changes required to grow some specialty, later.

iII. Degree of Varlation in Formulas

Another question frequently asked pertains to the fact that there is considerable variation, one way or another, 76
between formulas. The beginner has difficuity in seeing why this should be so. Let us now pause to touch on this point.
A. ixtremes it yarlation of pfac in looking over a great mumber of formulas, 1 was myself amazed to find that in actual use experts vary the ppm considerably, for one reasoli or anothet. The formulas presented in the next chapiet are presented to you because they are conservative in this respect as well as of proven value, But let us see what extremes are possibie, and yet have satisfactory results. Following is the range encouptered: nitrogen, 50 to 500 ppm; potassium, 70 to 1.000 ppm ; phosphorus, 10.154 ppm ; calcium, so to $3,000 \mathrm{ppm}$; magnetium, 10 to 96 ppm ; and sulphor, 18 to 140 ppm .

Now this does not mean that one may be careless about selecting a fotmula, or that one may simply put amounts of each chemical togethet indiscriminately, so long as one keeps within these limits. It means only that plants vary much in their needs for specific elements, and that under some condi-
tions show more tolerance than under others.
B. Explanation. Some of the formulas to be given became famous because they were surprisingly successful. That is sufficient reason for making any formula acceptable. They were successful, however, not because they differ, but in spite of it. They were constructed after many redious trials in the labotatory. They represent the best of those trials. They should not be changed by the beginner, without sound reasons for doing so. On the other hand, they cannot be used successfully withoot little changes as the season and plant demand, and as these arise and are understood.

The variations in ppm represent thus, in part, variations in seasonal and plant needs; in part, pure experimentation with respect bodh to tolerance, weather conditions and kinek of chemicals available for use; in part, an effort to keep the water balance as weil as the babance between the sugar and nitrogen within the plant, satisfactory for bess growth. Per. haps it should be added, that all these matters are concenved with the amount of oxygen avaitable to the plant, as well as with maintaining the acidity and total eoncentration of the solution in whick the plant is expecied to grow.

In spite of recent publicity to the contrary, tiere is plenty of sound scientific and gardening proof that plans do differ with respect to the amounts of elemens they use, their tolerance of soil or solution acidity, lighe requirements, temperature needs and periods of growsth. While these matters may be considered as refinements, nevertheless shey may not be ignoied. They were all taken into consideration when the formulas to be given were consirneted. This is important for the beginner to anderstand.

Referring back to the list of variations (see A), it will be noted that magnesium is varied least. And for a vety good reason. This element, when in 100 bigh a concentration, interferes with the absorption of others. It interferes also with respiration, which, as we shall show later, is extremely important.

The greatest variation shown is in the use of calcium. This element has many uses inside the plant, among these. counteracting the poisonous effects of others. All in all, the differences berween experimenters as to the ppm to be used is due not so much to a difference in opinion. I think, as to differences in conditions under which tests were made, and the kinds of plants used for investigation. For example, sand, gravel and water cultures present not quite the same conditions for growth, though they are all successful. Thus Gericke, who uses only nutrient solution around the roots (except in the litter beds), keeps the ppm lower than du most workers who use sand and gravel in addition to the solution. Another factor in the variations observed is the
fact that the total concentrations of the salts or chemicals must be kept within a definite range for best results. All the formulas conform to this requirement.

There is another imporant fact which might best be considered here Of the elements mentioned above, the plants use more of nitrogen than any other. The others rank, with respect to relative amounts used, as follows: potassium, calcium, phosphorus, sulphur and magnesium. Notice that the ppm decided on do not run in this order. As an example, although the plant uses more nitrogen than calcium, the variation in the ppm of calcium is much greater than the variation for nitrogen.

All this discussion is imended to have the reader, first, respect the formula he attempts to use; second, not insist on considering the formula an unchangeable thing: and third, have him become conscious of the high degree of tolerance allowable, so that he will be less afraid to make changes when they become necessary. The Purdue and the New Jersey Experiment Station tests in particular seem to indicate that successful results in growing plants hydroponically are obtainable through use of a considerable range in the ppm of the various elements, as well as in the choice of the chemical compounds which provide them,

IV. Plant's Use of Elements as a Factor

Probably the plant's use of a given element is the most important factor in determining a formula. This is now obvious, aldhough it was not always so. It was thought several hundred years ago that plants live on air and water. It. was a very difficult thing to prove that in addition to the four elements they get from these sources at least eleven others are ohtained from the soil, of some chemical. Actually, 95 percent of the plant's body is made up of carbon, hydro gen, oxygen and nitrogen. It will be recalled that the first zhree are taken into the plant direct from either the air as carbon dioxide, or through the roots as water. The fourth. nitrogeth, is taken in only through the roots in combination with other essential elements such as potassium and calcium. This leaves approximately only 4 percent of other elements which are all taken into the plant through the roots.

This is not the place to go into the many details of why these eleven elements, although used in such small amounts, can be so significant to plant life. There are writers who believe that we concern ourselves too much with them. But it is certain that if we try to strike a happy mean between too much and too little concern, we will in all likelihood be reasonably successful in growing plants.

One of the fascinating questions about plant life is what becomes of the elements plants take in. A little information on this point helps in deciding what to give a plant and why. Plants take in, sometimes, more than forty of the
known elements. But they don't use all of them. Silicon, for example, is one element that is used by many plants, but it is not essential to all of them. Others are taken in, for example sodium, and simply tolerated. Let us now see what use is made by the more important of the essential elements, particularly of nitrogen.
A. sitrogen. Only about one percent of the dry weight of a plant is nitrogen. But without that one percent there can be no protoplasm, the living stuff itself. Consider this as against the 44 percent of carbon, 45 percent of oxygen and the 6 percent of hydrogen in the same plant. Only five percent of the plant's needs for elements are gotten 80
from soil water or the natrient tank in a hydroponicum. And of these five percent only one is nitrogen. Why then, we may ask, is the giving of nitrogen to a plant to be considered so difficult? Let us spend some time on this question.

1. FROM NTRATE TO PROTEIN. Laurie calls mitrogen the "push" element, rather aptly, I think. It is given to the plant in the form of nitrate (NO_{p}), such as potassium nituate, sodium nitrate, or calcium nitrate; or it may be given in the form of ammonium $\left(\mathrm{NH}_{4}\right)$, such as ammonium salphate or ammonium chlovide and urea: or as both combined, as in ammonium nitrate. To be useful, the $\left(\mathrm{NO}_{2}\right)$ must be clanged by chemical prucesses inside the plant to $\left(\mathrm{NH}_{4}\right)$. then to $\left(\mathrm{NH}_{3}\right)$ when finally it becomes part of the protein. This in turn is the principal constituent of protoplam. Thus its importance.

In giving the plant nitrogen we must therefore consider that it takes the plant less time to change $\left(\mathbf{N H}_{4}\right)$ to $\left(\mathbf{N H}_{2}\right)$ than it does to change $\left(\mathrm{NO}_{2}\right)$ to $\left(\mathrm{NH}_{4}\right)$ to $\left(\mathrm{NH}_{3}\right)$ to $\left(\mathrm{NH}_{2}\right)$, for one process is more direct than the other. That is why we think of ammonium containing chemicals as a quicker source of nitrogen than the nitrate containing chemicals; a practical point of importance in cloudy weather, as we shall see.

Without nitrogen there can be no protein. Without protein there can be no protoplasm; which, in turn, means no growth and in the last analysis, death.

But to make protein, nitrogen is not enough. There also las to be present a specific amount of sugar. In addition, there must be a certain amount of heat available. How are these obtained? First, as you no doubt recall, the sugat is made out of carbon dioxide and water, when the plant is in sumlight. Thus, sugar has in it, carbon, hydrogen and 81
oxygen. Of these two, carbon and hydrogen may be burned to give the heat energy required to make the protein. Obviously, to get the job of making protein done, there must also be available an extra supply of oxygen, or the carbon and hydrogen cannot be burned. This is why it is so necessary for the operator of a hydroponicum to make sure that the
roots of plants are properly aerated. After the final word has been said about growing plants in field, garden or hydroponicum, in the absence of oxygen, nothing of importance ever happens inside a plant but death. And that is highly undesirable to a grower of plants.

Proteins (and there are thousands if not millions of them) are found everywhere in the plant. If it were possible to remove everything but the proteins from the plants about your home, and keep such plants in their original places, you would still be able to recognize the lawn, the shade tree and the tomato patch. The forms of the plants would remain essentially the same. The same thing might be said with respect to the water and sugar (or carbohydrate) in the plant. It is instructive to imagine the plant body as a mass of branching water, standing alone. Indeed, the idea has been used elsewhere in this book, to help understand another point. But let us return to the nitrogen question.
2. getting nmoges isto nik rlants. In giving the plant nitrogen it seems clear that we must keep in mind not only the supply of nitrogen in the solution but also the amount of light available and the oxygen supply. During this discussion we will add a fourth thing to be kept in mind. namely, the concentration of the solution.

In practical language, the plase uses is protein to grow. If the plant must make its own protein, and to do this sugan, oxygen and energy are required, it presents the grower with a very delicate problem to be solved. For on shady days there will be less sugar produced than on stumy days. If he gives the plant the same dose of nitoogen day after day, regardless of the amount of light acailable, fe will be running into one of two difficulties. On shady days, he may be giving the plant more nitrogen than can be used up, because of a shortage of sugar, and on suony days his plants will have more sugar than is required to use up the amount of nitrogen he is giving the plant. In other words, one day he will be building up a sugar-poor and nitrogen-rich plant, while on the other he will be producing a sugar-rich and nitrogen poor plant. The first will be a flabby, weakly affair, the later a hard, woody, non-edible product.

The practical point to be considered is that nitrogen must be fed in relation to the amount of sunlight available. As the daily intensity of light increases, so must a little nitrogen be added to the solution offered the plant. The opposite is done on cloudy days or when the daily amount of light decreases. There are other factors, of course, but here we must keep our minds on one thing at a time, to avoid umecessary confusion.
3. how nitrocen shortage comes about. There are two ways in which nitrogen scarcity may be brought about. The most obvious way is to fail to put enough of it into the solution, or, if one is a "dirt" gardener, on the soil. But the
second cause is more subtle. It has to do with the total concentration of the solution into which we have put the nitrogen with other chemicals.

Everyone knows that in a concentrated solution there is less water than in a dilute one. This is the same as saying that so far as the nitrate particles in such a solution are concerned, there is a water shortage. The situation might also be put this way: since nitrogen goes into the plant's roots as nitrate $\left(\mathrm{NO}_{2}\right)$, and only arm in arm, as it were, with just so much water, obviously, if the water is crowded out by 100 many other things in the solution the nitrate particles will not get sufficient opportunity to enter the plant. On 4 beach, for example, overcrowded with many different kinds of people, the individuals of one particular kind will have much less opportunity to enjoy bathing freely and liesurely than they would have if the beach were half-deserted.

The practical consequence of this crowded condition of a concentrated solution is that one may have plenty of nitrogen in it, yet have the plant growing in it starve for lack of nitrogen. One is reminded of the "Ancient Mariner," who found that there was "Water, water everywhere, but not a drop to drink." This is one reason why the total concentration is kept well within the limits mentioned earlier.

The effect on the plant is to create an internal condition precisely like that discussed in the last section. In the event that the sunlight is normal, and the concentration is too high, more sugar will be formed than can be used up by the little nitrogen getting into the plant. Therefore, little protein will be made, growth will be slowed down, and the excess sugar will be turned into starch or into cell walls and wood. On cloudy days, such a concentration would be beneficial, since the amount of sugar produced would also be small, thus tending to balance the small intake of nitrogen. In that event, one would expect protein and cell-wall production to proceed apace.
4. practical dses made of high concentration. In transplanting young plants, it is desirable to harden them first. Some growers do this by means of increased concentrations. Suppose the concentration is raised gradually on bright sunny days, while more sugar is being formed. Since relatively less nitrogen is entering the plant, the excess sugar is used by the plant to make extra heavy cell walls; and, what is more important, sturdy, woody conducting-vessels which will stand the plant in good stead during its later life. Such plants are less easily injured, and are less subject to disease.

Mr. Turner, one of the leading growers of roses hydroponically, makes a very clever use of this method of hardening. It is very easy to oversupply roses with nitrogen. By keeping the ppm of nitrogen relatively low (between 50 and 100 ppm) and fixing the potassium also at around 100 ppm .
he secures enough nitrogen to produce the protein necessary for growth. Then, by lessening the water in the solution through increasing the total concentration, he gradually hardens his plants. Since there is not enough nitrogen for making both protein and cell walls, and there is more sugar available than required to make the small amount of protein from the nirrogen available, he accomplishes his purpose nicely.
5. succuience in vegetables, Now let us see what might be done to produce succulent vegetables, in so far as this is due to providing a plant with nitrogen.

In the springtime there is not as much light as in the summertime. Therefore there is not as much sugar made in the spring as in the summer. Part of the sugar is used to make cell walls and woody vessels for conducting materials through the plant: pare is bumed in the process of making protein for the growing pars. If the nitrogen supply is regulated to keep a litule abead of the sugar being made, either by putting more nitrogen into the solution or by lowering the concentration slighty, there will be less tendency to have woody plants; and a greater tendency toward succulence. But if the concentration is allowed to become excessive, or if the nitrogen level in a more dilute solution is allowed to become low, then there will be a sugar-rich condition inside the plant with consequent lack of succulence or tenderness in the vegetable.

There are only two ways to determine what is happening. One is to make chemical tests of both the plant sructures and the nutrient solution frequently. The other is to gain skill by practice in observing the plant grow. The first is possibly only for those equipped to test. Most people have to rely on their experience. Since this book is intended for those who are unskilled in testing techniques, nothing will be mentioned on that point,

However, if repetition is allowable on so important a subject, obviously, to produce succulence in vegetables the nitrogen must be added to the solution with considerable care, as the daily amoun of light increases. It should also be obvious that he who applies a formula blindly, rather than by use of his head, must either fail completely or have undeserved, but transitory success.

Incideatally. plants grown in greenhouses or in partial shade are sometimes more tender, for a longer period, than when grown outside. This is because in partial shade less sugar is made; and there is less danger of having an excess which might be turned into wood. Or, putting it the other way around, there is less likelihood of having a deficiency of nitrogen, and an excess of sugar.

In midsummer, the formation of sugar increases very rapidly, due to the long light periods. But high tempera-
tures enter the picture also. If the temperature is moderate and the nights are relatively cool, the problem is simply one of adding nitrate in increasingly larger amounts without getting an excess, thus producing again a nitrogen-rich, sugarpoor plant. Also, one must avoid, of course, increasing the total concentration above the limits mentioned earlier. This N6
problem is solved nicely by changing the formula so as to give the added extra nitrogen desired without increasing the total concentration. Here is where a study of the tables given in Chapter 5 is helpful.

Actually, in so far as my own technique of feeding is concerned, there is tittle possibility of having an overconcentrated solution in hoe weather. For the chemicals are added daily, and dilution by water is made at the time of feeding, by allowing water to enter the feeding tank before it flows out into the plant tank. Thus the concentration of solution at the plant's roots is always less than that indicated by the formula. Since the feeding tanks are filled to mark each night, and the process repeated daily, the plants get a specific amount of food daily and all the water they need. Over-concentration is avoided over a long drought, by spraying the sand surface with water.
6. high temperatuke. When the temperature hoven in the high nineties and over the 100 mark for long periods, and the light is intense for long stretches during the day, there arise disturbances inside the plant which may not be controlled, In fact, not all of them are known. Everjone knows that it is difficult to grow some kinds of plants in midsummer, when the temperature is excessively high. People in the desert are particularly aware of this. Here is a partial explanation. First, up to a certain point, absorption increases with temperature. Second, sugar tends to be produced faster than it can be used. Third, the respiration rate also increases with temperature rise, up to a certain point. The situation inside the plant really becomes complicated; too complicated to attempt an explanation here. Sometimes it happens that there is not enough sugar present to satisfy the respiration demands. That is when the plant starts to burn itself up.

Now then, suppose you teed your plant too much NH_{3}. This will be used to make protein at once. But, since there is a shortage of sugar, the demand for new cell-wall material will not be satisfied. Thus the plant will seem to thrive a short while, then wilt and die. However, if you fed it NO_{3}, what would happen? If the oxygen supply were low the NO_{2} would accumulate, and the plant would use up its body supply of oxygen. If the respiratory oxygen were sufficient some of the nitrogen would be turned into protein, and thus prevent the accumulation of NO_{3}. So long as there is sufficient sugar to take care of the burning process required th use un the NO. the plants will do well. However, this
can't happen if the roots don't supply the oxygen.
7. FRUTT A>D Nitrogen. Although excessise feeding of mitrogen retards or prevents fruiting, nevertheless, it is necessary to supply this element during the fruiting period. There is more to be desired in a plant than succulence and fowers. These things we like in a salad or a bouquet. But we wish, also, to have such things as beans and tomatoes. These are fruits. Before they may be formed nitrogen comes into the picture. Therefore, nitrogen must not be allowed to fall too low in the feeding schedule when the fruiting period is on.
8. scmamary of nitrocen. If the above discussion has been tedious, it is also important. Many more things might have been said had space been available. It was intended ω emphasize the fact that giving nitrogen to a plant is rather difficult, if the best results are desired; particularly if one wants people to eat what he grows. The reader is urged to master the few details given. The genuine student will seek a fuller acconnt in a standard text on plant plysiology.

What has been said may be summed up under the following brief statements:
a. Nitrogen is used to make the living part of the plant.
b. It is taken in either as nitrate $\left(\mathrm{NO}_{3}\right)$ or ammonia (NH_{4}).
c. It requires energy to turn the nitrate or ammonia into protein. This energy is secured through burning sugar, which is made only when there is light.
d. Since the amount of sugar varics, the amount of nitrogen given a plant must also vary. Otherwise we encounter either high-sugar and low-nitrogen plants, or just the opposite. Both are undesirable.
e. A high-sugar and low-nitrogen plant is produced when the concentration is excessive, or when absorbed nitrogen is not used because of low oxygen supply or high temperature. The result is that sugar tends to collect as starch or as woody hard parts; or the plant stops growing because not enough protein is made for the required protoplastu. A low sugar and bigh-nitrogen plant is produced it the nitrogen is supplied too rapidly in the ammonia form when there is cloudy weather and little sunlight, or if there is a respiration upset because of prolonged high temperature. The result is that the sugar is burned almost immediately to provide the turning of nitrogen into protein, leaving none for normal cell-wall formation. The water balance inside the plant is upset, the plant continues to grow. but is too succulent, wilts, is susceptible to disease, and produces little or no fruit.
£. The amount of nitrogen given a plant is increased as the amount of daily sunshine increases, and decreased as the light decreases.
g. A plant may starve for lack of nitrogen even thougir
its roots are supplied with much of it. This may be due to too high concentration of the solution.
h. Best fruiting results are obtained with a moderate and well-balanced nitrogen feeding.

It should be obvious by now that there can be no such thing as a perfect formula, in the sense that all ingredients may be made into a cake and applied to all plants everywhere. in all seasons. under all conditions of weather, with amazing success in each instance. Hotvever, there are "merchants" of "plant food" who advertise this error as truth.

In introducing the other elements as they concern the problem of making up a formula, we must necessarily be brief. Some of them are varied as to amounts of feeding. but none so much so as in the case of nitrogen.

B, porassiun. This element is ased in the making of buds, leaves, woot tips, sugar, starch and proteins, though it does not enter into the structure of some of these things. It provides a sort of "kick-otf" to cell division. If it is not present, and in proper amounts. particularly in the carly stages of growth. the plant cannot do a number of important things. Its deficiency is marked in various ways. In a tomato, for example, the lower leaves will turn grayish green and the margins become yellow. This yellowing eventually spreads inward, the areas become brown and finally die. In a cucumber the same thing occurs, but bere one notices also a bronzing effect, while the stem end of the cucumber fruit remains much smaller than the opposite end, which is the opposite of what occurs when nitrogen is deficient in this plant. A potassium-deficient radish is said to have knobby roots, with thick and leathery leaves, a characteristic some claim also for other plants.

Potassium is absorbed readily, except when there is an excess of calcium present. Thus there tnay be the proper amount of potassiun in the solution but because there is too much calcium present the plant will be starving for it, 50
In such a case, the usual potassium-deficiency symptoms would show up unexpectedly.

The minimum amount required is about 70 ppm . But most formulas keep it around 150 pprm. Turner finds that this may be raised to as high as 1000 ppm , during winter and cloudy weather, or to offset excessive absorption of either nitrogen or calcium in certain cases for a limited time. The practical effect is one of hardening what would otherwise become a too-soft fruit, as in tomatoes, and of preventing the yellowing and withering of the lower leaves which have absorbed an excessive amount of nitrogen.

Another practical bit of information about this element is that it keeps the sugar moving from the place where it is made to the place where it is used or stored. It is thus
clear that a plant like a potato requires a great deal of it, since the sugar made in the leaves is transported through the entire length of the plant down into the ground, where it is turned, presumably with the help of potassium, into starch. This is the principle substance stored in that underground stem familiarly known as a "spud," or in foreign countries, potato, or porme de terie, according to the language.
C. phosphorus. This element actually becomes a part of the living material called protoplasm. Here again is an element which serves several purposes, making it thereby the more essential so a plant's life. Sugar is converted into the insoluble form, called starch, very quickly after it is made. In that form it is quite useless. It must be put back again into the soluble form. Phosphorus seems to be necessary in this turning-back process from starch to sugar. Since seeds are essentially infant plants lying dormant inside a wrapping of oil, protein or starch ladened zissues, it is not surprising that phosphorus must be supplied to the plant particularly when it is fruiting.

If the absorption of potassium is interfered with by too much calcium, the absorption of phosphorus is interfered with by too much iron. In fact, iron and phosphorus have .t mutual dislike for each other. One precipitates the other out of solution the moment its concentration is high enough to get the upper hand of the other. By keeping them both down near the minimum ppm permissible for good growth. this particular batule of the elements becomes less disturbing. By keeping the solution a litule more acid than one would ordinarity, both seem to forget their chemical feud and enter the plant roots eagerly, thereafter doing what the plant expects them to do.

Incidentally, this battle of the elements is fought continuously also in a garden. In a hydroponicum we can keep it under control tmuch more easily than in a garden or a field.

If the plant fails to get a sufficient amount of phosphorus, the deficiency shows up in stunted growth (a feature of most kinds of deficiencies). purple veins or even complete purpling on the underside of the leaves, slender stems, and fruit that fails to set of mature. Even the roots fail to develop, a feature difficult to observe without destroying the plant. I have noticed that these symptoms are particularly noticeable in early spring when the temperature and light are low. The plants invariably come out of it when conditions are more favorable. This observation assumes that there are no apparent reasons for phosphorus shortage, through failure to keep the $p \mathrm{H}$ and iron-phosphorus balance reasonably correct.

The minimum concentration of phosphorus is 10 ppm , and it is generally unwise to allow it to exceed 100 ppm . A rose plant, for example, does well with 10 to 30 ppm , while
a tomato, which forms fruit, would require 60 or more ppm of this element, particularly during its flowering and froiting period.
D. calciem. This is the element which makes lime so important. Lime has been put ou soil in one way or another for the past 5000 years, with fittle idea of why. Were words water, iruly there would have been a deluge because of the prolonged debates over the use of lime. And the debate has not ended with the birth of hydroponics. Opibion among plant physiologists permits the concentration of calcium to range anywhere between 80 and 3000 ppn! Catcium is a very important element in the life of a plant. But, in general, such a high concentration of calcium would never be wisely attempted by the beginner.

By some, calcium is ranked higher in importance than is phosphorus. 1 prefer to consider one essential element as important as another. However, some ave more difficult to handle than others, which makes them important to the operator of a hydroponicum. What makes calcium so indportant is the fact that it is used by the plant for several processes. For example, it neurralizes acids prodaced inside the plant. When a large amount of nitrogen is used by the plant a large amount of acid is produced. Since the plant has no excretory system, the only way it overcomes this acid accumulation is to neutralize it into some harmless substance. Thus calcium is used in a great amount for this purpose.

Several elements, among them magnesium, are harmful, if used in large amounts. In some way calcium helps reduce this harmful effect. Sodium, which is not used by the plant but which gets into it through the roots, harms the plant less if there is sufficient calcium present.

Calcium deficiency is therefore not simply a matter concerning this element alone, but is connected with toxic effects produced by other elements when there is not enough calcium to offset them.

You may recognize calcium shortage by the fact that the growing point stops developing, and dies; also, the upper leaves turn yellow while the lower remain green. If the plant is removed, the roots will be brown and poorly developed.

One tries to balance calcium with potassium. If one uses a calcium concentration of 120 ppm , the potassium would be raised to 200 ppm . These figures are not to be considered precise. The point is that for general purposes one keeps the amount of calcium between the concentrations for nitrogen and potassium. Which means that the potassium is generally kept higher than either the calcium or nitrogen. When the nitrogen is low, say at 50 ppm , the calcium would.
be at least 80 ppm , and the potassium at least 150 ppm . On dark cloudy days, for prolonged periods, the potassium might be raised to as high as 500 ppm . But suppose the nitrogen feeding is very high, as in summer. Then the calcium would be raised also to perhaps 400 ppm , while the potassium would be lowered to around 100 ppm . It must be remembered that these suggestions are intended as a belp rather than as a set of rules to be followed blindly. Simply remember that calcium and potassium are another pair of elements which rend to interfere with each other, making it necessary for the operator to be on his guard in giving them to the plant.

If the beginner follows the formulas given, he will in all likelihood have no difficulties regarding calcium. The only conditions which he should clear up are those in which the water used is already high in calcium. In that event none at all or very litule should be put into the nutrient solution.

94
Or the sand used may be high in calcium. If this is so, it must first be treated with treble superphosphate in water, until the $\rho \mathrm{H}$ or acidity becomes stabilized at about 6.5. By this means the sand (or gravel) is coated with insoluble phosphate, and from then on the phosphorus in the solution will not be made insoluble by the excess calcium. If you don't do this, you will have to use more and more phosphate, or your plants will show phosphorus shortage, and you will have difficulty keeping the plane bed from becoming alkaline. Adding more acid will not relieve the situation if a calcium-high aggregate is the cause.

The minimum ppm for calcium is probably 80 . There are some who feel that it should be placed at 120 ppm . Probably the latter figure is the safer.
E. magnestum, Just as your blood will not be red unless there is iron to form the nucleus of the hemoglobin particle, so will plants not be green unless there is magnesium to form the heart of the chlorophyll particle. Chlorophyll makes the great majority of life on earth possible. Without it. you and I could not possibly exist, since we, like all other animals, depend on it to provide us with food. Without it there is no food. Thus the importance of magnesium also. For without magnesium no chlorophyll is possible.

The most obvious consequence of magnesium deficiency would be a yellowing of the older leaves between the veins, just as in potassium deficiency, except that there is no bronzing effect as in potassium deficiency. Also the leaves tend to curl upward. An excess of it, on the other hand, tends to increase the total concentration and to cause hardening, It has been reported that an excess of this element causes the tops of plants to wilt in hot humid weather. Minimum amount is around 10 ppm .
F. sulphuk. This element becomes a part of some
proteins. It also imparts flavor to some plants and aids in tmaking chlorophyll. Leguminots plants use it for making their foot nodules. A shortage of it is not likely. If so, the plants turn pale green and show tardy fruir formation. The minimum is around 10 ppm .
G. rgos. This element is used in three main ways. First, it assists in making chlorophyll, though it does not become a part of it. Thus the first sign of iron deficiency is a yellowing of the leaves, particularly the young ones. You may determine this very quickly by pouring a solution of iron cistate or iron sulphate over the sand (see formulas for the proper concentration). The planes will begin to turn green again within a few hours!

Second, it helps the plant to burn its manufactured lood, thus providing heat energy for use in various processes. You may recall that sugar is burned when protein is madeThus an iron deficiency interferes with this important process also.

Third, the living material itself. protoplasm. without which nothing happens inside a plant, has iron as a structural pars of it.

Thus it seems that the plane really needs quite a bit of this element continuously. But it is rather difficult to get it served up on an acceptable plater, as it were. First, it will be recalled, an excess of phosphorus will not permit its absorption. Also, if the hydrogen ion becomes high, pH 7.0 or more, so that the solution becomes even slightly alkaline, It is not soluble, and is therefore not absorbed. Then, too, the concentration, if more than 10 ppm , is likely to interfere with phosphorus absorption, and, if the solution is sery acid, so much of it will be absorbed as to become toxic, the mots being kitled.

56
Another element, manganese, when too high in coneentration interferes with iron absorption. Thus, iron defisiency may be the consequence of a number of things.

The practical point to be remembered is that if one feeds his plants iton regulatly, but in small amounts, he will have little or no difficulty.

The minimal amount required is probably about one ppm. If one could always be sure that none of it is precipitated out of solution, feeding as little as 0.05 ppm would be sufficient. So long as the phosphorus concentration does not go high (some growers keep it at around 10 ppm), or the alkalinity side of the $p \mathrm{H}$ scale is avoided, little trouble will be experienced with iron absorption and thus iron deficiency.
H. manganese. This is another element that serves to help out in several processes as a sort of activator. There is reason to believe that whatever concentration of iron is used the amount of manganese should be just half that amount.

Thus, if one ppm of iron is used, then 0.5 ppm of manganese should be used. This means that the toxicity of iron is due in part to a shortage of manganese, if the manganese is lower than the relative amount stated, and iron deficiency would result if the manganese is relatively higher than the amount given as desirable. Putting it another way, the absolute amount of iron is of less importance than the relative amount of manganese used with it.

1. boror. At the New Jersey Experiment Station work is being done to show how boron feeding is related to calcium feeding. Perhaps boron is associated with the plant's use of the other major elements, Whatever the use of it, and however other elements may later be proven to be associated with it in normal plant processes, it is known that all plants need ie.

97
Great care must be exercised in using it. First, because it is more toxic to some plants than to others. For example, corn will not tolerate it to the amount that cauliflower and beans will. Second, because, as in the case of several other elemeuts, its chances of harming the plant depend upon the relative amounts of other elements, particularly the other race elements.

A shortage of boron causes different effects in different plants. In general, the growing tip of the plant first shows browning, and soon dies. The leaf stalks and veins become extremely brittle. The leaves have a tendency to burn at the tips, to become malformed and twisted, particularly the young ones. But the reader should be reminded that leaves twist for other reasons also. The margins eventually become brown and have a burned-up appearance. In strawberry this is very pronounced.

The minimal amount varies between one ppm and 0.01 ppm , according to the kinds of plants grown, the amounts of other elements present, and the condition of the nutrientsolution.

For practical purposes, using a concentration of 0.2 ppm . regularly causes neither a deficiency nor an excess.

Nothing need be said about copper, zinc and molybdenum, the remaining trace elements, except that they are very toxic in even low concentrations. It is probably best to use them in concentrations not more than 0.01 ppm , and then ouly infrequently.

Now that we know what elements to use, and something of what use the plant makes of them, as well as some of the consequences of their excessive use or of their deficiencies, let us next examine the formulas which have actually been used and published. None of them can be used without 98
some changes being made as the season progresses, as the plant matures, and to satisfy specific needs of different spe-
cies of plants. But they do serve as safe guides. And the carnest beginner will soon learn by experience how to make the required changes as they arise. Indeed, every time a change is made, one has a new formula. But for practical purposes the plants will tolerate a great deal of misuse of formulas, provided the required amount of aeration is kept up and the acidity or $p \mathrm{H}$ is properly maintained. When these go wrong, no formula is worth its sale.

We come at last to answering the "sixty-four-dollar questiou": "What formula do you use"" Here are given nine different formulas for you to try. They are put into one chart, Chart 2, and given a Roman numeral for identification. The people responsible for them are identified in the paragraphs which follow.

Formula L. This is the formula developed by Gericke. It is used for growing both flowers and vegetables. See his
text for detailed directions on the technique used and the manner in which the trace elements are added.

Formula IL. Mr. Wayne I. Turner, of Kankakee, Illinois, kindly furnished this formula. It was developed for growing roses commercially in greenhouses, using the aggregate system. This formula is the result of many years of practical research. The roses grown prove its worth. I have seen the roses, and can vouch for the formula. Mr. Turner, who is one of the outstanding pioneers in growing roses commercially and who has spent much time and effort trying to induce others to adopt hydroponics, writes me that in his opinion "It is a practical, scientific, commercial venture for anyone."

Since this formula is the consequence of scientific acumen and commercial experience combined, such a statement by so high an authority would not be made without genuine confidence in the formula itself. If the reader consults the text written by Turner and Henry, he will discover that the formula has been changed considerably between 1939 and the present. It is hoped Uhat the authors will soon revise their text, and include the details which brought this formula to its present form.

Intereutingly enough, the only uace elements used with this formula are irow and copper, the latter probably unnecessary, in the opinion of Mr. Turner.

Formula 11I. This is also a rose formula, or, beter still, a flower formula. It is the famous TWP formula developed by Arnold Wagner and G. H. Poesch at the Ohio Agricultural Experiment Station, and, 1 assume, under the direction of Professor Alex Laurie. The recent paper by Kipplinger and Lautie indicates that this formula has been rested over so long a period and covers so many questions as to the use of different substances used in the gravel or aggregate rechnique that it should be placed high on the list of successful formulas.

It is used either in $1 / 2 \mathrm{WP}$. WP. or 2WP concentrations. The reader must consult the book by Laurie or the papers listed, for details. In general, the $1 / 2 \mathrm{VVP}$ concentration is used during the early life of a plant, and the other concentrations follotv in order, as the season progresses.

Formula IV. If one visits the New Jersey Experiment Station at New Brunswick, he will see roses growing with the use of this formula. It was developed under the direc tion of Dr. O. Wesley Davidson, and is to be found in its original form in a paper by him published in the July 1946 issue of Soil Science.

Having seen the roses growing in this solution in mid summer, I again wouch for a good formula. The reader may be surprised to find that roses may be grown equally
well in solutions which vary greadly in concentration, as seen when comparing this formula with that of Turner. Professor
rea
Davidson very wisely points out that "The concentration and balance of nutrients in the solution surrounding plant roots in artificial cultures vary more or less, depending upon the rate of application of the solution, or, in the case of solution cultures, upon the amotme of circulation. This is particularly true of the nutrient substrata surrounding the roots of plants in gravel cultores. It is apparent, therefore, that the choice of one nutrient solution over another one tarying from it slightly with respect to the concentrations of tarious major nutrients present is umwarranted. This statement is not intended to roinimize the importance of the balance of ions in a nutrient solution. The point 10 be emphasized, howeverf is that such a balance is concemed with a suitable range of concentrations of various major nutrients rather than with the strict maintenance of given concentrations of each.
"This contention does not apply to the minor elements, or micronutrients, since smatl differences in the levels at which they are provided in nutrient solutions are known to effect pronounced changer in plant growth."

The reader may feel that so lengthy a quotation fromt so scientific a paper in a book of this sort is out of place. But let us sec. Dr. Davidson has put his finget squarely on a point that has not only interest for the scientific investigatots but also the commercial grower. The point is this: For a formula to be satisfactory, you don't have to insist on trying to keep the concentration of each major element in it at a given level. This means that you may choose any formula you wish, regardless of how it difers from another, so long as you choose one which has been developed on correct principles. It does not mean that you can put just any old thing into a solution and expect a good crop. Mark what Davidson says in the first sentence quoted, and be impressed 105
with the idea that the conditions under which a formula is used is also significam. There is no one in a better position to offer this advice to a beginner than is Professor Davidson.

Formula V. Here we attempt to bring in the work of the staff at the Purdue University Agricultural Experiment Station. The formula given here is one of many developed under the direction of Dr. Robert Withrow, who designed one type of growing tank used in the Gravel System, and who, together with bis wife. Dr. Alice Withrow, plant physiologist, developed the formulas published in the army manual on hydroponics.

This is the now famous 2 D formula, an honor which it shares with the 2E formula developed by the Purdue groupIn recent years a number of new formulas were developed
on the lines of these two, and for meeting specific demands during the recent war. I regret that I am not at liberty to report these liere, through no fault, 1 am happy to say, of Dr. and Mrs. Withrow, who have been most generous with their information.

Formula VI. This is a tomato formula developed by Arnon and Hoagland, and was taken from the Davidson paper cited above. Since 1 have no first-hand information regarding it, the reader must consult the paper by these authors for details on how it is used,

At this poine a word is necessary regarding the use of micronutrients. These have not been given with the above formulas because the authors use them differently, according to the technique of using the nutrient solution as a whole, and to the manoer of mixing the trace elements themselves. They differ also in the frequency with which the trace elements are added. Space does not permit giving all these details here. Besides, most of the details may be secured
in the articles and books, especially the latter. listed in the bibliography section of this volume.

Formula V'I. This is the original formula developed by the author and used up until the last war: A word should be said regarding its origin.

Since the entire objective of my own efforts in hydrojonics was to develop a system dexoid of mechanical devices and which could be operated with a teclonique that did not require much skill in iesting, it was clear that the formulas developed for other systems might bave to be modified because of a difference in the number of times the solution would be supplied to the plants, as well as the difference in the amount of flow or dirculation which might be attained.

Since, also, the light intensity varies greatly in the Conway region through the growing season, an attempt was made to apply the potassiumnitrogen relationship suggested by Turner and Henry. The plants grown were tomatoes, beans, corn, letuce and beets. The results were satisfactory in all cases. The chief difficulty encountered was an overfeeding of nitogen to tomatoes, which resulted in the browning and drying-up of the lower leaves, when plants were grown in the greenhouse. This difficulty was not encountered when plants twere grown in the outside hydroponica.

Formula VIII. This formula is the consequence of two unfortunate situations. First, the last war cut off the puschase of calcium mitrate and potassium nitrate. Second, there came a severe storm which blew down the building in which my chemicals were stored, filling the storage jars with water and debris. Since there was no possibility of getting a new supply, and to waste the diluted material would have been criminal, the only thing to do was to dip it out in a No. 1 tin can, and guess at the concentrations. The surprising result was that the crops were grown to maturity without

1at
serious difficulty. As a consequence of these two disasters. sodium nitrate, potassium chloride, lime and nitric acid were substituted for the two unavailable chemicals.

For winter use, extra potassitm could be supplied by using extra amounts of potassium chloride, without serions trouble from free chlorine. For summer use, a third chemteat, ammonium nitrate, was added to provide the extra nitrogen required as the season progressed. By increasing this salt gradually, and avoiding its use entirely on dark cloudy days, very satisfactory results were obbained with tomatoes particularly. One unit grown on this formula produced 746 pounds of marketable tomatoes beween Aprit I and July 12. 1947. It would appear that the formula is satisfactory for tomatoes when grown in a region where the day. light periods are long and the temperature, doring the growing period, varies between 40 and 100 degrees F ,-when wetl, of course, with the particular form of hydroponicum and technique described elsewliere in this book.

Formula IX. This is essentially the some as number VIII. In it sulphuric acid is substituted for nitric acid, and the potassium level is raised, while the nitrogen level is lowered. Thus, this formula may be used in winter and for starting plants, and Formula VIII subatituted for it as increased nitrogen is required.

It should be noted here that there is a limat to supplying extra nitrogen through the use of ammonium nitrate. The maximum given in the two formulas is considered to be within safe limits. If more nitrogen is desired than provided by either of the last two formulas doubling the amount of lime and acid should meet requirements, or use calcium nitrate instead of lime and acid, as in Formula VII, would be satisfactory.

106

It is understood that people are frightened at the sight of tables and charts. But it is hoped that the reader will examine carefulfy the following Chart 3. It shows bow the nine formulas vary in the concentration of the various major elements. Note that the potassium level is generally a little thigher than the nitrogen, and that the calcium level is consistently kept below the nitrogen level. Compare this with

Chast 3. Pipm of earh essential clement in earh farmala

	1	11	[1]	IV	v	V1	VII	VIII	1X
Nitrogen	168	$\left\{\begin{array}{c} 50 w \\ 1000 \end{array}\right.$	100	250	168	235	$\left\{\begin{array}{l} 140 \mathrm{w} \\ 224 \mathrm{~s} \end{array}\right.$	$\begin{aligned} & 169 \mathrm{w} \\ & 2815 \end{aligned}$	$\begin{gathered} 95 \mathrm{~m} \\ 210 \mathrm{n} \end{gathered}$
Pocassiam	390	100	214	300	390	890	$\left\{\begin{array}{l} 1560 \\ 390 \% \end{array}\right.$	234	351
Calcium	80	$\left\{\begin{array}{l} 33 \mathrm{w} \\ 101 \mathrm{~s} \end{array}\right.$	820	192	184	120	160	160	160
Phosphorus -	62	10	62	31	37	62	62	62	62
Magnesium -	24	10	48	${ }^{81}$	12	48	48	48	48
Sulphur	52	13	520	137	160	5	65	64	64

$W=$ winter or early spring.
$s=$ summer, long days of sunlighe.
the situation in Chart 4 , where the formulas are compared on the basis of the relative number of absorbable particles. rather than on the hasis of the concemrations of the elements in them.
Cunar 4. Arlative numbers of absorbable forrifies (ions) in the formulas

Tens	1	11	III	IV	v	V]	VII	VIII	18
Nitrate, NO_{3}	12	$\left\{\begin{array}{l} 3.6 \mathrm{w} \\ 6,5 \mathrm{~s} \end{array}\right.$	5.5	16.5	1tit	10	$\left\{\begin{array}{l} 30 w \\ 16 \mathrm{sis} \end{array}\right.$	$\begin{aligned} & 12 w \\ & 16 i s \end{aligned}$	$\begin{aligned} & 7 \mathrm{w} \\ & 11 \mathrm{~s} \end{aligned}$
Ammonia, NH_{3}			1.6	14.	2	2		$\left\{\begin{array}{l} 0 w \\ \text { is } \end{array}\right.$	$\begin{aligned} & \text { Ow } \\ & \text { If } \end{aligned}$
Polasuium, 8	10	26	3.5	5.7	10	10	$\left\{\begin{array}{c} 4 w \\ 10 s \end{array}\right.$	7	9
Calcium. Ca	$\underline{\%}$	$\left\{\begin{array}{l} 1.2 \pi \\ 2.2 s \end{array}\right.$	79	4.8	48	5	4	4	4
Phomplate ($\mathrm{H}_{4} \mathrm{FO}_{4}$)	2	0.5	2.2	10	1.4	$\stackrel{\square}{3}$	2	2	2
Magneaium Mg_{g}	1	0.4	2.4	35	0.5	2	9	2	2
5 miplaie, 50.	1	0.4	A. 9	4.5	5.5	1	\pm	2	5

$\mathrm{v}=\mathrm{z}$ intar or canfy ipfong.
$4=$ sumsmer.
102
Clarss 3 and 4 are included bere, not to complicate matters by a lot of technical detaik, but to furnish you with a sort of guide for making changes in any formula you use, if for some valid reason you deem it to be necessary. That you may moderstand Char 4 a little better, fet us explain it by the use of Formula VI. For every two particies of ammonia available for absorption by the plant there are 10 particles each of tuitrate and K. 3 of calcium, and 2 each of the others.

Now let us note a few things. In Chart 3 the ppmof potasium is higher than the ppm of nitrogen, in all but Formula II. Bor in Chart 4 is revealed the fact that there are more nitrogen-bearing ions available for absorption that there are of potassium. This is because the plant uses much more ntirogen than potassum during its lifetime. In Formulas VII, VIII and IX the difference between the number of nitrogen-bearing particles and those of potassium is greater because these formulas were used in a region where there is very much sunlight.

Note also that those who use the ammonia particle (or ion) for nitrogen use it sparingly. This is because, as noted earlier in this book, the plant uses the ammonia nitrogen for making protein, while it uses the nitrate nitrogen for making both protein and cell walls. Thus if too much ammonia is used, the plant will tend to be flabby or oversucculent. it is also apparent that an attempt has been made in each formula to keep the various particles somewhat balanced against each other. This happens to be a very important matter, but entirely too technical for consumption by the average reader. It is enough. perhaps, to say that no one fias yet succeeded in balancing ions perfectly. but that what balancing has been done is most important, and has been considered in making the various formulas presented. In another decade or two, you will read books 108 giving formulas much improved in this respect. Since these formulas work, it is probably safe to say that plants are not
as much interested in parts per million and in grams as they are in the way one contrives to give them a balanced diet of ions.

Use of Trace Elements

Trace elements may not be varied as to ppm as much as may the major elements. Plants suffer from a lack of them, and may be ruined by an overdose of them. The amounts given below in Chart 5 are considered safe. Direce tions for using them with my particular type of hydroponicum and technique are given below.

One writer fas said that plants show a deficiency trouble only when they have not bad any of a particular nace elemens. That could scarcely be said to hold either for iron on manganese. I go on the assumption that it is safest to give plants a litule of each trace element frequently, taking pre cautions against overieeding them.

One writer notes that food-grade chemicals have enough of zinc, copper and molybdenum in them that adding any of these is generally not necessary. Tumet writes that be has never observed signs of copper deficiency in his hydroponicom, though he uses copper very, very sparingly for no particular reason. I have found the same to be rrue with regard to all the trace elenents with the exception of irom, in the Conway area, and with the kinds of chemicals 1 use.

Another writer observes that the amonth of manganeie ured should be jost half she ppen of iron used. He seems to feel that if one has added. let us say, twice as much iron as the plamt ean use, the toxic effect can be countered at once by adding manganese, It my own experience I have found evidence of iron deficiency in tomatoes after growing for 109
some time in a unit which had been sterilized with potassinen permanganate. Taking a tip frum the atove soggestion I argued that the plants were for sutfering from iron deficionsy so much as from manganese exress. The plants were then given a watering of iron cisrate solution, and recovered is four houts. This appears to support the idea that keeping the two in proper balance is more important than the aloolute ppin of either iton or manganese.

On the other hand, still other writers point out that if too much manganese is offered the plant, this element has she effect of inducing the plant to take up more calcium dhan is good for it. Thus, since calcium in excess interferes with iron absorption, we have a sort of merry-go-round situation: Give the plant too much mangonese, it speeds up calcium absorption. When this gets too high, there is an iron shoirage. Add more iron to relieve the shortage, not only does the plant fail to absorb it but the iron now begins to interfere with phosphorus absorption because of increased concentration. Please do not try to figure all this out. It is unnecessary. But it should warn you that the part of wis-
dom demands care in the use of the micronutrient.
Boron is another element that may not be used without caution. Some plants like beans and cauliflower use much more than corn. Thus, if you had these plants growing in Uhe same unit and fed them enough boron to satisfy the beans, the corn would suffer toxic effects. It would take several books to teview all the possible mistakes which might be made with trace elements. I think I shall end these remarks by saying that, in general, you will have little or no trouble with traceelement deficiency if you use food-grade chemicals, and, once in a while, add a pound of commercial rock fertilizer mixture such as is used for ordinary gardening. 1 think that much too much has been written about defj-

110
ciencies, so far as practical hydroponics is concerned. The only exception to this statement would be those regarding iron.

With these remarks in mind, now tarn to Chart 5, and the directions given below for the use of trace elements.

Cuwry 5. Trace riements-amownts and beve to tise. Weighty given far 1,000 Liems or $1.000,000$ grams, of five 50 gallon harrels.

Treis etrment devirod	Its chemidal sonive (tee Taple II)	Ppm uspl	Weight required
			(grams)
Jnas	Feric asemonium citrate er Ierrenn sulphate	1.0	5.90
Mancavicat	Manganese chloride se manganese sulpliate	0.5	1.80
Thobas	Fotie acid ar loras	0.5	2.80
bue	Lins sulythate	0.05	0.25
Cairres	Cappes ralphate (blue vigial)	0.08	0.10
M6is.vmprevis	Mtofytaluc acid	0.01	0.08

DIR上E:TIONS TOR USING (Bot iaclading iron):

1. Make the nutrient solution the proper acidity (pH) before adding.

2 Weigh out acomately ONE-FIFTH of each amount given in chari, for the chermials velected. Ulse these as SAMPLES. Keep in very swall containon ber refecence, Small glas vials are good. These are the amounts for ONE BABREL of mutimi solution. NO LUMPS.
5. Use a similar seeasure (vial) for determining amounts to be used. This avsids wrighing irpeatedly, and is acourate enough. provided exireme ware in fudging the volume of material is taken.
4. As an alectpative to direction s, thake a stock solution as follows: (a) Weigh out 20 times amounts given is chart, (b) Dissolve in sightly scal water ONE GALLON (otock solution) (c) Use 1 ac. per quart, i ac, per callon, ar 200 ex per barrel of mutrient solution ONCE A WEEK, if solutien is sued repcatedly
5. If natrient solution is renewed daily, L15E ONLY 25 cc. PER BARREL. DMIL. Y, Frosis the soock solation.
6. If nutrient solution is renewed daily, and direction 2 is foltowed, USE OSEY TWICE A WEEK.

DIRECTIONS FOR IRON:

7. Disolve amount gives in direction 2 (ONE-FIFTH) in acid water, if ferroas nulphate it usod. Uie dry if ferric ammonium ditrate is used.
8. Add to matrient tank just before leeding. stirring it up-TWICE \boldsymbol{A} WEEK.
9. In rase of iron deliciency (yellowing of top leaves) either use daily on waser the bed with tren solution by meams of sprinkling can.

111
 CHAPTER 8

How to Use the Chemical Jables in

Making or Changing Jormulas

1. The Direct Methoi

This is a technical chapter. It should not be read by the beginner until after he has practiced hydroponics a while, and wishes to gain some information on how to do the arithmetic involved in determining exactly how mach of a given chemical is required to produce the given number of ppm asked for. So far as the beginner is concerned, all such calculations have been made for him. Table II tells exactly how much of a given chemical is required to yield one ppim of any essential element, for any chemical listed. This is a mighty handy table.

For example, if you should happen to know (see Chart 3) that a certain formula calls for 100 ppm of nitrogen, you may turn to column one, Table II, and find that you have seven different chemicals (including grades) furnishing nitrogen. In the last column of the same table you would find that it takes only 285 grams of ammonium nitrate, while it takes 648 grams of calcium nitrate to yield the 100 ppm desired. So it goes with the other five listed. Bat, if you happen to choose calcium nitrate, how would you know how much calcium was included with the nitrogen? Let us see.

By dropping down the table to the calcium group, and spotting the 90 percent calcium nitrate, you find that 4.50 grams of it yield one ppm of calcium (column 3). Obviously, then, one gran of it wonld yield 0.292 ppun $(1 * 4.50)$ of calciom. Thus, since we med $6-4 \$$ grams of this sale to ger 100 ppm of nitrugen, we also got 643×0.222 or 143 ppm of calcium in the deal.

Now let us try it the other way, by finding the amount required to yield 143 ppm of calcium. There are six ppm columns already calculated for your convenience. Now. 143 is the same as $100+4 \times 10+2+\mathrm{t}$. At the bottom of the ppm columns for 100, 10, 2, and 1, you will find the amounts of calcium nitrate required to yield the respective ppon. Thus. $450+180(4 \times 45)+9+4.5$ gives us a total of 644 grams. This is within one gram of what we determined in the previous paragraph. This is close enough agreement. for all practical purposes.

i1. The Millimole Method

Now let us do the same thing by another method. Many workers, for scientific reasons, use the relative weights (molecular weights) as the unit of concentration. By taking 180 grams (see Table I, column 2-B) of calcium nitrate and dissolving it in 1,000 liters ($1,000,000$ grams) of water, we have what is called a millimole concentration. In columns 4 N and 4 Ca of the same table we find, after calcium nitrate, 28 in the N column and 30 in the Ca column. This means
that in one millimole (180 grams) of calcium nitrate there are 28 ppm of nitrogen and 40 ppm of calcium. In one millimole (200 grams) of the 70 g calcium nitrate there would also be 28 ppm of nitrogen and 40 ppm of calcium.

Now then, how much calcium nitrate would you need to supply 100 ppm of nitrogen called for in our example above? This is very simple. Since 180 grams yield 98 ppm of nitrogen and we want to secure 100 ppm , then $100 \div 28$ tells us that we need 3.57 times 180 grams. This amounts io
643 grams, which is the sume as- we secured by the direct method.

Asbefore let ussee, by the millimole method, how much talcium was secured in these 643 grams of calcium nitrate. Sibee we said aloove slatat 1 millimole (180 grams) of calcium nitrate ontaiks 40 Ppmi of Ca, and since we had to use 3.57 millimoles to get the bitrogen sequired, evidently we also got in thás deal 3.57 times 40 ppm of calcium, or 142.8 ppm . This again agrees with our calculation by the direct method.

The secret of this agreement is sery simple also. The direct method depends upon the correctness of Table 11 . Bur, Table II lad to be determined from Table I! If the calculations had not been made for yous, you would have had wo do that calculation yoursell, if ever you came up against the problem of trying io decide just how much of a given chemical it akes to make one ppon of any element in it,

In the event dat you ever have to add io Table II this is the rule to Iollow: Divide the molecular weight of the chemical by the weight of the element wanted, and point off properly. For example, if there are 28 ppm of N in 180 grams of calcium nitrate, then $180 \div 28$ gives 6,43 grams as the amount necessary to furnish one ppm of N , when dissolved in 1.000 liters of water, of course.

IIL. Selicting the Chemicals

Since we have a choice of several chemicals in making a formula to provide the required ppm of the various elements, what chemicals would serve best? The following rules are helpful:
A. It is more economical to use a chemial having two essential elements in it than one that has not. For that which the plant cannot use is a waste. It costs money to ship waste material.

11

B. If a wastecontaining element cannot be avoided, then use also a second chemical with a waste element in it and one that will combine with the first. For example, chlorine is ,1 waste in potassium chloride, and sodium is a waste in sodium nitrate. We may use these together, because the sodium and chiorine unite to form relatively harmless sodium chloride, or table salt, which is easily washed out by rain.
C. Use the chemicals you can get, rather than insist on
having precisely those called for in a formula. So long as you keep pretty close to the ppm called for, it matters little what chemical you use. But it certainly is unhandy to have to make such adjustments. For example, if you cannot get potassium nitrate but can get calcium nitrate, you would have to get your potassium from some other source. Perhaps you would have to get added nitrogen from some other source also. For, by adding more and more calcium nitrate to increase nitrogen you would soon get more calcium than would be safe. You could solve both difficulties by using potassium chloride and sodium nitrate.
D. Use as few chemicals as possible under the circurastances.
E. In an emergency, if you happen to lack a specific element in the chemicals on hand, such things as vood ashes may be used to supply some potassium and calcium. You would have to use acid, of course, to make the pH correct. I sometimes keep these covered with water in a galvanized tub or bucket. This disolves zinc, and some copper from the tub. A cupful of this added to a full tank of nutrientsolution, once in a while, furnishes theer elemens in suff. cient quancity. I have never yet noted poisoning from this source. This should be done, however, not more than once a month. The reader will think of other things which may be done in an emergency.

113
 IV. Proctidire in Detrkaining Wejarts

Suppose that you know how many ppon of each major element are prescribed in a given formula, but do not know how much of each chemical containing them should be weighed out. After all, sooner or later one has to tramform parts per million into weights Let us illustrate the solution of this problem by an example.

We shall select Formala 1X for use in this explanation. See text, Charis 2 and 3.

The ppm called for each essential element (Chart 2) are: Nitrogen (w), 98; potassium. 351; calcium, 160; phos: phorus, 62;-magnesium, 48; sulphur, 64 -

Let us assume that we have the following chemicals available: potassium nitrate, calcium nitrate. monocalcium phosphate, magnesium sulphate (Epsom salts), potassium chloride, nitrate of soda (sodium nitrate), lime, nitric acid and sulphuric acid. You see, we have gotten hold of quite a number of chemicals in advance, simply because we wished to prepare ourselves for an emergency. We know, for instance, that the little potassium nitrate we have was hard to get. The next time we order it, we may not be successful. Therefore, we have very wisely taken advantage of an opportunity, and bought up a small supply of potassium chloride and sodium nitrate when we had the chance.

But we are not going to use all these chemicals simply
because we happen to have them. We shall follow the rule of using as few as possible, to supply the essential elements in the concentrations called for.

Potassiom fitrate gives is two essential elements-potassium and nitrogen. Calcium nitrate supplies another, calcium, as well as extra nitrogen. Monocalcium phosphate provides the necessary phosphorus, with some calcium. 116
Epsom sales has in it what it takes to supply sulphur and magnesium. Four chemicals are all we will need, provided we can succeed in weighing them out in proportionate amounts. That is protided we do not get too many ppm of one element while getring the right amount of another. It is a sort of trial and error affait. Bu, shice you are new at this. 1 will give you the trial without the error, 10 save confusion.

Rule one: If a chemical contains two essential elements, satisfy the formula by use of the heavier of the two. firs. This will leave a small balance of the lighter ele. ment to be supplied by another chernical. On this basis we choose potassium nitrate, since it contains both proassium (the lieavier) and nitrogen (Uke lighter).

TVe need 351 ppm of K . Table I shows that it takes 110 grams of potassum niteate 10 provide 39 ppm of K . Thus, $351 \mathrm{ppma}+39$ tells os that it will require 9×110 gramis to supply 351 ppm of K. In other words, we have used 9 millimoles. But for each millimole, we also got 14 ppm of nitrogen. Thus, 14×9, or 126 ppm , is the amount of nitrogen we also have.

Obviously, we are in a jam. We only want 98 ppm of nitrogen. If we use only 7 millimoles, 7×14 will give us exactly the 98 ppni of nitrogen we need, but only 273 of $\mathrm{K}(7 \times 39)$. Here is where a little head work comes in. For my own part, I would look over Chart 3, to find that Formulas 11 and 111 both use less potassium than Formula IX alls for. One of these, Formula 11, is for growing roses, and the other. Formula 111, is celebrated as a flower formula, But. since you jnsist on growing tomatoes, and Formula VI was developed by an authority for tomatoes, it would be wise, perhaps, to approach the solution of the problem by substituting porassium chloride and sodium nitrate for potassium airrate. This upsets our desire to use 117 as few diemicals as possible, and to avoid waste, but somedimes it is necessary to make a compromise. Let us then make the substinte. But let me add this. In all probability tou conld go ahead with the reduced amount of potassium without much difficulty. However, don't make such reductions unless you are in a mood for experimentation and are nilling to take the consequences.

Thus we make a second start. It is certain that we will have to decide the potassium amount first, since potassium chloride is our final choice of chemicals. By the same
method used before, since one millimole (80 grams, Table 1) of potassium chloride yields 39 ppm of K , it will require $9(351 \div 39)$ millimoles to yield 351 ppm . This amounts to 720 (80 grams $\times 9$) grams. But this leaves us with some chlorine waste. How shall we get rid of that? Well, it so happens that when a millimole of potassium chloride (80 grams) is put with a millimole of sodium nitrate (90 grams. see Table I), the chlorine and sodium unite. But in doing this how much nitrogen did we secure for our formula? Since one millimole (90 grams) yields 14 ppm of nitrogen. then 9 millimoles of sodium nitrate yields 9×14, or 126 ppm of nitrogen. Again we have too much of this element. Again we are in a jam. If, however, we use only 7 millimoles, 7×14 gives us exactly 98 ppm of nitrogen, the amount desired. But this allows extra chlorine, since only 7 millimoles of the 9 of potassium chloride used were neutralized by the 7 of sodium chloride. These few extra particles of free chlorine will in all probability find some stray hydrogen partners, and hook up with them to form hydrochloric acid. If this happens, the tendency for a solution to go alkaline about the roots will be counteracted somewhat. On the other hand, if they remain free they will either evaporate into the air or tie up with some dead material not wanted anyway.

118
Thus we settle on 7 millimoles of sodjum nitrate ittstead of 9 , and weigh out 7×90, or 630 grams.

We now come to the problem of solving the calcium requirement. This is tied in with the phosphorus needs, since they both occur in monocalcium phosphate. Table 1 shows that one millimole (254 grams) of this chemical furnishes exactly what we want for phosphorus (62 ppm). This amount carries with it, also, 40 ppm of calcium. Subtracting 40 from 160 ppm , the calcium requirement, there remains 120 ppm of calcium to be supplied. Whe cannot get this from calcium nitrate without increasing our nitrogen. We can get it from lime (CaO), by adding enough sulphuric acid to neurralize its alkaline effect. Table I shows that 62 grams of 90 perçent lime will yield 40 ppm of calcium. Therefore, if we use 3 millimoles of it $(120 \div 40$, the ppm wanted, divided by the ppm in one millimole) it will require 62 grams $\times 3$, or 186 grams of lime to provide the remaining calcium required. Likewise, since it takes one millimole of sulphuric acid (98 grams of concentrated) to neutralize one millimole of lime, it would take 98 grams $\times 5$. or 294 grams. (Note: You would have to use 2 millimoles if nitric acid were used).

This leaves only magnesium and sulphur to be supplied. One millimole of Epsom salts (260 grams) yields ${ }^{24} \mathrm{ppm}$ of magnesium and 32 ppm of sulphur. Thus, 2 millimoles yield 48 ppm and 64 ppm respectively, and the job of calculating is complete for the major elements of formula IX, for the ppm required.

V. Checking for Other Factors

A. total concenthation. It was stated earlier in the text that the total concentration of salts in a solution should be kept between 500 and $3,000 \mathrm{ppm}$, as a rule. Adding up 119 the final weights determined in the last section above, we find that the total concentration is $2,170 \mathrm{ppm}$. Referring to Chart 3, and adding up the total ppm of the various essential elements, it is found that their total is only 993 ppm . This is less than for some other formulas, and more than for others. Thus, the choice of chemicals seems to be stisfactory from this point of view.

At this point a common confusion should be cleared up. It will be recalled that we have been talking of making up 1,000 liters of solution, whereas in the description of the Unit System we refer to one barrel or 250 liters as the solution unit. The 1,000 liters are used for calculation, since this has been adopted by plant physiologists as the most desirable dilunion when a molecular weight of a given chemical is dissolved in it. In other words, it is the millimole that is adopted as the unit for calculation. One may use, however, any multiple or fraction of it, to secure the ppm desired. The confusion in question is this: If 2,170 grams of total salts are used to make up 1,000 liters, and we use one-fifth this amount or $\mathbf{4 3 4}$ grams to make up one 50 -gallon barrel (one-fifth of 1,000 liters), will not the ppm for each element also be but one-fifth that calculated? The answer is that the ppm for each element will remain relatively the same. This holds also for the total concentration. Although you use only 434 grams to a barrel of water, you still have a concentration of $2,170 \mathrm{ppm}$ total salts in the barrel. This is because you kept the relative amount of water equal to the relative amount of chemical salts used. But, if you diluted the solution to two bartels, after once making it up, the total concentration would be one-half that given. And if you doubled the amount of salts weighed out for one barrel, and put that into one barrel of water, then the concentration would be doubled.
${ }^{120}$
B. choice for special reasows Table I lists a number of chemicals in which desirable elements are tied up with sulphur. Such diemicals are ofen cheaper than others, and an excess of sulphur ordinarily does no harm. But I have found that in regions where the temperature is excessively high, and with the use of my own system, sulphur bacteria have a chance to thrive. producing not only obnoxious gasses but toxic to the plants. I have never found this with the formulas 1 have used. But others, who tried to use commercial fertilizers, at the suggestion of a fertilizer agent, had serious difficulty. It has always been my practice to use a minimal amount of sulphur because. quite by accident, 1 found that onions, radishes and lettuce
grown this way seemed to lave less bitterness or sting to them than those grown in the garden. Icicle radishes, in particular, were not at all "hot." I now know the reason. Dr. Davidson reports, in a personal communication, they discovered at the New Jersey Experiment Station that it is excessive sulphur which appears to be the culprit in producing "hot" radishes. It is thus apparent that the beginner has much to learn about securing best results, besider having a formula and a satisfactory method for applying it.

vi. How to Haxdle Variamoxs in Perity

Throughout this discussion we lave linentionally used food-grade chemicals, of the percent specified in Table I. But what would you do if the chemical you bought were of different purity? This is very likely to happen. If the purity is only a few percent lower or higher than those given, you may make a rough guess by weighing out a litule more or less, and let it go at that. But if you made a mistake of 25 percent, is magnesium, of phosphorus, and perhaps nitrogen, there are times of the year or periods 121
in the plant's life when this would be harmfal. It is better to make proper calculations for cortections in purity.

All you have to do is coneet column 2-B in Table t . Follow this rule: Moltiply the molecular weight (colum. 2-A) by 100 , and divide by the percent purity of the chemial you have bought. Don't forget, however, that by thus changing the amount you acually weigh out through this correction, the ppm of the essential elements remains the same as for the pure chemical.

$$
122
$$

CHAPTER 9

Where to Buy Needed Supplies

1. Chemicals

As noted in a previous chapter, the chemical and fertilizer industries bave not yet organized their sale departments to supply the needs of the bydroponicum operator. This is due to the fact that not enough hydroponica are in operation to warrant their doing so. It is therefore necessary to warn the reader that he may not be able to secure his chemicals from the sources listed, although the writer has no reason for believing that his requests will be ignored.

The Monsanto Chemical Company furnishes the monocalcium phosphate in several grades. The purest grade is 99 percent. The branch offices of this company are located at St. Louis, Missouri; Akron, Cleveland, and Cincinnati. Ohio; Mobile, Alabama; Houston, Texas. It is possible to send this chemical to foreign countries, through their foreign trade service.

Calcium nitrate and potassium nitrate may be pur-
chased in 200 -pound barrels from the J. T. Baker Chemical Company, Phillipsburg, New Jersey. Specify food grade.

As a substitute for calcium nitrate, one may use line and nitric acid. I have done this since the supply of calcium nitrate Nas cut off. It is handier to use calcium nitrate. and it may be a little cheaper. But if one buys the nitric acid in quantity sufficient to supply the needs for one year, it is possible that this and the lime combination would be more economical. Certainly, lime may be had anywhere. and nitric acid is easily secured through any chemical bouse. Technical grade is the kind to buy, In using lime one should make sure that the magnesium in it is not too high, or at least take this into consideration in feeding magnesium sulphate.
IV. H. Curtin and Company, P. O. Box 118, Houston I. Texas, and Greene Bros., Inc.. 1812 Griffin St., Dallas 2, Texas, will supply the trace elements. These companies are distributors, not manufacturers, of clemicals. Their quotations must therefore be a little higher for the bulk diemicals than one would expect to get from the manufacturers, since the latter sell in large lots. You will find these compamies ready to give very favorable quotations on 100 -pound lots, for the bulk chemicals.

Calcium sulphate, or gypsum, is supposed to be easily secured through local tertilizer merchants in the United States. I have not found this to be true except in limited areas. I have been informed by Mr. L. L. Coleman of the Brown-Miller Pickle Co., Texarkana, Arkansas, that the United States Gypsum Company, $\$ 00$ West Adams St., Chiago, Illinois, will supply information of the shipping points for this product, upon request. 'They bave plants at Sweetwater, Texas, and Gypsum, Ohio, among others.

Sodium nitrate (Chile), potassium chloride (muriate of of potash) and ammonium nitrate may be secured through local fertilizer merchants. However, the supply of these is not yet certain. The Arkansas Fertilizer Company, Little Rock, Arkansas, is in a position to supply these chemicals.

Magnesium sulphate, as Epsom salts, may be secured from any drug company. McKesson and Robbins, Inc., Chicago, Illinois, and the Baugh and Sons Company, of Battimore, Maryland, are two companies suggested.

125 above, sell another type, which should be satisfactory. It is just as satisfactory to use any type available. The reader may contact any chemist in his neighborhood, and secure information regarding the use of such testing papers. Litmus paper will not do. The kind to use is one that will register the pH between 4.0 and 8.0 .

124
The F. W. Berk and Co., Inc., New York City, used to handle potassium nitrate, under the trade name of Potnit.

It is possible that they are now in a position, since the war, to continue this service.

All in all, the distribution of ferilitier and chemical manufacturing centers has changed so much during and since the war that it is difficult to find them. The reader may uncover sources near his home. through the local Chamber of Commerce, in many instatices.

The Hydroponics Distributors, Inc., P. O. Box 191, Little Rock, Arkansas, is being organized to contact marnfacturers of those chemicals used in hydroponica, and to serve as distributor to operators in the United States. This will be of inestimable value to small as well as large operalors, since they will be in a position to have their needs supplied in a single order. It should save considerable shipping and time loss. Fertilizer companies furnishing suitable ferilizers for hydroponica will find an outlet for their product through this same channel.

The Dow Chemical Company, Midland, Michigan furnishes magnesium sulphate,

Armour and Company, Chicago, Illinois, supplies ammonium sulphate and potassium sulphate. Branch offices throughout the world.

II. Special. Apparatus

Only two pieces of special apparatus are required to operate the Spessard unit type of hydroponicum. These are a glass graduate, which any druggist will supply, and an acid indicator. I use at the present the Alk-Acid Tester. sold by the Fischer Scientfic Co., of Pittsburg, Pennsylvania, and St. Louis, Missouri. Greene Brothers, Inc., mentioned

Growing For Home- Mse and Profit

Under the above caption we will consider the economic aspects of the garden crop as a whole. To grow plants profitably the operator of a hydroponicum must not only succed in raising a crop but he most also dispose of it. Disposing of it requires in turn that he crop it carefully. grade it. clean it, transport it, have a ready buyer, a satisfied consoner, and a profit. What is required to grow the crop was covered in Chapter 6. But planning when and what to grow, in order that a prolit may be had, is something many a gardener and farmer cannot figure out. So will it be with those who approach carelessly this business of bydroponics.

Then there is also the problem of costs; financial support in begiming such an enterprise. Since these are encountered first, let us take them up first.

L. Construction and Opekational. Gosts

I think that the best way to introduce this topic is to give an example from my own experience. My present plant consists of five full UNITS (see Chapter 5 for definition) comprising 1,000 square feet of growing area. These UNITS cost anywhere from $\$ 18$ to $\$ 70$ each. The difference is due to the fact that two of them I poured myself and took advantage of opportunities for buying materials cheaply, while three were contracted for. When the latter is done the contractor's profit, labor, and materials com128
bine to make the cost high. This will of course vary similarl from place to place. There is little to go on for comparing costs of constructing tanks for the various systems thed. except to say that it costs approximately twice as much
to construct a V-botion tank ased in the lughly mechamized systems as it does to construct the flat bottoned tanks used in the others.

The operation coats for naming the hydroponicum proper for the 1,000 square feet, from April Ist to July 15th, were:
Measuring out and mixing the chemicals, 8. hrs, $\quad \$ 8.00$
Opening and closing drain nipples, 8 hrs $\quad 8.00$
190 lbs of chemicals _ 15.20
12.500 gatlons of water 5.00

Filling tanks is drue while other things are being done, such as promiog, takiug a meal or tying up tomatoes. Tliese are mot thargeable to hydropeniss cost. If the operator himself will sount his profits as his ownt labor cost, lator lecing onssideved an iten when it must te bought. the $\$ 16$ would lie dedured fomi the alnove. If the operator is investing money onfy, and expecas wo lave the liydroponiciun operated by hired babor, the $\$ 16$ would of cours be included as overlead.

To nate the illustration coprplete, this parncular orop of tomatoes sold for $\$ \$ 18$ on the local markef. It other words, the hydroponicion freelf was jaid for by one ctop of tomatoes. This same area can be weed to raise at lease tow other crops in one year, with nutside growing weather, One of the uniss. operated the previous year for a full seasm and which cost $\$ 38$ to comstruct, neted two crope of tomatues and one coup of beans. $\$ 16$ for the 200 square icel. This yean. the soine omit befied $\$ 120$ for a angle crop.

The first cist-the sobstorstom cosi-of a UNIT is let

ILLUSTRATION 7. A section of ane unit thowing the Fint dustery of tsmalses,
 units moy be seen in the bockground. The Yamatoen were about halt grewn. Phatogroph by Mr. Rey Bruce.
us say, on the average, \$55. That area has the productive equivalent of 12 areas of ordinary garden space. Each year the garden has to be plowed, or spaded, and repeatedty worked until planting time. perbaps several times, and kept constantly cultivated, weeded and mulched, If all

131
this heary work of turning sail is considetet for one grow. ing seasons ouk, and summed up as batoor of the landest Liort, it is found that it costs to more to build a UNTT which is good for a huodred years, than to do this lavel work for one year. But the telling point is this: In the UNIT, you are sate of a cmp . In the garden, the drougits on hight water may make your labor a loss.

 drelndkencel asil at shrougle the wall of the greanhever in weich the hydrepenicum
 by Dr. Charles Deavert. whe made thre phetegiaph.

131
11. Fixaxcing yor the Smala Oprkator

If we go -an the primciple that one shomld not donble his UNIT mbil he has first leamed of opectate in, so that is pays for itself in one jear of full operanom: and if. on the somerany. he is not afraid so double it alter he has achieved this sucess: and if be will seluse wo double it aher his hydroponicam gess large enough to give him a satisfactory income. or is nut guoducing at the desived prion of efficioncy, then he mave on comfodene ash for financial suppore from his local bankes. This would require that be first have ambition. shint and money enough to build his first UNIT himself and settle down to the tash of learning liow to operate it. He tieed not concern himself alowe high cost of chemicals. if lie has to buy them in sprall quantities during this learning period. Since during this perind his one objective is
to raise a crop successfully, and determine wlat coum ane profitable in his region. Any banker knons tian the larger the operation the better are the opportunities lor conaomial buying. It costs 35 cents for a pound of Epsom salts. if you buy it one place, and 5 cents if you buy it at atoviser. fos example. Chemicals are bought generally in 100 -pound lots at least, even when operating no more than a thousand square feet.

111. A Sugeessfin. Way vok Secikosg a Deatek.

I operate on the principte, it so for as marketing is concerned, that there are three people concerned in this sort of transaction who must be murually sarisfied to consider the deal complete. Otherwise it is not business, but a racket. Let us illustrate the peoint by use of a romatio crop.

The three people concerned with a tomato are the man who produces it, the merchant who sells it. and the person who eats it. If the man cannon wake a respectable 132
living producing it he is a loss to the others, for he will either quit, or complain about the unfairness of the othen two. If the one that sells it cannot make a protit, on if the takes a loss, he cannot stay in business. Thus the grower and consumer are both our of lack. If the one who bayp it finds he has purchased a faulyy frair, hovigg teither saste, nor satisfactory appearance, in short has not his money's worth, he feels that he has been cheated, will complain, and go elsewhere to buy. Thus both the marketer and the producer are out of luck. It is strange how stupid people are about such a simple matiter. But, since chey are. the successful tomato grower will first produce a tomato that tastes well, looks well, that the merchant is happy 10 sell, and the consumer will buy in preference to other tomatocs, even perhaps at a higher price. Pcople will to this if they feel that they are getting their money's worth. Since he is growing for local consumption the operator doo not have to consider shipping qualities of a tomato. He can concentrate on taste and appearatice.

This is the arrangement I make with my merchant. I agree to sell him tomatoes or other produce in first class condition on two conditions: first, that he saffers no loss because of poor sales or of poor fruit 1 take that loss up by not delivering him more than he can sell in one day, and by delivering only fruit that is salable. I am the one that watches the market, not he. The mercluant is therefore guaranteed a 20 percent profit on eveny dollar of my goods sold, and is not obliged to buy a dollar's worth. The other condition is that I set the price at which the goods are sold. This price is governed by the local market, plus comparative values as between other types offered for sale, and the readiness with which the fruit moves. The merchant is at liberty to buy any other tomato on the wholesale market, but is required to furnish me with separate display space.

135
In afler words, the tomatoes are on their own. Experience shows that merchants are more than glad to cooperate on this basis. I have not dealt with chain stores, consequently hnow nothing of their response to this type of merchandising, It should not be necessary to add that I am particularly scrupulous in secing that I keep my side of the Latgain, that the merchant is to take no loss, and that the complaining customer must be given new fruit without questions asked, in case a defect is reported. In selling 1,500 pounds of comatoes only one tomato was reported black inside, and only three pounds had to be taken back because of unsalability. This is probably a record in mer. chandising perishable fruit. It is this kind of merchandising that will knock out the waste which is now so enommous. In fact, it is this wasie tax which the hydroponicum opera. tor is in position to collect. No other producer is in that posstion.

On this basis, if we assume that one man could not operate more than one hydroponicum acre of tomatoes himisell, he would bave to prepare a set of merchant costomers who would be able to absorls approximately 80 bushels of tomatoes daily ion a period of 10 days, and from one to 50 bushels a day for 1 wo wecks before and after the bigh producing poins. A sown of 7,000 people will have abou 15 stores handling ficsh tomatoes. Most of these could not sell mone than one bushel a day, for cating purjones, when the market is ligh. The largest store would not sell more than 10 bushels. Consequently, either the price would have to be eut or at market would have to be sought elsewhere, or both, if the crop is not to be a loss. In other words, the operator must be a merchant who knows his market saturation point, when it will in all likelihood hit him, and be prepared beforehand to meet it.

Retail nerchans and gowers have for a long time been the vietims of what is hown as the middleman difficulty. The consumer is Withels to jump on the conclusion that the moddleman is responsible for the high cost of tood as well 15. It inferior quality. The tamer also complains that the muddienan promises one thing, and does anotier. This leaves the poon middieman in an embarnassing position. He umst of course the expected to look out for his own interess. If lie agrees to take up a catload of tonatoes at a certain frice, and at the time the tomatoes are delivered the car experted is swo days away on a railroad siding, eithet The Inas so reluse the tomatoes or take a loss. Naturally, he will vefuse the tomatoes. Thus the producer is left holding the bag. This sont of condition bas chanacterized metchandiving. sime the writer belped ship a car of peaches as a boy, onls to discover lhat in the transaction a widow was left holding the log. It is therefore not withons a reason that be has sought for a way to elimiate this wasteful condicion which satislies no one. The evil lies non with people

so much as with the systern. One we mecred in producing perishable food at the point where it is consumed, all over the world, the vicious system of presebr merchandising ware will disappear, and there will be more prolit ar the pro duction end. This is not theory. It is the iejuent of ant actual perfornance which may and most be slaplicated in every small and large fown itt the troold.

1V. The Fasily Hobroronjcias

To be really practical, a hydroponicum should be of the sort that can be readily adapsed to the prodaction of food for a family. In the last section it was arged tisat growing a garden is actually mure expensive, the way gardening is done now, than operating a hydroponicum. The difference may be stated succinctly. The old way of gardes136.
ing is done in sweaty overalls: the new is done in clean lounging clothes. The old confirms she larkaric belief that sweat and toil are necessary virtues to true happiness: the new subscribes to the gentlemen's philosophy that unnecessary sweat and toil are an aesthetic abomination.

All of us ate gentlemen at heart. Now is the time to be one, in the home hydroponic garden.
A. stze required. If the family is small (not more than three persons) the tin-can method (see Chapter 6, Sec. IV) may be used to advantage. The initial cost is low. there being no other expense involved than that for providing paint to cover the cans, and the chemicals. The chemicals, if the bulk ones are bought in 100 -pound bagse
will cost around $\$ 95$, but will last several years for a small bydroponicum of cans.

If the Gamily wishes to can carrots, beets, com, tomatoes and the like, for winter une, a larger hydroponicum would be necessary, and a UNIT or more should be constructed, To be conservative, you may count on 200 square feet of tank space (actual growing space) as equal to at least $t, 600$ square feet of garden space; and may, according to locality and skill, be made to equal 2,400 square feet of garden space in productivity.
B. caor thans for unit. The only examples I can give are from my own hyproponic garden in a locality where three crops on the same UNIT are certain during the period from March to December (some things being kept in the sand bed over wintet), and where five crops, when accurately timed and spaced, are possible. The examples follow:

A certain UNIT, let us call it No. B, had tomatoes, with flower buds showing, transolanted to it April 1st. It 157
weat through two light frosts, the support frame being covered with newspapers. The crop was 570 pounds of tomatoes of useful grade. The UNIT was cleared and sterilized July 3rd, washed July fth, and replanted in giant Lima beans, July 5th. This crop lasted until November 13 th, and yielded 58 gallons of beans in the hull. Onion sets were planted deep in the sand on November 14th, and were mulched with compost for winter, after coming up. Some were used up during the months of December and

January, during the time the sand was not frozen. In February, a second set of onions were planted in berween the cross rows of those already beginning to turn green again. By the middle of March these were coming through the sand, and the winter crop was ready to sell. The second crop of onions was out of the sand on April 12th, when the UN1T was again sterilized, and tomatoes with flower buds showing or open were planted in it April 15th, after frost danger had passed. The onion crops yielded a litte over 5,000 spring onions, with five-inch-long tender and sweet bodies. Thus this UNIT, as planned, grew one crop of tomatoes, one crop of Lima beans, and two crops of onions, in a 12 -month period.

On another UNIT, by beginning in September, two crops of onions were raised over the autumn-winter period, a third in the spring, tomatoes in early summer, and Kenweky Wonder beans after these, making a fivecrop rotation in one year on the same UNIT. These examples should be sufficient to indiate the possibilities.

Those who live in regions where to get one crop is all that is to be expected, because of limited temperature and light, will of course not be interested in rotation, but in growing several things at the same time, in the one UNIT. The following suggestions may be holpful. Any good book on gardening will give fuformation on what grows beet with what. This is mot a peculiarity of the ligdroponicmo but is inlierent in the plant's nature.

Tornatues bay be glown in the same UNFT as used for potatoes, bue the potatoes stinuld be planed teat the sorfice of the sund and covered with strate or leaf matelt and kept molst, ss that the potatoes will form under this rasker than in the sand propec. Or, sand may be lieaped itp aroand the potato-stems and lield in phace by a twooden frabe set out the sond.

Corn and eggplant do non grow well together. Cefery is a special crop, requiring less phosphowns than womanoes and more cakcium, porassitum and nitrogen. The pH tor toma toes and nosi other crops shonld be around 5.5 on lower. whike that of celery wontil be atowe this. Thus celery will not do well with other plants. If will go to seed. In gent eral you may plant the following in the family hydroponicum: Cablage, beavs, peas, Iettiece catrots, tomatoes, beets. caulliflower, onions, potatives. sweet cont, aud stawberries. if you are it the colder tegions. In the warmer regions. where growing plants separately is more easily done, because not all of the vegetables need to come in at the same time. okra, black-eyed peas, peanuts, cggplant, hutterbeans and melons may be added to the list.

In all cases, of course. care must be taken that no
plant shades anothet. Some will do betuer that others, when grown together, bui the objective being to leed a family rather than to produce bumper crops one must be satisfied widt this limitation if only one UNIT is available. Experience alone, as itl a garden of ordinary type, teaches one the really fine points of individual preferences in food by different plants.

Pethaps it should be emphasized once more that some plans sumply will not drive in extremely hot weathet over a prolonged period. Only experience will tell you what these are. Although much sunlight is needed for goust growth, whea that becomes too intense, and the temperature reaches the bigh suneties or goes ovet the 100 mark, efficiency ont the part of the plamt stops, and in some cases drops too low for its survival. The reasons are too tedinical for discussing here; but knowing this is of practical importance. For it is little use to attempt so grow plants under ronditions too far removed from those naturally

[^1]required by the plant. There is a limit, in other words. to what a plant may be expected to do

It may be of interest to know that growing "roasting ears" in the home hydroponicum will make them cost around five cents apiece. But that is about what one lus to pay for them at the store. In the frozen package they cost around 15 cents each. However, one who has once tasted a hydroponically grown ear of corn, after it has been shucked and cooked immediately in boiling water for seven minutes and no more, will be willing to grow his corn thereafter that way, even it he has to pay 25 cents a pound for his chemicals. This is admittedly comparing the incomparable-

Finally, if it is cost that bothers you, sell gourself your produce at retail prices, since that is the saly goo have to buy, and you will find your hydroponicum a profit in sou, at almost any level of prices.

CHAPTER 11

The Janks Are Coming

The fiss hydroponicum used by man was a broken fragment of coconut shell in which the juice of that fruit was fermented and sampled to the satisfaction of a primitive buman palate. This may be stretelung a point, since the microscopic yeast plants grown in this early form of nutrient solution were utilized incidentally, though they no doubt contained some vitamins of value.

If the first incentive to grow plants in solution was the irresponsible one of providing a jag, the last is inspired by fears of malnutrition, the high cost of living, the fear of famine, disgust with the present uncertainties and waste of food distribution, and intent on getting those elements essential to the maintenance of a sane and physically competent human race. For the first time in his history, man is genuinely concerned about the prospects for his survival as a species. And this concern derives as mach from the world food situation as from concern over atomic warfare.

1. Present-Day Interest in Hydrofonigs

Among the many articles on hydroponics which have appeared in the press recently, three were responsible for bringing to my desk a flood of leuers from all parts of the world. They are, in order of the articles published by their reporters, the Log Cabin Democrat, the Arkansar Gaseite, and the Magazine Digest. A review of the interests expresed in those letters is impressive.

$\mathrm{H}_{2} 143$

The formost interest is in improved nutrition. lxoth for the individual household and the world. "One loat of bread," writes one, "and a can of condensed milk with fishhead stew for a variety, is our diet for a family of cigh. I figure if 1 can learn this thing ther call fudroponics, and I think 1 can if anyone can, we'll be eating benter along
this layou."
Perhaps the following illustrates best the second point made: "Being farmers at beart, my lrother and 1 are eager to take up hydropotics at our suburban trome just outside the city of Damascus and, following your footsteps, get to something which might go really far, considering that hundreds here die of typhoid and almost 100 percent of the Middle East population suffer from some form of dysentery. Not counting those, who, like us, are absolutely fed up with choosing between that and a permanganate slow-poisoning diet ... The world, Sir, is becoming smaller every day and it would be a perfect example of international cooperation if your scientific efforts could be used in far away Arabia, It will take a lot of such efforts to make a better world."

The presiden of an air-lines company in Mexico tooks to hydroponics as a means of providing bis employes. from tropic to desert landing field, with better green food. An official invited to sudy the prospects for improving meat

MUsTRatION 11, The metial barns Invding-unit of the "Apolo SpessardiHydrec
 condevoted by Mr, A, 5, Jerebuen, her ingentaus gupileman shewn in the photograph.

to issent end renierabe pesta. IBelor-1. The "Apolo-Spastord-Hirdrapenico" reody for filting with send. The rolefian, is this inafosce is inteaduced al sthe for end, end receverad in the sump shewe in the right loreground. Phetogrophod by Mr. Allred Jecelines.
and other food supplies for the people of Peru wosuders if part of the solution of his problem is to be found in incorporating hydroponics ioto his general plan. Is Brazil. Venezuela, Cebu and Nigeria the concern is the ssme as in Arabia. In Palestine and Australia the interest is in getting control of drought, the great enetmy to crops, In Laborador, Canadian outposts, and cold regions ychere the growing seasons are shory it is the desire to get away from the inevitH1
able tin-can meal that causes people wo look upen hydroponics as a possible relief. In farming provinces of the far North it is hoped that by this means the canniog industry may be made more profitable, and nore people employed.

My answer to all such inguities has been if proper care is taken in plaming, and sufficient time consumed it mastering the rather simple defails, there is litule doubt that each and every one of these needs naty be met satisfac: torily though liydroporic methods of one sart or another. I belieye this to be thee though it is also true that it will lake time, good will. money and intelligence. Probably the best resolis will be accomptished without govemment aid, since to be successial the economic problems must be solved through accepted economic procedure. Money is not a zonsideration when a scientific problem is to lee solved, or when a political sisuation most be faced, Bat if one is to eat out of his awn hydroponicum, of buy food from another operator, that hydropobictom which cannot operate within the all-around monetary requicements from producer to consumer oftist become a slisappoinonent, a white ele phant, and a shing to stay away from.

This brings us to the scrond interess expresedi in the letees, namely, that of growing vegetables and flowers for the market. This is inspired by the glowing reports which have been achieved by isolated individuals here and there. It is encouraging to note that there is not a single gentimely crack-pot letter out of the whole. The public is quite prepared to undestand the inevitable ekaggerations which appear. Only one individual expected to quit his job, turn his few acres inmediately into tanks, apply the "perfect formula," allow the plants to light off their own enemies, if not prune and crop themselves, and himself become rich the first seawn. When informed, of course. H 5
that formulas may be had for a dime a dozen, and that hydroponic perfection is not yet of the magratude to be found only in paradise. the inquirer very sensibly gave up his premature ambitions.

If the letters represent a fair sample of pullic opinion, the public is definitely past the wild-yed stage of hydroponics, and is prepared to look at the thing sensibly. People are not asking so frequently, "How much profit can 1 make out of it? How much does it cost?" But they are askiog,
"How do I go about learning how to grow plants this way?" There are two groups interested in hypdoponics from the commercial standpoint. One is the individual who wishes to build gradually in his bome town, unit by unit as it pays for itself, until he has a good livelihood, and who expects to operate no more than he can handle hirnself. The other group consists of organizations interested in cooperating for marketing purposes. but having the individual operators work, plan and maintain their hydroponic establishments independently. In other words, it is the individual grower on his own as far as producing is concerned, but all united into a sort of union for pooling their information.

The latter groups are convinced that this can be done economically, or are at least inquiring if this is so, and that if so, believe that their community's basic wealth will, through adopting proper hydroponic methods, become gradually more stabilized than it is at present. By basic wealth they mean. I take it, individual and community healh plus increased productivity of the local land area. The interest is primarily in permanent community building and against muttal community exploination. It is as though these people have all read and hope to disprove the passage. "Each one strives against, not with, his brother. Thus each strikes a wretched bargain 'gainst himself, and knows it not." 140
The third group consists of elderly and retired people. They are the people of the world who have met up with those years when to be able to work is joy. It is their dream, a dream that also is my own, that through this simple device, this Jitle thing we call a growingtank, the whole world might come more quickly into possession of its daily bread; that through it we who differ so much from land to land, yet are so much alike, might find a way to help each other even as we help ourselves; that there can be small fear of war once all peoples are well fed.

He who works now for löng hours over his little hydroponicum in an "old people's home" sits no more in loneliness. I do not know how well he has succeeded, but he has now the most valuable thing on earth: something to do. It is significant that he should write again to ask, "Is it all right to let some of the others here grow things this way?"

A retired sea captain, writing from a ship as it enters a Caribbean port, insists that hydroponics is "just the thing to keep me from spending my days dreaming of the many ports I've visited, and wishing 1 were at sea again."

A man of 85 years, who rides a hot bus 300 miles to see for himself what all this is about, finds a new way to exercise his joy in learning. And he tucks his lessons under his arm, rides back home at once, saying before he leaves, 'I was once known as 'Celery Jirm' up North. I will make a go of this thing. I won't make anything out of it myself, but my grandson will. For I will teach him how."

These are the people who refuse to look backward.
Then we come upon that group of people wise in human weakness-doctors, men and women old enough to carn rest, and rich enough to quit; who, as one said, "never do quite get ased to secing people die"; and who look to Thai [17 theil hydroponic gacders as a place where they may for a (ew minutes each day, Work out in the open with the lovely tlangs of life, and forget. They have a million patients Whom they mash to teach, after they have learned themselves, if order to keep those neurotics from having to spend bours on the couch of a psychiatrist.

It woald be a bit impertinent to suggest that either of these groups is the mote or less significant sector of the body politic. Together, they show that intereat in hydroponics is worldwide. They represent significant portions of the world population. Their interests may therefore not be ignored.

But, athough much publicity has been given hydroponics during the past two decades, a publicity which no doubt accounts in part for the present response, the moat significant fact is that little of the vast agount of reliable information on hydroponics has been jut ino a form which may be consumed by the nomechnical public. The public is not suipid aod is not moromic. Hat it is frightened at the sight of unnecessary teclurical verbiage. Also it is rather fed up on softroated hydroponic pils, and bas become slightly disappointed and sospicious. Yet, in spite of this. we have the response recorded above. It was to help fill

[^2]the gap between our technical achievements in hydroponics, and the common hope for using the scientific knowledge available, that this book was written.

IL. Tue Hidroponjes Future.

This is not a propliecy. It is a plan. It is a plan in merest outline. To fill in the details, one man would be incompetenc. The plan is based on the assumptions that the first step in traking bydroponics generally useful has now been succesfully taken, and that prople the world over are ready to adopt hydroponics'as a permanent method for growing much of their ford.

Hydroponic is here to stay. It has already been established as the sensible way 10 grow greenhouse produce. It has been adopted as a means for growing vegetables by the army, which is in a finameial position to use the more merhanically refined teclniques, Many individuals, either army trained or having the seclutical background and financial baching, are at present engaged in thydroponics successfully. But all this is hue a drop in the bucket. It remains to teach the interesed public how to equip and operate a hydroponic home garder, and also those who wish to grow plants for the local market. It might take 200 years to brigg hydroponics into general use, but it may be done wuch sooner if we plan intelligently. It would seem that, graming the assumptions stated above, what therefore remains to be dote is essemially as follows:

First, hydroponic information must be gotien to the public through our regolar dramels, namely, the press, radio and the sctools. Second, a liaison gtoup must be pramed to translate the technical details worked out in the experiment stations and plant physiology laboratoties into the practical language of truck farmers and gardeners. Let it be emplasired at this point that the public cannot in reason insigt that a researel) man be ant investigator and at the same time what he is pieased to term "practical." The most practical thing that is ever done, I submit, is what the Laboratory man is doing. But, if is true that someone must act as go-between for him and the final applicator of his wonk. In other words, it is not a question of what is or is not practical, but one of language. It is also a matter of efficiency. With this out of the way, let as go on.

Third. young cooples, interested in founding a home in the suburbs or coumtryside, and at the same rime intelligently interested in food production as a livelihood, must be given the same chance in training as we now give to the more ordiodox phases of agricultural training. I am not at all prepared to endorse the idea of giving this training below the college lesel at the present stage of develop150
ment. The course, as I see it, would indude eight hours
of general botany, eight of general chemisury, eight of plaut physiology, and sixteen of actual work with operating a hydroponicum. This latter would mean growing two crops through two seasons successfully, after constructing the hydroponicum isself, Four hours of economics, including principles of marketing and financing, would be added. This program of education would do two things for the individual: It would give him a rool for making a living and leave him time enough to get a real tine arts education also, which in turn would be his equipment for living. To give this rraining to people of high school age would in all likelihood degenerate into a system of giving easy credits. probably the most pernicious disease of our American educational system.

Fourth, the building of hydroponic tanks must now be started by interested individuals first in the home garden, next in the hometown ouskiris for trock farming to produce for those withou a home hydroponicum: next, large scale hydroponica, individually coatsolled and operated, but associated for largeseale marketing in near-by cosmopolitan areas, and within a lew hours of hauling distance.

These foum steps are intended secondarily as part of the food defense of a country in case of atomic war. It will be much more difficult to destroy an enemy's food supply If that food is grown in scattered areas and at the points of consumption. Even thought the nair vansportation system of the nation be knocked out, people will be able to feed themselyes from the local larder. It is not a question am more of national or individual finance. In an emergency such as atomic warfare, money saved will have much less nutritional value than a carrot in the hydroponicum. And ii those places where the people are not killed it would be 121
stapidity par excellence to be caugit alive, and without one's own hydroponicum, after a bombing disaster. It is not my intention to be facetions at this point 1 ams not contoting on the inevitability of atomic warfare. But, if such is the inevicable, then it is now time to prepare against it. And the liydroponicum is the cheapest inssrument we have for this purpuse. The distribution of hydroponica would be such as to extend the present limited growing areas into momntainons and desen regions. In Chapter 5 it was shown that if she annuat rainfall is properly conserved in even the driest part of the globe a definite amount of lood may be grown in those segions for supporting buman life. This will undanbtedty be done

The fiftur and final step would be, of course, the conversion of farm and graxing areas into bydroponica. This must be a long time in coming. But it we intend to plan at all, we might as well make our plans worldwide, and with an cye to contributing to world peace by striking at the heart of one of the causes of world war. We forget.
sometimes, that the human race has never yet had three square meals a day. People, like cows, must have a full stomach regularly, to long remain contented. And contentment is a consequence of great and suocessfut planning.

We will turn our Larms eventually into hydroponica for several reasons. First, we will thereby conserve our "fe:silizes" supplies. The way we now lase these is a waste tax which cannot be supported indefinitely; Second, our present plans for water conservation takes into account only the prevention of Cloods, loss of topsoil, maintenance of recreation areas, and the water supply to large industrial population centers. As a matter of fact, except in the desert areas, practically all of this conmolled water becomes river and stream again without being metered out first for plant growth. This witl be conected, once we become hydroponically heite up as a tation. Third, we will insist on having our thichews and catde fed from bydroponically prodeced foud on the spot, because this will be done more cheaply than is now done by our roundabout methods, and beraise the meat, milk and eggs will be thereby more nonriduing. Foursh, we will go so bydroponic farming just to get out of hard labor, Man has desired, more that any one other thing. a way to asoid sheer toil and sweat, He can stand the teans, but too much hard work gets him. Hydroponic farming wipes oni most of this.

Let us see the picture as it will look io the world after we have done those five things.

Food will be asailable all the time, everywhere.
Catte and chickens will eat their forage from hydroponic mangers and feeding beds, the whole year around.

Harvesting of forage crops will be eliminated. The billion dollars spent now on tuachinery for harvesting, curing, baling, and hationg such feed will be spent to better purpose.

The attack on insect enemies and parisitic fungi will be planned differently, and will be more successful.

Plant physiology departments will become the bureaus of food production, and will provide the basic plans for distributing and feeding people. livestock and poultry in a unified program of food defense, either for peace or war. The people, of course, may choose what they will eat and. to a certain extent, where they will eat it. But the downright independent, through-and-through individualist in such matters, the one to whom cooperation and any semblance of coordination are intolerable, that one must be permitted to 153
go fishing. or must be driven with the sheep. cows and hogs to his segregrated feeding tomegh.

It will not be long thinit the incompetent will not be
allowed to grow food for other than their own consumption. To farm for profit will require proper licensing as re quired now for teaching, doctoring, and preading- Farming for profit under license requirements is preferable to farming without profit, as millions now do. The high cost of ignoramee is reflected in present low standards of eating throughout tie worid, in the malnutrition due to lack of essential elements because of improperly grown plams for Food of leass and man, and in the awful waste of food transportation, food storage, and politial blendering. This will be largely done away with, after the hydroponicuso is established as a part of the equiproent in bouselolds aroved the world. And it will not be difficult to do so, for once the missionary, the teacher, the county agent and, in time, others get going oas this thing, people of the world will catch on quickly, and will make theit own tanks out of any and everything handy.

Below and above the giant darns being buile for watershed control, along the mato and viburary streams largescale hydroponic systems will cover the now nomed arcas. to be operated privately, in cooperatives, or under government contw, for providing canning and Freezing units with the loordstorage requiremens, which will not le as necessary then as now.

Paradoxieally, more people will be emgrged if gtowing plans than are now. Most of thent will be growing for their man nse, of for profit The countryside will lie muse populated, and the lake resors will be lome, rablet than a place to visit. For it will be more plasant to live in the country, as well as profitable. Whaile the hard blow and

MUSTEATION 13. A mes of lima pole beusc, grawn by Dr. Cherisi Deeven is Bo Sotwatd troe af hydrapenleyn of Clietsen, Misissippi, Phategiaph by Df. Deevers. 154
the bited bahar will he eliminated largely, the delightfud baber of rending the growing plans will semain. And this bow in the end be of inestimable aesthetic and spiritual salue wo the whole nation that suceeds in going hardroponic.

The imule, the plow and harow, the tracior, all are on sheil way out,

The nuks are coming.

HLUSTRATIOA 14. Showing the favdeng arrongenemt for the Spanard-Hydre-

1NEEX

exates infrogen ishl，th
inteflerane with． 97
ient（thart of）， $102 \mathrm{Ba} 10{ }^{\circ}$

E＂Bperation anel．Rit
enters clements．Ty
MC1D：32，35，68，30，165

she nl．©
AC：IDITY
34

AFagne rotits，25，56． 91
excess． 05
it growing－+ git 16
neniralization by liume，照
problem nt．\＆
ADAM5．C．F． 2
AERAITON：24，81，25，30．96， 20. 41． 91
SCCiRECADET 11．II，28，10．81 100．101
 111
ANMGNH：NI
shleriale， 8 Co
citrate，32，5月，38
excess of त7， HO 105
Fecding of，80
in urine． 35
limited lise of，im
nimite，92，11，59，80，10：
suifultate，68，80
spovial lise iff，37，36， 11
ज1：Its－ 31

bainfall collecting， 80
ssimb， 21
Iropical． 10
ARMI： $50,13,105$
ARNON．D T． 109
ARKANSAS GURE：TE： 11
ASHES：35 51，104， 114
ASI＇HALT PALNT，22，5
ATC）SIC：WETE．11T5 （refative）t 7 J
TIICS： $1 y$
MOM．ABILETY OE FIFSIENTS：60

B

IHMIERIS：III
11． 1 C．E：
wite $7 \pi .8$ 令
15，AVC．ING：
Aiet． 108
calcinat ant magnesiuni， 92 calcinm and setbimes． 92 talcium дat！potassions，y9 fort and mantumese．9599 Tron amil phospherous，91 vitrogen ithl calciunt，get nitrogen atht petasilum． 191 situogen and sugar， 75 ，तौ sutrients．付，102，107， 109

BEAN5：95，19，97，101．100，138， I39
BEEIS：21．19，33，101．135
BHEKFIRRI，H． 9.84
Et．1）E LICHft：t9
BLUE VIIRIOI： 33
TWORAX7 35，69
ELORIC：MC11） 52.35 iv
EORON：35，58，61，6x 71
excent ant Ifficienry 97

Alpar．$\overline{1} 7$, तR， 97

C

CABDAK：：I3R
CALCILTS：50，60，5i，64 70.76. 78． 114
cememuratinn ol，何， 76
counteractine eifat of．\＃7＂）
steficieney， 93
siseris，Im
is cand neot． 91
in wale med，72．ys
thinlestest Irpif．92． 91
veluaines tor
（twn almawplasm．Ith

mangancer 107
（phosphoveru steluiewry 9）

＊от Ituи． 92
stikt of， 58
tatiations in ppres．is
CDECILSI तITRAIN．6．40，105． 105

EMA：LISIJONG bfi．70， 121
bow welighes give jumen III Its
堕， 1
CHNABA 3
C．1N5 112 5.87
（SIIIIARII）\＃3
CARSOHFDRSIEs：5S
CARBON：7，57，70，79．43， 41
CARBON THORIIP：क．Tl 30
CARROTS：13M
CAITAFIGWSR：11，i3，57．INS． 136
CELE：RY 35 ：I34
CFI，LAR： 19
CRIL WVALS
mitrate riblroget ncedol for， 10%
sugar nocolet fer，kt，34，54，S4
CEMENT＝22
G．IINNNELS：
llaining，24， 31
Feeding，－ 14 －3i
CHARTSE
atomic seights aml swabiols，तो torsuulas， 99
насе elcusems， 110
CHEMICAL COMPANIES 1 1 －I2
CHEMICAIS $7,9.16,59,61$ 6x 70， 99
antopints to luy．－2 2
at sand silfface， 21
chrice of 115－114． 120
compeoition of plancs，7？
cust inf，61，71，131
Acfimition of 59
essential clements its，69，63，68
bow sa use tables of， 111
measuring of， 35
purity of．$(\mathbf{5 5}, 71,1+3)$
reactions．7s
sohotitutions．111． 116
suitable for lise， 66
subtuer of，6s． 70
lintzant mecastine for， 34
Hase elements in food grade， 108
where io buy，［92－121
CHINORINE：OK，70，105，114
feactinn will sodiust， 75
CHLOROPIIVIL：？ 2
ami itwh． 95
ated magatesions． 91
and sulphar， 97
CITHATE！68， 100
CLOSEI： 19
CLOU1DY WEATIIER：IS，B3，KN， 90． 9 ？
COSTVELKCTAL HSIROPON゙TCS：
1．1．100，145
cesumexis 7,29 il，54， 5
Cosmorevisy 34
 101，118
aheres rowal 4 ， 3
achimalationi ul sustoren fhlurides ；
thrsini divatith ton
ekerotive，ती
Incleave di．盟

（t）Eswenial ctements． 100
of brabtent sofitions． Al
sumlught asml． 83

luas if thegti． 83
sallations in．16，42，75，77，78． 83， 145
Weodiness ant． 81
CONDUCITNG VESSELS：H
CONNORS，C H．\because
CONSIEVATION 20
CONSTRUCTION：
of cote binit，15， 27.39
CONVERSION：
grams to omitres．66， 70
liters to barrels．69，09．99
［17m to weigfts， 115
COILERS $38,64,68,70$
P12 $69,97,110$
COJ！FR SILHHATE：32．40．68
（x）RN：15，97，104，109，198
COS＇：+ ，9，16，128， 131
CHENICA1S \＆FER＇TLI／ERS：
61.65

CROI： 103
क्या of， 4
crest． 128
plans．136
GIRCUM1IERS：41， $16,49,53,148$
ninrogen sefficiency in， 89
potissium ileficient in．89
12 АN1： 20
「ММРISC OFF 99
DAYL．tGH＇＝ 19

DAVIDSON, O. Wiz 10f, 102. 101. 120
DDT: 52
DEEVERS, CHARLES:
130. 135.140

DEFICIENCY:
calcium. 93
iron, 35,95
magnesium. 94
nitrogen, 89, 8is
phosphotous. 91
potassiun, 81, 89.90
sugar, 82
trace-elements. 108
DEFINITION:
of unit, 17, 18, 59
DESERT 20. 21, 86
DIMENSIOXS: of unit, 18, 27 30
DIRECTION OF ENIT ?
DISEASE: $9,10,81$. RK
DOUBLING CONCENTRATIONS: 19
DRAIN: 29. 94, 27, 35, 130
DRIPPING SOLUTIOS: 51
DROUGHT: 86
DYSENTERY: 10

E

ECONOMY OF OPERATION
$65,65,75$
EGG.PLINT: 126. 13 M
ELEMENTS: 7, 19, 51
relative veighte of, 70
ELLIS, CARLTON: 1
ENERGY: 6. 81, 84, 07
EPSOAI SAI.TS: GA. 116, 131
ESSENTIAI. EL.FMENTS: $8,9, \pi 5,66$
ahtorpliom ni, 70
avajiahitife, 60
lattle of the 91
cliemieal sourese, ifi 68, 69
conceneration of, 67
rest of, 61
definition of. 60
deficiency of. 61
for man, 10, 61. 62
to fertiliats, 00. 62
list of. 5 音
ininimum ; prantilv, 60
misoniceptions regariling it
plant's use of, 78.97
EVAPORATION 21,44
EXCELSIOR al
EXCESS:
enncentration, 86
(rom. 93
magnesium, 94
nitrogen, 81, 82, 85, 90
shgar, 32.85

F

FAMILLY HYDROPONICUAL
33. 131-136

FATS: 55
FAUCET: 24: 30
FEEDING: 8, 19, 31, 40
ammonium, 35, 80, 87
channel. 24, 27, +3, 143
concentration, 81
daily ration. 17
excess, 47, 87, 104
fruits, 87, 91
iron and mangranese, 96
light intensity. 81
nitrogen, 98, 80, 82. 88
exygen, 81
rate of. 102
schichlule, $41-42,11$. 16. 86
starting plants, 105
tank, 13
techinique, 86
trace elements, 108
unit, 32.7
EERRIC:
 chlorides 6\%
FERRETS St tritill:
35, Jif. 110
 tit. 65, 105
comparative sont - 51
defisition of, 39
problem of, 5
sulpher in. IE0
Financing: 131
FLotverts: 4, Si
dropping of, id
fremular for - 99. 104
F1.OW OF SOLLTIO, V: 21. 30
FOOD:
daily raume, 17
niamularture of. 5.6. 22
renewal of, 33
FORMS CEMEST: th2 23
FORMELE:
talaned, it
aleutation of, 110.130
clanges in, P5, $\mathrm{NG}, 111$
clart of. 99
shotes of. 102
courparison of. 106-107
fsctori in deiermining. 75
For rower. 90-109
for tomatoen, De. 108
how to determine tweighes for, 115

pracrinat iequircouent for, 74
the Geriche (Cathomis), 100
the New Jerser, 101
The Ohles (157) - 101
the trordee 215, 103
Ite spresard. 106105
De Fernet, 100
the Wagner Trawels, 101
The "perfoct," 74. 89
vatratime in. 2s.at
lefinter ine. 90, tos
FRUTT:

phenpleorun mequirenient. 91
sulpher. 95
lardy, 95
FUNGI: 9. 29

C

GARDEN: ․ 8. $55.91,127$
GERICKE, iK. F I. L. 11. \%, 100
GEERMINATTON: it is
COLD: 59
CRADUATE, glase Me
GRAVIT 12
CRAMS 52
contersion to onnces, 66.70
GREENHOUSF: 4, is 23. K5. 100. 104

GROWING-ARES: 12
GROWING MATERIALS: 21-22
GROWING PERIOD-20
GROWING-TANE: 13.24
GROWING-LNII 21.38
slope of, 50
GROWTH:
enetgy far, 81
feeding at peak of 15.18
iren for, 95
irregular. 39, 80, 94
oxygen for, 31
plani, 102
proteins for, 81, 88
stoppage of, $\$ 8$
stunting th plosplioroios. 91
GYPSUN: 58

H

HAMMOCK. J. M.: 155
HARDEN1NC: 82, 93, 81, 90, 91
HENRY, V. M.: 4, 104
HOAGLAND, D. I.- 103
HUMIDITY: 21,35
HVDROGEN:

$$
7,37,68,70,79,80,81
$$

HYDROPONICS:
army's use of, 13, 103
lackground of. I
trooks neth. I
cormmercial. 1, 2. i, 100. It6
distributors for, 12.
first steps in. 2
future of, 147.153
general use of 4 .
misconceptions about. 19, 53, 57, 73. 89
practiral method of, 5
precision in, 4.16
present day iuterest in, 141.141
principles of, 49
probleus of, 3-10
systerns of 10-12
tropical, 10
HYDROFONICUM:
batde of the elements in. 91
clemicale satable for, 66
conts. constructien sum
*)
fioanchis. $13 t$
for howe 13s., 127, is1
for various Togions, 13. 20
fuluse of, 137
light for; "
praciral rejuisemens for $15-16$
technique nf operatiog. 32 39, 108
tio-can type, 19
typer it use, 11:13, 49 1
INDICAIOR, ACII). 2
INSECTS: 9, 23. 31
1NTENSITY. LIGHT: 19. 20
10N5: 106.107
180N: 57, 58, 68, 70
additian of, 37
ctoropliylt amb, 95
excess of, 95, 108
deficiency of, 35, 37, 95, 96,108 . 109. 110
grousth and. 93
manganese and. 96,106
tuitininim ppm, 69, 91, 95, 110
phusphorous absorption and.
$91,95,109$
pH acd. 91, 93
precipitation of, 97.91
uses of, 95,110
IRON CITRATE:
68, 98, 99, 109. 110
1RON SULPHATE $98,99.110$
JACOBSEN, A. $\underset{K}{\text { S. }} 30,143$
K
KEISERITE; 68, 71
KIPFLINGER, D. C.: 101
LABOR: 47
LAURIE, ALEX: I, 101
LEAVES: 19, 20, 89, 90, 104
LEGUMHNOUS PLANTS: sulphur need, 95
LETTUCE: 49, 54, 101, 120
LGGHT: 41, 46, 139
for energy. 88
for flowers. 19
for site of hvdroponicum, 19
for sugar. 80.85
for tegetables. 19
intensitv, 19-20. 83
long and short day, 19, 85
protection. 53
ultra-violet. 19
used by plants, 19
L.IMA-BEANS: 37
1.IME: 33-36. 51, 688, 92. 10,
neutualization of. 33, 36. 118
nitric acid asel with. 103
LTMITS: 125
LITER: 98, 170
LOG.CIBIX DEVOORAT: HI
LUMBER FOR GONSTREC. THON: 22

M

calcisen and, 92
chtoropshall and. 91
deficiener of. 94
exress nf. 01
in water used, 72

sulphate $3:$
use tof. 01
variations of. 75
MANG.ANEEE: 31, 57, 61, 688, 70
calchan relationslifp. 100
chloride 39. 35, is
(teficiency, 96
excess of, 109
iron ratio, Difi. 10R. jon
рри\%. 06 . 118
implate 39. 6in the
use of. 69.96
MANERE: 7,
MATERIALS:
acid tester. \%
constriction. 2129
ojerating. 21 iz
where to low. 122.121
MARKETING: 131-131
AIEASI'RING: 11. is
graduate, glase 22
meinod of 33 . 57
tinecan for 31
MILLINOLF: 112 . 118
MINERMS Fi. 7
MISCONCETEIONS: $1.7,9.19$. 5i.38, 69. 119
regarding essentiat elements. 7\%
regarding formulas, 73, 29, 102
mISSISSIPD COLLEGE. 135
MOI.ECLLAR WETGHTS (relative weights): 68, 115
MONOMMMONIUM PHOSPHATE: 68
MONOCALCIUM PHOSPHATE: 52, 6B
MIONOPOTASSIUM PHOSPHATE: 68
MOLVBDIC ACID: 32, 68
MOLVBDNEUM: $35,58,68,70,97,110$
MOSQUITOES: 10,22

N

NAILS: 22
NEHSPAPERS: 22
NEW JERSEY FSLERIMENT
STATION: 1, 13. 49, 78, 96
101. 120

NIPPLES: 22, 21
trains. 31
overflow. 28
NITRATE: 87
absurption ot, 8y
cell wall formation. 107
protein and 80
use of ammunium. 105
NITROGEN: 37, 39, 60, 62, 64 . 65, 68, 70

دannuas me plant, 79
and calcium. 92
ani climale weatler. 38
and tight 85.58
anl putasioun lalance, 105-107
and sugar 72.80, ker, 31
as nitrate or as
3unmeritia 33 , 88, 105
deficiencs, 82-83, 85, 85
difficulty in feeding, 80.68
etcest, JC 25, 87, 90, 101
feetling, 3k, 78. 30-84
for frotics. 87
For hawleaires 81
for roses, 81
ineprasig, 105

xich, sugar-poor plaws, as
sugar-ricts,
nittogen, pexy, 82 83. R8
sources of, 80
we of. 80
NTIRIC ACII: $32,36,70$
anal lime, 105
NETRIENT SOLITJOS: 16, 17, 21, 35, 33
and lolawe, té

choice of. teg
circulation of, IEC. 105
concentralions of.

$$
\text { 71. 77, 91, A5. 8ai. } 73
$$

dilition ofl. 5\%. I6 5s Mi
dicanding; 25. 39
for trartroing: $x t$
juamity $n t$. is
tate of دрріканion. Ne:
spriukling mish. 16
ferting an, As
todal conerntration. 7
vaciations in: 104
wand mext.
allowane Itw sliemorak of. 72. 19

MHO AGRICUITTURAL EXPERIMENT STAIION:

011- 76
OPER STIOS
rectiont For she boit. 19. 72. Ix
ONION: 120. 138
ORNNGERED Is
ORGANTC EARMING. 6. 7
OVERFLON: 52.41
hipple, 23
OXIGEN

abouptive in memt. f. 91. 11. +8
ant whing, 8 :
it provein manulatione. Mo
neceesity for, 5 !
shorlage of, 25, 5. 77, 38

P

PEMERR. F. R-2
PESTS: 23, 34
pH (zcidity): 24, 39, 18, 38. 7. 11., 124
for iron and phoptromens, 91, 97:
stabilization in lugh alciuns sand. 94
PHOSPHATE: 106
м
menocalcium. 68. 69, 94
ниmopotassivm, 68,69
treble-super, 91
PHOSPHORUS. 5. 7, 60, 62, 64, 65, 68. 70, 76. 78, 105. 114
and irous, 91, 95. 109 and $\mathrm{pH}, 91$
and sugar, 90
teficiency of, 91, 91
міпінии рри, 69, 76, 91
use of. 90
PLANT:
actation of, 21
chemical test of. 8.5
composition of. 79
formila for starting. 105
growing period, 20
light requirement, 6, 19, 77
nitrogen-rich, sugar-poor, 82
number in one tunit. 18
problems, 4.5
sthading of, ?
starvation of. 91
successful growing of. 10. 79
sugar-rich, mitmgen-joen. 8g
support for. 11, 29
tolerance, 16, 77
tronsplanting of, 23, 39
use of ammonia nitrogen, 107
use of elements, 78.9K
MLANTING: 52
POESCH. $\mathrm{Cr}_{\mathrm{c}} \mathrm{H}_{1}: 101$
POND NATER: 20
POTASSIUM: 57, 60, 6i2, 6i, 65. 99
absorption of, 79. H9
and calcium. 80.09
and nitogen inalame. 90. 101. 105
and potitn, 90
and suyar. 90
ethoride, $33,41,68,64,71,75,76$ 78 105, 114
defiejency, 39, 89, 90
яиининия рри, 69. 76. 90
вінате, 7, 3. 65. 71. 55, 80. 101
germanganate, 109
phimphate. mono. 68. © 69
soipphate, 68, 69
use of 89
POTATO 90,188
PP'M: $96,95,96,106.107$
mastancy of, 119
sunverting to weights. 115
definition of, 67
For aitrogen. 76
fer protassion, 90
[or toses, 84
for tracs elements, 110
limits, 72, 75, 91
low. 77
table for each element, 60, 110
sariations in, 76. 77
Practical method: s
PRECIPITATION:
of iron and phosphorus, 37, 91. 97
PRECISION: 4.16
1RINCIPLES: 3, 24. 102
PROBLEMS: 58
Evdroponic, 5-10. 81 -82
in vitrogen feeding. $84-88$
iron and manganese feeding. on
isou and phosphonis
feeding. 91-95
PROCEDURF: : 2
PRODUCTIOX: 105, 128, 136
PROFIT: 127, 139
PROTEINS: 5is. R\%. 90
and ammentia nitrogen, 107
and potassium. 89
production from nitrate, 80.88
jequirements for mannfacture of. 81-84
PRO'TOPL.ASM: 79. R0. 88. 90, 95
PIRDIEINTVERSITY: 13.78, t08
pDRITY:
of chemicals, 68, 71, 79
how to calculate, 120-121
R
RADISH: 36,120
potassium deficiency in, 89
RA1NFALL: 9, 20, 42, 44, 75
RESPIRATION: 77, 86, 87, 88
RETAINING-WALL: $24,29,31$
RHODE TSLAND EXPERI-
MENT STATION: 4
ROCK.WOOL: 29, 39, 引1
ROSES: 84, 89, 91, 100,101
forinulas for, 99, 100, 101
ROOTS: 9, 53
aeration of, 21, 2i, 25, 30, 38, 41, 81
and phospherus deficiency, 91
are in transplanting. 25, 39
change is acidity about, 45. 58
comentration atiout, 45, 86, 102
growsh. 40, 93
mineval alasorption by, 6, 72, 79
nitrogen ahsorption, 6, 79, 88
osygen absorption, 6. 87
pheapheres and iron
almorptines, 91
prolassinn nect of, 89

S

5ALTS: (6), 114
SAND: 22. 21. 30, 40
calciurn in. 91
daining of, 38
preparation of, ss
spraying iron ciltace, 95
sprasing with water, 96
sterilization of, 28
washing of. 75
SCREENING: g\%
SEFD:
germination of, 92
Wigh calcium comtent. 91
phasphores seest, 90
platiog of. 59
SHADINGE 21
SHADY DAYS: K2, 83, 88, 105
SHIVE. J. $\mathrm{W}_{i}=6.5$
SHORT ANI LOXC DAIS: 21
Sthicone 79
STTE
choice of, 19.80
SLOPE:
of growing-4nit, 29
SODIUM: 68, 69, 70, 90
and calcing, 92
chloride, 72, 111
nitrate, 33, 68, 105, 114
reaction with chlorine. 75
solt: 8.79
sp/LCING:
of plants, 23, 10
SPENSARD. E. A. 11, 121
Eechuique, 108
SIRAYING: 22
SPRINKLING: 25, 90, 95, 109, 110
STARCH: 88, 89, 90
STARVATION: 21,88
STEA ROT: 39
STERITIVATION: 8, 28, 5L. 109
STRECTURAL. DETAILS: 27.30
StCCULENCE:
excessive, 88, 107
lowering concentration for, 8 i
use of nitrogen for, 81-85, 107
SUGAR: 87
and high temperature, 86, 88
and light, 85
and nitrogen balance, 77, 80, 88
and phosphorous, 96
and potassium, 90
and protein manufacture, 80
and whodiness, 85, 88
burning of, 87, 88
deficiency, 82,87
energ: from. 88
excess of, 82, 83, 85
manufacture of, 80
rich, nitroged-poor plant. 82-85, 88
use of. 71. RH-s5
SULPHLRIC ACID: 36, 68, 15i
SL'LPHUR: $58.39,64,68,70$, 78
and fruiting. 95
and radisher, 120
and root-nedules, 25
deficiencr, 95
in Ievtilizers, 190
minimum ppm, 69. 76, 95
SUNLIGHT: 139
SUPPLTES:
where to lusy, 121-128
SUPPORTS: 23
SWANEV: M. W I I
SYMBOLS: chemical, 66-70
SVMETOMS:
ammpoiner дitaogen cxoens, 107
1 bони seficienty. 97
browning of tomato leaver, 16%
calcium teficicocy, 92
Magresinu deficienc. 9!
phorplionus deficiency. 91
jotassium deficiency, 89, 99
SISTEMS OF HYDROPONICS:
10.15. 49. 77, 100, 101

T
TABLEs: evemical, 6e 69
TINK:
grawing. 13
solution or feeding. 13
TECHNTQUE: 16, 52, 86. 108
TEMPERATURE: 37, 11,44
high. 25, 16, 85, 85, 88, 93, 105, 139
TERMS: definitions, 59
TESTER: acid, or $\mathrm{pH}, 22,124$
TESTING: $13,22,36,39,45,52$
of nutrient solution. 85 of plantis 85
TIME: use of, 128
THNEAN: 35. 62, 104
advantages ot, 24
hydroponiouns, 49-54
maieriais for filling. 31
meavare for chernifals, 54
sire of, 23, 34, 31
technique. 49-94
TOLERANCE: planc, is
TOMATO: 23, 32, 37, 46, 47, 36,
98, 108, 117, 129, 136
browning of Iraves, 104
formula for. 103
bardening of fruit. 90
overfeeding. 105
phosphorus needs. 91
potassimm deficiency, 89
productivity of, 105
TRACE ELEMENTS (enicronu-
(rients): 52, 68, 69, 100, 102
chart of, 110
deficiency of, 108
directions for usie of, 110
in food grade chemicals, 108
iron and manganese balance, 108
measurement of, 35
ppm and weights of, 110
use of. 101. 105. 105-110
TRANSFORMATION OF ENERGY: 6
TRANSPIRATION: $21,44,45$
TRANSPLANTING: 58,39
by tim-cans: 23,51
hardening for, 84
spacing of, 25
TROUGF: for teeding, $30-32$
TUB: galvanized, 114
TURNER, W. L $=1,4,84,90,104$
and roses, 34, 100, 101. I08
TYING UP PLANTS: 23
U
ULTRA-VIOLET LIGHT: 19

UNIT (Spessard):
area for growing, 19
construction of one, 18, 27-29
definition of, 17.18
dimensions for, 18, 27-50
doubling of. 19
feeding, for one, 13, 19, 24
growing. 13, 19, 21
materials for one, 21, 22
operation of, 33-48, 108
plant capacity of one, 18,40
productivity of one, 37, 105
site for, 19, 21
specifications for, 27-29
type of
hydroponicum, 13:15, 25, 32
URINE 53
UREA: 59, 80

V

VARIATIONS:
factors of. 78
in acialicy, 3
in concentration, 16,83
in feeding, 3, 42, 44, 46, 78, 82
in formulas. 75, 76
in plant needs. 76
in ррші. 75.76
in purity of chemicals, 68, 69, 120
in seasonal nceds. 76
in temperature. 85
in total salts in water used, 72, 77
nitrogen and sugar, 88
VEGETABLES:
growing together, 138
hardening of. 84
marketing of, 131-134
suctulence of. 84,85
wondy, 82
VITAMIN-A: 54. 35
VOLUME: measurement, 67

W

WAGNER ARNOLD: 101
WALL. retainingi 24, 29
WASTE: 62.113
elements, 79, 114
sodiam chloride, 75
solation, 25
WATER: 46
and carben diexide, 80
3mount required, 20, 24
balance, 77, 89, 88
containing calcium and magresiom, 72, 93
calculation for desert hydroponicum, 20
loss. 44
sprinkling, 46, 86
supply, 20
transpitation of, 44, 46
variation in total salts, 72
WEATHER CHANGES: 42, 44-45
WEIGHTS, RELATTIVE: 67.70
calculations of. 113
WLLTJNG: $46,87,88,94$
WIND: 42
WITHROW, R. Wd 13, 103
wITHROW, ALICE; 103
WOOD ASHES: 35
WOODINESS OF
VEGETABLES: $82,85,88$
\mathbf{Y}
YELLOWING:
of Ieaves, 89, 92, 94, 95, 110
preventing, 90
Z
ZINC: 64, 65, 70, 97, 111
ppm, 69, 110
sulphate, 33, 35, 5X, 6K

Winstan puglishers printed in U.S.A. © 1959

INTRODUCTION

There is a neibakeri ides shat radide controt is diftewit, that one must bore up on the science ul elremonica in oeder to uperate an RC plane, losis, awto, of whathave yous.

The treth is shat anyuse ran mstall and opente percentiolly
 the manstacture's direcions Wuy for tbe newcamet to amad rome mosly made mistaket and mivumicnuandings inkerent to any beld when written diftetians masi be inerrperied and applied. it is douip able thas the trginure benchit trven the adrice of fellow bobbyina alrcady sweesalully started, and quickly obtain a titele frowhand experience with the practical findamemals.
 a coursel impnsible; the beginner maturally thens to book and magaine arnicla. The luouks asually ate wrinen by some elearonio eapen wleo provides plenty of thoory amd a minimum of prastios. magazithe artifles are seatierol piexvimeal ostr a period of yeank

This tooklet is matended, thesclore, of give the prastion kind of informatiom that will asill the intcrested realer in lisilding and uporatiog bis ratius enautul model. White the practical side of

 agaisst the pmblent of mainsiang rehability. The indormation
 satishaciory uper,aingo umath ies anal menth out

Happ liting:
CONTENTS
Chatre 1
The Pusfure
Cuaptaz il Tramamutier
Cesarties III
Chaiter IV

Beloce the Federal Conninnicanions Commiswion a tew years ago granted, for the (ambing other) purpose of comuralling model planes, boas, etc., by radio, the exuminnion fore (Cirionse Radia Servise) frequencies of 465 and 27,235 mrgacycles, thit "RC' hobsy was limined to licemod amaseurs or "hams. The bobbyist could boild bis uwn model provided he was willing to bave some radio amasrer operate the comirols for him. Model thuilders luchy enough to posea "ricken" and who, consequemly, eould uperave theit own models-such as Jim Walker, Wall Good, Joe Raspante-became faneun becauke they were master of something sthas was mesterious, prestastly costly, and not available ta the ret of an

Today, radie conarol in mople rieugh Iör any moderately skilled builder to master and, although mote repenave than other rypes of modelmg. if is within the financial reach of eany hobbyisse. The combined cost of plape, tagine, sup-
plies, and complete radió equipmesi may be lest than $\$ 60$ Iny atajmaling his awn transminer and reseiver from parts, the buider miay realine firsber sivinge. On the ohther hand, elabotate equapment har operating threc hive tor even mawe controls, may he purchased at prices Irom approsumarely 3850 up

For prices and descriptions of the sarious radio vancrol pusfita men the markin, the reader is referged to the advel (rforasents appearing in it e carrost fation of the various model airplane magaanes. Techniral descriphive matnor ahoat their products. may be oblrained by writing bo the nanalactuters liatof ost the advertivements.

While the tiwn tiequencien set avide for is modeler at menneund aborv. are loosely drscribed as "licenacirce." ihet actually are snh "Enampruiton Irec" and you get your license by filling out and mailing in, of briogieg oa, ill ar-treis FCC. field office, the printed farm 505 you found sith your ben radio rquipmene when it comes from the larnary, This applicauon farm alyo is avallable fremin the FCC. At the trammitters and receiven curtently dedveringed is the noudrl planter field aperate of theat tonvenient rsamination Iree frequencies

 mounted separately from the rociver), and an attiatar (asalh) an ruapeoumi devicel. for moving the cantral sarface or surlaere. A wighal sebs mept hy the transmitter is detected or picknt upi by the receiver , his sigal rasten s thange in the amount of fiectrical cursem flowing throggh the vesenes's sele. If is shis current change that causet ithe relay to opscate-either opening me slouseg thr relay, depending an the type of riceiver. The relay there shoues + vondart in complete a circuit that permis eleptrical evrrent to flow to flar atruatom bhich mover the rudder righi iof tefr so neter the plane on hoat The esous upocal acruator, the ricapenieni, if ate electromestanisal device Whon ravtgand to the electrical eacrene, fo magnet eausen a revolving arm to fe velcaud to provile thr phytical farse neresary wa mave the eunaral surlaces. Thas bave is available Trim a wisted of wound up lomp of model airplane nubber.

The bverwhefoung majority of rache cositul molfolc are Hases loy means of a single control, the rudder. The sapabifuint of roudso evols seatiol showbl tran to undertatimaind Powble maneuvert bent from wingle buth shd qualc re wiby

 mulsicancal planei can ily cxum isume maneuverc sush as vevinal dives mossele looph and inverind fight, the lighies, ruditerventy jols fure sfivn mugnansed las aiore expentive and complet rquipneff. even at the Namonal Comtesi. The I959 National Comen, lot ecomple, wer want by a riedider eett arpasah

 and allow prexite mimangg of the isachist mhle in iler oor. Bualer andp of recummendet for begomens.

 cuaddet will reman in that pestiton at leng at ugnal is manmannel: shre the ugral serminates, the stlineutulitios escapermiem retorns se a hewral at no-cuntrsl fasiana hence its name So the lengib of the nitol, deiermined by
 amount of turn and bank impazint so the sifplame Dpon the aret fogut this type of ercaptiment will move to the uppotice panisum Far rasample of yghi rudifer had beea apjited 6rat the noxt signal would prolune left rudder. This

 accomplistied because inanmoizung a signal, which is inseandy iesenisaind fors not give the rudder time to affert the figho pail of the aisplame

One that allowr eitber left of tight tuen at will. and prabble use al a second cimtrat. is the zampruad type of सאapomithi. This ilevity is draiged in give one rudder potinian-lei's say right rudder-upan poie wgial foppulse from the trans mittst, and to give opposite, ur Ielt, rudider, upon the Anghal mpulare. Three quick signals close an eloctital soncast in the tompound ewapersem, rasiong the auxiliary excapemest to close thd move the addivimal unernal Vafoust tequic motor driven slevices of servos may be jubatituied for rwapemenus Madelers bave devised variations of thas baw syatem for obsaming perine cooiral in the air. but almays at the case of mare things that can go sroopg

By the addition of an electronas ie meshanacal puluing devite-ronding oug a seady how of signah, and using a magheric tspe if arruatay whetb slaves accurately folliwing chose signali) proportionare type ill somurol mon be bad It is poisoble to vary the rave ol the pishing, or the lergth of the pulber on bouk simulaneously, to obtain iouls-eontral effern bilh a simglecthaned ravia. However, weh sydtms reyuire mouth home builating of typupment alohough unelul devises are beginning to appear on the markel

Mont model radio operatet on 4 straight cartier wave (CW). Thas wave it transmitted to the receiver only when the transerieter switeh ar bution is cloant However, some equipmrne, particularly the muli-charmel, opecases by sone mool. ulation, With thsie ifansmitters a sucady carrier vave is sept pur, at souch as she unit is awitches on. Then, when the operator clowes a watith or boptom, a sone is imposed upon the cartier wave. A single channel rectiven for tone operation repponds to a rather wide range of tone but multschansel receiven, by meana of filters or reed banks, apply particular tone to particular contral movensents.

From one to sis clannels are ased to work elevaton, ruduler, and negine,
 for upelevalor, one for down, anall another for engise. Wiqh a rompound exape-

		guantz ceystal	$* 1-=\begin{gathered} 1 \text { ceLl on } \\ 1-1 / 2 \text { vocts } \end{gathered}$
$\underset{=}{\substack{\text { EMAS515 on } \\ \text { ghound }}}$	$-M M$	$=\begin{gathered} \text { Fixet } \\ \text { nesiston } \end{gathered}$	
My	$\pi^{\prime \prime}$	vahianle CONOEMSEA	$\left(\begin{array}{c} \text { FIXEO } \\ \text { comoensen } \end{array}\right.$
$\text { Y } \frac{1}{\text { no }} \text { conzerion }$	(60000)	AIIN come CO	\geqANTENAA ONA AEAIAL
		TANE CRETIT	CONHECTIOM of Two mhes
			की 10 Thionf 3 ELEMENT: FILAWENT, GARD and plate
		PATE	
	ERETive CLCEENTS: IL AMEIT, 3 hios ane a Hate		$9 A 5$ PIGTE (TKACATMON) مк-6. ANO XPOH AHE TRIDOES. DOT is oAs

 cepanctior

 power, have becosse very peprilas. Tor all roubal aitplane whuld have fermectr
 lietween MY and 19 disimaterients.
 airplane inagarines publish isususection antinlos anal shey lalt war plans enay le
 Lits and plans are similarly avaibials.

Chapler Two
TRANSMITTERS
As far as external appearance is cuncernell. twe baxic types of eabiminter are uned, the hand,held sype, and the sarionary type. Each hat advantages and diadvantages. For all the treguencies used for modeling purposer, a hand held transmitter exists, bui she stationary sype is bot suitable lor 465 megacyeles. The 465 iransmitter is highly directional, and f aimend at the airplane, and ctherriore is limited so the hand-held arrangement. Anather interesting lack abous 465 in that ihe tranamititr is not crystal controlled, as ape the 27.255 jinies liwt, on the other hand, only an approved tactory-mate iramsmitser may be ased auropiding to FCC regulations. So you cannot make and operatt four own $46 \$$ tranumitner under the law.

The main advantage of the hand-held type is its ronvenience on the beld the Hier can walk away from cars, people, or other abstacles. He san ale up a poũtion near the landing spot. which insures a bigher percentage of good close by landings It it difficult to hit a spot Irom a distance, or when standing to wine tpoc of the

Hight puth of the auplane Also, the Hianamitter may be beld in any desired position, enabling the operator to place the anterna in any desired relationship to the pousion of the plane's anienna while is is is tights. This awoids placing the plane is a 'mull' or blind apos and increzaer reliability.

The wave futten of ster thansmisted signal varics with the type of antenna ound The verucal 'whip' amerina in almiost standard fos modelerk. Each type har iss areas of swong and weak signal sirength and usually there in a small deat sporn or mell. Wish the whap antenna thas null is directly overhead, lying mithin an inveraed sone of approximately 15°. Acrually, the model generally is reapohine even everflead exctpt ai high alfitudes. The plane quickly tlies out of a dead aira anyway. If not, have fout helper sif the wamanitter to incline its abtema.

Thas a the trawn why a hand heid whip aotenna ahould never be pointed at the airplane. Alwa. the receivri's anornna should be the same type as shat used on the trammititer. A light manic wire vertical whip antenna may be attached to ibe furelage. When a loose wirt amensa is Midished from arain to ruddet iops if may be Iound during growpd cheds that rangt if lont when the ship in held borionually. broabide po the tranaminet, and is then rotated through 360^{*}. Wiah the band held tranmituer shis is not so imponam because the trankraister ie seadily tilued so maintain signal suengit so the meceiver.

The brgest duderntage of the land held type is its inahility to concain large talserins within the ease, howevet, ont art of hatterier may last an occasional lier for a prason, and keveral seta should aulfice for the most active flier. The hand treld type is caily waedi/simply raund of insert the antenna and you are is bounes

The sationary sype if popular because it contains batteries large enough to lan ac leait one tifanon with a mutained high volrage. Since battery drain is now to teduat the available voluge of large batterien, the fier is insured of a high beroge esutpan from this uranutaiticr. And, possibly, the sight of the large black bos is rcaumring eves though the Twork occupy a umall portion of the barnlike inmeriot: Placed upon a cat root, the stathonary type performs mont effectively, the magal tool acting ai a ground plane reflector. This type of tranmitter does fesait the frior to ane location.

In any disconsow of eranunutient and receivers the subject of tubet comes up
 amplification, if it used in the typucal singlerube Iransmiter to generate ascil. lations, as an "oxcillator" The freguency of these oxcillaiones is setermined by the cloote of other componeciti. Thas ascillation Ircyuency is zeferred to as Radio Erequency of "RF" This KF oustput radiaves trom the antenna,

When the fiament in the vacumm tabe is heated (by the A batretiest, it
 the \& batteries) a mar-ly meral object (the plate) will attract these electrons They then flow towaril the plate. In the ascillator tube there is \rightarrow thent objets, the grial, which in placasl between the blamest and the plate. Whepo nepatiotly chargal, the grid imesmpta or stopa the fon al electom sawand the plate When positivily changed the goisl alloms the elestrons to biow. The gind, therefore, coutrols the oscillation of the subs. Thu type of tutbe in known as a triode, Other
 or peniodes

Most of the single chasnel mansmaiten on 27.255 megacycler raploty single

 ing ass the sube and nake ot trabsaunter) is ef plare myply hoes a wide varsety

 rauge fram Suagen. XX-45/ in M 30 h, or the brand equivalents. The 465 itam
 P4PI.

The teshnically mumbel reviler should gansuly avaidable ivbe chara and catalogurs. Transmition sebessaric and their coupposen pants are indicaned in
 various inexlei and radio magraikn

For greates reliablity inuall a 50 mbliamenteser in the B plis lone of the iransoitter in seriev with the beving lexd. The sifuantager af a morser are truly importani. For rnasiple, the llier 'hill know roughly whar reading bis integ hould show whet the transmiter is in tune He will soor abeorsallt high radinga, dangerout to tube and stystal. and indicanve of bad taneng. The meter will help lim inne the unai. if there it evidense ai tailapt someshert it in
 reuble.

Trastmaier bufpuc taves in acsardance wisl operatiog sondstions and for beu reuhb, retuaing (iay be pequued te suit thove cundicions. Thin is erpecially
 of top of a car bat when placed on the ground. the wansmazer becowen dereved and ne sigmal is proxlused Sueh choracteriblies flojesiol an the dewign of the
 to deianing Large rublev surisem snja ue "Ieet" nut be fited se the undernite at the roubleiome box to minimise tuning shanjer milb changes in the lewainos of the tramamitier.

The otiput of the nanulheld sype varies tepernfies on whethet if in beser heht firmily in flie hands of plased upas a bench, eve The body ace as a groums or reflector

A fird tiength meitr is not a fircetenty but towner or later, is witt pay of in driefling failing auspar of the wasamitien as might ovor from tual luning

 out (as showit by thin me(er) move than the smeunt sel curvent frain as shiven by the millismmeirl. The bust-in miliammete, though an inpertant alfunct thes not necenasily prove that the mansmitier is devioping gocel sipnal suregth.

Speaking of meten and suming, it is impontant to linot that the masimum sigeal meagit of a transmitter if not alwayt at the atrount of milliamperes so
 if why a field sitengh meirf, giving asrual outpur rasher than drain, in the ontr sccurate steck on your outpus.

Most ttanamitlers used by the examoration-free fiers are anetube aflains Low cos is a factor. While juch transmittern arr adequate, werle modelers with an ability to tinker, go in foe tioo of more tubes there the satpot of the iscillatot tabe is amplified by the second sube bhish actually tranimiti the signal. This decreaser the last placed upon the firs nube, iocreain tube and cryial life, and provides a more stable and reliable trammiter However. ahe vitier hat made thousands of Fights with single wbe transmatiess and the occasional failures have bera uracable to faslef switcha. brolen basery leals and sa on.

In the audio or tone madulation, multichannel tranimatien, more elaborase orsuitry is necessary. Inow, three, foun. rvep emore tobes may be sakel Such tranamiters att a delvae item Irom a modeler's poims of view. Bat they ate essential Ior reliable tone opecation.

Hand-hefd iransmitters for sügle channel use are eperased by mesat of a ronveniently placel miteonmeth or pushi buttort, the farmer gives a moperdelicate teel and an awdible dich, belping apooth oui the contrel al the airurate. One muli-channel hand-held trammitter has a buition ubicl lor operating the ground controll umit, which as a amall device for determining which zone a sent our by the tranamitter. This stick may be turned lefh. tighe, farward, ae haclward, giving leff, right, down, and up movemens respectively. An tatra puah butron on that trammitter box (or on the ground control unit. if is is separate from the transmitter) is used to get a change in ragine speed. The slationary type of transmiter sometimer has a buthtin puah huitom but almost imariably is equipped with an easy-to-use Hexible leying lead to which the mitroswiti is attached.

It is extremely impontant that for lrayed ends cemplete a contacr betwett
the ina wites of the keying lead, otherwise a strady signal could fesuls and the plane could upiral inato the ground. A toutine check of the transmituts should Be mode bedore every driang session. Check volages under load: transmitter turned of to sheck the A batiery. Ivation closed for sigual-on to check the B batierity. Hold she button of for five or six seconds to note whether or not the valtagr begina to lade. By doing this, you may detect a B battery sbat can't take it. Old hantrien can be doceging.

In shree instantes the writer observed stansmitter Iailure caused by the insernal lailase of a B batery- One such faiture was rraced to a cietk who had dropped the batter when mrapping is. B batteties are mack up of mall selli tracked one sa sht other, and the connectipg wites cab be bioketr by rough bandling

Sipic imo. there of cten mane bateries die somptanet wited in serics for

 rather shan just ilve and woltage, Sounetiaies pone battery will be lound to agg. eit in read motingably lest, shas dragging Jown the ealider aci- Evein a bew battery cannot le salow fof grapsel. When batteriet fit loosely within the tramamitter
 Neect labu. Wheic termanal poss mught coane inso contact wish the metal case, stacset thin, pqouccive tomol against the case, or fover the posts with soise kiod
 pous may worl foove, and a Irad lall of

Serse advanced Kiest aveid variable bastery voltages by climinating B laserin conierly. This is accomplished with a power pack which is connceted by lcads to the aviomobild latiers. This anil converts the car batiery woltage into the jforet ebitage for the is wypaly of the tranimitter. A 22 ohmi, 1 watt resistor will cut vae 6 V suipply to $1 / 2 / 2$ vols for the A supply

Althougth such a powts supphy cluminates alf worrien about latteriet, of their cook, it does make the hier more immobile than ever on the field apd increases the thingi to be done loclote the model san be Hown. Qualofied hobbyisu can sale such usis bur finished items ave available from radio suppliers who edvertise in radio and mbelel problications.

The newcomer to this field frequently assumes that good range is not possuble wish the typical rectivers and low outpur tanimitters he weri in wheFor the examination-fres thier, the FCC limits the input to the fimal tube of the transuitter to $\mathrm{F} v \mathrm{c}$ wats atakimuan. The number of wats is exsily compunted. one wall being eyual to a current forw of one aupere at one volt, Voluge is maltiplied by milliamperes. II, (or instance, the soltage were 135 and the turrent How 20 mils ($a \mathrm{mif}$, of mithampere, being onerthounadah of an smpere) the imput would be 2.7 wath. Actual output of the uansmitter is less

Good equipment, properiy tuned, with good balieric, will operaic reliably at a dicauce too great lor the flier to maneuver the plane withous the aid of binoculars Licensed amateurs uwally rewort to much higher input on other Iroq rencios, sometimes with les sensiaive receivers, becase this reloces the thancei of interferense. Reliability is increased with reserve autput, as the signal strength may male up for some accidental deficiency in she receiver during \#ight.

A five-wat inpui irabsmitter may be capable of a one mile ground checi with a semsitive onftube receiver. Muluichannel equipment with as litule as $1 / 2$ watt inpot have ground checked up to several miles wish three (or marr) tube receivers.

Assuming that everything is in grod warking onder, range depends on proper tuning of the recriver to the tansanitier and correct taning of the tranumitter itself lor maximum ouspus. The mamufacuurer builds into the tranominer a variable tuning condenser which may be turned in ot aul. to increase or decrease capacitance respectively. This operation is done with a tuning wand, or rod, made of nonconducting plastic, bakelite, eic. These wands are inespensire. When suning the tramasitier leep in mind thar excrptionally high currenas may burn sut the tube of crack the gryusi. For this reason, milliammeters are an imporunt pan of every modeler's equipinent. Indispenable for suning the xeceiver ha a 0 to S. or 0 to 5 , milliammeier. Drsirable for trassmitter tuming ha 0 is 50 mater. Meteri vary greaily in price but any sold through the hobby alopp are acrepeable. A chap meier for the tranmituer arrven juat an well at an expernive one. The receiver meser should the calibrated againat somse other modeler's mope expenaive merer and adjusird to give corresponding readings if netewary.

A 50 mil meter showld be imserind inso the transwister Splus lead, if there it no meter builf into the bok, to trgin tuning. Wish signal on, tune io otrain the reading specified by the manufacturer or known to be appreaimately terrect tow pear obassinct, II you have a field waeigh metor, farther tuaigg adjuas

 depeniting on the syje of rrvetert involvol, flarther twange may he lound mo inarrase that tive or drops a ware agh of highet ouspui.

If is bal prartiok, humeser, Ifi tank the iransmbiter lor abinglure pras ouspat.
 reading ant the mittiansecisr will login io rise slowly, woe lar the sther way, and the realing wil! Jenis up abpuptlo. It poo are vaing a forld usengil meser in conjunction with the miliammeter, tho note thas the wgral srengith strup oft slowly wlien the wansaitur suning it vasird too far in one direction, or very abruptly in the ofhes. Whas is happening) What should poes das

Visualies the wave av a lang uefp hill. Inllowed by a nearvervieal drop- to
 the irammitter hegher and higher ap the long slope. If tumed at the very peal. there is a chance that the tuning way wander roough to fall of the neat vervical
 This is lecrause the sapraciance may lue varied by movensent af your body clope to the tranmifter of for shanges in the jositisn uf the leyung lead. Pealed suning can cause lose of coetmt in fight.

The corceri methos is to was sundil the peat it found, then bark at on she long slope sule at the peal sutil a slight lost in power output a noticed. Thin will show upe on the forld strength nwter as a slight drap from manimum readieg On the militammeter if nould showe up as a slight inctrase in the current being drawn with signal os (about 2 miln indruas it isfroent). Ther millismmest will regitar mininums signal on furrem shen the tranmister toming ii pealed

Chapter Three RECEIVERS

The mast widely nesal recriver is the singlostibe inke Hewever, iwotule
 nlay, abo are jopmlar,' bcotad more advancoil rypei for tone uperation, utilising
 complec modits and thing jeclouique.

 hs itir differevier lertiken a gat vitis aod a hand saley

 she curremt Alowing shrough she sabe is molarcd, at when a tignal is rrceived,
 light bulb. The eas indev are sebt io for stooes armotior fies Bhey do not tas as Jong Lither sype of reciort can ter catried by 241099 rhgine. The hasd wbe almost evtainly bill pustive the aurglaner

The gav sube proiver requires she us of a pascoumariet at "pas," as is is

 sionnere say be arcalind th the meites thest and thes not love is be carried on the plane.

 relat ertilig-ar tole 2 mel m featice.

 nended
 The detured lemgh for mosumumg. Moud radeos wsing diesc lulori have umall fra clipe inno shich theve wite Irads ate inastod, the bale lieing held framly in she thavs ly serany ad a rubber foop The iesds shiald never be ushterd to the slops. nor stould soldet be Jecwaised to Haw up thrmagh she wire connoction

 te liand as rathe supply samei. Neret use arid cote soldes as rarrosion and clataical Irakigen revult. T/ue a good reier cofe solder with as Keviers.

Idfing sorreat ol the bard tube, ant the oubrs havel may be anythong that
 from tis to t or 8 mih. For grartical samedrations, is shmuld lir unnecessary to

 the same as in would be sith the gas lube.

The fard tulic uerrives somatumes has twa turning controla one for coptsol. lase the idle current and the sematixity of the receiver, ofien ieferred io at the

 rave nening sill pmose east. One old thing hai mus lir guarded aganst when
 Hoor condivion are removed Far reample, a गype of avecier that displayi sensitivity to body capacity requires varelal handling. Don't fran against the amema shile susing rac: In grneral, the larther that the body and hands can be kept away lran the receiver and sis andenia during lunimg. Jlie less likely you are sep encounter poor range to the air.

Hard vale recervers shich have a mrmisisisy sumotul should never be suned for daasimum ivenitivity. In she air, the puane may betome the victitn of a thectsating idling curcen. Traggring the trier and "rualder walking" would be the lease of the undesirable throg that trighal happern. When suned noo sensitively the hand rube receitry will frati wh the tranmitiel antrina-even when the tranomitier it pursed off-and fasily conoroul smults when the alip is in the vicinisy of the transmitter.

One cherk (assaming pou de nut have the advpriagt of the manulaciurer's
dircctions) is to carry the plane slese to the manamitrer wich the receiver turned nn. If the escapement is operated without a signal being sebt, the receiver is adjused with too much sensitivity. If the ship can be brought to withis a foot of the iransmitter withoat this happening, if should be cale in the air. During the ground check, be willing to zacrifice some range, perhaps a if reil drop, so insure slability.

 and tha core sensitive theo at juat sant, she nors they breadcass. Under certain canditions, a betd tube recelver boy ipin dew ancthet airplane mublkeda of teet sway, For safe fiying, practike
 planias afe in the GIF.

In the qais two-t liber, the necund tube is connected inte the eircuit in such a way that it idlem at zeto or $A \operatorname{seall}$ ifactianat part of a Eit bui rjses to 2 of even 3 mile upun signal. iepending on the voltage avallabia aba Epe reblatance of the relay. The flrse, or detector subey, flanctions precisely an it does in the noreal onu-tutet, but ıdias at at of is mit, sumetimes higner, The primeipat advantaje of the aystem io the larye surtent chone avaliable for relay operatioo
The wide range of relay uperation thai resulta sogether visn greater spring tension and contact pressare, makes the relay wirtually vibration Iree. Some fliers take advantage of this fact to instati the relay without beneff of shockptoof mounting. Others pur such receivers in unall but high powered planes or in shipa with rough running jowerplants

The 465 reveivers employ a $6 \mathbb{1} 4$ or 6AK4 sube requining six velts an the Glamens. A battery drain is rather hugh, but suall hearing aid batieries for A supply have nearly the equivaleat of ahell lite. The reaion for the fong B bastery life is the low idling current of about 2 mil, which rises to 1,1 to 1,4 on tignal Flien have found that by uring $71 / 2$ vols ($\$ \mathrm{ive}$ pen cells). the A baweries stand up a great deal longer. No harm is done to the receiver. On medium suze planes, ten pen cells, or in larger planes, the medium fashlighi cells, may be carried withosit dificulty. A battery life then extends into werls, or even maphtha.

In the beginning, the 465 receiver was not tumable by the builder, Acrually. it didn't require tuning, unless damaged, in which case it was to be ahipped to the factory for realinement. A newer 465 receiver is sumable, file any other single hard tube receivet.

The more claborate receiven for tome aperation and multi-channel wark contain many special featurcs. It one ave, hermetically sealed relays with a correst change on the order of 8 andil ate provided. These receivets will not reypond to atraight carrier signals and obey only the selected tone aent out by their uwn trammanern Howters, a arright carrier wave transmitter, when the eperanor holds sicady signal, will peevent, of bloch, the tone reveiver so that it cannot reapond to its own masamaliet. Hri, on the oflher hand, the tone ouifis. funktianing an it does with a steady carrict larand on, will effertively preyent anyone grownd checking, muth les bying ia tif, any ather sypt of carrier wave operaned equipmeat.

Advaniaga of sealed relagn are that the rancarts do nat brcome dirty and do not requite adjeitnient, the Later becauge of the sutstantial current change in this jartirulat rype of radio and rciulting positive ation. These receivert are oot litely io be apon in through mataile iaterference and will be highly resistant ts viluration dificalsics thecause of large rurrent changes in the relayg. Whicreas single tube recalver uses that sube to parfors suverat aise inet functions, cta typloal tpnat ruceiver uaws a sube for each pirroser, buch is detection and eapilifieselian. Therafore, it is theoreticaliy the most retiabiel and atabse in aperation.

 carpient or serval a in the cand of a radier deive bervo that is roved one vay by one channel. and the other vay Bfrotagh a aecond Fhantel. swo reiays seterequired for the oni bervo. Two to tiva or
 wneg Thtisers ta caunu the propert tunk to pperete stee carrect con=
 reath, vibcatises at apocifte iewguanciss, teaphand andy to theif garticular Lane. The abitated twed then wakes tha cantace, that claser ise particulat relay, and the relay wnergizus Ster proper actuator.
 rubler lande from the fowd corpers of sher chasis to looplo onte the rabin walte: or mapped in foam rubber, of wet ugon a blout of foam rubber actached to a plymood thide Deails aie givew in she thapiet an installatians.

Chapter Four
RELAYS
When your rectiver consen Irom the manatacluret, fes relay has been peop erly adjusted. However, it is postible for the relay to get out of adjustment, either during shipment or Later, and it certainly will require readjuniment Itom time to time during the lilecime of the model. We would line to say that poe do not have to know how to adjust a relay but the unfortumate iruth is thas, it yoo expect to fly a great deal, wuch knowiedge it essential-unlens, of counthe, your receiver happens to have a iealed type of relay.

There are, perhaps, a doten makea of relays that are used in radio models Of these, the Kurmans and Sugras are most widely uscd. It should be poinsed nut that some relays were not intended primarily lor modeling parposen, despite the facs that they are advertised Ior such use and can, in lact, be used ssocelt fully. For example, some tupplien offer a Sigma that originally war denigned for electric blankets. It mainly differs from the mote lamiliar Signa 4 F commonly used for RC in that rigid, screw adjustable contacts are not provided. While such relays are genuine, they are not as ideal as the lactory aupplied job dewigned for our particular requirements. Whereas Kurnaant have not had soce adjaseable contacis until recently, the new Model BKA manulactured expresaly for Berkeley does have this leature. Sigma's new 265 will supersede the 45 .

The impurtant purts of the telay are the magnetic core of pole piect, the
arnature, the teasion spering, and the contacta, special diructumb for adfusting the relay are included vith manut acturax'if illetature - but the purchasec of randow felays lodes not benef it frab fouch airections. there handy hintil vill be added here.

A12 the single tube receivers luve a staady current (the jatsing current) tlovirg through the relky, on alt thim simile-tsbes but the 4is, this current in sufticipotiy high to cause \rightarrow magnet ived cors plece 10 bttract and poll in the namast and of the arsaswres this, when the ferceiver is turned on, thei afpaturad eutonatically pulla in.

Ehen a sighal is received, the current ftentmy firnuga ther rilay is refuced, and becopens insufticient to tatd ith that an atcuru hectuse of the tension of the spring, Now belug greatior, Lhis uprimg temsion causen the relay to release the arsature vhich t/wn "Arops out*. The other end of the arifature vili shen foas andiost The tover sontact. A1] the upper contact does. in this caswr is th provent the armature troe toishing the manet io pole pluce yhiel polled in, which vould magnet ize the volete aspenbly el that it could sot runction properiy. Dy odjusting the sprifer tention and Contact faps. the iller can wel his rolay 20 ugef ate at any desired curcont vasut, as repd upon the neter fapefted in the B-phus lead of the ship"s virim.

With 465 rpopivera (and two-tuberi) the apcration is rversel. Having a fum biligg corrent (scomal mber. in two tuber) not auficient so aitract and hold in the afmature, ppting semsinn hold the armature againse the dropped out (lawer) coneant Whes signal is received. the current Aowing thraugh the relay increase, the arnasore palli ies, and rois againat the oiher contact. The live contact, in this case, 4 opposite to what it was belore. It will be noted ahat when the relay pullis in on signal, the zpper consect is wirnd into the exapement citctic; when it dropt out ben tegral, the lower conaat is wired in

Angthing that mabes is more difintuls lor the relay to pull in, will raise the pallin stasting on pout meies. More spring rention incricais this current but an raccune eap beiwien athr lower sontact and the armarure (medaured when ther armatatr is pulled ing dort the tame thing. If the upper contact is to tet that too mach gap rriults beivern the armarure and pale picce when pulled in, the oper auan will tor mevginel and uulyras as vibration.

The stropout rierrent slefends of spring iension tenly. For a quish magh adjartiaphi of a Sigona, insert a parce of ogaretif package celloplane beivern ibr sore piece sed the armatory. Adjust the upper irrew coniact to maimain that ghp whes fite eeloy 6 gnilied in. Then the masimuin gap beiween the armaiure and the lowve cinnari-mhea pullind in-should be the thiciness of a dollar bill Changet

 than $\frac{5}{2}$ mil atiferener betwers pullins and drop-opt

 thet do thot to no theris sbe Edp it ioo imall.

Whets she arnsilure is persinited to arike agarnat the core ar pole pieic, it
 mugnetise $u m$ il the armature sitks is the tonacis, resulting in faulty operation or a cach. Korbiani have the pole pieve wrasd to jervent thil condition.

Aeviller trlay arcing intreased use is the Nrumatie, Potbened of high revis caste Io vibratoon is atill aneiher relay, the polariard iype. The armature is esownint veribatly, moves bark and forit teriveen twa screw tomtarts. A builhin pernasnem mageft repasces the apring tension feafurg. Dropoun and pull in valurs ate onnurblied by varying the twa scred contacts.

Sinct foob will bear the word "olvms" when relay are discused, it would te *rll to sudersand what the sevis means. The amount of cuftem thai flow thruagh a sire, relsy coil, ur ramar, esk., depends on the voluge applied, the thicknen and length of the material and the nature of the moterial fiselt The tesinunce so the pasage of currem is meatured in whims. A resistance of one obas
 digrec. Ohas's lav teates das she Cartesu equala Voltage divided by Resivance Fiff evansple, an oripement having 3 ohm stawance when 3 volis are applied,

For model use a sensicive relay in deniried, one i/ust opuratas reilably on small anounis of current changer. The folvyn we sue hove a fesiftance of atisut 4,000 to 10 , tioo gham. Fivel to uight thedsand ofea are averape. Where vibrat lan is a protilpa ur vhurid then raluy fust operate at simanatily isu curcent valuph, high ohmage 1a deafred became of the resulting greetef contact prososures. Low relay settingas wad to pit ther contacley Gioar cint lacts are gespluzejy eskent lal in say telay, it la Inportant clat the contacts be cleaned vith noo-obrasive matworlal. liae a dollar bill of cipan plece of papet anver i Rile of satulpapor. Rough coatacte lead to wittimg and atickira, and finally corpmeten tall urw. Tu prevent -arcling" betwaen ornalute ard live cunsacs, pisce 4100 nhit cesiblof and a -1 ind condenaer in ser les acrass the relay cuetach:-

When used with twotube receiven whth a large current increase, a relay may be sel with a laggt movement of the armature and a wide gap. Since the mecond tube idlen at virtaally nothing, the relay is dropped out regaralles of whether the receiver is swiched on or ofl. Upon ugnal, the large caurent increate impars a slamming action to the amature. The relay may be oct to operate over at leas a 4 mil difference between puitisn and drop-ouls, such as 1 mis th 1.4 milk.

Mounted as part of the rectiver, a relay autoraatically is shock protected againut vibration. When mounsed acparasely, it should be given sach protection of its owa. Some builders put the relay on a one- to two-pound Lord shock mount
but must be carelill thar the relay so monnted doer not swing through an arc large enough to srike any object．The relay aloo may be mounted on a small ply base and suspended in the sumie manner as the receiver．

For relay adjuizing a test rig ray be mude，conaizting of a sigar bex in which may be placed large batterien（as old uranmituer banerime）．Four pieces of dowel are inserted into hotes drilled is she box top．The receiver is hung between the dowelt，juse as it might be in the airplane．A plags and nocket arrangement enables the quick hooking up of the rectiver．The jack and poten－ tiometer are installed canveniently to the bos top．Uase a mall elecric bulb to indicate relay action，inisead of the exapement．

The last pre tight check of the relay is to wy the rudder by radia canurol with the engine worling．It the rudder shipt，ar doos nar fallow signals pertertly． the ship should not be lown．Somecimes the excoperient is as laole bett mont aften the relay is bothered by vibration．Changes in prop siac，throutle setting． and so on．may be reostied to biur theie apt tricky methods since engine npe may change in the air．The relay mounting thould be loose ensught te avoidf vibration．Weth the receiver properly insallot，and the relay correctly adjusied． you should have no trouble wihh vibration．

Chepler Five
 batteries

Manulacturens divections alway indude das on various sombinations of taueries that may be und with their equipmens．Thereloce，we will not sarver batteries requited for particular rectiven and uranumititer，bui will teuke some observations helplat in dreding what batieries to chook，as well an a lew facu governing batcery lite sad maintemance

The bigger the baitery that can be used，the longer its lite．and the lean fusaing with feceivet of transmuter．Bigger bateries are moee refiable ithan imall ones，eppecially on long llights The maller，optional battery artangetionts thould be used only when airplane size and powet mated beavier，bigett baneries impractical．

Att the singiechannel，straight cartier save rectiven require an A bauter， usually of $13 / 4$ voles，but 5 to $7 / 4 / 4$ vols an 465：a E bartery．which is 45 ta $67 / 6$ volu lor gas tube receivers，and usually $671 / \mathrm{f}$ for hand fobern．

Let＇s consider the 069 RC devigh the smalleal youth ever wand to try．This power is adequate for either a single of Two－rube rectiver，with two pen cells
 of three succh batieriet of two $\$ 0$ vole heating aidh，as specified，for hard twben The ecaperment should take two pen cells in series for 3 volts，aldiongh Engind typer may requite $4, / 2$ volus

Regardles of size of plane，two pen cella in parallet ts give $1 / 42$ volo will sulfice for A supply with singletube receivers bas，when .99 diplatsersent is reached，lour pen cella in veriesparaliel may be used for longer A life．II a 15 or larger engine is vied，is makes good sense to switch to mediumorired Salhlight cella throughouc．Excepting the 465 recriver，it may be desired in bizger planes to increase B battery siite，subutitating． ay ，a $67 / / 2$ voli Barges $K-15$ ，or is equivalent，for three hearing aids，or in $\mathrm{XX}-30$ or equivaient ior $\mathrm{nmo} 221 / 2$ volt
hearing side．Whes uxing compound escapements that operate auxtiary encape－ menis，don＇t we two pen cella when the plane can carry more or heavy batteries． Howrver，two pen selh are mot a touctiand go proposition．As an example of what a mall plane will carr， 2 good 09 engine，with a thin bladed $8 \times 31 / 2$ propeller，will lote as much as 50 ounces

Should buttery boxes be used？This is a matuer of personal preterence．Many tiens prefer to make up baturry packs，raping batteries together into conveniendy sued blocks so fot comparmenus，the leads are soldered to the bateries．Thus， any possibitity of poor batter tontacti it rliminated．Alto，awkward combinst tiora，such at 5 or 16 pen cells，realiy require packs．

Lightreright，old sole ignition batiery bases requite a wrapping of rubber bands，or a apring rightener，to inuure good prewure upon the thatteries and to pervent the batiecries from bouscing look in crashes and hard landings．Heavier

R．C．BATTERY DATA

ust	NOLTAEE	SIEF	TTHE DF CDNNECTIDN	MFRA AND MunBEh	WEIUNT	CQUIVALEMT
E$\frac{5}{3}$$\frac{1}{3}$$\frac{3}{6}$	$1 \frac{1}{2}$	$4 \frac{1}{8} \times 2 \frac{1}{4} \times 4$	PLUE 2744	Su＊6css 41		EVEREADT 742
	喑	$4 \frac{4}{4} \times 1 \frac{3}{4} \times 5 \frac{4}{4}$	FLW6 2144	ELNGESS $4 F \mathrm{~L}$		
	${ }_{1}$	＊昷 $58 \frac{2}{8} \times \frac{1}{16}$	Put 2144	bungess or		
	4		PLus 2795	Bumgess F4PI		
	5	$45 \times \frac{2}{1} \times 30 \frac{1}{4}$	Piut izts	Buncess ir 42		
	44	$3 \frac{7}{7} \times 2 \frac{2}{7} x+\frac{8}{4}$	Put ev3	Bunces B96		
	45	$3 \times 2 \frac{1}{18} 34 \frac{18}{18}$	PLus E73	Buncess 236		
	$67 \frac{1}{5}$	8 $\frac{1}{4} \times 1 \frac{618}{4}$	Snaps	SOWCES5 5x30		CVEALADY 467
	50		SNAPS	Bumbess N60		EVEAEADY 490
$\begin{aligned} & \frac{x}{8} \\ & y \\ & z \\ & y \\ & y \\ & y \end{aligned}$	1%	$\frac{1}{4}$ Bue $58 . \frac{2}{8}$	BEASS CAF	huncess 3	\％ 01	CYEAEADY 3iz
	17		Bhass Caf	Thumsess 2	． 502 ．	EYCREADT 915
	8	$\frac{3}{4} \mathrm{D} 2 \times \mathrm{c} \times \frac{1}{4}$	Bhass CAF	Tuntess i	1562	CVEBEA0Y S3s
	15	15piks $2 \frac{7}{7}$	BALSS CAF	＂humetss 2\％	$3 z^{2} 02$	
	17	$\frac{1}{6} \operatorname{eng} x \geq \frac{7}{11}$	BHats cap	Bungess ses	1701	
	17		F440 7344	Bungess TE	402	
	$22^{\frac{2}{3}}$	$\frac{18}{65} \times \frac{7}{5} \times \frac{3}{4}$	bass cap	10 0L） 045	502	
	21\％		FLat beass	Bumbess yist	102	EVEREADY SIE
	22 T	如交 $\times 2 \frac{1}{17}$	Plat enats	BUADESS Kist	z．7309．	EVEREADY 420
	48		S064t	Bumcrss xx30f	47502	
	45	$\frac{5}{515} \times \frac{17}{17} \times 5 \frac{8}{15}$	Suars	Bul 6655 Ex 30	Es Dt．	SVEALADY SIE
	1	产pasistict	b4as 5 Cal	8UAGESI 2	S 02	Evineady 315
	$1 \frac{1}{6}$		BRat5 CAF	Bumbrys i	is 02.	EVEREADY 53s
	5	$1 \frac{1}{2} \times 1 \frac{3}{4} \times \frac{1}{19}$	Plut	BURSt 55272 Fl	1302	

 an＂Mrncell
on＂e＂sict mattert

Wenmenetwom
gaupt boses eaperially designed lor RC wurk are availalule Special platic bose for four pen ssth sere obsainable．The batteria hit vertically into these boxes Eack bors in in swo sections，beld sogether by meant of a long kcrem．Convenient Bangen make it cay to set the bever upon bearers cemented to the faces of adjoining bulkheade

Connections are made in varibui wayn．II bowes are not used，the wires are voldered directly to hooth A and B batieries，and escapenend cells as well．Avoid overbeating she bactenit with－an oversired iron，especially hearing sids．Some batieries have pivg in of aurap－on connection leatures，secure the strap（mnapa on like dres maps）with upe（or salety－

Far tranumituers，B battery size is limited by the hall and weight in the hand held cave，lnut in stationary sypen the largest powsible batterics are recom－ nsondel for loing Iilc，Sufficient space cxisis in any tranumitter lor ar reavonable size A liattery．Reference has alfcady betn made to chocking batteries under loat．Whast the banamituer leying switch is cloned it will be lound that is butteion may drop anywhote from a valt oe 1 wo．to lewween 5 and 10 volth， deprexaling on the sire and age nf the batuerics．Hut once the batiery hits the mimimum voliage moler load，as ahown on the volt meter，watch to wee it it gradoully lctpo on lesing voleagsi zuch as is or 20 volts．If so，discard it．

The craperest batterics may-be placed under lowd with most uingle tabe receiven by wwithing on the excionient and leaving the rectiver switched of The relay thus alropn out, closing the rantact ts oqerate the exapement. Where a spurate sxcapement switch hen peavidel, sums an the receiver and eranamia a signal to cause the relay to strop ont amil work the exapement, or carefally move the anusure wilh the fingor to intile concack. Meatiant the voluge at the swapkisient, mat at the lattery bos or pack. There is a voluge loss along the line whew lengity leads separate texover anal exapement.

Konse Biers may ux basteriev lop nany sueens of dight, whereas others,-with the same swpipment and baterion oumplain alowit latiery replacenent eows.
 four linics the aminunt of time that ihey were just in the air. The vollage actually riad during thes. riat jerionds.

The mancuviraliility and adjuatmen ot the plane itiell affecs hanery filfe in twath tranmitues and receiver. A slow, gently noyoowling aipplane which reyuirs suatained application of rodulor, in Ruinsing ilowen is and socapenent
 Iength of time thes batteris are unaler lecul, in cold weather battery voluget
 kuwn. Howewr, the same hacterien whes heatcal, will show higher tradinge.

Batiery lite clarts shosldf be divngapiled as they are wnduly optimintic las our purposes. We ate not istereted is have loeg a lualtb can be lept bet, for expmptes, bui in haw long the reeciver will tusction rellably. Kecerver voluge nay fo alave minimsin when the plate lake off las suppose it slope leplow isisimien is the airl Alsa, when myuipuens is aparavel wat minianas velogen,
 is where the enuipares bevemer margeal. is is letiet tir allow ymorsell a calory
 th the cost of lime and the maserialy in the platic, in say nothing of ate axpoiaive rasio, is nas important.

 for receiver operation-and diexe are lresh, Many hobby sheps carry bailerion

Chopler Six

ACTUATORS

An achator is a devere for moving the radder, cifvation, at of her controla
 eleciro-mechanical deyike in wheh a fevolvigg arns. pewercil by a iviond lapp of ruliber, is released and allowed io torn either an sighih or a quariog pevilontiun when ite magret is energied. The escapeneng maven a wire linkagr, torniue rul or, by mapass of a bellesank, a pash rool, which, in surn, meves the control purtace,

The serva $i 6$ an elertric motor poowred ilevice which, by akases of peduction gean, worth a pash roul lar moving cuntral sariares. Apporesimavely the sive al an excapment. jpirhape slightily fogger and hraviet than the average ocapocment. the servo applies utongen forse more privisely. as lot triosung elevarors when multi-chamet reveiven are used. Although exapements art more selvif beed.
 applications. Current way the supplied to both ryper of acroator with jeen cell batseries.

Although rscaperments iake many furns and shapes there are sely shere basic types the two arm self neutralizing; the fourarm; and the nompound, or single neutral iype The self-neviralising type issumes a tobitol poution oo signal, and returns to neurral when the tugral tfroninates. The lour-arn aswars a hall-way position on sigral, then goes to luit position when the signal ternai nates, and does not retien to heutral until meved there loy an additional signal The compound selects leit or right, of the second conurl potition, depending. on the number of signals (one to three) transminifed. If remams oe the selecied position as long as the foat pulied signal is held, and afwarn Returns to the ganse neutral when the sigral terminates.

Starting from spural, the sequeser for the two arm exaponent is es fellum: neutral, right (or lelt), neutral, left (or riglo). For the louparm is is: neutral, half right, full right, half tight, neugal, hall left, full lelz, hall leit, ncuiral. It, too, nay be started lor left rudder fors, depending on what had been the bais movement. The composind has no seypuence, always giving the canse eonurol foe the same number of pulses. When the contpound is in the extra conaral poustion, it docs not turn the aifjlane, but closes electrical contacts complesing a circuin to a cromel exapement-which may be either two or four-am, of a relay, of a servo or otber alevice.
 Irom five to abous axclve olums, with an average of abosit uix of seveu. The more of the higber the ohnas, the less will be the hatery drain. Low ahan exapemens rum down batierion more quickly, although batury drais is net a problen wish

4ny neapenarst in the markel. Ben with the higk whe ckujecicn you can une amaller batuerict of get by for longet with the usoal batierien.

Dos not wee anore vallage than catied for by the manalaciater. If the directions ay $\$$ rable use 3 velus if $1 / 4$, ase $4 / 2 /$ Exira volage raiter cain with some twoperentis. Rrideal magnrtian is one commoen result, which causes maflune tionieg of the eccajoment. This form ol magnesism bailds up with rapid use of the devicr, is whet pulsing quidily. When the escaprosest is allowed to Hand, the midual magnetism mar disppest, making troubleshoniung bopelew.

Esamine new ecapewints wisler a inagnifrieg glas, dhecking tor rasugh eders, burri, peini dropien, eic, that inserfere toth the arois sliding free of ifie due oder or aliering the sritical gaps. Don not hite the revalving orm or pawh, +1 the laco may eet out of alinement or the armi hraame tus short for reliable upecasian. Do drest the surlare of the daw end, if necenory, with a Sne some. When a larr drvelopa, as in trequently dorn whh service, engine vibration amiss the exaperiment to work. bas is may "hang op" during the glide lor a tass of conirol.

Any grod tscaperment will allow lase of reither $1 / 1$ br $9 / 16$ inch rubber, If ajpping orcun and there is wome doubr aboui the escapement, reduce the sife at the rubber or place lea surns upen in. Thit is parsicularly irue of home made ecapowents. When asing hravier rubber and many windingt, thare Irequent indpocian of the escopernent is nesruary because burrs develop more easily from the greaits impuet.

An resentisl part of the escapement sytem is the linkage which connecti it ss the conarol varface. Sloppy worlmanship. poor dewgr, and inadequate mainirnance tontribuse so peot conurol. For instance, a long, toothin wire torabn ber may. inas wo that regvired ruddet movemint dots not retult is the aif, or, at high apeed, the amoum of rudder movement may be cut down:

Allow eatra sleasance beiween yokes and pint mo that the pin doesn't jani whin the pole shen the rudder is in the full geve penition Where the linkage pasiei dhrough a bothing make the bonhing intide diamifier a srifle larger so that ruat or roughnen on the wift dorn't induce friction that slows down or recands escapencat action to the proint of sippist of jamming. Use fowdered graplitic. not sil for fubrication.

Aroid encesuively long vole at the end uf sorsion reds because vilirations ma thale them hard enowgh to interiere wish escapement artion. Ineria of the long yolet may caus the tevelving arm to bounce ofl the pawl. then so slide on by in the next rudder position. This ir eipeciatly true when fay pokes are bent in the same direction: she wass of the linlage it thes se far off eenter that ertacic acnon casily rtults.

Because the vell-ntutralizing rypr ol rxcapement gives an all or nothing pasi. tion to the rudder, that surfare being rither all the way over, or in uruital, is is generally secesary to make repeaied applications of contral in the one direction in anter te comsplrie a lurn. It the radder was fichd over continuodshy, the nose of the plane would drop and enter a spiral or, in the case of a good serotatic machine a aplits might joult. A rally powerful, maneuverable redder-andy job frigtid even do a straight line roll

Suppole. lor exsmple, that the nest rudder position is righi, As right rudder is applied and the plane begins to overbani and drop the nose, the operator vrleaves the signal, allowing the escapement to return to neutral, buit he ingaptly applier opposite, or lefr rudder, srlaxing that signal before the airplane an respond, and then applies, and holds momentarily. thght rudder. This process may hwve to bo repedied several ames in complex a 560° inve. Fliers call this technique "double blipping Wish pracuice it can be done instiocrively, quickly, There't a handy rule. It you don't want the surn you lave, give it one signal; if you want more of the came thing. give it $1 \mathrm{kw}{ }^{+}$

Thic incidentally, is why some hobbyists ate workigg on proportionate rodder contusl via sarims puhing sywems However. ponsible to trim a properly
designed plane maintains a perfectly banked surn once that turn has been begun: it's a mather of dibedral, and seater of gravity posioon, mare than anything the.

When uaed with a pulung sysiem, a magnetic actuator don prowide proporrianate radder contral in either direction. However, while this sysuem allows more petecie manruvtring on rudder, if adds more gadgetry and things to go wrengIf is necesary to have an rectric motor driven, or electronic, pulhing devire ateached to the transmutter. This gadget, tusally abont as big as a suall sime cigay box, replaces the keying lead switch. The mechanical pulser sansias of a revolving drum and a conirol stick whose inner end sliden along the drum. making contact, when moved right or left. The turface of the drum at one end ar estirely metallic; at the other end ir it entirely of wood. At the neutral point, or midway position, where the stick is held lor neutral, the surface of the drums persents an evenly upaced ahernating wood and nartal sosface as is revalves

Eack time the stich pawe aver the metal wurlate of the drume a signal is tranimitied. The length of the signal abyieusly depends on the length of tima the stick reill upon mital, of the perocestage of meial on the citcimaleience of the dram st the paint where the suich malet cosact. Thus, this is a polse lragth vyrem. At the one eisd of the drum, no signal would be sent; at the other ead, a sontinuous ugral wsuld resule. In neural, the onefls are of rqual length, the rudder wiggles baci and forth in reaponse, but mows toss las lor the airplant 10 obery and araight fight revulta

The ragneric actuator in the airplane h connetred to the telay in sech a way that, if the relay drops out, it moves in ope ditretion, rumbing the rudder an ryual amaunt. It the relay pultion, the achatior moves in the opposire direction. As the graund coocrulirt stick it moved to one sile al the drum or the other, the gelay in the plane tenals iv remain lunger in ther serresponaling position. It is tithet putled in most of the times be Aropient out most of the timet, dejiending. The rudder, thereforc, will head to mamain loiger to one iude imparing the exati degree of suin dewind by the pilat

 full gver.
 to provide additianal conirols or to remave confusion then using any mequentry ricapemen. The sypues beep thov is a satianise of the roviving dyum pulver, hawever, insued of a varialile mriallis surtace, the drum is enasely sil wood ar same othst nun conducting maissial. anol hat jutiag up Irom ia surlace itraifgically plated pint of sopt. Mowerments of the comtrol mirk engate the projer tioph and, daring the briet inerval of lime consumed in mowng frome

one uop to another, a conlact ariangement at onc cind of the drum wands oirt the seletied number of sigrals. A slipping clatch system allows the drum to renumst apeed as soon as the suick disengages the last slopi.

When considering surh shatems, of multi-conirols of aily kind, ilo not write off the winglechannel receiver and rudder-only control without wial Rudderonly it a thoroughly satislying way to ty and is takes a sop pesth pilot, cyedt with the most expensive equipmenti to beat ous a capable rudter-anly nam at a contest.

Chapter Soven

INSTALLATIONS

The imaliation of the roxelver, haticcion, sud ricapeturne in an sifplane shoutd provide protertions to the Feviver, feuninswan tos ther airplane from the
 and to the batietirs ine sherking anal trplatrmenc. The excypoinent and its rubber shoulal the acceuble (ar wrvicing The sccher of a goul imallation is in how where everghing lat to gne frefore the aspulane is hasheat. The plane should be dexigned around the rastio cquypmens.

Brginning point is a (abrin sjoribin enough to allow exvy imallation and remonal of the fecrivet and of the haserif and corajomaens. if shas anins happere to be within the cabin juoper Recevern wually are monamed by ivo merthois.
 ruliber, preterably aviantied to a thidime trat nt polywoal vbich fis agains the front bulthead al the valin. The tatier in the wiperior wiethod brvane in is quadly termenable and highly wash resitasi. Jo preven a ruhtarrband wayended receiver from shooling batk and louk in the cation when the plane sinkes as obriatle, a tether cord is tied berwres the rat of the rlaws and mmet soliotiy pounted struerinal pafi. Hike the vear wigg hold dirset thowsle Leate only alight luch in the surd. In cither mashod it muunting, be rure thas the pedeiven cannot hang againat potenciometers. jails. or oabet objriti byirking out loon the cabin walls.

 a yecial plywool pariman, bulkhcal, etic. Wites ifoon the batintion iemmanate
 fereent vibration Itoun breaking off the soldroises who
 wient (comitractal tefore the husfage is reverril) wh a ranvenirm liovh sither of top of the now, cmider the mas, or bundry the raten. The feoper remier et graviny pasiom umally slumandy that thew baiserics be liwated tortand of the Irading olge. The Hroitute thoubd be sied togothet thrugaiow in that bascries cennos hoork loour the aljareat butkbend, for thould that larlahwal tre easly
 nemplthes the prablem:

Ratipry boxer masu be accrwible The plavis syle with wolical moanting

 with a large reinovable haich forising the fontome of the fuelage at thay poune. The Hoor ahould be plywoodi in piy should te alequate lis the largat of phones

Potratiometerk phone jacks, and swititen aho shoutd be conveniensly located out of the way lor launcluing (wometimes switches are accidentally tifipped off daring laisnching), and our of the way, inside the plane, lor the receiver when it if bouncel about by rough landings. thwally, thase paria they te grouped
 stallation, shoutd be eefnforced with a piece of $1 / / 16$ inch thick plywood, The iscalion of shasu purto waride. blut poaz cumanly is at the teft, of the fuashuge, radily availstele to tha tametior.
 faselage tap, tack at tha ving,

The milliamaieter should te atochend simectly so the phoso puluge because long leals may alfect iuning. The meirs ran then be inseried inte the phono jach duritg ground chechs withour havimg to hobl it sith the fove land, or to place the plane upont the ground beraus you dan'r lave three antas Sometime it is deviralule ta slip a mofier inta the cirevit with the engine ronning to help belate trouble. Itierefort. place the jact se that the meitr can be aned without taking off a wing. If two jacks are woal with a fooulle reciver, porition them

Wiring inside the plant thoold not whe lowely from point te point, but should be broughs atong, and faterned ta, the laselagr aden or boutum so that it tloen not stutt about sibh ald effers open the fecewer lave wiring is vulnerable to wioration. With sether batiery baser or jacks it sill be lound
 recciver or ta the vacker inio shists the meiver calife pluge Imbvidual wire

 anywlere, bus allow enough slack ve make 4 tmall pigisil sa absorb vibration Thit if particularly tmporkani where wive atach fo swishen se entee bawey boses. The soggle swisches rather thas thide typec:

For the Bier wish mort than one aigplane it in a good idea no sandarditr insiallationi. bit that one receiver imay be shifird from plane to plane. A reiriver cable with plug and rouker is ideal. and the recover mounted upon a dide as most eavily interohanget. If cation incerion'are behl to a standard dimentian. a bala bos can he buill to follt the receiver, the exapenwen se wervo, and pertapn flie batierist with all the siring Swischer, eic., woeld be mosused on the bes and proitiming pirth tweh at swish handin, rould ho dropped shrough holn cit in the airplane shin The meries fath iould be inactiod through a toole so reah sire bas.

 mint ryperal. [pencia idean.

Chapter Elght

THE AIRPLANE
The RC airplant is as murth a spexial devign as a U-control seunter, speed model, ofe comest frex tight. It once was considered necessary to have a high powrred monsier of eight or sch-tuot ving span lor RC: with a grons weight funsing at high as fitieen prounds. Its "crew" would spend unont of the day sinkering wath its innards and then ussally crack-up along about sumbet, The bunider was banishedl merrely to see it If. No sperial atichtion was given to how it Bres, we to she Hight sharacieristics it shonthe prosectis

The mosen RC. job spans anywhere Ifois thiry inches to six fect, shough a Iew propfle always will watit theai ligt Hall-A engines are practical. A; is to -19 engine sill carry anything required. and .27s ta 35 s will stunt the heavicat esallichannd receiver on the market.

The newcomet is RC has misconceptions alxout How powcr." it a U-courol seunt moold wrighing thiriy ounces in powted by 4 Fox 35 , he reasons, how can thin loadedalown RC job be rapecied to tly with hall the powcti Aciually. the RC ship is trimmed to Hy tiat, does not hang like a Irec Highn, wo that most of itx thress in devoted to pualling the sirplanc and not ie fifting its dead wcight aerticaliy. A 29 in a lighty Isuile five-loot RC. jub will separate the men from the boys.

At bigh firward sieceds, coutral applaratioers sabit in aboupr, lercahnaking
 patwer bading, (wlight in aunces divided by diaplarement ie cubiec inches). 975 onnser is a good all around figure. With a good engine and coeren propeller. - platic wound tarely fy at 700 -ounce pownt luading bar thin is another catreme.
 nerosaty of frequent suindowns to kill shat alutorte, vidh atiendant violent nesoverics and rusms which may roult in the airplane geiting out of hand. In a. winal, high power is poisen.

The RC. ship stumthe not lee needlesty heavy-or, on the other hand, a -linatert Gamal thghe chapactosstios resule from wing loadings hetween fourteen asisl vightects atmees per spuare foet nol wing arca. These paseer and wing loading
 shif linger jisin. Ther varnous hits available trons your slealer vill fall within thaw limiss when biowl wish vadar and loaded down with batheries. A rough

 mark with the mape uwalerate fuynen in all rawt.

If you tesigh your bws inuchates, some ksowlelge ai latest trenda and feoportians will lee bejpful. Ayeet rave, or the relation at she span to the chork, of width of the wing, is low when conrpared with Irer Hight, raneirg froen $\$ 1 / 2$ to 1 , to 6 to L. The tail moment arm, roughly the dintaner betwren ther centen of the wing and stabilizer choodh, nexd new be langre than 40 por cent of the span. Stuntable slesigns are betoming sharter and shorier, woh as liule as two chord lengits of distance berween the wailing eflge of the wing and the leading edge of the siabilier. Nose lengths, nn the nthes hand, are beccuming longer. A distanct equal to aboul wevelity live per ocny of the wang thord. between rear prop waher and leading edge, is a good mininum. It es alwayt a problem te get an RC plane nose heavy ennugh when properly trimanal.

Both wraight and polphedral wings ant temploged. An cavewive anawat of either gives rough turn ensrier and an ahrupt nodingtaur recovery as won as the kignat is mopped. Too little of either, and the plane has a sendency so sury in the turn, to develop spiral diver, unlest the obribanimeg is packenied by use
al epposise rudder. Measured on straight dabedral an angle of approximately 6.7. gives beck all armand perlormance

Wing and stabiliaes seitingi are amportam ior stalsility, resistance to stall tuild upe and quick revencr. Wuh a symmetrical axus section sabiliser, the angular differance should be at Irast $4 / 6^{+}$and not more than 5°. With a tifing sype sabhiliaer, this angalar diffreence should never be Iess than 5^{*} because, in spirals, diver and other maneuvers where air apeed builds up, the stabiliver may develop more Ifta in proportion to the wing and dive the ship into the ground For the sanir reabog, it is dangernos wo increase the positive incidence in the tail by means of thims. Onte the angalar difference leccumes too small the plane has poor stall relimancr, mby roller coaster in the twhd, or dive it from a ipiral.

Virnally all RC planes require varying amounts of right and downibrust This pretably averages out to ahout 2^{\prime} righi and s^{\prime} town, Nome airplanes have both wing and rail iri at a positive angle sat that, while the thruat line appeate parallef ta the ground in the takeuff pesitisn, ther is actually a buili-in, though nemivible, downthrust. Dosenthruat witt make the plane fiy laster through is efiecr on trim. It is imperative on shar gididing planes stial sed in Hy appreciably faser lander jower.

Twa lowic syarms of crumming arr prarsired; yoisr choice devernanes what pod do ta the fuselage during constructum. Wath cither wystrm, the eenter of gravits, of CCb, should te well Iorward, anywhere frass thirsy 20 forly per keas of the chord lact of iter Itading edge. (Placng the CGF barilier to the rear invites trouble) The roulling nose heavy glade is eomperneted for by frierating the angular diflerrone, wuselly by incroving the amerunt of negarive incidence of the sobiliaer. In the firm spaces ther sing is plared tian upon the fuselage top which thosid be perallel mo the ggound lome Ihe vatolive in then wet with is leading edet al a nezarise ropie of liy io $13 / \mathrm{a}^{\circ}$

 angle to a line parallef to the grourod tine as murh as five to 8^{+}for the wing, and "/y to $7 \mathrm{~V}_{\mathrm{j}}$ " for the tail oi wime othith aminpint depending on the necesury angular

cerned, and iends to give a buogant aitplaur in manevvers, one that "pops" vell for loops. The frys system may rrault it a haghly resporave ship on ruddes and high wind penctation its fooperg abtiry may be redured womewhat and down: thrust fa appafuat to the eya.

Ebth tricyeld and twa-khee! 1andicg gears aro vidunly ubled- The former rakes the suree takentrs and protecta propetters Lether phe rough fhelde. Then 1 acter $4=1$ ighter, easiee and cheapar to cuat struet, unt wilt takee aft, provided the gear is ptacea fat onumb to the reart

Muifscontral planes have hegon a nend wemard swmeruical ang seciona I ta U-conarel muniers, and short coupled livelagne buch marhines will perforn outade foops ai easily as the unsdk variriy and will renain on their barks nuare readily than those using such airfioils is the Clari γ The symeetrical sestion

cuts dower paltowning out al tarni fr toonsint in a wind gwit tod permity mosh
 flying char aciensilss tal the prane Thry mas) requier a move forkard CC. pexition and, possibly, a small angular diflerticr of by tw I' Wish a marward Co ot large anguiar siffetence. then ient in whry intu wut ipens whea arallent to has
 wanhour for prevent ifg ving tip atail lad. Wren the plone in inver, 1ed, wakhut Lecames Wathio and a vicg lip Vill otativ roiliong the Airptane upright, Six-limes lang seolisers are atequste tor a 3 1/2 Fobt machine. ufth athers in propozt jan .

Il struitural design is good, a radie model will nor beal up even in a bad crash, untens it atrilits cement of hard eatrb. Fuselage comatreision may curcias of longerons and cross pieces, or of sheet talas siding and bullhadh. The metloot used is up to you. It longerons, the wood thould be very hard, and the lormand sections of the fuselage should be filled in with theet balsa of the same thickneai. A then lacing of plywood inside the luselag: at the nove vill iscrease sureggth thorimously. Sheet bala fuselager may be lamimated at the nose from variouat thiclnesses of materia), tanded to math the top viea tontourn. If ane or mone thicknesiev end at a bulkhead statioa, that bulikead may be cemented to the bus ends of the sude plies, and it will then reast any forwapd dipplatensent an from battery impact.

II the material does not have to be curved, as ween od the tep vien, it will tale much higher impuci fouds. Probably the strongen nose ponuruacion rewla from the use of light balsa blocis, earved and anded to the proper autlines and crots-sections. Motor mounts and buliheads that tand in the tay of batierien
sbowid be ancliored and reintorced. Fitherglass nock conering is becomang populat. Fibroxast puiching lis may be obtained at boat supply houses and some hobby shopn The hireglass is astached with a special resin which hardens within an hour of application. The reoulting surface is impervious io hard lnocks

Moss trowbles revulting from wing construction come Irom warps. Warps greak sndicin dificultack in adjuating and flying and must be removed. Silk and aylan covirings exert a pamesfol pull when drying, and may coatinue to pull tughter and tighate lor some weeks after completion of the job. A wing of nabiliser asay pich up a warp when sanding in the hot sun

Almast any wing can be given warp resistance by the addition of a top ipar lawly plose to she sailing elfge. It is the tear corner of the wing that tends to poll up, shis tendency is aruse as a single spar wing. Ceodelic consuruction, a ha she Hogan rype of Jree flighs, would be exsellens on radio johs. Watch the wing panch shen the lorsi coat of dope is drring Counter any watpe at they
 ixion sestil it is icr. Doper o half vipa at it tard mat your atten.
 xad abyat vir drogs of conter ais in the suiple of dupe for the tavt iopt of then. This prevents axcpssive pualing.
I0 iterofe tarps in a tinished vica, tola the panel over a ateam Abtile ar pether mate mecrece of heat and, otilite tho wing ia bat, twisk in in the vigualte airwetion so the vorp. Create a warg in Lte oppoite dicuction as ita wiginat varpios taudency will carncel it out, Oy tho virg war De haces $t 1 a t$ op the benchi wije the

 midth.

 pacs (ogetitet

 with paper or latrion

Chopter Nina
HOW TO FiY
Before coruidering atjusumens and Hying. provedurs is is werll to under-

 airfoil, prongunced sicralage (amgolar thlfotinec), in lagha woght, of amt cons

 a calm weather airplane, bou ane ihat leape rawly when suanerg is thined. A ship having any or all of the upposity aurilumes will thy laver anal wrh liener wind pehetration.

The RC, job is tand ginted hive ant Iree Moght aerplane anel the fanstiar
 at the landing. If tail heavy, the weighi may he ahilred lorkaril, impilence removed from the wing, or addled to the sabhilizer. Hus if anguiar difference mose be decreased beyond the sale limits perviously deacribeal it is necriary to change the CC position, even if some rebuilding is neresaary. If the plase appeary nose heavy, any or ail of the requared currections are in ocrler. If ammearasable an strastic adjustments become nocenary, revie the aifflene belone aliempring, to

a) il. Tose somestan baypens ta she mast expen bufidera For ckample, a plane bawing s bad wing warp enay lall olf en the wing and slisle inso the ground when
 could han the gionmal.

Engergin tar llighic are made with a miodetaie amust of power. Do not
 to poll the monhase through mild falle of muaby wimi alsiuden. Do not lean wat doe enfine, ow the other fland, because goot vim may resule in violent room
 the juyplley wn lackward, then promit the engine so rev ups. Abeut une-bird the Aloruas is fou tat the engine will rum reliably and develuy enamght thriat to climbs fler mectorm: Toryue docs not vary drastically when the prop is reverved.

Os the frut lew Aights un ewoagh futi to last fhirty seconds to a mimete, al
 make ant bunn ment shan 45° without tocongy in the upposic direction. Thit paracots the slup lrom brealing away so beal downwind at the result of over-

 renirol agion shemild be incrased or dexitased for reliable retponse:

Rodder maction will saly with the living speed of the airplane, diffeting
 thip bange an a prop or mamhex during wormal tilght, rudder respouise is sluggith. To elimenare proiodic lapnes in rflective radder action ber sure the ship is trimened ptopesi) Iry io mommixe the difference between powerion and glide speeds by lerpang the gbal a wille Lat and the rngine Ghruat slightly roduced, In a pioperly dengoed machant, tha diffrime a never severt.

Kuddrn tryporte showid be sufirent to take the airplane out al a steep turn and ie swing in intur 4 sifu in the opponite dirsction I hus, it the airplane is placed amdqeriently in a spisal you can be sure uf maling a recovery Many a Elat Aght bues loet made ly holding radder suedily against an in builr surn Itadeng. puu becauke cromigh rudder sespunse had foot bern provided This is
unother reason why long mosser rans thould not be ased with a new ship or by a beginner pilbit. Morly adjesied modelc. which intludes mant new tirplasen may build up violens maneuvers, mpectally when the fiber is inesperignond, so it is reassuring to know the engime will nok run forever, Ot courne, toe mach suddes response is possible. If you think you have taira faditer erepopese iry the conorol giogerly the frst time, and den't hald down the buspore.

How much zuddet muvesueni How much arcal While thes is hard io aniver because of vartations in design, it san be approximatiod. asmanag CC, povition forwand of forty per ceni of the wing thord. In this raw the movalie rudder should be abaut twency per seat of the topal pertical tail area. A gall shin rudder is prefersed to a ahork, wide bet, as its actios is mave villective. The lation type is extremely weak on the glide, soniequently fosting an excesive ampoung ol area or movemens that makes power tighth foos rrspopine. in the sase of ans .09 to . 15 porwered ship. Ytisih muvemine af the rodder to either side should be plenty to fegin with, and it may be sul dowp to 3/16 ar rwon bimeh movement later if deired. Ouher sise hypt may be juiged acrondmely. This setop should give abrupt resporse, enough to take ratr ot any sumtingency doring trat Bighas

As voan at the plane becomen aifbanne is bill ber ebopon immederiely whether iof not if is our of thm. Any itadencies to tall ar nim may be surrected
 nectsary in ofder to make the plane Ey at all heliare yeu grt chance to analy ibe glide, remember thas, utrmately, the gliste should be periecind and anly then, the power portion of dhr dighi. Thin in the ame procesfure uand in tree flight Power adjustments se controlied by down anal nide throsi L/e side thrust io make the ahup lly straigh and down thusst io hold dawn the noae blile the

glide a proper
It is smart jeactice so leave jum a पete of a circle in the plane, botk under pewer and in the glide so that, if anything thould ga wroug. she thip/would ceetr a minimgm amgunt of ground belarr vimang to earih.

If it betoron impotuble to hoid down the nour with downthun under powirf, the glide being correct, a smalier engine or less thrus is required. Thrus can be reduced by wing lewer pitch propi, maliler diametert, and rich running. Wide blades therk blades, with a lot al wood, will reduce pum's by 500 of more Sporr Jurle adding cassor sil to hot fuche will thelp An excra big prop often hat the appenite then to what the flier esperis. Engine chiciency may drop of, true, bat the propelier efficiency if sa high that the combination of rogint and propeller a mote effecuivt than belort. The intake opening cas be cut down with a wooden plug to shas revolusions are leas even when the engine is leaned nut. Or reverse the piope.

The mast important trich of the tradr is the billitig of tulth, resulting from matieusers during which speed builds up, by we of rudder. When the nove comen op, surn the ship with rudden, just enough to convert an incopent zoom inte a dieblong iurn. E*on a wrll adjusisd plane saseusiss sialis, as in a recovery from a speral Amasing things can be done with rodelef. A ship that is aloghtly nowe beavy under power, can be kept alaft by sarsing a iwn it som slirectnut, thin alonpotly reversing it, and contisuing the action lat as long as macssary. Propecty donc, the plane appearc bu ruil from side to side. This towking notion will get a plane into the air alier a peor launch ithet nuglu suiske ibr sinand; of licip clear otstacler that loom ahiead it with aflect a gueal baniling when she plane comes in toe sietp and fas Slowly vaggling the rudder, renkite, ther wings, will

 additional speed as the nose drejn larther, then ssing tajowise mblter for
 out for a scale type landing.

Halding surady rudder prodoces a spiral: break the terevory sumith and wall

 loop. A snap roff thmetimen can be poriomed dariug, the tevovery trum a ypiral by quidily applying and instantly felaking rudiker, as lelt tmider aliet a right hand sparal, then revonsing and helding the roduer (tigle it thin sase). A slow roll may be done by holding rudder breilly until the tsine suats dowai it a surn (beginning of spiral), then uhing oppesite rudlet urtil the rane again fegins to drop in the sther direction, and reprating the tioking attent trith the plane

 spirals danc after spirals, all of liried durationi, antil you'll dicuser thathols of

performing many advanoed mancuwerk.

 fast in a calm. Since unodelers are pilakeral stoth wrole it is bater her arien hur

 that permits only a gentle turn in the salm pundaidy wow't tures the shap an all

 Biwind. Hways awaid letung the plane get leminel yes, of therweind fory lar ricuigh uprwind so that all tutho nay lie tuappetal bhth the supp will m Irom
 agairst the wind, luoding at is max nos, than it in te inaitrol ic whe it as going

 far a few wedand until it ingoithe out its light path. This is a good rules woe. when prolarming uants when the ship gets inio some awkward ponitien. It will Hy itself out of trauthle.

Censistent, ascurare spat landingy can te made by manding cot ar an neas
 is it done with fulf sale aifrals. It a standanl purwen is follonool. if shmild be pasible to get the sirplane ibfo an iskrntiral loy panitian fer every aparaseh.

 whosiiy is wisill. unal wise vera. Hy terting ap a lave logg, gas jawvide yoursell wish a mulopile sumber at peoniv Irmes shath the shay cam heally for surneal imte the hal ajpinash. With prasisv, il levener powblle is reasel the corner
 and anall, havy and light minelele will vaily greath, bay a Nanilard pattern

When high apk it is bettre to manenver werlecal thas it is we glate ier away in orider to make an appriach The lime apprash is verp hant ta polgr. nje sally with a las. shaltow glishigg plans ksess alonute can te diswiatert by
 the labding jultorn Gietater propeller diametera and lower pesthes asiak slomb, enkrially is combination Low puther baser hor norse thalh tinct thrust is mainsimnt well despise a nasehigh alonside the plane hangt an the poop and may whip siall. High puch prope slop emough we take the edge wifl seals. Hus in
 and very high air spreds resuli.

The most sailable prope for all around pertormaner 9×4 to 5×6 on ism

 Hying iv job would use 99×6, buil a shumet, lugave thap would get manimuse thrust from the II st.
 positure aggle te the thrust line (that ahen is downilosus). I foo pitch, last corning popp, will increace thrus at low auplane spesth, as atiot she laumsh,
 develop she necesary lift, when the thip sores ug. This sucousu tor the lesdesecy of some RG'l to slive soward the greund os Luank. But this iow patch will malr
 pich hill slimb moothly buit, deqelopieg Lorsent thruse at luw anfplase spork. as in launcling, requirs harder rimeing to ght iter plaper estorne.

Mafgias) jerformante reulting Irom overweighe may lie imr roved by
 an equivalent it arplane by the use of a thin blacle 8 a $3 / 2$ prop- A is pob wilt pert up with a thin blade 9×3. Go to narrow, thom, light blailes Ior ligher rpin's and additional theum.
ii, despite proper mounting of the radio and adjunanens of the relay- jow theounter vibtation isoubles, niake wote that the propeflers are carrefulty balationd
 for instance, turns as smooth as wilk at high rpms, as an a 9×5, eveven an ill x. thut throutled lack and riahened up is can thake a seven pound airplane hard enough to male the rudder alip. Many rngines have rough spesis in the rpm rapge: the designer sumply did nok invend them se be used with overnimt prope. of at medium rimis. Persuleat overifealing, even of bovien in engines, can result from ovicrly big pisopr, bigh pitchew hot fuels, and hat plage, and thia almose certainly resalts when all these factors are piesent of a hot day. The engine will seem to lean out persastently-but is may be a bad case of averhesting

For noemal fying, onct esperience has been gaimed, three minures at an adequate motor run. The time seems much langer in the air Short mount rums conserve batteries. Unless you reyuire a full tank of fuel for consest worl. there is oniall justification to risking a valuable plane with sen-minuse mover tura particularly on sindy days Even the heavies RC. job an ride a thermal.

Full stuntability Ilepenth, on good fuel fect Da as you would do in Iree Highs: cheal the cogine rumning vith the noac of the plane up, buat get she
eogine to rum nuse-down as well as nuse-upt It inay be becewary to plog the vesturi so achieve tha happy ronslition, A good tank inatallation will feed fart stradily ta any cragise in good coachition, if the foed lint isn't too long, in any maneuver nin a sodder-oaly aisplane. Ang overimed bre llygh tank is suitable but ose of the besi arrangements is a shont Ueunicol wedge tanl. with thr wedgt down. Mouni the rop of the sank atbour one thiral the tank tlejuh alwor the needle valye level. A combination gravity-puction ford renulas. Oves flevatored planet which go throsgh abrupt changes is direction may compelt the wae of a presuore sype of uak, such as the Walker balloon tank with regulator,

Sooncz of lanet every tlice likn to make a long cribs suantry fight, in the divtance, the plane is lisile move than a black dot. It is difficult tie tell whith way it in turaing. Suppoic, Ior example, it was Hying broadvids in sou, and you used rodder to sare it back. How can pou be positive which way it turnod-did it come toward you, of did it go whe other way? II you forgon the s्रquence, this can happen casily. Such aricks as painting one half atr plane one color, and the other half anothes, in ondre so check surnc, is impractical, because the thip is opaque at a slatasce, Good teshnigue for diasaner Hying is ta work the rudder ar regular. Irequent intervala, torning the ship just enough so devect a change of heading. By alvan doing amorthing with the shab, goe alway know what romerol is

Chopter Ten
OPERATION

 slviding lancoica oflay operation, inspocting ascapocuenth, making groumb
 provenlore. Rogen by patimg both she shaip and swuipnsent into order before
 lowever trivial, may ruis a fying achioth. A jwe-lighty check thould include an intyection of sirmbe replacensem of veal latteries (receivet or iranmitter), ashech od the pelay and cwapcoutne, linkage, eic., and fistally operating everything sible the mansuaitier.

Arroving at the held, slecide apon the best location, according to wind dimmion, opes atra, ncarby hoosing ete. (Why is it that modelers iend to group mollcr the ondy tree within a quaner alibe? If you have a stationary type of teansminer set it bp befooc doing anything else. Check the airplane hatueriei and
eve that the transmitter operates the feceiver before walking oof on your ground sheck. This check shoukd be simple and quick. not a Four Pover Conlerence. Assuming you have a helper, worl out an easy syatem of tignals you can't salk. back and forth with, say, 800 leet between you awi the helper while ather engiaes are running.

Whes ready to begin tuning, hold up the aswa the helpes swrictice on the tramaituer in response (why wear out batueries while walking back and forth?) Make a circular uiotion with she upheld hand, indicaring that you want a steady signal held on, while you tone the rectiver. Then, as you note the signal on the meter plugged inte the plane, begin to tune for maximsum trop or riae, as the case may 1 . When tuned, raise the hand again, belper aill holding signal, then diop the hand. He cuts of the signal. Hy up and down movernent ol the hand you can call Ior any speed or duration of signal you want. Idea is, that whenever the hand is up, the heljer holda sigual: when the haod drope, he releases Nignal. The circular wave in the begimning is to signily that jou don't vant the signal rot off when the hand in dropped in ofder to Bune Later, you can dispense with the roqary signal, for the helper will know that you intend so ture. Far long ground chech wave a white cloth to clarily signals

It is surjuising haw ntixed up two people can becosue durifeg a gound deck. Suppose you call for a signal and the meier indicatn nothing. So yout glare at the helper for itupidity in not turning on the tramamilter. Bat he can't see this. You wave frantically to vale him up. Meanwhile be has bees sending a steady signal, and wonders if the tronsmiser is an the blink. Confusian can br avoided by having the helper follow your hanal signals. When the recriver does not work anist you have your hand raiged suesliby. lie halds his hased uy to signity obedience, You know then that the manusiuse probably is vorking.
 distance luciore ralling for a signal. Although the refeiver iecmed in sime next to the tranumitter it may be tar though our of tues at a alediuns diauser not to pich up the signal. This can leat to futile and prouracted waing if the adjust inens is lost, wille basteries rua down merrily anil other Hism un the lield goue

 you will find that a cerain rive or strop baln place at a cerrain dhance and wu!er grosinal checks are no longer necesary.

When ready, is ly. astenable the thip-don't forgri any of the wing or tail hohton rubbers. (And who hast's sees a wiog come off io the airl) Whes you iec shat you can safefy tify, aliowing for other fellom whose planes may be gliding silendy overhend, Hant the engine: have the heljer hold the ship aill taward rou, fitteen of twenty feet away, and chrck the rudder eperation by seneliag a number
 Hy until the rrason is found. II everything chork set, wave the launcher the reftase signal. Always, when checking the rudder, have a lnown position suming ijp. Make it the sume pouition on every fligbs. Mout tien shoove 'right ntat' liecause if is opposite to a left surn tendency oused by torque. If eorrection must be made for a poos lausch one signal wauld give righe form, and iwo left on self neutralizing egcapemenes.

If you nwn a hand-held transmitier, you may have a tigg advantage in being able io launch the ship yoursell while holding the tramonitse. Cradle the vensmitter in the orook of one arm and launch the plane with the pther. The rodder cherl, motor runising, can be made by standing the plase aginat some object to preven its ralling it the plane bexomen sifipjery from exhauted fivel, wipe It of before someone makes a had launch.

It a long Hight is enade, allow the hatierion to recuperase for a aimilar perind Check the ncapernen rubber winding刀 for a long, accive Might can win of a double row of inots on the rubber, Otherwise, alter every three fightis, wind the evcapement at routine and, after a half doien Highis, fheci the airplane latieries. Should the wind be blowing, stand the model on the ground, tail to the wind, io prevent the ship's being blown aver. In the bot win, jlace a rig over the ving bodd-lows subbers which atherwise might suap, perhaje in fighe

One of the most annoying aspects it radis rontral is the aerial trafic jous on 27.255 megacycles. Field etiquettr is suenial. People mase sooperate with each other if tweryone is to get in bis fair share of lights-anal hew about the cal who fills up his tenminute tank when a douen gups are watching that ainking win! It is reconsuended that a comuson culted point be established, If acany Hien are present, they should line ap plames ready for akeot. Anjone with engine trouble should step ande te the neat aman api Who doesin't lave a chat acter who jams up such a line Ior fifteen minases watil he liscoven the glow plug is burned out?

Some groups use flaga: gretn for the air is clear. red fee sumeone on the air Troable is that llags can't yell and everjone lorgets to look at them. Feople paint planes various solon to designate Irequencies, on use nifty sigm and decals, and no one appean to pay any attention. A blast an a police whistle junt belore launching wales up the dreamen bot once a ship is high in the air, they lorges about it. Noisy engines help-ypu can't hear an 049 at 300 feet while bigger engines run near-by. When many tien art out, leep your llyigg near-by and a! low altivude; ton't let them lorget you!

Hut people who ily a great deal together lind it pousible to operate without alling, if they have to Liucn for engine warting. The thap who walla out to

 wothite wetr rmblater.

If is ingotatise that RC. Ilien group togeiber som the beld. Rugged liedi vishatist- dubl tense wrows are certain to wiekt sumpone's plane- A cooperative
 to nell wher a accosial plawe inakes ready lor a lannch lefore the aur in lree.

Chepter Aloven
 BOATS

Radio control basat have become popular and ibeit number increawes daily. Boses have nuay dobirabic fearases. When compared with sirceafi, ihere is no
 tyoipenens lailure or apcrational error and then wually only when a largith, then boes stribes a conorer wall or mher solitl otstacle. Wind is less of a handicapi In warm wrather a boan fis in Inetter with lamily antivity, tinge it can be taken more rcadily on reimming trijn picnics, etc., and requires less space in the car, A loas is ideal for exporimenting with radio eyuipeneni.

Mont bodts are built trom Lits, Esceilent conutruction tilts, some being sale moolela and ouberi of otiginal design, are available from your dealer. Lngine manularturets are following through with various lines of marine enginea, from Hall-A's to 29 of an Many nd thene are geneine marine engines, net just aifplane engime siols tpecial artarhments. At least two manulacturers male small out beanil bype iniernal sombention engines. It tako a critical eye to tell them from the fial thing. Thise croginas clamp whto the hoat trantom, jais tile a big outboural, and are adjontable for angle, and have paill cord suarting. Other engine are prodincel with an awareness of the heat problem Irom enclosed running. Want coolol marrue ceginct are lound in at Irast the 049 and 09 catcgorich

Sevcral rumplear lines of marinc hardware are available, such as beautifully machinest pewgellon, solfang boses, drive slafts, universals, and so on. There is little than can le added broe in the way of inlormation teccause the boats, the netecuary hardwarc, and suriable powerplans art abundantly avaitable: all art of top quality asd if is practically impossible to bangle she jobs.

Woats alo have noticcable difference from planes. Battery weight is relatively unisoportant sa shat big. sejucndable lantries can be used for long lile and ueady sperracien kquipnent can be made accessible by means of decks that lift off, renwvalile pilor houses, and so on. Powerplant and exapement of servo insallatiems reyaife afocial atteption. Internalty mounted knginek adapted from airpline trieghi, sometimes fave given cooling problems in the past, this being ageravatedl ly poer vensilation.

Sonac hobbryists, expecially ex aipplane eoodelers, go in for air boats in which an airpulum-type crugine and propeller are mounted on a pylon at the stern. The pwop way be cither a tractor or a pusher. Clained advandager are simpler inacallstions. chinination of boat hardware, such as sulfing boxer and shalts, positive cooling and casy starting. But to the purias such a boat may be an eyewore. especially when some bxautifully hailh craft, othervise to scale, is marred by the unsightly pylon with its engine and masive air prop. Morrover, air boats are suid to be tricky on rough water or when traveling trusswind.

Boats offer many possibilities unthought of in aircrafs. For example, it is quite practicat to insalf a milliammeiet in the boat and to read is by means of binoculars while the crafy is in action: One well hnow radio equiprment designer has just wach a rig. His boat is powered by an electric motor and bavteries. Its quiet riuming altons the owner to mysili) Hocks af duchs at rew on the waser.

Ewajonicity way tir a prablem in bigger, heawire, lawer boats because the loady upsas the padder are greater thas shose on an aipplane rudder. When the rudify swings onet it a plane, it encounters mall revisance, bot water is incosejrcouble. Wairs musa tie purthed out of the way, and this delays enapement dition. Mors rubbey an the exapoment is callrat for. Is a boat of ant comequence

 is available wool.

Alshungh radion control is a bumoning activiny, the sarlace hardly has been
 uicewiully sailst the Englinh Ghamel. Unaler International Rules governing planc 3ite, wough, anal so ons, raden model aircralt have eatablinhed doration revards. Point-lop joint lights with landing and taleufi at diflerent air lirlda, flonst rours raciug (for planes or linati), aerial piciore taking, are among the Cats already actumptahed! Rapint erhascal progreas toward mulficouncrols mearo

END

glossary

A Supply-Batery ar jower sowise used to heat the filament.
Actuator - Electromerhanical device Jor moving conitala
Ampere-Unit of curretit liow (kens tance of I obm at I volt).
Amplifer-Usually a vacuum tishe cif euit sated on amplity of hoild up the tranumitter of receiver energy:
Anode-Plate of the vacumim tobe.
Anteond-Condurtion, as Jong wirc. rod, etris to intercepe (as oat re: ceiver) of radiate (as on trans: mituer) energy, in radio wave form.
Armature- That part of the relay whick is movable under influence of changing magnetic strength,
Atado frequenc-Firequency heard by
ear, heimeen 20 and 2npe0 rpils per scoand
3 Supply-Voluge appliod to the plate of a mule to producr an elociman How frum she flamesu so the plase, Usually is to 5754 volta lou receivers and 67 ye to 160 eolta for tranumisiern
Aoltery-Power sumpe for portable elextrias at elortromir slevive.
Captrity-Ahility be thoty elecmiral charger.
Cemrer-Sboer her carrict wave, curretit of Irequency if radio wawe
Cabliude - Flextrode in muls frow which electrong thow.
Channel-fangle, parvie ular lrequesecy of carrict wave.
Chankr-Hixb inafurcunere evill opposing pavige of pulsing current, lisut allowing ditect curnent to flow

Cirnuri-Path of electrical curpent, remspuig to soukc.
Coul-Wise winoling.
Comalemort - Twes íwndarions divided ly taphocundustieng medium.
Conelorf-SMral jaris lirought togriber in enatoplete a sifraii, at in switrh. nelay. ed
Canopligg-A mesans of transforing enFIgy thone cisruit te circuit.
Cryatial-1guaru on Kielachir wit riys tal sum in unalll shink dire of unicare the unarmainisg a given lrejperzey
E: if - Midervation tue caring wave.
Theak- I wis spesainarg rathoule aind jilate lie jawige of cultrm in same slifertion.
Arolram- Mnullict chatge al negalive rlovirsity.
Eurepretert-Arisater driven hy prover of ppings of twisud rublicr.
Filenormi-Hepter its a intoc, vinilar in the btanemp wire in lighis bult.
Filter-Cimalaistien of rewitienden, in thranek, of to allow pawags of sertan invpurnties interaleal
 aten Kejdarss tumritan of ierst hask.
Are that-vunsil enctal ctamino to ludd vire hath od tulka. requacss ielke salet.
toret-Elowerndr in tuler that allem, of shath afl. pmavgr at chetwes atronek.
Cirswad-7 he it Plat of H Meren side nd a fagnery and the junes is mlaih all sesusiccterme combivem to ffers ןwest se mode.
 draen log moviver as inela med ly seificanametos invrisal sum is. Whan foed the symat),
Iedsifative - (Juptacietivit st strsu! fil mpone itange of stewnit Botm:
ferf-Mnldiry biar ceotarts that clom. rhange, ar apon carrait counec Themet men mertion al jubg.
Shlorgutes - Ore thousanal ryelrs
Mrgoilis - One fnifiluen shime
 wromel.

Atht- Mdatchaise tal millianymes.
 neјjeter.
 amplinale ol Irequency of catriet save axserling tos trawnaitued wigrate.

Ohin-Amount of reaiblance at I volt and 1 amperte.
Pentode - Five-clensen vatumm tube.
Plate-Owsput efoment, ar anode, in vacuium tubc;
Plug-Machined wectal rind for witc. inserted in jark to connect exter nal units into exising wiring. Plog may have provision for one of more wires to matah circuit of jark.
Polarity-Indication of which verminal is positive and which negative.
Potentiometer - Device Ior varying amount of current flowing through a lrad. Called "pot" for thort.
Power input-Watlage fed into a radio sube, determined by voltage times current consumed.
Power owiput-rower delivered into the canl circuit of a tube, Always less than the power inpat through louse in the tube and circuit tomprantris.
Pu/be-In modeling serminology, a wy: uen by which repeased signah are iramamitud, varying as to length and/of rate
Recever - A radia resriviag ael.
Rrioy-Device which opcraies Is seb ond circuit from current changes is the frit circuit.
Aruisianer - Oppasition to current fow.
Arabter - Unit ol knewn, desired re: stbiance placed in circuit to reduce or fimit current fiow.
RF - Ablareviaion lor radis Irequency;
RFC - Radis Irequency choke.
Serve-Electric matar-driven sctuasor.
Sorket - Tube worlel.
Tank citcuif = Coll and condenery combination placed in the plate circuif of a tube.
Tane-Sound, having particulay pitch. supermppoted on carrier wave, to operate conirols by mesas of modulated of audia rereiver. An audis modulaied transmitter ine: criver system.
Tranamilier-Radie trammiter for broadcasting the signsib.
Triode - Three riement rube.
Tube - Number of electrode pack. aged in an evacuated envelope.
Fofta-The "lorct" in a baliery or power wource which pushes the current through the arcuit.
Wail - Carrem flaw, I ampere and I vole.
Weve length-Distance between peakt of same polarity: equal so velocity over frequener.

MICROPHONE BUTTON

As in the preceeding work on remote controls, the tubes and some other components may be impossible to get as they are obsolete. Even so, your Radio Shack salesperson should be able to tell you what modern components have replaced them.

General Instructions on the Mierpphane Button
You will find if eaty to build a Microphone Transmitter Button. This particular device lends itself admifobly lor use in radio and electrical eliccuits, and in view of the foct that mony do not realize to what important uses such a button con be put, it is odvisoble lo cover the use of this liftle transmifter in its vorious fields so that one will easily see how each and every one of the systems are applicable to radio cases. In the ilhastration a tranmifter button has been taken

apart so as to show its internol construction.

For those who want to build their own Mierophone Transmitter Button, it will be seen from the exploded view of the button, that it reolly is quite simple. The one illustration shows all the parts necessory for the complete corstruction of the button. The assembly of the button is illustrated in the smaller drawing.

The large DIAPHRAGM is made of either light copper or tin sheet metal, obout the thickness of the metal used in a tin can. This makes it sensitive to picking up noises. The small or INSULATING DIAPHRAGM is made of either a stilf cardbeard, but very thin, or a thin sheet of mica. A thin sheet of mica is the best, but if this is not avoilable, use a thin sheat of rigid cardboord, something similar to post card weight.

The assembly of the button is quite easy, and the only difficulty you moy hove is inserting the corbon granules and cernenting the insulating diaphragen to the bross sup. The cup should be about HALF FILLED WITH GRANULES. (Do not ifil up.) These should be loosely pocked, so they can move freely. Before you cement the insulating diophrogm to the bross cup, remember to assemble the button up to the first brass nut. Once you cemvent the ports together, you will not be oble to got at the screw to tighten.

When you have finished the button, you are ready to paoceed to experimant with the button. Reod all of the booklet carefully before beginning your experiments.

The remarkable thing about this tronsmitter button is that it con be made fo transmit in any position, either horizontal or vertical. It is so small that it can be readily concealed in any of a dozen or more places, ond thus sarves os an odmirable detectophone. For instance, it can be ploced in a watch case; an old wotch case is used and a tiry hole dilled in the cunter of the bock of the cose. The screw of the tronsmittor button is then pushed through the hole and the nut is tightoritd on the scrow. This watch case may be concealed behind a group of books or moy be placed in view on the toble, and there is very lifile possibility that onyone will pick it up to investigate. The wires leading from the tronsmitter can then be hooked to a regular omplifier, or else moy be connected in series with a battery ond a low resistance phone.

If the tronsmitter buifon is held up against the throat it will be possible to Iramimit speech without octually folking at the button. Experiments in rolking through the throak and also folking, throuph chest, hove been numerous, and of the prevent time most of the airplane transmitters for communication bekween observer and pilot employ throat microphones. These microphones ore stropped to the throat of the user who talks just as though he were talking to o friend alongside af him In this way the noise of the engine is overcome and succesisful Ironsmission is possible. If a tiny hole is drilled into the side of a gloss and a person should talk towords the glass, it will be found thot speech corn easily be tronsmitted in this mariner, This mokes a very nice liftle experiment for electrical clubs

Music trom a phonograph con be Iransmifted to distant ploces by employing the hook+up wherein a small hole is drilled in the side of the tone arm of the phonograph, and the screw of the tronsmitter bufton is Inserted in that hole. There are severol other means for doing this perhaps a little more efficiently than indicated here, and these will be describud elsewhere in the article.

These transmitter buttons can be used os detectophones for conveying speech to detectives or operatives stotioned elsewhere in a hotel or in the house. In the one cose a microphone buttan is mounted in the back of the picture. The tiny screw on the surfoce of the picture is not noticeable to the casual observer and any plot could not easily be defected. It is advisable, however, in plocing microphones in suspected positions, to locate several of them in the same room ond use different sets of wires for eoch, running eoch poir out of the room through different exits. In event then that one of these detectophones is discovered, there ore still fwo or three of them in the room which remain to be discovered Most criminals will astume that when they have once destroyed one detectophone that they ate free trom further interference on the port of this silent watchmon. It several detectophones are placed in the room a complete tronscription con readily be taken by the reporting stenogropher.

In event that a minister should have several sick members belonging to his porish who ore unoble to attend Sunday services, it is possible for him to place one of these smoll microphone buttons in front of him in the pulpit. In this way he would be able to transmit the complete text of his sermon to aryy of those who care to listen and who ore interested enough in going to the expense of stringing a few wires from the point at which the falk fakes ploce to thelir homes

For those hard of hearing such a device would be of particular benefit, as the church could be fitted with several sets of earghones and the speech, greatly amplified, would be impressed upon the diaphragm of the ear, and thus trarmmitted to the inner ear and brain
in a much stronger manner thon if the voice were merely heard in the usual monner. For tronsmitting the sound of a violin to persons hard of heoring and olso for the production of warious stoge effects, the microphone button can be screwed fost to the body of the violin, pr preferably to the bridge, as this latfer position in no way domages a valucble insfrument. In this monner all the tones of the violin are faithfully reproduced in the distant receiver, or they may be amplified by means of a regulor vocuum tube amplifier such as you have in your rodio set, and then transmittied to the crowds in the dance holl. Several of these mierophone butfons atfoched to the warious instruments in the band and all connected to a grod amplifier could be made to fill the largest holl with music. The bond itself need not necessarily be very large.

Sounds from a telephone receiver can be mode to trovel to a distant receiver. Here the microphone but*on is mounted inside of a cigar bok and the receiver is then ploced right on toD of the position of the buttion.

The microphone button con be used to transmit the sound of a piong to o distont room. The button is preferably fostened to the sounding boord in a pionp, but it may be tastened to any convenient ploce on the piono to occomplish this work. This is of value where thete may be a sick patient in o home on the secand or third floor far rempte from the piano, and whe would like to listen to any masic pleyea on the piens by some of his friends

Rodio music can be Iranamitted te distont points and incidentally armplitied of the same time. Here the microphone button is soldered to the diophrogm of the recciver as indicated, ond then the leads connected in series with several dry cells and a low resistance phone.

For experimenters desiring to get greater sensitivity and volume Ior either radiophone tronsmitting stotians of for ordinary phoze Iransmission. Here five or six microphones are mounted upon a thin metal or a heavy cond-boord diak. The sciews projecting through the cerdboord are then all sonnected by means of flowible copper wires, or in everit that a metal disk is used, the metol disk ithelt will serve os the means for moking connections between the scrows and orie thin leod saldered to the disk will suffice. In onder to make a more classy job of the device, on ofd molded voriometer makes a tine mierophone case The wire is removed from the voriometer and then the cose is pocked with felr lining which should be glued to it. The disk with the flve rucraphone buttons mountod thereor is then supported in the center of the voriometer cose by menns of three rubber bands. The front and bock of the case are then aftroctively covered with fine alk goure. This makes a very presentable instrument which looks very much the thase microphones used in our broodeasting storions.

Numerous questions hove been bshed os 10 why the Ironsmitier button does not work properly. In each and every cose, the answer is simple: The buttor hos not been haoked up is accordance with directions. Therc is no electricel sireult that is simpler to couple than on ondinary Iranimitier button and a receiver. The expernmenter should remember that every trommiter button requires o diophrogm of porme sart or a substitute theretore. The size of this diaphrogin deperids entirely upon the work. which is to be aceimplished or the nature of the motter to be broodcost or amplified

For ordinary speech, a diaphrogm opproximotely 2 V , inches in diameter is better suited than one 14 or 18 inches in diamefer. The smoller diophrogm enobles the lisrener to recogrize the voice of the person trontmitting, whereos the larger diaphragm has a tendency to decrease the pitch of the transmitted voice. But when daing detective work, it might become necessary to ottoch a fronsmitfer button derectly to a large canvas picture. In this particular case, the conversotion that is picked up is the all-important considerotion and one does nor care about the quality of the sound just as long as the speech can be reconded.

Now as to the quantity of corbon granules irs this button. Slightly more than half is a splendid proportion. For more sensitive work, the quantity should be decreased and for very crude work, the button can practically be filled up. Therefore, the fewer carbor granules in the butfon (of course within limits) the more sensitive will be the noture of a pick-up. Coincidentally of frying noise might be produced when there is not o sufficient amount of carbon granules to properly distribute the cutrent lirying beirg also doe to too moch current.) At no time should the current through these buttons be so high that it will produce a frying noisc. While many experimenters advocate the wise of a $41 / 2$ fo a 6 volt battery, the use of telephone transformers was likewise suggested, but for those readers desiring to use the standard rodia tronsformers (audio frequency types) the voltage on the button con be increosed to from 22 to 45 volts, dependent upon the resistonce in the primary of the tronsformer, If the reproduced voice develops a frying sound, the button is being overlooded; if not, then the valtoge should be increased until it is just below this frying point.

Amazing Microphone Transmitter Button

One of the most interesting little pieces of electrical apparatus is the Mierophone Transmitter Button. The obove illustrotion shows the construction of the button. The bross cup is the rear electrode. The front electrode is a bross screw mounted on an insulating disc. The inner chamber of the button is filled with carbon granules.

In all of its uses, the Microphone Button is attoched to a diaphragm. Usually this diaphragm is made of metol, but any stiff, resonant material is satisfactory. When sound waves strike the diaphragm, the vibrations couse the carbon granules to be alternately compresised ond released. A pressure wave is exerted upon them corresponding to the sound wove thot is striking the diaphrogm.

Corbon gronules conduct electricity more readily when compressed, so that each sound wave striking the diophrogm is converted into a fluctuating electrical current wave in the circuit that possen between the rear electrode and the front electrode. It is this electric current wave that transmits sound wave to receiver or amplifier.

All the uses of the Microphone Button are bosed upon this obility to pick up sound waves and convert them into electrical impulses. It is a miniofure telephone transmitter.

Electric Telephone

The simplest and most bosic use of the Microphone Button is the Telephone Hook-up. This is illustrated above and is self-explanatory. For best results, the misrophone button should be kept in a vertical position. The carbon gronules should be loosely packed in the button, so that they are sensitive to the vibration of the diophragm. If button fails to operate sotisfoctorily when first tested, it should be tapped firmly but gently to loosen up the granules.

In the Telephone Hook-up, ordinary $1 / / 2$ volt floshlight botteries (or No. 6 dry batteries for longer life) are used. Two cells are sotisfactory for good performance up to 100 feet, but for longer circuits, additional batteries should be added.

NOTE: , The Transmitter Button circuir works best with a low resistance earphone. A 6 ohm earphone is ideal, if available.

Suspension Microphone

In order to increose the sensitivity of the microphone, the suspenston arrangement illustrated above is convenient to use. An ordinory 6 -inch tin pie plote suspended in a wooden frame is quite satisfactory. This serves two importont advantages. One: the suspension prevents diophrogm from picking up other extroneous vibrations. Tves the increased size of the diaphragm picks up more sound waves.

"Frying Noise" in the Circuit

While it is essential to hove sufficient current in the circuit to obtoin masimum results, " "frying noise" in the circuit indicates too much current, Ordinary dry cells work very well, but you can also use a telephene tronsformer. If a standord radio transformer or radio botteries are used, the voltoge can be increased up to 22 or 45 volts. Remember, rodio botteries detiver high voltage, but little current. Standard flashlight of No. 6 dry cells deliver $11 / 4$ volts, but a fairly strong current. Use os much current as porsible, but just below the level that produces a "trying noise" in the receiver.

A stethoscope is a "sound mognifier." It picks up ond magnifies noises. A doctor uses the stethoscope to listen to body noises...the heort, the lungs, etc. A mechanic uses a stethoscope to detect unusual noises which reveal foulty mochinery. A jeweler uses a stethoscope to overheor irregular watch noises. It is a general rule thot in well run mochinery, there is a certain thythm. Once you become fomiliar with thot rhythm, any discordant sound will instantly reveal trouble.

If the sounds are loud enough, the ordinary ear is copable of detecting these discordont notes. A pilot of a plane, for example, can uswolly tell from the sound of his motor whether it is functioning satisfactorily.

A tin can is used to pick up ond collect sounds for greater sensitivity. Two or more microphones can be used. They ore connected in parallel and are mounted to the same tin can or diophragm. By "parallel" we mean that all the rear electrodes ore connected together and all the front electrodes are wired together.

Induction Telephone

A Microphone Button is connected in series with a coil of wire and botteries. Several feet awoy onother coit of wire is mounted porollel to the first coil. This second coil is connected to a low resistance receiver, Thus, you are reolly "broodcosting" the yoice through the air. This is essentially the principle of radio.

This same principle can be used in mogical or mystical octs. In one case, a coil of wire was wound info a carper. The second coil wos ploced around the waist of a medium. A tiny receiver was fitted into the ear of the medium isimilar to those used in heoring oids) and conceoled by o Hindu heod-dress. Ayt assistont telephoned the secret, written questions to the medium via o Microphone Butlon connected with the coil in the corpet.

Talking Light
A simple experiment to sh, whow impulises may be transiormed into different media. The sound waves are fransfarmed to electrical waves by the Microphone Button. The electrical waves are transformed to light woves by the bulb. If you hod a Photoelectric Cell (or Electric Eye), the fluctuations in the amount of light given off by the bulb could be used to actuate another circuit. Thus, by a spoken commond you could have a door open or a window shut or a bell ring. (See also Relay Circuit).

If ordinary floshlight cells ore used, a 3 volt flashlight bulb is sufficient.

Phonograph Pick, Up
The music or talking from a phonograph can be readily picked up by means of a Microphone Button ottoched to the tone-arm of the phonogroph. The front electrode of the button must be soldered or firmly oftoched to the arm. Ordinory telephone hook-up circuit is used. Or, the button can be wired directly to an omplifying circuit (see the Rodio Hook-up) and ployed over loudspeoker, or even broodcost.

The Button As a Radia Distector

The Microphone Button can be used as a Rodio Detector to pick up broodcost programs when used in the monner illustroted obove. For loudspeoker volume, a more eloborate circuit has been devived which is described slsewhere.

Secret Detectophone

Perhops the most difficult opplization of the Microphone Button, yet one of its best uses, is as a Detectaphone. It requires moximum sensistivity and complete freedom from external intertuptions.

The standard Telephont Hook-up is used, but on odditional bottery should be odded, to make Certoin that strong curtent wpply is fed into the circuit.

Where possible the largest sized diaphrogm or sounding board shauld be used. The Microphone Button mounted in a tin con (see Stethoscope) and ploced firmly agoinst a table gives a gaod pick up. The toble acts as a sounding boord, and the lin can is a wery receptive shape for pieking up sound woves.

There are many other ways in which the button can be concealed. two of which are iflustraled here Offentimes o framed pictiure offers the best location. It must be kept in mind, however, that the button should be locoted as close to the source of the talking or nalse as persible in order to get maximum results.

IMPORTANT; Good, continuous wire should be used. Any splice; or connections should be soldered.

Electric Musical Instruments

Most people hove heard the "electric" guitor and other novelty electric musical effects. These are oll creatod the some way. A microphone pick-up unit is coninected to the sounding boord of the instrument and wired to an amplifying unit or rodia. Almost any musical instrument can be used.

When using your rodio for amplifying circuit, the button is connected directly to rodio detector tube. (See Rodio Mike). For best results, it will be necessary to try out the microphone burton in sev. eral places on the musical instrument.

Deans Open and Mysterious Things Hoppen At Your Spoken Command

When use of a relay circuit, you can by means of a spoken commond, make a window open, doors close, lights go on or off and many other things. You are only limited by your imagination and facilities as to what you con do.

The circuit is quife simple. It merely consists of connecting the button to one side of a relay. A spoken commond causes the amount of electricity in the button circuit to change, which in turn operates the reloy. This closes or opens a second circuit which confains the motor or mechanism which opens doors, ete $1 f$ a light bulb is connected in this second circuit, it is tumed on or off.

Microphone Buaton is connected directly to detector fube of radia. Locote detector tube from tubes listed here or with help of rodio servicemon. Shut off set, Remove detector tube. Hold tube in hand with prangs pointing up. This corresponds to bose of tubes illustrated here. Twist wires tightly around correct prongs as designated in diagram. Insert tube in set. Be sure thot bore port of wire does not fouch any other prong or any metal of set. If mike fails to operate reverse wires. Before using ony tubes not listed here, consult your radio serviceman.

Sound Through Woter-Submarine Telephones
This consigts of rwos units The tronsmiter (or broodeasting) and The receiver loi the sub-sen earl. Each unit uses of microphone butfor and a hectiver,

The pronsimifter ounsists of an prdinary telephone hoak up, with the roceuver under woter. The recetver mus be protected from the woter for wes, yet the diophrogm mast be exposed to the woter in order to tronsmit the pound woves

The recerver also consists af an ordinary telephone hook up, with the micicplone bultor under wuter it is protected trom the woter by soldering it to the botnom of the insude of a rin can. The leods to the buttor should be protecied from water.

Tris unit is vinly sutable for short distaribes. Longer distances... up to oflout 100 feet -. con be set up if on amplitying unit is used in the reansmitser olang with o loudspeaker instead of an earphone for the under wolter Iransmission.

Listening Through Wolls
It is well known that when a person places his eor ogoinst the partition, he can hear the entire conversation in an adjaining room, prowded that the powersation is loud eneugh and that the woll itselt is not bould-prod This position is tiresome both for the listener seri unpractical far detective work. The apparatus consists of a small plater of motol, brass or the like, to which rwo rubber suctien cups ate aitent ba marased. The tromsmitser butter itself is mounted at the end of c 1000 aered with a thamb ar knurted nut for odjustment. In openction, the nubes suction cuas are moistened with a little glycerne to mole them octhere more firmily to the rother porous wall to which ther are to be olroched, After the suction cups ore firmly in ploce, the thumbl nut is lurned to the right until the buttor just touches the woll. The receiver, which in this case is a 5 to 75 otm receiner, "eprotuces the scounds with the proper degree of occurocy. A. $4 \tan 6$ vala batary is placed in the circuit and the detective operaling the device con sit af al desk and copy down the entire conversafiom in the othecwise protected room This form of eaves-dropping is more legifimote thon installing detectophones in suspect's room.

Chambers' Entryclopaedia 1891

CONTINUED
EROM SURVIVOR
Vol. 1 ,
PAGE 403

There have been several comments on the Chamber's Encyclopedia section; mostly uncomplimentary. The most common complaint is that the same information can be obtained from more modern encyclopedias in a more comprehensive and updated version. For the layman's purpose, this is simply not so. Modern encyclopedias are written mainly as introductory reference material. It is supposed that one with an interest in various chemical compounds and technical subjects need only the basic introductory material and so will go elsewhere for the working details. For this reason, the modern encyclopedias are sketchy in their descriptions or so technical that one must already be well grounded on a subject to profit from the modern encyelopedia's description.

The writers of the older encyclopedias, however, operated on the principal that theirs were the only descriptions of the subject the reader would have access to. So their entries were far more comprehensive than are the modern texts. Further, they operated on the principal that although the interested reader might be ignorant of the subject, he ought to be able to understand it if he could read at all. Therefore, entries were written so that any literate reader could duplicate the compound described whether he had any former familiarity with the compound or not.

You have but to compare a subject written in Chambers' 1891 Encyclopedia with a modern encyclopedia to see that the former was written for someone like you, rather than for one who was considering the subject for further study or already had some education in it.

In short, the older version is simpler, more complete and more applicable to the needs of the layman who may never see another reference to the subject.

KURT SAXON

[^3] Britain, is doubtfully indigenous. Ite pretty foliage

[^4]termally it was applied to warts snd zicers, and internially adminiatered, it was supposed to be a specific for jammdice, spparently on no leetter warant, lowever, than that draina from
its colour lyy the 'floctrine of nignatures?' its old English name Swallow.wort, which appears to be almost a translation of the botanical one, seens fomided on is suppowed nespeciation between the heginning rul epulling of its tlowering tine and the arrival and departure of the swollows.-It is, however, the LESSER CELASDISE which is name fatuiliat to general readers, it least pinee Worls. worth devoted no fower than threo poent to its hoamir. This is Ron wientery Fiarria, alon known as the combun fig-wort or pile-wort, a quite abreLatel ranunculaceoss plant, which grown in ahoudant patchea in fieldr and coppices, and brightens then in early spring with its plentiful golden Howers Its tubersas roots and swallen mparable buls give it sulditional botanical intereat, while it is alea noteworthy that these reanite of pecaliarly yegotutive habit ore annocintel with is frequent baperfect maturity of the pollen.

Cellulold or Paskering This subatance wn first made by Mr A. Parkes of Birmingham in 1865 or 1856 . It chiedy coonista of a dried solation of gan cotton (pyroxylin) or of what is nearly the amme thing, and of. A variety of it oan be made with pyroxylin and camphor, It resembles ivory,
hiern, wortoneaheli, and hardened india rubber, ain regarda certais properties.
regpras ceriain properties ared by treating Celiulose (q, v, , from such vegotable nagiteriall in cottone ot tlax wate, rags, papermakers' half-atuff, or paper
iteelf, with a mixture of one part of atrong nitric acld and four parta of atrong sulphurie acid. It ha convenient to call the product so obtained pyroxylin, although the two things aro not quite identical. The diatillate obtained by diatilling wood naphtha
with chloride of lime in uwed an a molvent for with chloride of lime in used an a molvent for
the pyroxylin, lut other nolventa, asch m nitro. beazof or,anilline, and some camphor sro added with alvantage. When the excess of molvent in remaved from the pyroxylin, it is mixed with s conasiderable quantity of cantor oil or cotton-seed vil, and made into a dough or paste between heated rollera. For shard componnd the guantity of oil uhould be lene than the pyroxylin, for a moft one it sbould be grenter. Chloride of sulphur is sometimen added te the oil. Wheo articlee made of cellaloid are is a partialiy manufactured ntate, they aro moaked in Linolphite of carbon or chloride of lime to remove any trace of solvent, which would render thems apt to nhrink if allowed to remasin. Cellaloid is of a nome what combuntible natare anlean the mabatancea umod to colour it ste such as will neatralise this, or unless nome non-combutatible chemical, tupgotate of aoda for exnmple, is added to it-
Properties and Uses.- Celluloid has many valuable propertien. It in buff or pale brown in colourt, but It ean be made na white ns tivory, which it much resembles, or manufactured in a tranaparent state. It can be moulded or proesed into any form, and turned. planed, or carved. Neither the atmoaphere nor water affecta it. It is elastic and can be united by its own cement. In a plastic condition celluloid can be spread on textile fabrics, or it may be made na hard on ivory, for which it in largely uned an a subetitute. Billiard.balle, piano-keys, and combs are mule of it, the latter two articles extensively. It can be coloured to represent amber, tortoiserhefi, or malachite. In initation of red coral it han been a good deal used for jowelry. Like valcanite, which it excels in durnbility but execeds in priee, it han very numeroun applications, We need only mention bruah hacks, knife handlees, buttons, napunefal for opticel instrumenta and for nome surgical instrumentu. One of the mont recent applications of it is for shirt fronts and collins. The manufacture of celluloid, although an English invention, hss been mont largely developed in the United States, where it is mostly, if not entirely, made by one firm, the Celluloil Manufactaring Co, Newark, New Jersey. who tise this word as a tride-mark.

Cellulose is the sulstance secreted by the living protoplanan of a vegetable cell to form the investing membrane or celi-wall. (See CELL, and Histoloor, Veratable, for account of ita mode
of formation, its ligneous, corky and colloid change, its made of arrangement and union in cell-walls, sic. It is obtained in a pure atate by treating any unaltered cellular tineus with alkalies and scids to reatove minersb matter and protuplam, and saccenaive wahinga with water, aleohol, and ether to remove soluble subetances, Cotton-pith or vege-tahle-ivary, although much contratied in histologi-
cal properties, se alike remarkably pure cellulose.
y pure cellulose.
Cellulowe hns the chemical composition $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{\mathrm{a}}$ and apec. grav. 1.52 Among its familiar natural modifications gum is an iamer, and starch-dextrin and grape-sugsr are all of aimilar ultimiate compoeition, while ite woody and corky modifieations (Ligtin and muberin I possess an increaving propertion of carbon. Iodine alone stains celluloer yellow ut brown, but blue when atrong aulphnaric acid has bees previously added. Strong hot sulphuric scid cliser it, while brief itm menion is the cold converts it into a tough and denme modification, well known in parchment paper, and prolonged treatment dissolves it altogether. Dex. trin niay thus be prepared snd next transmated, by boiling the watery solation, into grape-auger (see DKx mixtare of atrong altrie and sulphuric acid we obtain Gun-cotton $(q, v$,$) , while ditate uitrie seid$ or potash oxidises it into oxalic scid. Amnioniscal oxide of copper dimolves it without shange, mo in showa by if repretipitation on dilotion. By beat ing in closed ressels under presure i dense coal. like mase is formed, while in ordinary dry diotille. tion, gas, tar, and soetic acld are given off, procenses which throw light on the formation of coal in natare and on the chematry of gan-making. In natural decomposition cellalope tums yellow and brown with gradoal formation of humbs.

Althongh so constant and charseterintic a produet of vegtable life, the conditions and mode of ita formation are atill very otacure, From that eell. cycle or thyther of change between the pesaive and cellulonewalled state and as setive and wall-lose one, which fo so charncteristic of the lowest forms of Afe, and of which we Eind sorviving traces (e.g. the rojuvenevcence of the pollen-grain) in the reproductive procesas of oven the highent plants (sce CELL). it would sppear that there is eoms relation betweea this increaned pasaivity and the formation of cellalope. And in this way arimes the opeculation thas cellulase may be viewed espentially na a (mechasically cohorent and thus unefof) excretion, an incotapletely atilized wate product corromponiligg to the carbonic atid and water given off by the completer respirntery osidation anal farget evolution of eaergy of the setive phane. Once A. qued by the piant, it may be agnin abeorbed, ss is well seen in the onion of a tow of cells intos a continuous vessel, or to the consamption of endonperm of a seed during germinstion. Many beede, swelo a vegotable-ivory of date, bave a grent proportion of their reserve msterisl in this lomi: and this must be digested into glacone by the growing Einloryo, and aggain vorked up into new protoplasm, which deposite cellulose ns before. Like the plant itsell, the situilse digestive ferments of the animal might thas be estarsilly espected to digent cellsloeer and this is sctually, to sotoe extent, the case with the delicate young cell-walls of maoy green segutables, sit can bo experimentally verified, bven is man; कhile in herbivaruus asimals this power in much ileveloped, and the natritive utilination of their forder in thus tarrensed to me important extent.
The cysta' of amerher and other protozos appear to be at leaat largely cumpuned of cellulose, and the external tumic of ascidians (see Tusicata) is of identical, ot at least iommerie, compondtion. Cellslose has been described os a pathologienl product, even in brain-tisvae; and Chitin $(q, v$,$) , s very char-$ scteristic asal in many repecte oomparalie snimas product, bas been sonotimes viewed es cellulose in pmociation wish in proteld salitane

Ceraents. These may be roughly divided into three clases : (1) The stope cements, including Roman and Portland cementa, and urdinary mortar, which are asod in thickiah lsyers for aniting stone and brick work, and for protective covering to buillinge: (2) substances which form binding joints of mach less but still sppreciable thickness, such me white lead, red leal, sud potty; and (3) cemente which require to be weed in extremely thin coatingy, such as gloe, isioglase, and dissolved caoutchone.
Ordinary Mortar if a mixture of slaked lime (calcitmi Atydrucride) and mund, made inte a paste
with water. Generally one part of lime to three or four parts of sand are used, bat the proportions vary according to the purity of the lime eniployed. Very pure or fat lime, such as that made by burning white chalk or white marble does not make so good a mortar as lime obtained from less pure limestones, which are by far the most abundant. The more thoroughly the ingredients are intermixed, the more complete will be the subsequent handening of the mortar As commonly laid in the jointe of brick or stone work, mortar sets aufficiently fast to allow building operations to proceed from day to day with occasional longer intervala, but it takes yeare-perhupe in many cases cen-taries-to rench ith maximum hardness. The setting anid anbeequent alow hardening of mortar are usually cansidered to be due, in the first instance, simply to the lons of water, and afterwarda to the absorption by the lime of carbonic acid from the stmoppliere, the carbonste of lime thun formed bindiag together the sand and ntone. It is doubtful, however, if this is an altogether astibfactory explanation. The mortar used in many medieval baildingt is largely mixed with small pebbles. In a bunber of cases this has proved to be of a more durable nature than the atone used along with it.

Puzzolana or Pozznolana, a loosely coherent voleanic aand foand at Pozruoli, near Naplea, bas been loug celelonated for its property of forming 4 bydraulic cement when mixed with ordinary lime It is eomposed of silies, with a litele magnesia and potash or noda, alomins, linie, and oxige of fron.
Roman Cement.-Certain nstural mixture of lime and clay are called cement-ntonea. The clays of nomes of the newer geological formations in the sonth of England, for exsmple, contain cousses of esptarian podulea (sec SEPTABIA), which have been in great requent for making the beat kinda of Roman cempat. They are bincretions of impure calenrause niatter, many of them having this nandynis : Carbonate of lime, 66; nilicis, 18 ; aluminn, 7 ; sod protoxide of ipon, 6 ; or conpist of themen nubplances if pearly that propertion. Cefaentetenee are carelully calcined in kilns, and afterwarda ground and aifted. Good Homari cenient should set in about 15 minuter, and thin quick-aetting froperty makes is valuable for work which requirea to be executel betwepn tides and for ather purponen where the ceanent uned mast loarden quickly. It in at lreet of bat medium itreagth. Some natural oemente sre slow netting, shd these do not contain more than 22 por cent. of clsy. They net buder water when haff their weight consinta of clay. The proportion of asad used with Roman eement should not much exceed that of the eement. When em. ployed for external costings of buildings it is apt to eflioreace and become unaightly.
Portland Cement. - This is cansidered by far the mast important of the stone rementa. It in abs artificial prodact, nemed from ite resemblance to Portiand stone, but is much more largely aned than Romins cement. In the tmanufacture of PortInd emment on the beaks of the Thaneen and the Medway by the wet procese, three phits of white chalk ser mixed With obe part of clay or mud from the lewer resober of thess rivers, The two sabmanos, slong with wister, sre placod in a whah meduee the whole to i eresimy 'alurry' or alip. The slurry thes paseon by gravitation to backs or reservoirs. There it is allowed to nettle for nome woeks, when the superfuous water is removed by decantation. The mixture in next dried on heated from plates or bs the floor of a beated chamber, and then buraed in kilas. Finally it is ground to - fine powder. Modifications of the wet proctes by which the large reeervoire are dinpensed with have boen introduced in recent years. In uther parte of the country Portinnd cement in manufactared by the dry process from the hard limesotones of other formation than the chalk, along with clay or shale. These limestones are crushed emill, mixed in the proper proportion with clay or shale, then roughly burned, and ground to powder. This powder slightly mointened is paseed throngh a pug mill, and then made into bricke, which are neterwards burned in kilns and reduced to powder,

Since Portland cement in hardly ever employed in the pure or neat state, its strength is perhape of mand. The beet cement so mixed and moulded in the state of a stiff mortar, into any convenient ahape, when tested after the lapse of seven days, during sik of which it is customary to keep it
immersed in water, excoeda in tensile atrength 200 lb per square inch, and in cruanting strength, teated by 1 d -inch cubes, 1000 lb . for the same ares. Ita atrength in the unmixed atate is much greaterMuch of the Portland cement made in, bowever, little more than half an atrong as the best kind. Roman cement of good quality mixed to the same extent with eand as the above, and teated under the same conditions, has on an averages tensile atrength of 30 lb , snd a crushing strength of 200 lb . in esch case per square inch. Portland sement is alow in setting compared with moat varieties of Roman cement. Both Portland and Roman cement form Aydraulic mortars-that is, they set under water. No mortar will do this which containa lem than 10 per cent. of silica.
Tili cloee on 1840 Porthand sement was berdly kflown, bat the use of it hise extended rapidly, enpecially in recent yeark. Ite rount important application is in the conatruction of doeks and barbours, many of which are parkly or wholly built of it, mixed with eand and broken stones, 洛 the form of a concrete. In this state or simply mixed with mand, it is almo murh employed for other parposee where atrength and durability are required. Owing to the nature of some of the extensive engineering works in which Porthad cement in largely used, it is plainly of great conaequence that ite properties ahooli be thoroughly understood. Numeroun failuren with is have taken plece. The chamical investigation into the case of the Aberdsen doeks in 1897 diatinetly showed the deleterions action of see-water opon thin sulatance. But it ia also known that objecta mado of unmixed Portiand emenent from, the workz of some of the beat makers will nomistimen keop good for noarly twenty years, and then eromble to piecon oven when not exponed out of doors at all. of course explanations of these failyree are fortscoming. Thny are generally attributad to careleseneen in the manufactare of the cement, or in the selection of the materinin for it. But it they oceur. as they have dobe, with cemanta that have atood very well the ordinary mochasieal teats, how can any coment of thia kind be eatirely deprodel upon for durnbility t Twooty, thirty, of even fifty years is far too ahort a time to tent the lasting property of a building material of thin natare. The une of Portiand sement in pavementa and for arehiteetaral orommente is not attended with merch riak, and for asch purpoese it in very suitable. The espital employed in the manufactare in Great Britain is probably near two millions sterling. For American cements, mee RosznbaLs.

Sootr', Selenic Cemenf convinte of burnt limuatone mixed with aloout a per cent. of actiphate of lime in the form of plater of Paris. and groved to powder. The prosence of she nolphate arreata the slaking action of tbe lime, canset the cement to set more quickly, and admita of more and being aned with it than ordinary lime dom, This cement has been a good deal maed for plastering, and to mome extent also for mortar.

Plater of Paris (mee Alahantsk and Gyraus). -This material in used for censenting marble and alabaster in mach the same way as asortar in in briek-work. It is sloo employed for uniting the aoparately moulded piecen of any large objeet cant in the same material. Sometimes it in selected for fixing metal mounte to glavs.
Keenet Cement is made ly astursting plater of Paris in small lumpe with alum and recalcining it. It then forms a linarl plaater for the projeeting portions of halls and rooms, such as pifanters, polumns, end akirtings. It is eapalle of taking a high polind.
Parian or Keating't Coment nomewhat reaembles Keene's In its manufacture borsx sa well is alum in added to the plaster of Paris.

Marlin'z Cement in another kind, with plaster of Paris for ita basin, but inatead of borax, carbonste of potanh is added, wad nometimes hydrochloric ncid an well. With the exception of Scott's, these plater of Paria cemente are only used is plastering or other internal work-not for mortare.

Mastic Cement, consinting of a mixtare of burnt clay or limeatone is a powdered atate, with boiled oil and litharge, was more in use formerk than now 1 but though axpensive, it in an excellent material for preventing the admisaion of rain-wster at eertain jointe about building, wuch an where wood and stone work come together at windows. It was also used for covering external mouldinga.

Rout or Iron Cement.- Jointa in iron-work, sach as those for hot-water pipes, Are filled up with a
cement of fron borings or turnings, roixed with
at least 2 per cent. of sal-ammonise. Sometimes sulphur in powder is sdded. The iron oxidises and forris a firm joint.
Sulphur Cement-For jointing earthenware pipes, and ocesaionally for fixing bars of irun fato stone, a cement is nasde of oulphur, resin, snd briek duat. It is a cheap bat sot a strong cement where metal is concerned
Water-glaay Cemants.- For furnacee obe kind consiate of burnt and unburut firecksy mede plastic with silicate of sods or water-glase. Another cement, capable of standing a high hest, is formed of axbeatos powiler mide into a puete with silicate of sode. The same silicabe mired with groend glem malces an acid-proof cement
Whits and Bed Laad Cementa-Either white lesed or red lasel by itself, or a mixtare of both, is moch in request as a oement for the jointa of alate or glase ciaterns, woch maquariams. These are aleo roplat mounts to glane tobes, end ather chemical and alectrieal perponoe. White and red lead etmenta are mace up with boiled linsosed-oil, and red land make a wory bard and firm cement. A eament of these two sabhasees and ground plumbago is equal parts, saixed with ofl, is seid to stand a great heat in steam-jolats.
Shetl-fue Cementx-An expellent oerpent is made by digenting 4 os of the finest sbell-lac in 3 as of methylated npirit in a warm place. It should be made into a sonalatency like thick ayrap. This makee a firm onment for riending piece of glam, chins, amamental atones, and frory. It is not soluble in witer. A chesper, but still very anryicmable eemeat cas be formed by diswalving shell-lac in wood naphtha. For some parpones ahell-lse itenlf is uned sa eeraent by simply melting it.

Marine Glue is a mixtore of sbell-lae in a molution of india-nabber. It is made inte thin alieete, and melted when required for use in shipbaildings. \&ce

Gefatia and fainglas Cessente.-Fiath-ylue, gelstion, or Isinglane (g.v.) made up with dilete acetic acid and ather bodies into a jelly or thick Hquid, prodaces a cement slightly varying in ita naturn, for manding chins, glrae, ivory, bone, and other aubstancen Foulke's oement and liquid fish-glue sre eemeats of this tlas. These can le oblained in a conveaient form for use in hardware or dragiate' shope. They are more or les noluble in water, so that srticles mended with them must be quickly washed. Cervent of mixed glue and glyeerine, sometime with thanin sdded, is oeesannally used for loather knd cloth.

Armentan or Diamond Cement,-The following is the reputed formala for propsing the cervent used by tho Armenian jewelfers for attaching diamonds, oce, without any metallie netting: - Disoolve five or six bite of gum-mastic, ench the nize of a larre pen, in m much rectified opint of wine as will suffice to render it liquid, end in another vemol disolvesas muih isinglines, previonaly a little softened is water-though pone of the water muat be tuad-in French brandy, or good num, at will make a 2 -ounce phial of very strong glae, adding two very manall bitn of galbunum of ammuniserm, which mast be rabbed of ground till thny are dimolved. Then mix the whole with s sufficient beat. Keep the glve in a phial closely atopped, and when is is to be used, sect the phisl in boiling water.
Elartic Cenente.-One part of casutehoue dis solved in 3 perth of ehloroform: shoo, 5 perts of csoutchouc in a parte of chloroform, with 1 pert of powderod gan-matic nided. Benzole is sometimes uned inatesd of chloroform ne the nolvent. Another sleatic cement can be made by a mixtore of gutie. perchs and caoutchoue dimolved in bisulplide of carboa. The solveats of these cementh must not be exposed to any but a gentle hest.
Revin Cements. - There sare a great number of oemente partly formed of ordinary resin. Ope find consists of resin 4, beerwar 1, and whiting I part. The proportions of these ingredients in the same order for another are 15,1 , and 4 Anothar is made from resin 4, and plaster of Paris I part. Thene eqments are used to $5 x$ pieces of stone, glass, toc to handlee when grinding them. Resin, pitch, beowrax, and plater of Paris or brick-dust are made up in various proportions into onmenta.
Owtlerr' Cement, neod for fixing knives and forks in handles, is made of equal weighter of resin and brick-dust melted together; or, for a superior
quality, 4 parts of resin, 1 of beeswax, and 1 of brick-dust.

Copel varaish, mantic vernish, Canada halsamm, and golld size are each uneful occasionally for cementing substances like two picces of glasa together.

Cerebro-spinal Fluid is a clear, Almont oolourless, alightly alkaline fluid, closely resembling lymph in its componition, bat contnining leas Albumen. It is contained partly within the ventric ular system of the brsin, and in part jo the loose connective tinsue (subarschnoid mesliwork), which lies between the Arachnoid and Pin Mater (q.v.), being continued fromi this latter situation along the lymphatic shenthe, which clonely invest all the blood-vessels in the substance of the lorain and upinal cord. The apaces which eontain it communicate with the lymptration of the hend and of the nerves, and with the venoun sinuses in the durs mater. Its main function, liesides that of remnving wante products, is to equaliae the prensure within the akulf. As the hood presurare increases that of the cerehro-mpinal flatd diminislien, and vice verad. As the brsin atrophiee it in replaced by a proportionate incrense in the fluid. In some dia. enses, wach an soute and chronic Riydroophalus (q.v.), it is greatly incroned, and then it beootnee a cause of strophy of the brain. Its valus as a water-cunhion in diminishing the voleneo of ahock from esteraal injury has been alresdy referred to at Buals. Cereoro-spinal moabis pertaining to the brain and opinal cord together, to the eerobrospinal system.

Cerium (gym. Ce, ef. 92) in a rare metal fousd in cerite nad 's few other minernts, It is a white metat his net been olitained in nay quantity, if not therefore employed in any mant. factare, and forms two basic oxides and in numeroun class of salts. The nitrate and oxnlate of cerium have been ensplayed in the vamitiog of pregancy, their action leing somewhat similar to that of the salmitrate of bismoth. Cerium biacuith are bincuite contalning a small proportion of the oxalate, and they farm a very convenient medium for the sdminiatration of the asil Cerite of Octroite in the silicate of ceriumi, and is found an a mineral in Eneies, near Riddarhyttes, in Weatnanland in 8 welet.

Cerb'men is bar wax, the yellow waxy matter which is secreted by certain glandn lying in the phongeg that leads from the oxternal opening of the ear to the membrane of the tymparim. fo lubri. cate the pasage and entanglop particlen of dunt and manll insocth, [reventing them from gotting farther in.

Chalazal. Tire firso layer of albamen depasited ajooic the yolk of in eng as it dencemin the himis
 twisted inte two ntrande which keep the yolk is
the mithle of the inore stuid allamen. These corols are alsed celled chulasds

Clisilk, a suft earthy vaticty of limustone or carlusates of lime, forming jonet intrato, and clainsfing the atfeution of the geologiat even more thut if the mineralegint (see (iferackous Sustem). It is generally of a yollowish wbite eolour, hat ponietimes show-white. It is pasity bruken, and has th earthy fractare, is rowig and very meagre to the susch, and aulleres ellightly to the tompre, it generally comtaing a littie aftien, slumime, m mag. nesia, sometimes all of these. Attrongh often very can le aned ins a building-store; and it is used for this juirpone either in a rough state, or sawn juto blacks of proper shage asul rize. It in burned into quiekTime, sud nearly all the lobuses in London are cemented with huortar en procured. The siliceans partacles being nequatel ly pounding and diffusing in water, it beconnes whiting, of which the thomeatic ases are fawiliar to every one Carjenters and uthers ase it for inaking marks, which sre ensily ellucesl : the Whackhoard and jiece of chalk are usw commion equality in the lecture-rooms of utriversities and in the hambleat village-mphomd. Clualk, perfectly purified, is mixed with vegetable colouring mathers, such ou tarmeric, lithus, saflrom, and sabp. green, tos form pastel colonrs or coloured clutka; but vegetable colourg which cuntuit oh seid aro ehanged by it [sce Cravon). The herma whife
of artista is simply porified chalk. In a perfectly
pirrifical akate it is adnianestergal an a mocelicine ta correct acidity in the stobatach. Claalh is alon
 Bhack CHALK is is mineral ifuite aliferent from sommon chalk, ansl apparently recelver its mane
 Hoiling the lingers, atul in lecites aseal for ulrawiog, writing, ise. It is also calleal Jrawing-slate It is of a slaty giructure, of a bluish of zrayish-black colour, easily eat fand liroken und wakes a per. fectly black mark on japiex. It is used fur drawing and as a hlack colonir in painting. It lecousmes reil by exposure to lieat. It is essentially a kinul of Clay (q.vi) and derives its colour from carlun, which it contuins. It is founai essucinted with ochists, Ke, in Spain, Franee, Italy, ske, alao in the

 4. V-), -Itas Chaik is deftry real rlay-irwa ure. cominiating of clay and miselt perostale of irum. It is of is liruwnish-rbi colour, and is somevrliat sluty etructure, the erust fructure entrthy- The consser
 marks on wonl; the tiner, by phatern: It nocing in thiin beste in clig-blate ingil fraywacke-slate in molne jarta of (iermany.

Chara. The Charictav or Stoneworts are a amail group of common aquatic plants forant growing in large tufla, or even covering large expanses on the bettonin of fresh-water ponds and nhallow laken, brackish or aven male-water lagoona, \&e, anal of which the aystematic pouition ban undergone the mat extraonilinary ami instructive vicisaituden. The marly botanista, with K. Baghin, had no heritation in descriting thesi na lurruetails (Eqpipetumi). In 1710 Vaillant progured for them areparste genos (Chura), while Linnames, aithough at first alispesed to regard them an Atger, an their hahitat maggets. decided that the amall red male reproduetive bedy must be a atament and the larger grepe female one a piatil, abd aceordingly, placest them an Howering planta smong the Momeriui Somondrom. Hin pupife at moet ventared to remove thene to the Monandria Monogynia, while Da Juseien regarded thetn an a genan of Naidacep (q.v.), sti order of monocoty. Pedonous aquation witl mpels redeced flowers In nimilar optnions he was followed by De Candolle and other eominent ny flematista ; and it was not inntil 1851 that a carcful re-examination of their atrocture and mode of reproduction ly Thuret Einally dis proved the phaneroganusus view, and estahlinhed their eryptogamic nature stace that tibse the group has atracted great attention, and is now on ground of peculiar instructivenes, both morplio: logical and physiological, one of the elassien! forma usually prepented tar the beginner, not only in eryptogamic botany, but genersl biology.

Commencing with the vegeta tive aynumb, we find this apparontly constatiog of a stem with regular whorls of leasees arising it sefinite pointe (hodes) of the mtetn. The internodes, or diatances between theses, are at firat considerahle: bint an we approach the spex these are shorter and shorter, and at lengtly we lose sight of them in the crowded terminal bud. The revenblanee to a young phook of Equisetum is so far sstiefactory, and the mineral incruatation (in nome species so abundrant as to leal to the subatitation of the plant for scouring aretal / appears to coafirm this, The incrustation, however, is calcoreons, ant siliceous. Even uniler microscopic examination we maty at finst sympathise with the old observers, and seem to see in the stem a multicellalar itructure, even a cortex; may, to see under our very eyee the actual circulation of the sap. More carefil nerutiny, however, enables us to repeat the work of later and more accorate observers. We see thint this movemeat is not the circulation of the wap in in stem, but a atreaming of the protoplasm within what is simply a single enormous cell stretching from one node to the next (see CklLL) The epparent cortex is a single layer of cellos covering this internadal cell. and the whole vegetstive
 the spial bod of Chare
structure is anmuvelled when we roughly dissect out the terminsl buJ, luanien atain nitul fanherl this in paration, and thus ent a fine longitudias section (fig. 2). An apica! cell to seen whiel contingally wepments of a lower one; thia livides (still tranavencely to the axis) into two new opes; and the lawer of these henceforth stendily lengthens as the internodal cell, while the upper undergoen repented divixion, antil a plate of nodal cells is formed. In the vimpler fanilly (Nitella) the internale thus consiste of a single naked cell in the higher (Chara), this is inclowed by the so-railed cortex a layer of smaller cells proceed ing from those of the spper and lower nodes;
ansil ibvelf shoving a misor nowlal and Thternoinal arrangenkent. If all ctire, Irom the noulal cell. there ilivide off, paraflel to the enter surface of the stens, 3 new set of agiral bells which jutuoped. like the pareat one, to form the 'leaves,' rejroduciats. that is to sy, the stem otpucture, astil they lowe the poneer of division, ant eod in a sagle enlarged vegretative cell. A linasela inay arfie from a new furmed spical cell eut off in the axil of the oldest leat of any whorl, while the so-callel roots, which fix the plant in the moul, are simply gniexthias fains, lengtherings pralaced fromo the nitperticial cella of lucied miales.

The apparently xery complex and chamacteristic reptodactive organs arie alas at the nomer of the stem or leavery in puitions and numbers varying with the opecies. Comnioweing whth the fensalo (fig 3an), which ariser ta the position of a branch.

Fie 3-Node, bearing ropopiactive ergans
A, Matare: A, Alecelogent The avet Ea buch eate is che levale. we find thie ta sportened fnd modifed one. Iter aprical cell forms only hn intermode anid noder, thea ceases division, and be. oome enlarged and blled with a store of statch and buther re. evre tanterial $t o$ form na ests cell; while the eiver or archegonimionelosing this is rentily seep to los a tame meotisim-
timn of the fagaifiar cortex. Ia the male apparates, or antliet-
illime, the besmeh struetare is further motifieds its ayical cell nisuilarly remaips all but seoile, forming only a short nowle and intermalo; bot tequientation now begins, thus recalling the behayiuer of a namlal eelI-with thich, is having liclovt it an interaolal. and not to in the case of the egor cell, a noulal cell 1 fg 35), it so for correppobis Eisht quadrauttike cetls are formed, bet these bave segnupht of new cella in the interior of the opluerical mases, and in the grourth and developtisent of there the noulal and internolal allemation of andinary vegetative举rowth eas still lie tracel. Soon, lowever, a numthe protoplashit of these undergoes rejuvenescetroc, apul becomes modifiel inta a ciliated spermatozojl. When the reproluctive uggans are ripe, this archergrainers is exaly laoken, and tow filament spreal free in the water; the suemintomids excape in a nugriad, awl same reach the ectseell of the archegutiare fy meang of a smali opeoing, whirh is left in the all lent incomiplete atgrout th of the cortical cells which form the wall of the arclegonimin. After a periol of rest, the fertiliged avitu gernainster, proulucing, hmweven, not directly a new Clasa plant, hat a sumple filament of cella called a proembryo, of which one cell segments into a poule. anil the oldest eell of this becomes the growing
point of the newh phant.
The affirities ind aymtematic position of the group thus still afford ground for discussion, although now within narrower limits than formerly; some synte. natinte regarding them as a somewhat sberrant group of Alga, while othens insint on their resem. blance to the archeyoninte cryptogamse (aee VEGE. table Kingadom). The fruite of what seen to have been gigantic Characere (Spirangium) ooeng from the Cartioniferous to the Wealden, and ordimary Charncese are abundant in the Tertiary strata.

Charcoal is a lerm most frequently applied to clarreal wood, or cont prodaced by charring wood. Formerly, charcoal was the name for charred seaconl or mineral comil ; and the word in popalarly tuas for the cinrlonacentas resillue of vegetalle, animal, of mineral substancea when they have usilengune sumethered combustion.
Animal Cilincoaly lhene-black, or IvoryBbACK, is prepured from bones by heating them in Plose retorts till they underges the process of destructive distillation, when coubustible guen and water, kogether with the vapours of varioua satis of anmmonia, and wil, sre given off, and lonehlack bleft in the retart, It is generally reducen to eoarne grainn from about the size of numll peas down to large pin-hends, and is extensively uned in the arte for decolaurining liquids, such an the syrup of sugar, anat molatians of argol (impure eream of tartar) and of the alknluidn, an also in Filter (q.,.) for separatigh shemical inuparitien from water. The jenernl mosle of uning the bone.black in to allow the colenured liquid to percolate through s layer of the charenal, whes all eolour in arrented, and the syrup or water rins clear and coleurlenn from under the atratom of charcoal. This power of Alsarbing colouring mintten in alwo observable in vegetalile (peat of woesl) charconl, lut not to such as extent on in lwas black. The spplication of beat to the lgaidn before fifierion greatlv faciliLater the decolourination, and where the volune of Hiquid to be osperated upon if not great, the nont sxpeditions method in to boil the liould and bone. black together, and then strain through filtering paper or cloth. The oompoitition of lione-black in 100 perts is 10 of pure charcoal, asinoclated with 00 of earthy salia-i.e. in the proportion of one of pare charcoa! ia 10 af the commercial bone-black. The power of absorling colours appears to be due to the joronity of the amlintancen, and in not resident simply in the pure charcont f indeed, the earthy matters (prinetipetly phomphate at lime and carbon. ste of lime | can he dinsolved out of the bone-black by dilute hydrochloric acid, and the pure charcoal thas obtained only posecseen about one-third tho decolourinisg power of the total amount of boneblack it whs abtaioed from. Thus, if 100 parta of ordinary bone-black have the power of arrenting the colour fromit efin volames of a given coloured liquid, then the 10 parts of pure charcoul which can be ebtained from the 100 jerts of bone-black will be found to deculausise only three volumes of tho susme coloured liguid; mo thet it is apparent the earthy matten in the hone-hlack inhlwence and increase the absorption of the colouring miatter sand thas render a given weight of the ebarcoal of greater sammercia value. When syrup of augar and other liquidn have heen rin through bone. black for somte time, the pored of the latter appear to get clogged with the colaser, and the clarffying influence ceases, sud then the bone-black requires to sudergo thie procenn of recievfication, which oon. sinta in rehieating it carefully in ovens, or iron pipes inclosed in as furnace, when the absorbed colour in clarred, and the bone-black can lee of nervice once ngain es an arrester of colour. After severnl reburnings, the bone-hlack becomen of very inferior mbsorptave quality, und is then disposed of for the manufactare of bone-nh and dissolved bones (Bee Bose Mantres). Bone black has likewise a great power of ahsorling odours, especially those of a disagreeable hature, and can thus be employed to deodorise spartments, clothing, outhouses, \&c., or wherever animal matter may be passing into a state of active patrefaction.
Woon CHarcoal is the most important, though not the purest kind of Carbon (q.v.). Wood con sists of carbon, hydrogen, and oxygen, the laat two being in the proportion to form water. When heated in the open air, it burns completely away, with the exception of a emall white ash; but if the supply of sir be limited, only the more volatile mattere bura away, and most of the carbon remains, This is the principle of the process of charcoalfrorning in countries where wood is abundant.

Billets of wood are built ap vertically in two or three rows into a large conieal heap, which is covered over with turf or moistened charcoalashl, and looles left at the bottoms for the air to get in. An open space is also left in the middle of the heap to serve as a flue. The heap is set on fire by patting burning wood into the top of the central opening. The comliustion proceeds gradially from the top to the bottonn, and from the centre to the outside of the heap; and as the central portions burn akny, fresh wood in continually thrown in at the top, so as to
keep the heap quite full. The smoke is thick and white when the process is going on properly : if it becomes thin, and especially if a tine tlame aspears, the wood in limenigg anay tion fast, and the combustion munt lee cleecked by closing the holes at the bottom, or by heaping Iresh whes on the top and sides. An soon as the combastion is completed, the heap in completely covered with turf or when, anil left to enol for twn or threc davis. It is then taken to pieces, and the portions still hot are conled by throwing water or sond upon thenh. It if found that 100 parts of wood yield or the average from 61 to is parts by measure, of 24 parta hy weight, of charcoal. The chareanal thas prepiared is the liest nuited for fuel. In England a large quantity of charemal is obenined in the dry dis. cillation of wood in cast izon eylioders, for the preporation of crude acetic achi. The chareail that propared in preferalite for making ginpowiler, bat on inferior for other purpienta, A peetliar kind of charcoal of a reddish-brawn calous, and hence terued charton rowe or red ahacraal, is frequentls preparod for the masufactare of the gappowiler wast lor goorting. purponeen, by subjecting wool in iron cylimien to the ation of superbeatel steam under a proware of two atmuspheres Powder made with thia charensl abourlum manitare mare rapidly than ontinary ganyumber.
The general propertien of woent charecul are, that it in bhick and hritule, anil rothine the form of the wood fose which it is derived it is insolable in water, iafusible ant nom valatile in the mut in: twane beat; its power of condensing gives is anticest onder (Carlion (q. v.) a and fromita power of deatroying hai miellis it has been resarded in poserping conuiterable antbeptic propertioid it is fremenetly utated shat eharenal in a lout comblactar
 moyartien dopend upon the nature of the charcoal. the lighter wool, muelt for willow, y iehling a pormas charcoal, with hittle pawer of condocting lieat or eluetricity while loswwol yield a very vompurs charesal, wheit in a good cropluetor of lieat anil electricity and bs adnuribly adapted for the exlii bition of the electrid light. Charcoil never comsiats entingly of purec cariben, the degree nt party varying itheetly with the temperature at whibl, it is containa 65 pert rent of nurbots, while that charred

 coal rexauioned loy these light temperathres is very great, the percentigue yield of charenal corrapond ing to these temperatures bering 50,20 , and is.
The uses of wood-charcoal are nomerous and extensive. It is very largely employed as a fuel. taking the same place io nuany countrien that eoal ocempiss there. Front ita lieing proof against all ordinary chemienl agencies, superticial charring bo often employsel to protert wood frobs deeny, as in the cuse of fenee prats, of telegraph pales, or of piles which are driven into mait or into the hedr of rivers to server at foumations. With the sane design it in not unusual to char the interior of thebe und cauks destined to bold lipuitls. In a Finely divides state it is commonly regarided, as has been slready atated, as an antiseptie, and there ion no donbt that the offensive elfluvia frome animal matter in an alvancel stage of putrefiaction dis appear when the putrefying subatance is coverel with a layer of clarcoal ${ }^{-}$bat in reality the decay goes on, without the emission of any odoar, till at length the whole of the carbon is disaipated as carbonic acid soas, and the liysirogen as water, while the ditrogen remains as nitric acil. It has beel shown that the action comvises in \bar{x} rapid process of oxidation, dependent apoen the power
which finely-divided chareoal pussessea of condensWhich finely-divided charcoal pussesea of comdens
in oxygen. In a finely divided state, charcoal not only condenees grases to a marvelloss extent, hat has the power of aboorbing colouring matters, hitter principles, sce: and hence it is of extensive ws in
phe laborntory. From the rapidity of its abeorhing
setion, the lase of a reapirator filled with charenal hase been wuggested to proteet the mouth and noatribs in an infeetol atmosphere; traye of pow dered wood-charcosi in dissecting rooms, in the wards of hospitals, and in sitastions where putres cent animal matter is prosent, exert a most bene ficial influence in sweetening the atmosphere, by abeorling and drcomposing the offensive goves Charroal is accordingly valoable in filters, pot only for decolourising pirpooes, bat likewine for asaist. ing in purifying water for domentic use. It is alm mucessafully used to prevent the escape of noxions vapours of the rentilating openings of sewers. as it allown the free jumage of air, bat condensen. the nffeanive elltaxia in its pores, where they are destroyed by a procos of wixilation. Besides ith employment in the masalactare of gropawiler it han prasy applinations in the arts \ln medicine it is at preseat ehiefly aseel to destray fetor: for which proipoces it i- applied in the form of puwdet or poultice to jaugrennus sures, phatedenic uleem Ar., it it alao largety emplogeol is woth. powders, as by its merchasioal action it renagee incrusta tiens, while lo its chemiesl action it detroys feter of the lirenth. In indigertion ncconpuanied hy nuch llatulerice it may le given is ilmes of two nir three teaspowafals mipemint in matet, sit may he altainitered in ther term of pleareoal-hinenits (nee Biscuiss) lery finely whivilel iaphar clamenal is mosardel as the lout for melicipal ases.

Cheese is a highly nutritions fond subutance sade froes milk by nlabiarate proceses which can ouly he explained in the light of a knowledge of elence, ehiefly chernistry. (lieeres may lom raghly divided into two great clawen-hard and nuft. The various Eaclish, Sentel, and American cheeset belong to the firat cloms, and are male no that they will generally keep for monatha, and often continue to iniprove in quaflity. Soft elieens are thinse whici prevail in mone parta of the Cuntinent. Minay of thent require to be consumed imnnedistely after they are pusnolactared Their rapid decusuposition in awerviated with a strang and to cunst jeomple an obs jectionable stell. Cheres is male from the solide of milk-vie the cascin or clifel allaminnal conatituent, alongy with the greater part of the eream or buter-fat, Anil mush of the mineral asle. In fremh milk, whíh io alighly slkaline. these salmetancer mantais a surt of laitescrilable saino with the watery portion and the trilk-wogar-the whole, as is wefl knowk, levisf lipuid. The preence of an asid, of of Ifernet $(q \mathrm{v}$), counterncts the natural atinity of the soinsance for each other, and the lmilh of the melhio repoate mut, furbing a monf jelly in the early stapes, leaving the holk of the water conbaining the angar at a greeniat liquif called Whay ig v.i. The chemical proesures involvel are at yei moly very inpetferlly anderntand.
Milik is decomjeming, as it rapidly does in lot and caltry weather, (eeothes mour in virtue of a national proces of fermentation. Hennet indoces abother forms at fermentation whiche dives nat end when the promact cesses to be milk, lont is carried out in the dheese daring the perion of its ripaing or auellowthe. In the esrly stages of the proobes of liard rhese-making, the incipient acidity which induces that conilition in milk fermed 'ripenes,' aids and hastrest thar iction of the reaset. As ther werk proceols, and the aciblity intersifies, it harderen and contracts the card, piving it a leathery character. therelly aiding in the expulaion of the whey Obs of the nemb impurtant nsaluers is cluese making is to wateh the rerehoment of seifity liath in the milh and its linst protari, the eurd. If the in allowel to jov too far, the quality of the chese is seriussly injurel, ant its keopigy jower in relueed it ecrawh through leconuing tom dry and brittle The idelieste favening vily seem to te expelled, iand the smaell lecomes high and the taste 'actid' of 'biting', The formation of the aciol is noe of the great tedps in cherser making so lang as it is kept in sue cuatool. If the nehl developes rapilly, hs in lent weather, in a temperature which muitg the sems producing it. the whinle proccoen of mannuigeture jas to tec prosked an quiekly, whereas in ovoll weather accility canies stowly. and the mpermator must wait until it has emme solticiently. There ane several methots aslopted in indociong acility. Acid ured to be largely aideri, as sone whey wr batternilk, bot grater uniformity is got by ilelaying until natural acisity develops. This it does numi paickly when The teraperature of the matertal is kepe up near
organizens producing ncality
Heat in commnnicsted to milk or to its products in the early stages of cheene-making by two methods-either by warming a portion of the milk or whey (though not allowing it to rise much alove $100^{\circ} \mathrm{E}$-ssy A linit of $150^{\circ} \mathrm{F}$. -as to boil it would do injury ly changing ite conetitation), and putting it into the main bulk, or by having an outer shell of wood to the tin or iron cheese-tul, with a space between into which steam or hot water can heinjected. This arrangement possenses the additional advantage of being clean and of saving labour, although the cont of the apparatue in greater. When the temperature of the evening's milk requires to be reduced to insure its keeping overnight, as in hot weather, celd water can be employed in the name namner as hot water or steam.
It would be minleading to fix definite temperatures or asume definite rulen of any kind in apeak. ing of the broad prinejplen and practicen of Britinh cheese-making, because there are so many aystems which differ materialiy in important particalars.
A thermometer should be used at all timea and in all syotems. The old method of teating by the hand hardly now exiate, and certainly not among good cheesemakern, The ordinary temperatures at Which milk is net or ateeped vary with the syntem adopted and the temperstare of the atmoppherefrom 80° to 90°, mora or less, in the neareat indica. Hon that it is safe to make. High temperatures are used in making deep cheenes, such an Cheddaro : low temperatures in making shallow cheenos, ta the old fanhioned Dunlope. The Glouceater is a well known variety net at a temperature nearer to 80°
thas 90°. Av setting at tho high a temperature
the curd geis hard and tough, though it needa a considerable amount of consintency if it is to retain a symmetrical form in a deep chicese. If worked teo cold, the curd in noft and the whey diffecult to get out of it, the processer of rebnet fermentation and acid fermentation do not go on sufficiently, and their work is imperfect. In all sases the greateat regularity in method nhould be maintained from day to day.
After heating, the colouring matter (now almost invariably Anostto, q.v.) is put in. This is not considered an aduiteration, as it in innocubun, It in no way improves the quality of the cheene, the effect being only upan the colour. All checese are not coloured, though the practice is wideapread. Hendet is put in aksuat the nane lime, and after thorongh stirring for the porpones of mixing these ndded ingrediente, As well ma for keeping down the cream, it is left for 40 or 60 minutes.
Breaking the eurd to let out the whey in the next proces. Netwarkn of thin wire, of series of thin knives, are pased through it in various directions with great caution, to provent the curd nabotance lieing carried off with the whey, which would give it as white rather than its natural green hue. An the cand hardenn it is more quickly worked and Enally broken inte small partieles, no us to allow the whey to escape. The expulaion of the latter in lielped ob by the contraction of the curd, due to the gradnal increase of acidity, Acidity develope naturally if time is allowed, but it in judicious to hasten it by the addition of warm whiey during lhe about the neenevary smount of acidity in to expoee the curd to the air for a time lefore it is salted. Salt, leviden giving a llavear, ntope the action of the acidity in cliesse after it hise done fits work of expelling the whey. If allowed to go on, the acidity would deatroy the cheene by cartailing the ripening action of rennet. Exceas of aalt retarda the latter procem.
After the eurd has been broken thoroughly, on being allowed to settle so as to drain off the whey, it adheres together isto en india-rubber-like mane; thin is ent and broken up into emall piecee by ith passage throitgh a 'cuni-mill.' The fineat quality lsrge is an indication of ite purity, especially from magneris aslta, which give a bitter taste and otherwise injure all dairy producta. The quantity employed ls, more or lesk, aloont 1 lb , of nalt to 56 lb . of card dry enough to be made up and put into the cheese-prose. Its amount should vary with the degree of acidity and the amount of moiature present. In some casea salt is applied wholly or in part dry, or as a brine, to the ountide of the chene salt is put into the milk before cosgulation.
The eunl is finally packed into a 'ehesset' ò
preas vet, which han an a temporary lining a eloth of open loxture callod a 'ehesee-cloth. Tho vat with perforationat in the sides and bottom to allow of the secape of any little surplos moistore, is placed in a prese, and the cheese sabjected gredu. soon samunee the form in which it io to romain as regularly and changed; the choese being tarned over each time to makes it keep ita shape. Ripening in the next process of importance. Doop cheesea are bandaged, and some are covernd with cotton elotha (caps) muale to fit tightly. They are then pleced dry , weil ventilated, and maintained at to do don tomperature of about $70^{\circ} \mathrm{F}$. Thero the kreen indigeatible and inaipid curd changen naturally into the aweet, mellow, nutty, and foll-favoured produet cheese, which, if taken in moderation, and eapecially towarto the end of a meas, is an sid to digeation. The ripaning procese, which is about 10 per cent. in weight, varies in length from a few weekt to a fow manthas. Acid ehome are soon roady for market, and apoil if kept for 4 long time. Sweet cheosees are alow in matur ing, and continue to improve even if kept for years. The tendency in chesese-making both in Great Britain and in Amerien has recently been to early maturity, the atrong inducement boing that of early returne.
The Cheddar ayotem of cheer-making, which firnt originated in Somenetahire, ins, it wo embrace Great Britain, Canada, and the Unitel Statea of America, the most widely practised astom of all. The old' mothade have beea much altered in recent timen to suit the tendency in the market for early maturity. The following in an sceount of the ayntem nas now practised, with improvementa wig geated by American and Canadian experiences.
The cream th removed from the ovening't milk after atanding ovemight, and is only returbed to the full bulk immediately before putting in the rennet; the object in to prevent the eream being maide oily by heatiog to a high temperature. The renset in alded at a temperstare nanging from 82 to $89^{+} \bar{F}$, but the milk in heated a low degroen above the point fixed upon for sterping, and left to ripen. The tempersture falls to the required point meanwhile. The ligher range of teniperature is adopted when the silik in sweet and recently drawn from the cow. Low temperaturen auit old milk or warm weathes. If the chense is to be markoted within twenty doys, enough rennet ahould be added to induce the initial stages of congulation within eight to twalve minutes. After this it nhould bo left for twelve to eigbteen minuten, then breaking begins with the perpendicular and horizontal catting knivan. It ia atifred for about fifteen minatea with a hand rake, and the temperature afterwarde riined to $96^{\circ}-98^{\circ} \mathbf{F}_{\text {, }}$ or even by nome up to $102^{\circ} \mathrm{F}$. The whole in allowed to pettela and remain nearly an hour to 'cook' the curd. As soon an the latter is elaatic enoogh for the partieles to retain their independent ahapea on being grasped and aqueesed ly hand, the bolk of the whey in run off. What romains and the eand, atill in amall piecen, are removed bodily from the steep-tab or vat, and placed in a flat cooler with an inner movable, sparred, false bottom, to necure drainage. The vemat is lined with a eheese eloth. On thin the curd is exponed to the air and well worked by hand, so as to prean oat the whey and keep the partieles from adbering to oes another at too early a stage. After boing, well worked and exposed it ie left to run together, being covernd ap to preserve heat, It is aubaequently ent, piled, and left eovered with a cloth for perhape half an hour. The eurd then amells and taater alightly scid. It is either milled or pot through Hewrist atamp lever bresker, which cutn it into pieces like ingers. It in subsequently weighed, and should amount to fally 11b, to the gallon of milk, and is again exponed to the air to getquit of taints, and to toaghen before salting, which should be done when of velvety feeling in noticesble. The salt is added dry at three separate times, and well mixed. The curd is then left to cool down to about $70^{\circ} \mathbf{F}$. bofore being put into the vat. Prewure for about two and a half days is followed by ripening or neasoning. The whole operation of making up the eurd may be over in five hours, or may takesix or eeven hourn, sceording to circumatances, A good Cheddar cheene contains when ripe sbout 28 per
batter and of mointure
Cheshire Cheses are manofsctured in Cheshire Staffordahire, and Shropehire. In their deep shape and aleo in many detalle of their working they resemble Cheddars. Setting is done in a square covered vat, and after making up they are often put inta an nven to cook for s night before going to presa. In the latter they remain for nearly a week. Derbyahire Cheses are ateeped and worked in a manner which elasely corraponds to the Cheshire syatem. The salt, however, is applied externally. Clouceater Chasacz are made by a aweet proces very mach the aame as the Derlyshire process. DowNe and Single Glowesstera are identical, with the exception of the thicknesa and the consequent rate at which they ripen. Aiter a time they are scraped clean and painted with Spanish brown. Leicester Cheesss are small and fist, and made by a swret process. They are at first lightly salted, bat salt continues to be added exterosilly. They takos long time to metare.

Stiltan Checses are mode mostly in Leiesater. They used to be dnuble eream cheeses, but are now muccesofally msie of the milk na it comes from the enw. The canl is not sabjected to pressure tike that used in making the pirevisusly mentioned forms. While on the shelves ripening it is sap ported by a bandage. and during that time the characteriatic blue mould shonld form throughout ita nabotance.

Gruytre Chraif, made to the caston of Fribourg, Sivitzerland, is a whele-milk cheese, as are also the Dutch eheesion of Gouda and Edam. The fancy cheesea of the Contineot, as Camesibert, Bris. Raque fort, Limbury, Gorganzoln, \&r, cemimand a high retail price in Britain lecazise of their perishable nature and becaume their censumption is restricted to a limited and wealthy clase. Iriftations have bees made, but of a spurions and inperfeet kind, gwing to the imponailility of secaring the secrets of their nianafacture. The broad focte nre known but not the details. For exsmple, it is quite anderstool that some sofi cheeses are made by mixing old snal new card twgether. The quality of the nataral pastares alto affecte some, notally the Parmemin cheeses from northern Italy.

The American aystem of cheese-making lone been reduced by fapproved mechanien and menociation in the form of the factory method to the mont ecos. nomical point. This method of manafacture was a growth by acoowity nither than a discovery. A large dairy whe divided by the death of the owner, who left three wons. The nows united and niantfactared their milk at the ofd dairy, and in time neightours joinel, asd the first factory was estab. lished in is 51 noder the masagement of the oldirat of the three brothern. In cosine of time the bosinesa inereased and becsane reluced to a most econemical lissin, while by the employment of skilful operatives the qaality of the product was igrodually miant. The factorien were gradeally enlarged until the milk of 1200 erwen could he warked up in the largeat, and as average factory received the milk af ahout 400 cown One Cana dian factery makes 216,060 1h. of cheese yearly from the milk of 1300 cown.

The curing oceupies about three months, the temperatore if the curing-room leing kept at $65^{\prime} \mathrm{F}$. Gang presses are swed, in whith a large numiler of cheeses haid on thedr sinles are pressed at oner by turning one serew. A common teet by which the ripenesa of the curd for pressure is determined is by touching it with s hot iroo, and whers lobig atringe are drawn from the cund by the iron, the curd is ripe

Milk is brought te the facsory twiee daily, and is weighod and rus into the was from the delivery window. The milk is either lwinght by the inctory, or is worked up at a stated change, or the fartory is managed on the co-operstive plan in which the net proceeds are divided periodically. Under this factary system the quality of the cheese is uniform and as high as is secured in any well-panaged private dairy. Abvet one-fifth of the cheete produced in Ameriea is male in private dairies in which the same system prevnils.
There are several nther kinds of cheese mode in both factories and private dsiries, as Elam(the reund Dutch cheese), a shatil cylindrical cheese sumilar to the English Wiltshire, weighing 10 to 14 lb ; \& flat eheese called English dairy cheese, similar to the dinuble Gloucester cheese and coloured sa highly ; i few Stillon cheese; cream choeses for immediste use : and very gond imitatione of the European Limburger, Schweizer, Nenfohatel. Brie, Goudk, Camembert; and some other fancy nakes to supply
the French, Germani, and other immigrant population.
The cows used in the cheese deiries in the United Stater and Canala are mastly 'grade' shorthorns, or nafive cows improved by croases of shorthorn, Devon. Aymaire, and Dutch breeds Jersey and Guernsey cows, and the hest of the higher hred snimals, sre used for the thighest elass of clreese of the fancy kindx. The profitable exploitstion of the dairy in Anterica has raised the value of lands unitable for grazing cown to an average value of nearly $\$ 100$ ($\$ 200$) per acre for the fee simple, which is twice as much as that of grain farms. The cheene-tairy businesa prevails mostly in the states of New York, Pennsylvanin, Ohin, Jown, and Wincopsin, and in the province of Ontario, Canada. The cows ars chiefly fed upon phatarage aided in the latter part of the smmmer by moiling erops, of which maize is slmont universally cliefly depended apion. The cheese-making benson begine in April atd continges until Novem. ber. See X. A. Willarils Prantiond Dairy Hus. bundry (1875), I. IT. Avnold's A wacrienn Dkirying 1877), and Henry Stewart's American Dairyman \& Mammal.

Chefse.phess - The mans conuman form is the lowe press. A prwesfal nteel eas or spring is nometimen nuhatituted for the lever. In large factories the grang jures is enployed to preas as large number of elyecses nt nne time by means of a bowerfal harizantal serew. Then ald mothon wan by placing a heavy atone (hence the name stoning choose) on the lid of the elaennet, or by havgisg it by a ring fixed to its apper aide from tie end of a wooden heam which acted at a lever and passed over the lid of the cherese-prens vat.

Chenalcal Amblty is the name given to the tendency to combine with one anotiser which is exbibited by many subetancein ; or to the foren by which the subataneer comstituting a compound are held logether. The tendency of any given plement to unite with a butalier of other elemente variea greatly. Chlorine, for instanoe, uniten with great reedines with most mintsle and with many nobmetsilic elensents, nuch heat being produced durtag the union : but it has bitale or no affinity for, or Cendency to combine with, oxygen, so that coapounde of chloribe with oxygen enn only bo obtained by roundaboui methods, and are very
Heble to audden and explosive deoomponition into chlorine and oxygen. Where the affinity of olemonte for eseh other is grost, the compounds produced by their anion are deoomponed with difficulty, and where the affinity is feelile, desomponition in masily affected. Ben alfo Cifxintigy.

Chemistry. Although chemintry han unly taken ita place on an exact acience bewod apon acperate experimental investigation within a oom perativaly recent period, yet ita origin daten back Lo the earlient timen of phílosophical study. It vill be convenient to give in the firmt place a short sketch of the history of chemistry, and then to state soms of the principles of the science, illuatrating these from the simplent facta. When powsible, each illustrations will be choeen an are likely to be not altogether unfamiliar to non-scientific rinelers.

Hiatorical Sketch. - The word chemistry has come to un from the Greek through the Arabie, as shown in oar eticle Atchemy. With regard to the chemiatry of the sacients, we know that the anejent Egyptisus, Phoniciane, Greeks, and Ramans were ecquninted with a very considerable number of unefol substances, and that Uheir processee for preparing nome of these did not differ in sny ensentind particular from those now in ase It doee not appear, however, that they have left any chernical recorde behind them, or that they knew anything of the ncience of chemistry: Several metals wero known to, and employed by, theee ancient peoplen, who were sequainted with processes for reducing thern from their orea. Amougst these metals were gold, silver, mercury, copper, tin, lead, and iron ; whilst they also knew and worked with brase, athoagh they were not aware that it was an alloy of copper and zine. Varions alloya were employed for litomzs for statues, and these usually contained copper, lead, and tin. The processes for manufacturing soap, starch, glass, leather, various mineral and vegetable pigments, stonewere, casried on in very early timest: and wine snd beer
appear likewise to have been prepared and uned as beverages long before the process of distillation. which was unknown to the ascienta, had been introduced. Vinegar, sulphur, and carbonate of sids were also known.
We find the spplication in medicine of many chemical producta at a companstively sarly period, and the Arabians appear to lave neen the first Who tried to prepare new medicinee by chemical methods Geber, who lived in the Sth century A.D., in the moat noted of the Arabias chemists, snd he has left nome writings which show us what wha the state of chemintry nt that esply date, Geber knew, for inatance, how to naske and diatil vinegar and nitric acil, and even aulpharfe acid was maste and uned as a solvent by him. He knew, antoogent other anhaslancen, white arsenic, borax, comuman asit, alain, ral-anmoniac (amanoniam eliluride). copperan (ferruas aulphate), bitre (potasaium nitrote) and corroxive subhmate (niercuric chloride), and He usod alntoet all the kinds of apparstus that were commoaly in une down till the 1hth century. and understood the procesnes of diatillation, flitr: tion, sablimation, and erystallisation. In one of his worka he describes the construction of Surnacea for chemieal parposes.
From the Eth till the 17th ecatury hat Fittle raal progrean was made in chemiatry in a selience. The new knowledge that whe gnined diring this pariod was mainly due to the asaiduitv of the alchemiate, who, in their vais sserch for flue phile sopher's atooe, nooensarily made unofal discoveries
from time to time. Many of the aleliemiats so from time to time. Many of the aleliemiate so
celled were mere tricksten who deceived their dapen by more or lew clumny experimente, which appeared to demonatrste the prodaction of cold from haser metal. Others, howover, were really oarnest and zatiriag in their labours, and beld the falleat belief in the prospecte of the ulsimate aucoese of tome fortunate worker. The new nabatances obtained by the alcheminta were frequently neod in medicine, and it in to these iofatuated workers, therefore, that we owe our frat krowledge of many potent medicises. The writinge of many of the alcheminte are proacrved, but numbars of them are entirely worthlese Irom a scientific point of view, as the dencriptions of procenuss are mixel up with oo mach of onystery snd uxtravagosice that they present a wholly unintelligible jargon. For more detaid, however, regsanding thin remarkable period in the hintory of clapaistry, see the article Alcagay.
An Geber has boen called the patriarch of cheme istry, no Robert Royle ($1627-9$;) has been called the father of modern chemistry, since it was Hoyle who First fried to lree chimiatry from the trammele of alchetny and to place is upan a trae scientific beas. Boyle in fixs Serpfucst Chrmial tried to dincrodit the ealt, sulphur, and merenry of the alchemiata (as well os the Aristotelion earth, air, 6 re, and water) as elemente or ultimsier conshituenta of subetances, and he gave ss scientibe definition of an element Boyle what an experimental inventigator of conaiderable skill, sund to him we awe the introductions of the airpump and the thermesueter into this conntry. Ho eaperi miente upon the phymical pmperties of groer let to the formalation of the law concerning the relation of the volume of a gas to the pressure. which is commonly known as Boyle'r Law
Theory in moders chemistry begins vith Becher $(1035-82)$ and Stahi (1t60-1734). The Iatter siopted, with nome modificatione, a theory propounded by the former concerning elementa asd compounds, and formolated the phlogiston theary of combuntion. The viewn of Becher and Statil regarding elements were not mo enlightened in those of Boyle, and must be considered so retrograde. Stalil's phlogiston theory (1a97) was at once adopted alnowt univernally by ehemista, sod for fifty years it was held to give the fall explanation of the phenomena of conabuastion. According to this theory phlogiston whe a constituent of all comebustible iupatanice. When a subatance burned, the phlogiston made its escape, and the product of combustion was regarded an she other subatance with whith the pllogiston had been provinualy
united. When a metal such ns leal was heated in the air, it loet its phlogiston, snd the oside formed was looked upon as the other constituent of lead liesiden phlogiston. The procese of reluction of lead from ita oxide by means of charenal was the
tranafer of phlogiston fromi the charensl to the lead. It did not present itself to the witherents of the theory as an ahourdity that a metal, in losing its
plologiston on exidation, gained reight, although some of thens at least were asare of the fact. The idea of gain of matter being a necessary acoomptaiment of gain of weight is so familiar to we that we can scapcely matise that it was mat ahways so
reganded. To this rasy fairly be sutributed the persistence with which the phlogiston theory beld itn fruand for an lollge a period.

The Datch chemist Boerhasve ($1668-1738$), wha did not mecept Stahl's theory, pablished in 1732 his systern of chemistry, which wis a compilation of prsetically all that was known up till thst date. collected with great labour from in large variety of alehemical and other writings.

The interval between the introdaction of the phloginton theory and ita nverthrow hy Lavoisier in
$772-85$ whe goo nf kreat advance in ehemirel knowledge, asd a number of very eminent ebemisto proceded and wero confemporaries of Lavoisier.
In Germany Marggraf ($1706-82$) stadied the propertioe of the sunost gaknown alemina and qualitative vnalywis of sulatances in solution.
Amongnt Brifinh ehemista of note may he men-
cioued fialen (1877-1761), whe wen nomongmi the tioued Hislen (1677-1781), whe wan nmongrit the
first Do experiment on gasen; Black (1798-99), who
 showing the nature of fixed air or carbonie scid KNa, and of the diderence betwrees annstic and milhd (of carbonated) slkalies; Pricotiry (1733 - 1904), upho, in additina bo his disoovery of oxygen in 1774 . invinalgated nitric oxide, nitrous oxide, sulphurous ncid, ourbonie oxidn, hydrochlarie scid, and ammonis gones, beisg epocialty sttracled to the study of gaseodn aslatanoon and their properties; and Cavendiah (1731-18t0), who investignted the natare and properties of hydrogen, snalywed atioo. apharic sir. ond disoverot the compound natare and omppoifian of water and of sitrie wid.

Lavoising ($1743-04$) wan one af the ablent chentatis of hin time, and lisis labouss inclade a vast veriety of sabjecte His stanck npon, and eventasi deusol. tion of the phlogiston theory, and his experimente is counection with kis bew thnory of momlastias, yocupiol him for a mosailemille aumber of years. He tasght thist conabation wint the sinion of the conteatible anbolance with alinowpheric oxygen: he was the finst $t 0$ introduce syytan into chenistry and cliomical remearch f be determined the eas ohitgents of s lange numbier at substances, ineluding salphoric, phomphone, and sartonic acile, mutnerous mesallic oxides, and many mimal and vergetable sulutances; and Ire, slong with Berthollet, Four, croy, und Mnrvese (1737-1516), introslaced s new and ponsisieat syotem of chemical anmenclatare. Twa conteraporsiry Swedish chemiste, Blergman [1735-84) nait Sebeole (1742 -56), nust be shensioned bafore lesving the phlogision age Bergman investiguted, anoognt atber things, carbonic acid gan, atcailed the phenomena of attinity, sud made advandee in the prownses and reagente naed in qualisative sualyeis. Schecle was one of the most laborious chemints of bis time. He disoovered citric; matic, tariaris, osalie, lactic, bydrocyanic, sraenic and other mids, and chlorine besider investigating the mature of a large number of other bodien and independently disonvering oxygen.

It wus towards the end af the isth eentury that the value of quaalitative saslyen of enbetanoss legan bo be generally rooggnimal. The quetion as to whether the quanditative comppoition of a given anbuance way alwaye the same gave rise to a discusaion which lagted for zeveral years, snd was is leagth decified in fisvour of constant compoaition.

The researehes of Richter (1762-1307) on the quenctities of various seids melutralised by a given quantity of a base, and of varione haso neatralined by a gives quantity of an seid. Jed hins to the general cubclasion that the quantition of twn ncids, a and a^{c}, wlich form nestral salta, $a b$, shd $a^{\prime} b$, with the qquatitien of twe bawes, s and ' b, see just the quuntities required to form ives other nestral salta, $a b^{\prime}$ and a^{\prime} a. This fundamentsl discovery was erruacoasly attribnted to Weazel hy Berselius is 1819, snd the error lian leen carefully perpetasted in a considersble numler of toxt-books wince that time (Kopp, Entwoickelung der Chensie in der neweres Zeit, p. 251).

Perthollet $(1748-1822)$, who whe one of the moet active opponenta of the theory of the constant componition of chemical sabatances, coptributed valuable researches into the lawe of chemical affinity, and appliad chlorine to procases of bleaching. The prucestan of chemical analysis were improved, and Trere casried aut by Klaproth (1743-1817), Vanque-
lin (1763-1829), Fourcroy (1755-1809), and others; and many quantitative observations of all kinds preparing the way for Dalton's statement of the Atomic Theary ($q . v$,) in 1803-4.
The progress of chemistry during the present century has bsen immense, and it is not ponaible to do much more than mention the names of some of the moet prominent workers. A stimulus was given to rescarch by the publication of Dalton's atomic theory ; and the labours of Gay-Lumac (1778-1850), who experimented with gaves, of Dulong (17851838), and Petit (1791-1820), who pointed out the relation between apecific hesta and atornic weighta of elements, and of others, supported and amplified Inalton's viewa
Wollanton (1767-1829) discovered palladium in 1803, and thedium in 1804. The firut alkaloid (morphine) was obtained pure by Serturner in 1816, and this led to the discovery of is number of others in a short time.
The decomponition by electricity of the bases poitanh and weda by Davy (1778-1829) in 1807, and the separation from thees of the metals potasoium and andiam, threw an entirely new light on the nature of thene eidlatances. The metaln wers more fully inventignted by Gay-Lahanc and Thenard (1777-1657). Davy is noted also as the inventor of the miners'salety famp, and for experiments on the reppiration of nitious oxide and other gasea

Amongat the foremoet cheminta of the eurlies pert of the 19th century was the Swede Berzelius (1179. 1848), whose careful and exact analyses of mineral suhblances contriluted a goosl deal to the confirmatiot of the law of constant proportions and to tha fixiog of the ntomic weights (seo Atomac Theory) of the elementh. Berzelias was very conservative with regard to new theories, which he declined to avetpi without putting them to the ntrictent experimental testa. He formulated the electro-chemical theory of the constitution of nalts, introduced great iraprovements inte the metlindn of quantitative sonalysis, iscreaned the value of the blowpipe an an aid in minersl analyaie, diecovered many new aubetances, sud farther examined and elucidated pointa concersing many already known, both inorganic and organic.
The artificial production of aren in 1828 by Wohler ($1800-82$) marks the beginning of a new ers in the branch of organic chemintry, and enor. mous atrides have been made in this department since that time by Dumas (1860 84), Liebig (180873) Laarent (1807-68), Gerhardt (1816-56), Wurtz $(1617-54)$ Kolbe (1818-84), Baryer, Cannizzare Frankland, Hofmans, Kekule, Williamson, and minny others, Advamens in general inorganio Gmelin $(1788-1863), H$. Roee $(1705-1864)$, SainteClaire Deville ($1818-81$), and Bunnen whilat in consection with advances in chemical physios may be mentioned Farsilay (1791-1807), Mitacherlich (1704-1863), Grabana (i805-69), Regnaalt (1810-78), Andrewn ($1813-85$), snd Berthelot. These linta do not include all of even the most prominent names that might be meationed is connection with ench degsertament.
The mont atriking feature of modern chemistry fy the extriordinary development of organic ehemintry, the ncoount of one branch of it-the cheninitry of literature which receives alditions every day.

Amongst the moet recent triumpha of chemical roesarch inay be mentioned the artiticial production of indigo and grape-nagar, and the isolation, in sulficient quantition to ntudy ite properties, of the hitherta all but anknown element flaorine.

Of the greatest poesible interest from s theoretical point of view is the fact thet since 1870 three new elements have been dincovered-gallinm, scandium, and germanimm-the existence of all of which had been predictel, and the properties of which had to a certain extent been deacribed heforehand by
Mendeleiff. (See periodic law in article Atomic THEORY.)
Of late much attention has been given to meneuremente of the quantity of hest produced in various chemical changes, notably by Berthelot and Thomsen.

Elementary Principlea of Chemistry.-The acience of chemistry desls with a cortain class of changes which mstter undergoen when subjected to particular conditiona Similar treatment may produce very different effects upon different sulstances, as, for instance, the effect of atrong heat upon a piece of quarkz, a piece of limestone, and a piece of sugar.
that is, it has the same propertien after it is cold again as it had before the setion of heat. The limestone, although not neceasarily much altered in appearance, has its properties entirely changed, and What remnins is a new kinsl of matter-quicklimeThe sugar melts, darkens, and chans, and becomes quite manifeally changed into more than one mew kind of matter, for faseous proxluets, having the smell characteristic of thurnt sagar," go off, whilat a hlack coaly mass remains.

The first of the above chanigen is merely a physical change, from cold to hot; the other two are phemical changes, which result in the production of new kinds of matter Juying properties entirely different from thrise of the kinde of matter from which they were obtained. The existence of chemintry depends upon the existence of different kinds of matter, ani it is with anch different kinils of matter and the chamge from one kind to mnother thint cliemistry hat in do.
When the jroperties of matter are stinlied, it is found that for cheruical purposen all kinls of matter may be civided into two great clasaes, Which are called respectively elamente and con-
pounds. The name clument is mpplied to any
 poest of inore than she mimpler kind of naster. This conception of un plemacitary bulatance we owe to Ioyle, and it will be noted that mane of thone mulationess whiph are nuw looked unger as elomenta (see article Atrasic: Thaosy fur a liat of the 68 known elementa) may liervaiter lie proved th be compuannds, or kinils if muster conmpued of murs than une nimpler kinul, juet as sumbe pulatanceh Wheh Wore at une time rightly elosend as elements (Acconthat to Boylvia lebaitimef are muw

The conpuand nathre of a mectinien of matten

 tone the cemporient dibipler kinitas the ablers io
 furse than unh abopler kind from the comijnenisid
kinal. kial.
 ant mere mechanicnl mixiarea ia a fambammal Bue, and mant be fulfy woterstood. The aithotaire
 (Tutnomisu nitrate), ceriain proegutious locint

 asirselven in variug way. Wr may examige the Kunpowiler under the muenncagu and inleatify the aeparate particlen of the ingmedtenta ; or, ly the tone of Appropinte molvento, we may divalye ans firnt the waltpetre and then the anlphur, and thas recover all three ígredienta neparately. The explosion of ganpowiter when heated io a sultieiestly high temperature is due to the oceurrence of a aperine of changen of the kind we ciall ehomical, for there ehanges reate in the production of new kinds of natter, gasenue and sultid, which proses properties In now way resmonbling thone of wolplaur, charcoul, is nalfpeire, nut from which these sulintaneee canomi now be dissolved ont,

A mixture penceway to a greater or leso extent the properifies of its respeetive ingredients i A corrponoul on the other hams, har unt as a ruhr any
propertios resemhiting thome of its constituents. A piece of magnesinn wire heated in the air th a hafficiently ligh tenyperature taken lire and burnh. This is a chemical change in which the metal magnesian combines with the oxygen of the air to form a white, brittle, bolid componind called magnesis or mugnexium oxide. This magnesia loes nut is the Leakt resemble either nagneaitam or oxygen in the properties, anil the most powerfal miernecope fails
to reveal particles of either of these aubetsuces to our viaion.

The Atomic Theary (q.v.) is based upon the assumption that matter of every kind is male up of extremely mimute indivisible particlea called atons. The atoms which exist in s subatance may
beall of the same kind, on in elements, or of different kinds, us in compounds. Chenuists believe that the element hyalrogen consists of modecales or aggregates of atoms-each molecnle consisting of two atoms; farther, that the compound supbstance water consists of molceules, esel componsed of two atoms of hydrogen and an atom of oxygen united to eacl otlier by that force which ta catled Cheowical A(fuity (q.v.); and that similarly every other
compuand subatance is composed of imolecules, each manlecale consisting of two ar more different kinds of atoras anited by chemial allinity- The weight of a new componnal formed by the enion of two or more aubotances is in every cuse equal to
the sum of the weights of its constituenta In the sum of the welights of its constituenta In
eliemical actions it is baly the lind of matter which is elagnget, whilet, at in every physical ehnnige, the qwantity of salter coneernod remains constant and unalterable.
It has already been seen that one of the chavaetertstios of the clienical conibination of two rubstances is that the properties of both ifsappear and are not olservable in the conpmusil. A nother and A most ioporiant characterasic is ine evolution of heat, which is a rery frequent although not an in: varialile accouppaningent of ebemical netion. The hest exauples of this may lee seen in the arlimary
 whether it be of magnesiniar inire, conl, phonphoras, paraltin oil, er a candle, is nothing nowo than a ofernical action accompanied ly the evolation of hent and light, enygrn gas of the atmonpliere lieing atmont invirialdy one of the callatanocs taking part is much abtion.
The conslitious upter shaidi sollatauces ant chemi. zally opun each utber nere fers varfons for difforent aintetances. In the first plare, gertain sulestancis canmet be fot to act upon each ather at alt. Sueb nulstanies mayy lave lietle alfinity for each, other, us elulaine ant asyben, or no slinity, ou fluorine and ukygen. Other $>$ atntancek, ayenin, only act upein each wther with slifieuley. Then majo complituate upon which sction of ove molstsmes apoon anvither
 the temperature. Certain chenpioal setions takie place at milinary temperatures, as, for instinnce. the cunthiantina if chlorioe with metallic aptipany ar copper, ar the ofontacomas igaision al vae of the compoinds of plisuphorus and havtroges wlies brought Futo cuptect with oxygen. Other notians ouly take plece when the temperatury of the substances which are to take juert in thess has been pulficiently naised. Thon neegraesium requires to ben atrongy heated in sir before it iskes fire; once the action is started, however, the hest given out by the enratiostion of one fert of the magresiom in anticient to taine asotber pert to the temperature necewary for cumbunbina fia go on, and mo the ehange by pryparaled. Coalgas only burn in sir when is ts raidel to a liright-rel heat. A jot of coal.gas cossping into the sir insy be easily igwited by applying a bingtily red-hot polier, but when the poker cools to dinl rodorno it will an langer igaite the jol. A lar of metallie iros does not undergo any chernical olsoger on expoware to dry air At ardinsiry tenipentare, brat if Iron in the state of very fing powder (s forns is which it can essily be obtained by appropriate nuethods) be thrawa inta she sir, combination st oned take plase with the vveloting of linst snd light. When a piece of iron (say a nuderstely fins iron wire) is heated to red. mos in air, combthation wish the oxygen of the sip saket plicer vith the formistion of a sogle conposed of a black oxive of iron, but the quantity of lieat gives unt durigy the eumbination is not mufficient io propagale the cambration from partiele to particle of the iros after retaoval of the souroe of heat. If, however, iron wify lo raised $4 a .5$ red heat in ats atmopphere of axygen, it talos fife and burne with great brilliancy. The differeace noticed here in ilue to the presence in the one rase, and the slemen in the other, of the dilutidg nitrogen which forms nesely four-fifthe of the sir by velunae.

There ere certain cocnical sctoons which in taks. img pluce se avouspanied, wot with evialntion, but with abourption of liest. Io ench caves heat hise to be supplied thronighomt the aelion, and not merely to start it. This is frequently poticel in the consbination of subatances wbich liave feeble affinity for each other, sad the componands protnced are less stable, or mume realily breati minio their cotiatitneats, than thone which are prolucel with the evolatinn of heas. In getieral term it masy be atated that the quantity of heral given sut in the fornution of s compotand is a Jueasume of the neability of the compund. When a given weight of magnesinm unifes with osy gen to form mitmesik, a quite defmite and messumalie quatity of heat is giren out. In order to separate the tragnesium from the oxypes again, exactly the same guastity of hest must be sappliel. In the case of those sulb atasees in the formation of which liest is aisorked, we find, as we should expect, that heat is given out during their decomposifion, ond that its yuantity
is exactly thas whiel was sharlied deriog their
formatian.
Chemical Notation. - For the purpose of aluortly expresaing the composition of chemicat rulstances, and for representing chenical changes, chemists employ a system of notation which in in extrenuely sombain nee. In the table of Atonic Weights (see Atomet Theonv f it will be hoticed that affer the nume of each clement in placed ita symbol, which ubually conniste of the first, or of the first and enother letter of the Latin name of the element. Each symbol distinctly indicates the element which it is intended to represent, but it imust always be borme in mind that the syynbol for an element is mot merely a contracted form of ite namee, lut thint it stands for a definite quantaty of that element, this qquantity beiag the atomic weight expreseet in terman of the unit of weight employed.
 the ather side, theis

$2 \mathrm{M}_{\mathrm{K}}+\mathrm{O}_{3}=2 \mathrm{M}_{\mathrm{K}} \mathrm{O}$.

The formula for free (or nacombined) axy foo is writtea O_{n} becaune a molecule of oxygen is believed to consist of two atoms (see ATous Tusoky) Is onder to reprepent the element mignonjum, the simplest positile formals (Mg) to employed be oatuna thero is no evidence for writing a more complicsted one. 2 Mg simply represente twice as morh magnexinna as Mg doen.
The above equation when fully interpreted givea a great deal of information abont the change which it is intended to represent, It shows that magneniom and waygen unite with esch other (under onorlitions which are not expreased) to form an oxide of magnosium, and that these clementa are united in the eompound is the proportions by weight of 24 of magnessum to 16 of oxygen: und, furitier, it enables ub, by applying a aimple and eanily remembered rule, to calculate the valume of arygen talking part in the sction as well an ita wreight - This rale for sucertaining the volume masy be conveniently stated here. from sertain theoretical considerations, an well ms for sonvenience in calculations conceraing the volumes of gace, cheminth wrive the formulie of gaseoun nub represented by ite formulk, in termus of any unit of weight, shall occupy, under sumilar conditions of tetuperature and prensure, the katio voluma as two unite weight of hydrogen. Thus, the unit being the gramme, H_{2} represente 2 grammes of hydrogen, and 2 grammes of hydrogen at atandand comperature (0°
millimetres of mereary) occupy on volume of

22-33 litrea (noe Mktayc Svetral) Sindlarly, the quastitien in gramme of oxygen, carbonic anhydride, and nitrans oxide, reprenented by their reapective formale, $\mathrm{O}_{2}(16 \pm 2=32$ grommea), CO , $(12+32=44$ krimalea $)$, and $N .0(28+16=4$ grammes), each (occopy, wnen meamoned at 0^{-}I and 780 mm proumice, 22.3 J litres. This rile holdn for other ganes, sad also. with a bertain qualification, for the vapuase of valatile liquida In the case of the latter, of course, cotiditione of temperature and preasme nust be chusen such that the nobatance in is the state of vapuur; and thie quantity in grammon which, as a vapanar, actupies the name volume as 2 grammen of laydrugen uniles the same conditions, in the quantity which the formula in chomen io repseenc Thus, the Lurnula $\mathrm{H}_{4} 0$ informat in that $14(=2+16)$ graumeen of water occupy, in the furm of steano. the manue volume an 2 gramates of bydrogen when both sre measurad at the name temperatare and pressure. It nuet, of course, he underitood that the formala for at aubulaves in chimen wo nt to represeat the oinerved fucta. The formata of a volatile liguid io deduced from the dricrmination of the eupeur dessity of the liguad? this deternunation is mate by ascertaining the weight of that quastity of the liguint which, wher cnaverted into the btate of vapour, cecupien the asise valume an a given weight of hydrogen, both being mienaured at the same tenperature and presaare.
Ketarning to the equation alrealy hiven, it will to seen that from it we learn that in $(=2,34)$ grangmear of magnegiuse anite to form thagnenian oxide with a quantity of oxygell \{,.2 (Tramimen) which at or C, anil 760 mbs recupies in \%s litores What volume thin quabity of uxygos woubl necupy ander ofleer condlicose of temperature ald presaute can be catculated from Iornalio dednoed frome the lawn of Charlen (relatime of the votome of s ges to the tomperatare) and Bhy In (frelatione of thin volome if a gaia to the prosarre). Ses farthet in arrivto taske.
As there are ceriaio roublitions umber which elemi ral combination takos place, no thereare diflinite tiown whieh regulate combication. The brat of theed han tren cailnd the lour of conatant proportions, nod it thaten that any phemeat compount alwaya monsains
 Thew nuaguteivn oxde. Mro, alway ematite of bagnenfiam and wxygen io the propastens by welght of 24 to 10 - time atom af magroviano weigh. inf 24 , being combineol with mes atom of asykon weaghing 16 So compoand of soaptrolum athl axygen cuntainiag sluse plement- in any ofloer proportion lina eser leen obtainal. If in perparing maknesian oxide rpanation of roagnetum and uxygen wero enphayed difiering Prom thio propor
 oxygen waubt rensin over after clie actime, socomb ing ne she fotaer as the latcer had beati empleyed in excess of the right quantity
truimately connectel with the fargoning inw is the fane of andtriule propertions. Whilot meriain elementa cundine with suple whor in only ove pro portion ly weigstic, othens sumbane is twa and manetimes more than two different propurtiunaThe law of multiple propurtions vats that whon eletrienter comhine in two nr mute propartioss tliese various proportiont fan le expressai by numple maltiptes of the atomic weighta of the elemente concerned, Thus earlum and oxyger unite with each other to form two different vemapuusty : 12 parte by weight of cartion unite with 10 jarth by weight of oxygon to form carthonic oxite, 00 ; 12 parts by weight of earbon unite with 32 jurts by weight of oxygen to foem earlmaie mhydride. CO. Here the refation is of the simpleat kind, for the one conjpound consuive exnctly twice in marh oxygen for the kame quantity if caplon ac ibe other. Again, iron mat onygen wite with eneb other to form thres different compounde : 56 parts by weight of iron unite with 16 parts by weight of oxygen to form ferrous oxide, FeO ; 112 parts by weught of aron unite with 46 parta by weight of oxygen to form ferric oxide. FgO_{2} = 160 parta by weight of iron unite with bs parts by weight of
 came to nol quite nes aimple se that of the oxidea
of carlon. (ur here it is nocemantry to empluy multiple of the stonuic weights of both elementa concernel iu order to see the simplicity of the quantitative relations existing smungst these oxides of iron. The lawe of multiple proportions is, however, folly illustrated by both meries of It may be nseful to call attention here to the nimple explanation furntabed by the Atomic Thenry
(q.-.) for che ancurrence of compoumbly illustrating thin lave of multiple pooportions. There is man conspoumal inkermoltale in somproition letween carponir oxide and earlongie anbyblpide. The aturric thency explains. this setr süply. Utoler ane net of combatinns we cat ebtain a ovapound of one stom of carlum with one Athom of oxygen, whilat under otlear condinion- we ulitain a oxapumbul uf noe atoon of carlan with twa ntonos of saygen, or
exactly twice an mach. This is why we find such markod intervals ip compresitian hetween fwo or minte cumpunds if the same efements. The moleeale nf none bumparmad marnas differ from that of the eilher leg los losa ah atom, iund the uldition of an atoni to A molecule mocearsily forine siew muleeale ditfering is wejght irow the wht ane by the weipbs of the sedent atems.

The lat late of combination hes leen called the troo of volviass. It states that w bieu givec pumbine tu form uew compensils, the valaraer taking part in the aetion leav is very siuple relation to each other and to- the volume of the product if gaspous whin sll the volumes are mencured at the same tempmorature sod juessure. Thuss one votame of hydrugen amilian with rese veluatie of chilorine to form two velames of hydrochlorie nedd ano fwo volumer at bydnges oobsbiac with ope valume of ungyeb las furn iwn velames of waler vapoar: twa Foleines of curbonic exide combine with ope volume of okyjem to forter two rotumes of eaftatie nnhy. drite, and es forth. The very sisuple felatinest of the vulasnet procrinal in ther exalopder are safh ejently iassifout, and merch grester eomplexity in mot Iroqqently met with

Chemiset Siviln the dresents intor twot great elaren, the ts piral suemfers of wbidh are very difforent in their phosical and clemiral dianctern
 tive of each dae may la zurntioned cofgume and uitjithur. Than nume pmoniment pligrinal rharsctet

 Imen sarkol ilegree : whilet hemometalific elemente
 extest, if at sll. IHilfoence it phemical teliavimar
 wach peenge it most is form is mhast, however, that all the metolere of eurly ymetjo ate not typiesd, het that shere is a grulant srannition from one crumy io the ether, anal cettan of the traneitions elrmest $j=\square \rightarrow$ mesee of the propertion of both ymatas, nol la the veren, for inatanie, vo arsebic and

 the plemments esier inte conditnation slimetly or iniliectly witl oxypon Eo formosxides. The akides. praluced tuma naciatle plessenis nee quile Aliflereat is whemest tharaiter foner thes prolucad fram minn-apetally elemiata. We dall took Arst st the cociles of the reval Every menst forms one or mone asjdis, and at iesut nor ushle at every melal is a boas maisle, ie an moble which lime the pros
 betwens wost see calles andydroue bowes and fydrated beace wo Aydraisdes. The oride of lowd, 17×0, to an salgitruts beve (of heas saxide), whilet the cotapoused abtaioed boy the action of water apoas estcium evide. Cart is lisic oxide, and the only componad of ralciun end neyzea kwown), is called a hydratel lesee (or hyrimaille) The farmation of tha taiter is reppresentes hy the equation.

$\mathrm{CaO}-\mathrm{H}_{4} \mathrm{O}=\mathrm{Ca}(\mathrm{HO})_{r}$.

The axides prodirced from mosi metallic elements ore very fropgesily acol oride-in oxide which mmite with wister to forns the clamer al boflem eslled Aride (q, N) The maiden themeplver ase often called unid aubyelrides, whilet the cumperande prodaced by the action of wnser upoo theat are called
 in air, phorphorie sulydrife, Py, is nttainnt. This is a white salid valetape which unites with Waser with the evelativen of mach heat to formis solation of melaplunghorie scid, or hydrogen taptas phopphate

$\mathrm{P}_{1} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}=1 \mathrm{H}_{1} \mathrm{PO}_{4}$

There are it few scibs known which do not contais axygen, and are sod ulitaimalle by the combination of an oride with water. Examples are bydrocklonic acid, $\mathrm{H}(1$, byltrobromic acid, HBr , nad hydrocganic scid, MCN. These tre also talled hydroged chiociule, branaile, and cyanile revpectively.
The two cluspes of sabetamos, lase and acide, are nesrly felased ta the very lange cluse of salts.
A salt in s ompomsd which ran be obtained.
anonget other wsys, by the action of an acad upon s base, water being almost invariably eliminated al the wanc time; and just as we saw that the properties of two elements are totally different from these of the compound formed by their combination, so we find that in the formation of a salt the properties of both acid snd base to a great extent or altogether become neutralised and disappear.

If ue a solution in water KHO (which is a powerfal buse), we sdd a suffi, cient quantity of nitric acid, HNO, that is until the hiquid on thoroughly mixing does not possess either the acid or the alkaline reaction, we oltain a solation in water of potassium nitrate (saltpetre), and nothing else-the water eliminated in the action simply mixing with that which is already

$\mathrm{KHO}+\mathrm{HNO}_{3}=\mathrm{KNO}_{2}+\mathrm{H}_{3} \mathrm{O}$.

Acide have already leen mentioned as hydrogen nalte. The above equation ahows how hydrogen sitrate is exactly eotuparable with potasiam nitrale-an atom of potasajum taking the place of as atom of bydrogen-and a characteriatic of all bydrogen nalte, or acide, is that they contain hydrogen, which in cappeble of removal and of having ita plnce thus taken lyy en equivalent quantity of apother metal. In the example shove mentioned every 1 psit by weight of hydrogen has ith place takee by 89 parta by weight of potansium. These quantiae of hydrogen and of potasainm are equiv. sleat both being eapable of zniting with the
kmop. NO, This group is an example of what an ealinal a cornpaund radinal-i.e. a group of elementh which is eapuble of going is a whole through a morian of changea. Acida which contain in their molecale one atom of hydrogen replaceable ly another mapint are called monobaric neida, pharic acid, $\mathrm{H}_{4} \mathrm{SO}_{4}$ in ditasic, orthophompharie seid, $\mathrm{H}_{4} \mathrm{PO}_{4}$, is tritanic, and na on.
Banos, tikewine, are nometimen npoken of as monaid, diacid, triacid, and mo on, according as \&ec moleoulon of a monobasie scid (an nitric acid) to form what is called s normal ealt, that in,
enis in which all the repiscesble bydrogon has boen replaced by another metal. Than potanaium bydroxidn, $\mathrm{KHO}_{\text {, }}$ is a monscid base: caleium bydroxide, or slaked lime. Ca(HO) is dincid losmath hydraside, $\mathrm{Bi}(\mathrm{HO})_{b}$ in trincid, and 80 on . Fquationi miny make thin clenrer (nee the equasthon above for a asonacid hane) :

Salis are forrned in many cases by the roplacement of soly a prort of the replaceable hydrogen of s hydrogen salt by mother metal. Such are called acid eatu, and KH8O, in an example. This nalt, KHSO ${ }^{4}$ may lue luoked upon as intermediate lo tween the acid, $\mathrm{H}_{4} \mathrm{SO}_{4}$ and the normal nalt, $\mathrm{K}_{+} \mathrm{SO}_{6}$
Many nalte are known which mny he looked upon as lisum whirh have their batic claarncter only par tinlly seotralieed by an acid. Such nalta are called hane miff, and nu examplen may he mentioned BiONO_{2} stad $\mathrm{Pb}(\mathrm{OH}) \mathrm{NO}_{3}$. The former in intermediate between the normsl nitrate, $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)$). and the oxide. Bi,O, the Istter between the nor ianl nitrate, $\mathrm{Pl} \mathrm{H}_{\left(\mathrm{NO}_{4}\right)}$, and the bydrate, $\mathrm{Pb}(\mathrm{OH})_{2}$ Sach basic zalte are often produced by the action
if water upan the normal nalts, Aa, for instance, it the case of the hasic birmuth nitrate

$\mathrm{Bi}\left(\mathrm{NO}_{2}\right)_{3}+\mathrm{H}_{3} \mathrm{O}=2 \mathrm{HNO}_{3}+\mathrm{HiONO}_{4}$

Kalta are looked upon as being componed of metal and salt rodical, the latter name being given to all of the salt that in not metal. Thus SO_{3} is the nalt rndical of the nalphater, NO, the salt radical of the nitrates, de. This way of looking at aslth arinea from the phenomena obeerved when ialta are decomposed by Electrolysis ($q-v$,), metal and salt nulical being the primary producta of decomposition.

Chemical Nomenclature-Chemists endenvoar to make the nomenclatare of compotind unbatances as byetematic an powable, and a certain amount of oyetems has even leen introkluced into the nomenplatare of the elementa themnelvee. The oxiden of the metals are named after the metal which they contaith, wh thagneaium oxide, MgO ; sluminium axide, $\mathrm{Al}_{2} \mathrm{O}_{3}$ and the seriea of nalth derivable from these oxidea are similarly nanmed after the metal. Thus MgCl_{3} is magnesiun chloride, and $\mathrm{Al}_{4}\left(\mathrm{SO}_{4}\right.$) is aluminium sulphate. When a metal forme more than ase banic oxide, adjectival verminations are
oxides of iron are named ferrous and ferric oxidea (FeO and Fe, O,) reapectively, and correppondingly there are ferrous nnd ferric salto. Fesio is ferroue sulphate : $\mathrm{Fe}_{2} \mathrm{Cl}_{8}$ is ferric chloride Acid islta and in general salts which contain more than one metal are named after the metaln which they contain, the compound redical NH, (ammonium; see A suoNiA) being regarded as a metal for purpoues of nomenelature. Thus, KHSO, in potasxiam bydrogen sulphate, whilat $\mathrm{HNaNH} \mathrm{NO}_{4}$, is hydrogen soctiom ammonina orthophoesphate.
The nomenelature of now-Laaje metallic oxidea han been rendered nyatemintic by the use of namee dencriptive of the number of atimas of metal and of oxygen contained is the oxile. wh, for inatance, trimanganic tetroxide for $\mathrm{Mn}_{4} \mathrm{O}$, A considerable number of noh-beuic oxites, as $\mathrm{BaO}, \mathrm{PbO}_{\mathrm{s}}, \mathrm{MnO}_{4}$, dxides.
The acid anbydriden, which, as has already been ntated, are oxygen compounda or osidee of the noumetalic elemsenta, No named after the niernenta of which they sre oxides. As there sre frogutatly two or more such acid andivdrides derived fromi one element, difforent terminationo and, where neceneary, other devicen of nomenclature sre employed to distinguish amompst these. Than there are two acd anhydriten derived from aulphur-anlpharaus antydrile, SO_{2} and wulpliatic anhydride, SO_{1}. The latter wnites with water to form sulphurie mepl, $\mathrm{H}_{4} \mathrm{SO}$, and it in lielieved by neme clacminta that the saluting in water of uulphiarua* anhydrale is griobis atimtance) cuntaing bt trast aome of the correaponding nulphamona Ach, H. 40 , Vrobs sul phuric acil there is tlerived the serie of valta
 ealled anfphites. it marsitions happene that an acid and nerisi of nalta Are known of whick the correnpondint anlyydride in ankmown. juist an the exiatenec of nertain acids is doulefal althometh the correnponsing anhydrite io known. In other cases nerien of milt ary knawn, Allowght beth the eatresponiling anleyitride and ocid sre banknown. Certain of thene peculiarition, wa well is mope farthor frotom of namenclature, spe ilfutrateil by the polde goveo below of the cumpoumber merrespondiag to kruwa of unknown oxidea of sblorine

$\begin{aligned} & \text { Onale } \\ & (1,20) \end{aligned}$	Aenlil	mall	Sane it unt	
	H(10)	$\mathrm{K}=10$	Phtavmara	Нуpme
	11610,	Kelo,	n^{1}	Ch
[OH_{w} not an acid andiydride)				
	Heso,	KCO_{3}	.	
-	15 ErO.	kclu.		Per

It hus rieently been proved that the aublatance deprilied is imost text lapils as rhlorenst mithydride, $\mathrm{Cl}_{3} \mathrm{O}_{3}$ is really a mixture, and that is yot $\mathrm{Cl}_{3} \mathrm{O}$, has nut been preparel. The hyputhecical chlorie and perchlorte enhyifites winalif have the compani tion $\mathrm{Cl}_{2} \mathrm{O}_{3}$, sin $(9,0$, respectively.
A very large number of solts and of hes chemieal congomnila are enomanly hnown by peqular natuen, the latcor being frepuiently of extremely anctent origin. The popular nume tes a rule convesa no informaliom iss ta the eomphaitus of the solasance For instance, cupperae (ferrocas salphate. FeSO $)$
 nor calamel (mercuroue ctloride. HgCl) as a morenry wampount, bur litharge \{leal sxide, PbO$)$ as a lead compound. It to the nimis to comvoy, by the nyntematic naine of a oulatances the grenteat provible amsant of information as to its exrepuas. fion. It is mat pessilile to sttais to a perfees ayptom of notnenclatire, iot new sliecipwries render clanges necessary from time to timic.
Graphior Formulor-In additios to representing: the compesitive of a sulstance by nicans of formalo, chemiste emuleavont to exprese verlain idiens on to the constifution, or armangensent at the stouns in the molecule of substances by means of grophic formular. It moat not be suppased (as has notnelimes erronteously been done) that graphic formule are intended to reprearst the sbape of molecules or the arraggement in upace of the atoms constituting such trolecoles, lat aimply as a aloort methon of expressing on paper certain facta. No one supposes that a printed ward in any modern language ia an sttempt to draw the object apoken of, or that it is more thso a melhind of representing on japer a given series of sounds. and yet criticism hosed upon usoumption searcely leas abmurd, has leeen directed against graphic fermulr. In a graphic formais we liave the dymbola for the different elemente grouped in a particular way, ino (ns (1) to indicate the walency (see the article: ATOMIC THEORY) of each element, and
(2) to express ident based npon obeerved facts
as to the mont itsefy amarigement of the stoans in a beslecale, when various irrangements are conceivable.
The followiag masy le given as simple aliustratiome of +1):
$\mathrm{H}-1: 2$, apitrochlaric acnl: $\mathrm{H}-\mathrm{S}-\mathrm{H}$, wolphuresea hydrogen; $\mathrm{Mg}_{g}=0$, magrentum uside; $\mathrm{N} \in \underset{\mathrm{H}}{\mathrm{H}}$, sin

Faran: $0-\mathrm{C}<\underset{\mathrm{Cl}}{\mathrm{Cl}}$ plomgeae , $\mathrm{O}=\mathrm{C}=0$, carboaic anhydrade; $\$-1^{\circ}-\$$, carlinn biealphade, fic. Tlie lettern Tepresenting montivalent stemai ane written with ont strake procerling froas khem, those representigg divaleal, trivalenh, and ietravalent aloma beage written with 1 was, three, and four stach strokes rexpectively.

Hlisetritions be i2f are

$$
\mathrm{O}=\mathrm{C}<\underset{\mathrm{N}}{\mathrm{~N}} \underset{\mathrm{H}}{\mathrm{H}} \mathrm{H}
$$

 ingariasoce Dese of there is the overalpence of the sifrogen atom somethice trivilet, as it aumsania,

 mavican cyambteme stop of nitroigh is mpresented on trivalint fapd the ofliet as jecolavslent. The

 coante containing exnilly the taom derments and In the ene grojarthom, evil yrt diftecing fram une soother is chirmiral onil phasienl gnyprim.
CXrment Elaregin-Thome ire meveral kinde of eheminal chanues vhialy are of very fegquept accurreme, seit may cowvsiendly in clasnifiol. The simpile uniues if we slemont sith anetlier han slipaig leen owentioneil, and clowly mlatel
 with an clemene is wibl smether romywant. Aloug with chees shauger may to clowed these in
 sletemete of wasper rompminile or isto bae of bente of vach All ther varisthune mere thmerratel ly the tallaviag equatiens:

One of the meet inperiast kionts nt rhemeiral change is thek rallet dumbir it-anpraifive. This
 salte iare mised acitle red whor, and it is chares. terisel by s mental varlange id morisi and wil radeal If as oquenus milatime nf molsomi chloride be mised with ene of potastam hromide, althouph ter qiable sionere tible place, we bave reaure it lelieve that doulde derampreition goves ate to as certaite escem, with furnation of some tooliom bruaible neul norac jutaonem chloride, whilet totae if each of the origionl sult slvo remsions, a suate of equilibeions heing evebtualty e=iabliniset ninsoget the four ealle If, lawerek sise of the new pro
 of practicsils prealisfle in water, ne wow es aby of it is formed is will appece nos a preapitate, and be thos pempoved instus sflulions, soy that no conndition of kquifilitumes cas lie estahlished until formation of it precigitate on logier ocrirs-ie vaid the dauble tecompesition is ompplete. Tliss, if salutions of sodium chloride and salter nitrate be mixed in the proper propertions, the extretnely involable silver chloride will be procipitated, sod oniy sodfum nitrale will remain in molotion. The setion may be represeateal by as equation
$\mathrm{NaCl}+\mathrm{AgNO}_{3}=\mathrm{NaNO}_{4}+\mathrm{AgCl}_{\text {(precipitate) }}$.
The actinu of sulplarested hrdrogea on many metaliie solutions illasirstes doable decompowitions in wivich the action is complete, ss,
$\mathrm{HgCl}_{2}+\mathrm{H}_{2} \mathrm{~S}-\mathrm{H}_{6} \mathrm{~S}$ + 2 HCl.
wherv the mercanic sulpliole formed is Insoluble in viler, sod is consequently obtained in 5 pre cipitate
In comneetion with the subject of dnable decom:
position the bearing of the isw of Kiehter (alrealy maentioned in the historical sketch) may he illus-
trated. Looking at the quantitative signification of the following equations,

$\mathrm{KCl}+\mathrm{A}_{2} \mathrm{NO}_{2}=\mathrm{AgCl}+\mathrm{KNO}_{2}$. $\mathrm{NaCl}+\mathrm{AgNO}_{3}=\mathrm{AgCl}+\mathrm{NaNO}_{3}$.

wn nee that the quantity of eholorine which was naited with 39 parts by weight of pothasium or 23 of aodiun to form a salt is exactly the quantity required to forim a sall with toes parta by weight of silver, whilst, eimilarly, the quantity of the group NO, whirh was united io these 108 parts by weight of silver is exactly the quanitity required to forms salt with 39 parts by weight of putersiun of 29 af eotiem. Ties ssine holds good generally for double deconjusitank
Another very important Lind of elemional elange is the displacenient of one clement in at conpronind by another Chlorise, for instance, displaces the iodine in potasium zodite and tako its place:

$$
2 \mathrm{KI}+\mathrm{Cl}_{2} \quad 2 \mathrm{KCl}+1 \mathrm{H}
$$

The grater affinity of protanaium for chlorine thon for jodine in the explanation given of this diaplace. toren- Displacement of one mela! by another is a larailiar phenomaram, hilhangh the phemistry of what is taking glace rayy not Ire fanciliar to all who have seren it. When a piece of hright Gron in stest, as a ley or ithe blade of a knife, is dippert inta an ardolaisal safution of cupric sulphate (blue vitral). a rodilieh depomet of thetaltic ooppier is formod almast inomadiacely upsig the nurfuce of the metah This cupeper in derivisl from the capras aulphate solation: lont what is not manifent from otserva: tion atone, is that at the name time an equivalent quantity of inno fa dinanlved awny and goum inta silulion is ferroue nujphate. The ection is,

$$
\mathrm{Cesse}_{4}+\mathrm{Fe} \quad \mathrm{FeSO}_{4}+\mathrm{Cu}
$$

The whole of the capger would meitually be nepsrated from the shlatien in the motatlie ntate if esaugh tran were present, and for every 63 parts of opper preeipitatesl $\$ 6$ parla of Iroas wonild go into selation:
fnorganic and Orgiane Chematry. The whole neljeject of chetnintry ban bess alivileal ioto swo great divieions, natued respectively enorguens and orvanie. Mule originally te separate from each outer the clurmiatry of purely minersl sulb alasoes, asal that it nulstanees of knimat ur vegotable origio which were at the time supp posod ts fer cajuble of formution only as primblact of vizal procesoes, this suladivision is retained etill sosinily us a mather of convpriones. The divisisn of organin shemintry is sometimes apoken nf now is the diemistey of the copmonods of carhom: but this is mit a wery strict definition, as many carbom rampoumbe oncor in natute sal parely mineta! hols. elatioss, shal linsing roblly tof connection with orgasic chemi-try, such ou aumeroas mioeral car banalo. As has hews alrouly atatevi, it is mainly for conveniense that the cmaideration of the (asjority of the compounde of sarbem th taken in is eppataif branch, bet bocasse of anl differebce in the shemirs! prinelpien invalved, but really on sossoust of the very great nuinber of these compoanile, and of the great coraplexity of many of beri.
It in in the domain of organic chemintry that the stady of the constitation of eulatancep lias been mont dilligently jroberuted, and with the yreatent amount of apporrot nuecena. The gtaphic formala whieh chemisto nesign to ncetic seid (to take a simple example) if.
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{H}$
H it
to experse a pumbier of ideat onncerning the rup. posed mode of mrangement of the stans in acotic acid, teslacesl fron the utndy of its furmatise, ita decomporitions, and the actiun ojma is of varione sulblanoes. The knuwn facts trind suithble exprets sinn is the formoln, and there is no alasrvation fet masle as to the cliemical relations of actio acid which is at snrinnce sith the constitution indicated by it. It wanid not tee pomsilile here to quote evidence in fayour of a perticular constitution for suy sabatance, but it ricy he stated retuerally that rhenists endenvoar to fix the consfitution of the situplest compornale on the firmeat prospible tianin. nod, in planming from the siruple to the thore complex, to mukke sticurte every stepi

The tetravalent cliaracter of the carlon atom, and the grea! facility with which carlone atomas earter into comblinstimen with other carton atome and
with the atums of other elemerta, zive thrir inginos to the whiole of ongampe chemintry. The graphic formula of arganic suletances anply ilhustrite thn former, whilst ties synthosen of is loght stray of sumple and complex organic contpounda as amply illoatrate the lateer.
A certain anount of browledge of rhemistry is emmintly usefal it mauot every walk of life An intellizent knowledge of the elientistey invoised in the processaps of the kitchen. the tlarry, the dyethewse, the furm, or the mannfactory, places the pasemsar engaged in any of theae proccases om a different level from the rule of. thambs warker, who in ns ighomat of the reason for alopting a jurticuliar metlual as he is of the propertase of the materials he pmploys. Teclinient olieniatry teale equecially With the spphication of the grinciples and proczanen of chemitery to the arta and manafactarm, and it is Its thanse whe are engaged in mandiactores of almont every kind that a knowledge of chematry is a jurticular ativantige. it in not at quention of
 thut a teclaical edaration, inclading chembatry as obe of ith prinotipal autijetio, should form ane the leail hmpariant part of the equipenent for lis work of anv artisan who is to excel in his employment in iaftelligenese saud nhtl.
If connection wift thin article nionald be rend the artioct Aromic Thenry, which in wa certain extene nupplementary to thin. ANimat. CMEnistav
 The reater it alos referred to we description of ench element under its nanir, to thome of the weids under their bampa, and to the following an anomgat the mont important of the large pumber of chemicol articlen throughoat thin work:

Acida,	Manes	Qiуerina.	Oastas
Alanhol.	Elsamhing	Isumrrisin.	Hatis
Alkatice,	P0.	Tsumerpetam.	flap
Alkaloide	Dietiliachais	Lima	Sta
Alutrapy,	Klements.	Hital	fiogu
Analyeit.	Nutime.	0112	dyelimuta
ArimalM Kerina	Pata	Oipase	Watrr
Abretapa		cadiaslo.	

Chemists and Braxgets. Up in the pana. ing of the Pharroacy Aot of 1sds the term chemiel and drugkive was merely a ithe deseriptive of crrusin hifunches of trades just as 'tailor send dothier, ${ }^{\text {t }}$ or any other asels combination. Any nas whe free no to dencrites himelf and to promeonte that calling to she loat of his abilsey, untuachal by any apeeta leginlation, either regolative or fure.
 if ish bethumpo elosely albied to il indeed at all dintingwimahie tram, that of mprehasta and zrocerns and aever fomel is diatiact guild. and, untif the Mortmarentionl society wan foumblen, war with nit permanent brenofsatom. And owing to the almestec in seothand of she appithecarien, is a clam inatinguilinite from druagints, the linatery of the latear clase in that encustry does unt, at leob up to
 acrapatvly with that of thei Englishi Lirethren The pollyy chear latter pursiel har a long perial of thair hiutory mes lue dewriliod as prely defensive. atil any urganizations. they formeni was in responen tor motie attaik fork the of the other onfenc A e marly an 1802 such an stufemive pasociation was lonumb, ant fram this us isis pagaged in very eclive uppmailion tor the hall prometed by the "Aseociatud A jutherarien." One is the shlyects of that hill wha to lring the chemper and druggice monter thos voutmi and sutveillsuee of a body conniating vhefly it ajpthecouries, on which the clemint ant truggent wat mot represented at all Ther uniuit whe that the prometer of the bill iritnofucet a elanse into stie Aet of 1815, whith it Yra understiond at the time wotild conipletely exempt tho chemiat and Idrubatiot frous than operation if the toil It opite, huwever, of this amberstandtme, whect suens wo have laeen reapected for tweaty: sic years, the bill way in 1841 made use of io pmorstr a chanst and drugriat for prescriling medicone, atthough that wha a funetine whielt. melityly of wrorigly, he lind exercioet previous to 1815. In 1841 a hili nexain threatenes to subjoct the chernast and ifrugiot to the cuntmit of the apother chries, bat whe at length defeated. It now heexare erident, liot only that a permanent anciety to prowect the interents of the cralt was necensary, bas that the onily wise policy was to edneate and ofgarise themotlver in such is way to would teprive the physiemas und apotherarien of any excust for further interference. Thin led to the formation of the Thartmacenthral Suciety of Great Britain, which was founded in 1N41 and incorpursted by Ftoyal Harter in Iss.x. As declured in the charter, the main jlijects of the nokiety were tluse of 'nultancing
clienistry and phathacy and prownoting a ariform syotem of el uriationt of thime whoshinuld jusectise the same f and also fur the prosection of thase who carty
 enable it te garty these vat rinccenofilly the society appainted pruleswoss and examiners, sind afterssard procernlal to prosmate a bill jas patiament for the recognition suat protection of the titles they proposed to confer uts thise who fiveod the exsmitia tions. This wns natherslly s work of time, and in the meanubile an impertant art in relation to the male of poisons-viz. the Sale of Amenic Act [1851]whe pasaed, and drew the atteation of governmeat to the shaence of is debisite elant of jermons qualified by training sond eduration to bave the custody sad sale of poinonove anhetsnces intrunted to them: so that this to sompe extent Int up to the puasing of the first Pharmacy Aet of is32. Die misin result of thas act was he create a clase of "Pliarminceutica! Chemisto.' aline erspowersel to nose and extibit that oe any equirnlent tille, and conairting, Int, af theme airosaly membert of the society; and odly, of sach perwins as should poos the exsminations, as nonThe bill, so pawed, involved no compulsion on any
Two Bonns in Fingland and Sootlond, permme to go thimuglt these exusinations, nor did it confer angy privilege er runnopaly on the plaarma. exutical chomist except the esclasive right to that title. The dispurning of medicine sind sale uf poinons was atifl left wjen th any ane whe chowe to engace in it. Nor whe it till she Act of l ses that the serm chemist anal trapgisl cane to nignify a precially qualified pronet or osk possesing exclavive righta Hy thas ast all persosis net in yasineas on thelr ewn acowsit prige to int Auguat IN/S, hat cesoppt tome whes for a thase Wvere alluweof th pres a 'rucolified examinution') to pont two. Preliminary and the Mipur Examinatoos, and after that were entithest ta fove theis nsmes plated an the "Itrgister of Glieminta and Dragkiala for the l'uital Kinedopy' and no perion tolne wios but sor that regiser could tegatly use the title, or cwith eertain eseeption in favuar of plogairiant, apothecraries, vetepinary satgeome. Ne) wil or sioprone certaio prisatio zperified in whedules to the act. Alay Frroun wiating to use
 be furilurg examination called the 'Major,' and thas moee the two graile is what we may pow call, in
影 phamesery.

Chlek Pex (Kinv), s grous of the veloh tribe of Legmaibuce The eomanng chick pes (C, urberinam I in mn sasash. it to 2 Teet high, ot s atif upright helait, covered with glandalar haits, with inilates jusde eontaining a few angmiar and wribhlesl posa is in largely coltivated in sewthers Kbrope and in many paria of the Enaf, and hence nccurs frequently alse in a weod in cornfielide. It is stan jerown is Kpanioll Apherion. Iarge ruan-
 umber the natse of grow, own well known in com: tiveroe: but slae sastne tie extended to uther Easi Indfan hind of pulla. The prah hie anod an frod. either leiled wr masiel, sed are the wost common jarolot poder of the Fant. Thery are a potable artiele of Spantoh and limely pesitery = while Gleir imporiance In Romesr titnes is evidemod by the plariwn frich corrras enyfor l'bayet of twasted thick pens ') is a eurvervalinual equivslent for a poove lellows. It estivnitun extemils as fas as sogtherr Gericaney, but in the dimate of Britais it is lousid teu tendez to le jrofitable. The lierlage affusit Eislifer, asil the seels are une of the accanional aribatituter for coffee. In sumuser srather drope extule from thie plans, shich, on stryieg, leave eryatala of almant pore asalic acid. The som free and proborged stee of rhick pew in food is believed to be liabie so leccume the coube of danger. mus and olstimate furns of tivetse
(Whekweed (Slellario andia), one of the suat romsumin weels of gardear and cultivated tields. is a specied of Stitcheor ($q, x, 1$ is bs n. natrve of mant parts of Europe stml of $\lambda \mathrm{Ain}$, apjearilig durinig the colder muntle even tele the plains of India: as Ancual, with a seak [wocambent stem and hrate leaves, very sariable; somue of the shalles varietiec in dry surney situations konuetimes
 sutly Give or three instead of ten stansens: leat stways elarnctetisel by having the stem curiously marked with a line of hairs, which ai eacl pain of leavea changs Irams one sile to anotlier, and in frat changes enmpletes the circuit of the stem. The leaven of chickweed stford a fine instance of the slegp of plavits, elesing up on the yroung shonota
at might. Chickweed is a good subwtitute for spinach or greeus, although generally little regarded except as a troullesone weed, of gathered only by the poor to make joulticen, for which it is very neeful, ut for feeling cage-birds, which are veri Fond of its leaves nad seeds. A nupulier sjectes of a nearly allied senus, (emotiun, slan bene the unume of Chickweed, ur Mentab-tar Chick weed, anit the wane io necasionatly given to othes plants, either funsanically sllied, or of sonewlent similar appearance.
Chieory, or Siscoory (Cushoriter), a gentas of Compositse (suli-arder Liruliflorsy), witli few ntecies,
 and mallay juice, natives of Europee and Weat Asia. Tle Comanon Chicurs or Sue
wars (E: Inty. कust is will th Fantland and post festert of Europe, gros sides, Imastem of tielder, Ave if lus at Jous whyzut-jike
ment, rextermally of a slirty is Ti rawhtat vellow rolonir, sam whito with-
in. Tlen eqem
 then trasmere
 lelbint the
Ilawer burat arm renorile, ics (1lary, liget if byl lematifil,

 an a salad, and ate tralily pracermal is wibter ly placing the reote in a bax with as liule sarth in a

Cibleory has huen used ou a substiente for cotlou, ser to mex with eafles, for at honat is cuntriry The roate are pulled ap, whihed, ont intor nmall fiecen, and dried on is kith, which leaver a mbrivellod mion not more than oae fourth the weight of the oripinal ronst. Is in then roasted in heated iron cylfimeres. which are kept revolving as in coffee ronatiay, during which it lonen 25 so 30 per cent. of ith weight, anil evolves at the rame time if divasterable odatif, resumbling bureed arimacrlireal. An improvament to the chassiry suring thasting is the addition on 2 Ib . of lard or tritter for every swt. of chicory, which cownmunientes on it mach if the lualre mond seneral appearanice of coffee. It in then lintal picked, to remusw elijus af wenkl, whones. $X c$, and is

 os mold Ac 4 sixcure, Clocery contains a kinal tleal
 andent pomony* with any useful ingroclicht is
 Same pesple Aislike the pute of chicory, And when
 lool many jemple prefer to sise cotfee mixed with chicury owios farily th the tate it eomminienter. lowt mininly to the affararnace of atrenzth which it givee ta the coffee
 gener of deas somewhat noaller that the faniliat
 ishe of shre equator, Jmt especially alotinitut in the Treat Imbios and in the prigth if susti Aumefica. It is foriad atror it the West Afritan ckial ragin. Obe nf it wany вames-ther 'samel-flra' indienter

 amoture Cemuliss live like wher theas sum chance
 well os uf wath. It is the impregnateal femate which is the clicici crombte, Liko fisasy stber sumuads it ecchs as seffe and quint loreerlingsplace. This is

THE SURVIVOR VOI. 2
687
CHAMBERS ${ }^{\prime}$
 a, male) b, gravil forale.
ander the thersails of man. There the manate ckeature nvells nj enormminly, attaining unsler the pressme of the grawing efors the nize of th pea, Regpicatory eomnsutnication with the oncter worfol is than in weok the eqgith are rembly to be tileratel, for she larva are mot pamsitic. The mother-sthimal lias meanwhilo andofgame a marked degeneration, the inturnal wginis leing maneh mposerest and atmptiod ly the groveth of the ova. The entrance of the female chitgos it burken loy a kingling and itelimg zirnationg int if the dovelopmant be aflowel juletly to proceet ito evil resistis never ta fullow. Vresube and prentuture attempts ta ismlato the intrisler may, howeven, lead to ulcons tionh. Ier evil eflecth soem to have leven exaghomated.
 the mition infmal with its proserby umy lec poutly imbuvel, anef in this 口yeration the West Pablan Hegrowor are esjospla. Washing with telhaceot juide to whon venorted to, aid the lewes are aume timen preaseal th the loet is a preventive.
Ohillblatas aro localined inflammationa of the akin which ocear in cold weather, and sffect the parts farthnat from the eentre of the eirealationvis. the hands and fent, more raraly the ears or nose. They are at firat bright rod, lut on they das eppesar ausumae a purplinb tinge. Somstimse they break and give rine to aloers, which are slow to beal. They occur moet froquently in young people, affeot women more often than men, and arm genar ally anoociated with weak beslth and a sluggish circulation. They are often extremely irritable and painfal, experially whes the afferted part has hoen ohilled, and is quiekly warmed again. In tbeir troatment, regard must be liad to the genersl bealth ; rood feoding, exercine, and tonics sbould be prescribed. It in very ingporiant thast light shoen, gloves, garters, and braneleta should bo avoided, and that the affected parta shoald be Warmly covered when expoeed to the open sif. Lakaily, when the ukin is whole, wome ntimulatiog agent snswers bont + tíncture of iodine, apurit of ormiphor, or muatarl appliad moist and rubled till it driee. If the skin bo very tender, colledion peintal over it is useful. Broken chilblsins ahould be dresed with renin ointment or Paravian halsam on lint.

Chitin, the nubutanew whicl forms mont of the hard parts of jointed footed animala (arthropodin) such sa cristaceans, insecte, and spideris. Ic was dibcovered by Odier in 1823, but reganded erroneously sa free from nitrogen ; rediscovered by Latsaigue in 1843 and since then froog nifed to all the four chief clawes of arthropodn and in some other types. Huxley has given an ascount of ita formation in the crayfish. Chitin has been demonetrated in many arthropode, also in the pen of cuttle-fishes (Mollasca), and in the stalk and shell of Linguida amatina, a brachiopod. Ite preence is at least probable in many other cases. In arthropods it is not evo. fined to forming the firm and often very hard exoakeleton, but occurn internally in stipporting plates, sec. among the tissues. In the crayfinh It seems even to form the sheath of the atroug ventral nerves. In arthropods the greater portion of the gut in formed sin an intneking of the outer skin (ectoderm) from in front and behind, snd the reaulting portioni known as fore- and hind-gut are also lined by this chitin, which frequently exhibit special internal thickeninga for food-grinding purposea. The chitinous coatiog or cuticle is formed from underlying skin cells. In nome canes the epidermie cells prohably sweat it off sfter the manner of other secretions; bat Huxley has shown in rekard to the crayfish that the superficial portion of the oelle undergoee is ehitinous modificatione, being literslly turned into chitin. The onter cost of erustaces is herdened by the addition of calciums carbonate or phoaphate, eapecially the former; , much calcareona hardening is very rave in insecta, but copper has been demonstrated in some beetle euticles.

Chitin is an amorphoca white exlstance. Is contains sitrogen, bot is free from sulphur. It rtaistance to acide and alkalies is very grest, it is anafficted by digeative ferments, by water, hot or cold, by Nloodol or ether. It may be disiolved by strong minersal acids (hydrochlorie or sulphuric) and prepared from the cleaned excekeleton of a
lobeter, or betber still from the pen of n squid. Chemically it is regarded as a derivstive of corbohydrates, and may be aplit up into sagar and glycoeanin. According to Ledderhoee, its formula ia $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2 n}$ i acoording to Sund rik, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3} \mathrm{O}_{\mu}$

Chiton, a genes of raxime mallnecs, type of an important sab-claen which tnsy be regardod as introdectory to gasteropods. Unlike the lop-aided ansils, the clitone are bilaterally symmetrical. The head la st the anterior ead, the anus poeterior the 'foot' eccupies the whole of the ventral surface; the heart, the gills, the excretory tabee, the genital dacte, all exhibit the ssmesymmetry. This merked contrat to the gasteropeds proper is further supportad by the diapoeition of the two important nerve corch (pedal and viscersil) which ron parallel to one suother along the body. In some forms there are numservus eyes, which cecur, however, not on the hosl, bot on the boidy. Another striking feature is the premence of s meries of elght shalf. plates along the back. On_{n} these and other gromids the chitous are soparated from guteropods proper, and established an so mparate onder, ou which the

Cbiton Niegras.
name Polyplacophom, altading to the maltaple shell-plates, han been betowed Nor is the order A amall oos. Of the genes Chiton slope over 400 specien have been rocortel, and ither smaller geners are alan diatiogaished. The Britiah species are amall; thowe from warmer climstes sometined nesuure 3 so 4 finches is length. They are as: deubtedly repremetative of s primitive type, and inclade natneroces fintil forme from the Eflarian onwarde. They sre not, however, the simpleet gniteropods, for a few other forms, knows it is frue with lese fulloess, exhibit the seme evential fenteroe in even simpler expression. These are (a) the Neomeais, facleding the geners Neomenis and Proneomenis, and [b) the siagle genns Chatederme.

Chleral thirh/nruddelyudr) is a limpuit, onlonerleas, sily liquid, with a peciliar jechetratioge cohror, and is fommed whesi nolndtois- slestiol is neteel on by ily chlorine en it siesolves suljlvir, phos. phurus, leocnine, and iosline, and iv clowly allied
 equivalent of water forist chloral logdrate, it white cristalline sulataver, with a pungont calour and a bitter taste, te whielv the bame chlumal i- crommonly thughl inmurrectly apglied. ('ihloral wns insourered by Liehig in 185I, an invertipated by $143+$ the: the cflural hydrate wist fimt asel as an atimstlietic nnd by puotie log Lirloreich in 1 suap, The clief action of \& moderate slome off chlonal (in to 30 graine) io the prodiaction of alezp, closely re-emblinc natural sleep, and usaally sonnd abid refreluing- If has alsu a marked effect in quaietigg excitenacat, os in jowanity of slelviwas; and in relaxing spowm, apd checking eonrubains sanl allied conditions Its action so an annothetic is vers eapricinats and uncertain; melicial duces sumetimes relieve pain emppletely, hast much mare sfice fail to do so. It leovent the force of the lieart's action, and in large dowes greatly roduces the tenlpernture of the laxly ; and to (liege efferts the fatal resolts that sametimes follow its arinaintatratiom are chieftr due. A= a
hypaotic it in moot valuable in cases where opium or morphis is dangerous or undesirable (in children. in disease of the kidneys.., and where sleeplessnets is combined with excitement (delirium of fevers, delirium tremeas, insanity) ; bat it may be ems ployed in many other chates with modvantage. In betanus (Jockjaw), and other diseanes attended by convalsionn, it is often of great value, It acts as an antidote in puisoning hy strychnia sud Calabar bean. It mast be employed with the greatest enution, or nut at all where thiere is any renson to suepect weakness of the hesth or embarrassment of the circalation from any other eause; in such case dangerous symptoms are very readily produced by it. When habitusilly ermplayed to procurealeep, it is generally less hurzful tlim opiuni; Int sonas. times tprofound melancholy and enfeeblement of the will, musenler lavsitade, inability to sleep without the Arag.' and other nutoward symptoms (cafled onllectively chlowiom I realit, and only disappear when ith use is sliseontinued, Moreover, fatal secidents from its indiscriminate use are far from anconniven. Poisoning ly eldoral shoold be treated by kerping the patient warm, attempting to ronke him, alminintering coffee and small donet of strychnit ur atrujia.

When ehloral hyslrate is trentend with enustic potash, jure chlernforn in obtained; bat owing to the expunse, this preces hish not come into nee in Great Aritain. It has leeen supponsed that ita anawthetie property in the reauli of a similar formation of chloroform in the blood, bat no evialeace uf this in fortheoming.
Chlorantha'cear, a nonall groap, ebiefly tropi. ent, allied to the peppien, aromatie and stimalant CDlarwath us a Chineer, who ase if for purfuming teas

Chloric Aeld. HClO_{2} be the achl corrvapand Ius to the layjethetion! oxido of chlorlne, repre
 With faint ehtarine ontorer and neid regetion: A phere of peper dipered into. it. become elonrest ond takew thrs, und it is mistantly steonajnaed by com tach with wrannion sutcten In iteitl ic in not of imach impurtance, lat it larms an clane of balta collal raterrtra, the of which at lenst is writ Knowh. EX/arvite of potish, KCTO 21 in an artiels of ruansercial value, and way be prepurad by pioning chlowine into a sulution of canstic potan ly, heat Inge she higuid, anal eryniallining mat thom malt. It

 thio propenty it lo taxel in the prepurntion of

 combartion und ite esplasive jrayartias wlaen tritarated with nulphur. Mlixes cantiomely with
 atrolonh. it forms a muxiare which, whem dry: Ex pheles of wapred with n pehcil. This mixcure is aspployed is the matufarture of eonies himis of motelust, whioly give a ulipht explobion when struck. If a. Fry ntal ot chlorate of fritali lat placed oni a pticy of paper astarntel with curpuntive, and a drop of suljhure acil solfen), it casiaes the its flaming of the turpentige with exploare ruputity, The chlmate is alse west in mesticine, and in n compreseat form has lecouse a popular remedy in certain formes of more throat.

Chiorimetry is the procese of enthonating the Propartion of 'svaitalie chlorine' in Hienching
 peortion of the chlorine which in parily himprated. ani whieh takes oart in the bleaching frocess. Chlorine, which is presebt as chloride, as in chloride of calcom, CaCl, has no bleaching power, and is hot estinisted by chlorimpetry.
The proneas is one of volmmetric sunlysin, nud the apparaten uned is simitar to that described in the article on Analysus (ofv.). There are several practical methods of chlorimietry, all besed on the principle of meisutring the oxidjing power of the denehing powden This is arrived at by making a solution comisining a definite amount of pure solphate of iron, arsemions ncid, of other subolance cepfalle of being oxidinel, numing in the solution of Alewelving powairo very slowly, and then by saitable tests fletermining the exast point when oxidation lins taken place By sulculation the amount of "available cfilorine" io at once obtained. Where suhstances uther than blewching powder are uoder examination, slight modifications of the process many be necessary.

Chlorine sym Cl; atom. wर. 35 方 Gr, chlöros, 'pale green' 7 is a nom-nuetallic clement discovered by Scheele in 1774 , and named by him dephhogistigroved it to be an elementary body, nud gave it the name which it now lears In pature it is always found in a state of combination. Yaited with aodiam, Na, it necurs very largely as the chloride
 large beds, eas rock salts in all natural watern, including even rain-water; in clays, suils, limestone: in volcunic therusthtions; and in the vege. tathe and animai kimaloms. The prepanation of gnespan phlorins ly its Itheratise, direetly or indirectly, froin comimom salt, hat been fnlly deseribed under Bepraguisis: towbsir, which is the form in which chlarine in prepused anil enployed commer-slally-For exprinuntal jarpuase the ges may lee received in jam hilesl wikh warn water at the phematic rough, when the chlorive tises mete the far, ami ifydach tha waten Whars thas obtained if if a yellowill freew gns with a puenliar and
 feeble aujperter bo vrdiming iombuntion: A lighted
 owing to the hyslragen uf the cial alone buimigg, while the eurlmis is titpratoul. Several of the neetals, sisch on Hutitapot. Popyor, ant anenic, in at line stale uf divintiof, or to the condifiob of thith leaves,
 into the jokis a piere of thim pajper noakeal is
 a vefy buary tan buncly of bïmea liestier than air,
 molahle In cold whtoe tor Die extent of twe folamen of chloriae be ous of water, end ylelela a solotions

 are those of a heaclier of cotion shaf linen (nee BLEACitina) and a most powerful Dianfectant (y) v.) The cas con le combenaed by prease and
 liquid, with a ejrettic kosrity of) 3ike (water

 Chlorine aetn, is opey minate quasility ly perslacing a seneabien of warmith la the reepiratory proveties, ath inereathy the aspertontion I in
 worknees is shefineal manafactorion, who get accubtomied to the dildire in mall quantities.
 fiain of acialis in the slamact, whieh they corved hy Laking chaik, ant aleo suffer from the cumpion if their teetb. whetr art esten away to etumpe The antidotes to the evil efferte ut thr introdection uf ehhlifion istes the lonevere the inlualatiun of the vapont of water, alonhul, ellier, of chloroform ; but Hor latter two whombl never be rmanmit to escep. ander mollout angorvpion.
Thtuine furus witl Mlier unbetanees a vers

 or thand, whin then plaved wits exptorice enesgy.

 tuay he probluont by the sien comitihation of whlurine with liw methis, to is the experinients

thlorodyne is a patent malicize of con-
 Browue (18IS 8i), lint hapely imitatel ly sarimea Plemiats. It Gentains "10inath, ellerofnem, prosese

 sliaken: ind has, is taking a thae of chipqeofyme, the 1-atient swaliows on unkjnwen todatity of three ur four af the-iletulituat foidans- with which we are nequainterl, it is alwars sultisuble to begin ritis suall disex. It is unguestiomally a ormpound which sometimes sweceedt in allaying pain and inducing slecep when mpiatea lave failesl: luit whether a phymician in funtifiel in reconsmending is remedy with Llee comprotina of which lie is ma-
acquainteli is a drepbefet question. Ta meet 1 bis diffirulty the Medical Council, in the INat odition of the British Phaptuncoperis, lave intmoluced the tinctare of chlomform and murphia, which practi. cally represenls chlarodyge. Five to fifteen alrupo is the sverage dose.
 cheminal errinelly alones the sume time (1531) by fiuthrie is Atoerira. Lephig in Ciermany, asd Simblrizian in France town, howrier, its projerties av a stimulant sloen taken internally attractel attention, and utien in 1847 it wha Iemplot inter pronatuent naticr as an shorialletie lyy Sir Jsuiar Nimpeon, it war at aner recrognised as tone inf thr munt valudde eontriluatione of claemacal

 I part of lecalrojes. and leeis parts of chlurine. It mas lie tunalunt in sevoral nayr, hat in this
 from bleaclang jevsiler in the sonly wan aslajead vat the faccer ocole. The materials vaplasid are
 ing permier abal watet are mivod tugether ta form is thin ervisit, the alvident achlel, anst ther whole
 vesilensitnt apharatue of the apolication uf hast
 the external ayplivaiine of licat le steflimed, the
 aflif wet nyefly poblit with trater and way esveas of atevdual. Avewalsainol it is very ingare, anel regnires is ier ranefafly veated with aul wheric acist, and then reslistillent befrere it is 6 it bas

 bothe veluse, anol a gerwurful oweelibl taste. When
 of arkificia! fruit exienct, to which it gives a
 (enter $\boldsymbol{r} 1000 \mathrm{~h}$ ainh es it shaes not resulily mix widb or di-olve is witer, is falle tor the tatuons when jeuend into a vered of that lieftis, forming a ithatinet layer. (hilarofarm is meitily misilide with alculonl aml etlar, anal is timentre camplor. Amber. putco-jerctos, wax. Hack anal red menling Was, ivalise, asd lirotnine, we well an strycloine
 tion of mater, leing alor mighidy meslite in tbat Ingid Chlomforen is not enaitualible is the
 Jernght is svalart with Rlawe it Jarns, impartins A joees tint in it, ant metialine fase are foog theobl. 1'sere chalnoporm is But inet with in "wamacrer vorigy ta the resplinese sith whicls it steresporen alow expand to light in upler to
 the elexifie erasyy lesing thes reducet from itas) ts I we, Wher evateanel om the hand no claken wilh ailptanic acit unly a very slight dienoloration of the arial (dae to the suall pris
 anisthetir pryjertios, whuch we chewliere dis
 medieme both esternally and interally: When

 asil हеयralpía. As an appliratinn th a decayed tusth ite crtius is twoforl, me a stimisent and (monter irritans lieally, anif od on to a porisist exient us 40 ithoralietiec. Takee iotrrualls, dilotel with alnstunt it is a perserfal slimabiant, and rendily prolarta as specie of intorimations. It is loy mome hulotualis taken ato a namenic losury, As chlonic.
 and evotaining chlomoform, it enters intas the compionation of cought mixtures, pirk me-haps, de

Chloroplyyll, wh its haur inglier, to leaf green, the aptinary rolnming matier uf vegetation. Mieno.
 times to tinge the whole protoplawnin of she cell
(thought never the cell sap). Moch maire zwnesally, however, it is cullerter ints offinite lavien, the en-called chlonsplasil grabulex. in Lerofirejuently, en in motne if the bower alpor, arthingol in otarlike
 to slianolve onat the thloriphyyll, and leave the form of the chlurophyll laclire unaltered; and the solu tiven masy then lie coinveniently suadied is it freah
ntate, as it proulually fivles on kevping, It in of a deepe rach grees hy tranomitten, hat of characterintic devep red cobluar ley reflectest fights in a worid, is highly fluartorint. The athanptimengeetrum in quite chararterintit: y^{y-1} the conindex nature of the notimetance in strongly argued foy on the emment of
the following experinuent. Shake wi the alcoulolic
 hat time ter ayiarate, we tind the green to lube slinapteres L The lighter niculad atove in now of a

 tie resober flat of chlorcophyll. Thie hatter subls
 notee of the lencot nger. (Thecillaturia, \&e:t, while the pellow -uhbetaion recallo llate uf many linis

 bee ragardo an whanduyll it a fille atate The

 own buy tequapombility, sait $\mathrm{ft}=$ leoug nectamarily

 lean miscle sledested. A suntter which seemes bt in dicute variulaity of ecomsueitish. Thin in furcher
 in abdition to ther fungliar well selinal analogrous colouring mattere whirh clasacterns neppectively

 oninotrio ecen tor conmeration This varietal rango, habever, thaty lood he wopmartient afier comsistering the captition- io which, chlorophosll is

 lav juite indijerinenhle: the floyment pasitioun are, hawever, sing ples

A mathirient tromprafire is necestary to the for-

 Tow imsi ingarimnt vamuthas in, luwevef, the pres
 of celogy or fewhe is a fangliac instincen of Lhos, in
 tuler where is lingigens to lane twen jrowien nf its covering of eurth. Slometh formisi in slarkhese forit
 hae, the min malleal chiulim stier a very brief expeneure

 fermer Tlie othier oxdariog Bmuers of plante
 phate) b bat nure frequently nima in walotion in the sap; and ture ifegmently are I'marnt in anch alumit

 *) many af sar hathuse platere with decoratice leaves The genersl temipnry of remmarch is a iodicate cbat all the plemomena of plant colons soemi intinatels ctanected with what wa may term dre general life livtiory of elimothyll. Thas the
 ypting way la- interpreted wo buving tome telation lat the slesphopment of chlumphoth, if nos absolately stagts of the provese i while the saine roggostian arimes with regard tis the cibtioning thatters of tliwens, shich are mimilarty to loe regandeal ita imperfectly vegetative dunta, althaugh in thier cane througth the onnet of the repmaluetive fanctobs, inatead of inerely ley retoon of imomaturity Finally alses with regard to the sututhat hues, in which the chloraphyll pigment arems tu loc disintegrating throbagh coloser stages annlogans to thase of its evalution in spititig, of of its arreatreent in the tliwer. In favour if suche a view evilences is forth coming from either end of the vegetahle kingdom. Thus Cienkitisky has shown that is the eare of certain buicellalar alger, which like the common Protuciarctuis of rein-water, poesebs red pigment as well ar greell when jusoins: into fle reating stage, the squantity of red way lee increased in prigsortiom \&t autwinal conditions are repormaced by artilicially lowering: the temigeracure, shed ryer cradi. The kame experiuent way be tunde with the common Sempertivarms, Selmus, Ac, whose lenves beconne Thaja (Arbar (iter) similarly becone brownish, lan recover theaselves in sprimg:- Ansorig almisit
all cultivated planis, sariegated varietiss tend to Arisg, that is to nay, wee have cectain reld areise of the leaf-parcnehyma destitute of chluroployll. The Ithastil) ; lut it is noteworthy that this lise of chlaruplifill may also take place m lower plants, wo that there is sonsulerable gromind for regarding at least hany appurent fungi as siuply algar which have degerierated in this respeet through parasitinn. Phaneroganous jarasitea like Tnothwort (q.v) or Drudder (q-v.) simillarly become alnoet completely blanched.

Chloropiyll apperently identieal with thas ef green parts of plants, can be experimentally iteboonteated in the tisues sif certain aminuls: amd atthough thin has in many canes been abown to be the to the preserice of symbintie alja- Seet Sysebumssh there reanain cases-e.g. Ifyira midides, ※c, sad at the very leash Paramerrime rorule, in which we have andenially intrinsic chloropnyll, anif thin of truly veretable function.

The develyprome of aur kanoled ge with meapees A) that functinns of eblomphyll is etif far frum coms plete, and may in ony prse be more eonveniently trested sinder Lakav and V rastable Prysmonery (i.v.) ; miffice it therelore turstate here the elementany and ourntial faet that its yrwnence in in every cuse cunstantly sammatel with the pricede of masumilntian, of elalnination of new products by help
 buntion of the greent phat tlegrentna sad of whioh the frefantern of staref with sfecongubition of car-

Thokedamap, Aha nathind after dompe ue fuod, dowip, in the cartionic acid wan piven of by coal which secumblates in coal munts, and may suff cate thone exponed to it. It is diatinguinhed trom firediang, the surehyan ur Light carlarethed fyifrogon which camea the explomions.

Oholemterin. $\left.\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{C}\right)$, If a fatty ubatanes, ariginally fausi is gollstaqes, bus now known to be present in the yofle of etg, the thtuist enrpuacies, milk, and other snimal fudds, in well an in preas berloy, rye, se. It is soluble in steoliel and
 hacregan seatom.
 metal, al cidles (chermon, 'volnur') from the many: ofloured conppormals it proluces. It war diacovered ly Vauquelion in 150%; in the plirumate nf lead.
 Anerica, Swetur. Hunwary de
Then metal has teren alifanyd io neverst mosifis. ratisan, bie of which is en refractory in to le infurible at is tefinjertare mitifient to valatilise platinury. w life it tatey be heatect to rednes with. mut axtiladion, and resists ther action of mant sciba. Afuther yariety is a prowiler which lucos teritlinatly whin heatial in air, and is readily diseolvel by acidp. The metal iteelf bun not been ensplayed in the arts, lat numy if the chrobated are tumeh onad in puiating and enlunriog- Chromism forms foor conspuand with sevyben, of when the chief sme chromic oxicte. ($7 \mathrm{M}_{\mathrm{N}}$ and chtomic acid, CrO_{3}

Chrmic axife (elirnsu grees) poumess a bright. greet colobs, and i- the colouring ingredient in the
cmernld. Owing to. it indeatnutibilty by heat, it is uped in porctain puinting; while, being nonprianouss, it is tom incpuluced as a sulatitute for the liangetmis araenical green pigmente which were formerts suivermilly eimplayet in the manafacture of wall jepars.
 Fut qrstats, containing nu water, Sthen etrongly woated it becomes mwatulosient, And is converted into chromic oxifle it forms several elaseen of saits: the Chrsenctea, suels is chromate of lead,
Pticro, the Baikrownifo, of which bichoromate of potandi, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, or $\mathrm{K} O 2(\mathrm{rO}$, is wh exanpie: and thie inchronates and tefrachromates whieh are unimpintant.
Ethowate of Lend. PhCoty is well known to by puixing at solution of sectate of lemi with one of chronamfe of potasli. When loithed with turne, its lmightyellow colour disappears, and a scarlet hasic chromate is obtained, which is tased in the dyeing of calico.
Brefurawite of Poleah, $\mathrm{K}_{3} \mathrm{Cr}_{2} \mathrm{O}_{2 \text { r }}$ ie prepared from chrome imantane, loy calemation with chalk adid cartornte of putish, and sabariquent treatment With nitric acid. If forms large red eryatala, and
has mary uses in the arts. When added to a sols-
tion of gelatine and allowed to dry, it is found thas on exporate 10 light the gelatio beconues insoluble, anil a process lnagl on this praperty has beeb need to sone exteat in phetography. As an oxidining mgent in galvanic latterips it is very effective. While micel with salphuric acild it is used in the bleaching of oils.

Thenuric acill and its salts are all more or less peimonous, owing to their corrosive and oxidising setion on organic tisanes.
Ctrouse Sieel costaining a small and variable percentage of chromium, is highly valued in Amprios for ite toughness and atrength,
Churns are maschines uned for the production of batter from rream or from whole milk. By agitation the butter globules sre throwa agninst esch other until after a period which varies io length with the quality of the better-fat, the ternperature, and the eandition of 'rjjeness,' or ineipient acidity of the cream. Churne are of great vaniety in form and dimenwions, froms the Indies' glane hand churn producing a few ounces of butter at a timis, ta one isriven by water, ateam, or horse-pwwer, and charning the whole arilk of a dairy at one operation. The plangt churn or thamp churs is one of the alilest and urosi siruple varieties. The common upright fond chusa sees in conatry places is perhape the beat known form of it, loot the principle is equally spplicable to larger churna. The box the latver. she aetion leing brought stonut by tilashers" ior "wurks' made to revolve on a hors. zontal epindle pasaing throogh its centre.
Rerofving chams, taking the shape of a hos of barrel, are supported frobs two pointa on a ripid frempwork, en that the whole body of the elown is tornel ronad at the rate of forty to fifty revolutions per mininte by a criak handle sfter the fashione of in ordinary erindutase. Sometimes the mution is a simple rotatary trop, as when the barrel is suppurfed frum the centre of both ends, giving it the peatition of a harrel vollimit on the groend, ft may aloo be hung trons two eortesponding peinth, one on ench sile, san ocoupy an upirght poestion while at An cocentric motion is given by loangiag the bedy unevenly There chums slmo onntain 'daahers' or 'disphorguss' which taeserse the agitation of the crearn. Thein great silyantage in the eas with alce wliere band Islont is employed. Siongring or 'rraile' chami ate fatreasing in favour, becanose they are en extreninly esaily worked, inexpensive, anil simple, and lecaue they contain ne movahle 'duhhen,' whiel dewamil mebe care snd Isbour in kerping thess sweet and cleas. The looly, conriating of an elongnted lox, may be suapended loy four chains or this form rods, or it masy be carried on foar fiss, Besible irm sapporth. It is pualiod so that it swings backiwsrds and forwards, giving the ervarm within a course which aneumes the form of the fogare 8. The Hotatean chars is upright and rigid. Its disabers, which are attached to s ferjwendicular shaft, sre worked at high speed. This eashles the apentor to reduce the temperstire of the cresm by pestly 10° F., se enmpared with the temparstare at which it is pat into an ordinaty churn. Churnigg is then done in summer at $50^{\circ} \mathrm{F}$, which gives the rewalting butter-product mach griater frianess and a better textere.
Chutaey, an Eant Indian condiment, very largely noor in ludis, and to a conailerable extent in Iritain. Iudian clustacy is a compound of mangons, chilition or Cappican ($q . v$.) and fiare-juice, vich soume portion of other nitive fraita, wuch en tainariads dse.. the llavout being heightened by gorice. It is vametimes manulsetured far nale in own use, and employ the following ingrodienta: Clillies, ito 14 16: apples, 1 Jh ; red tamarinds. 2 lh ; sugar candly, ilb; freah ginger root, $1 \frac{\mathrm{l}}{\mathrm{Ib}}$;

Chyle, Cerias Food, having boen pertislly digrsted and sbaorbed in the atomnch, is then peased on into the small iateatine. It is of a pulpy consiatency, and is ternied chynne. Both digeation sad abeorption continue in the shall intestino (ase Digestion). Of the digested chyme a portion fince ite way dirsetly into the blood-vemole of the intestine Nearly all the fat, however, passes
into a specis) agatery of Lymphatica (q.v.) termed into a specis) ayatem of Lymphatics ($q . v$.) termed
lartivals. These lacteal vorsels tio in the wall of the inteatine, and, during the fasting conditinn, are filled with a watery-looking flud called
lymph, which exudes from the neighbouring blond ressels. During absorption, however, the lacteale, in addition, become filled, with the shaorbed fat which is in a state of minute mabdiviason. This given the chyle, an it is now termed, a milky sppesarance. The lactesle convey the chyle into a lange venuel, the thoracie duct, which finally con ducte it into the large veinu at the ruot of the neck, where it mixea with the blood. One may observe the lactesis on opening the sbdomen of an animal killed some lew hourn after a full meal containing fath. When filled with ehyle they resemble white threads branching in the substance of the mesentery-a membrane atretching betweon the intestine and the back of the abdomen, Mierosoopically chyle cousints of a fluid containing minute fat.globules and a fow corpusclen, similer to white blood-corpuscles. Chyle is alkaling in resction, and congulates when withdrawn from the body. It may be looked upon a lymph plus the fat which has been absorlued. It contains (1) Proteids, such as seram-albumen, serant-gtobalin, and fibringgen. Filsin is formed during the proceas of cosgratation. (2) Fate-palmitin, stearis, olein, and almo cholesterin and lecithin. (3) Extractiven, notably ares and grape-sugar. (4) Salta, especi. sily sadium-chloriale.
Cicatrisation a Lat. cicutrix, 'a bear'I, the procein of leating or skinning aver of an ulcer or broken surface in the skin or in a wucous ment. brane, by which a flopous material of a denae revinsing elaracter. cavereil by a protecting layer of epithelisun, is suletitated for the hat texture. The bew timne in stich a case in called the ciratrix, and wually yevembles to a congitershle extent the structure which it repuseen; it in, however, less elantic, and from its sherinking in volmo maky proslace an appearance of puckering. This shrinking mantinies lemle to serious resulta, especially after extensive Burns (g.v.) The glansa and other special structures of the originat tianie sre Wanting in the cicatrix, which, however, performe perfectly well, in mont instances, the office of protedian io the parts below the burface See INFLAssmation had ULCEBation.

CLanabar, an ore of merenty, from whioh almont all the mercury of commeree is obluined. Chesuically it is a sulphide of mereury containing $56-2$ parts of mercary and $13 \cdot 8$ of sulphar. It oorara both cryatallined and masaive, not unfre: quently disoeminated, Ita eryatala are nix-aided tranaperent; bas an adamantine, Almost metallie lustre, and a carmine colour, with s bright scarlet streak. Ite npecific gravity in 8 to $8-2$. Hepatio Cinnabar, so called from ita liver-brown colour, is a variety containing a little carbon. Cinnabar sometimes acesis in prinitive rocks, but mors troquently in thone of the coal formation. The cinnaber minen of Almndex, in Spain, have been worked for aboat 2300 yesrs, and have been surpaserd in productivenesm by thoee of New Almaden in Californis. Cinnahar taines exiat also in Idris, Germany;
Hengary, Pera, China, and Japan. Cinssber unod in a pigment under the name of Vermilion.

CInnamie Acld, $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{CH}=\mathrm{CHCOOH}$, exinta in the froestate in the baluasm of Tolu and J'erts in liquid storsx, and in gotm benzuin. When oil of einnamon (see below) is exjosell ta the nir, it sboorbe oxygen and deponits cryataly of cinnamie scid. Cimnomic acid forme colnurlesa crystaly readily solable in sloubal, ether, anil boiling water but sparingly soluble is colil watet. It is not of any importance in the arta, aul in ehiefly interesting ne being the acid correspobding io oil of cinnatuan. Thin oil bu the ahlelayde of cinmanic scid, and is represented by the formula $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{CH}=\mathrm{CHCOH}$. Athongl inmmerie with oil of coseis, it has a slightly different flavour, and is mach mare expensive, Bath of these sils are employel in mellicine as aromatic otinaminnts, lnt chiefly on pleswant auljuncta to diagnive the tarte of nnuseons alrages. Fonm a chemicil point of view, the cinnaraic acid nnid oil of cimanamon are related in Henzoic Achl (q.v.) anil Oil of Bitter Almonds (\%.v.). Benzoic acill is regraled as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}_{4}$ while the wil of hitter almomis is the corresponding ablelyde $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{COH}$. On oxislation cimamic acia is clangred into benzoie ncid.

Circle, Maget, a shace in which pomersar nero wont in forntect themsclves from the fury of the
eril spirits they had raised. This ciccle wras usomally formeal on a pheot ol gronnd aliont nine fees squale (in the Egast sesell feet aptrears to
lave been emmpitereal salficient), in the mbist of simne, lark forest, churchyari, varlt, or other Innely 014 dishat spot. It wre described at midnight in cercaiti conditions of the hamon and weather. Insile the outer circle was annther somevinat less, in the centre of which the sumeerer lumd lism mest. The spures lectween the circles, now well ars loctween the parallel tines which inclosed the larger one, were Gilled 'with all the holy names of Grul, anm a varicty of other characters smpjoeed to lie potent against the powers of evil. Without the protectisn of this cirole, the magician, it was believed, woald bave heen cerried off by the spirits, is he would have been land he loy elance got oat of the charmeil rpace. Amsther ferere which, describel tfon the grimish, contil har the gassage of a deman. what the ficutorgrans. Remilers of Fitast will remensbev its eflect ppon Alephistopheles.
Circalation, in Anatonay and Physiology, ia the term used to denignate the course of the blood the Capillaries, q.v.), and from theme back to the heart. To simplify the consideration of the subject, we ahall consider-(I.) the (ieneral Anstomy, (II.) the Comparative Anatomy, (III.) the Phymology, and (IV.) the History.
4. The organs of circulation connist of the heart, erteries, veins, and capillariea. Tho course of the
blood through these orgars will be heos elueidsted
lis the nit of a hifagram, which is equally applicable fir all nther manomals as well as lor man, anil for hink The dark parta of lig. I repirisat the cuntase of the jminen tre Viplitei portione represtetat the ermuse of ther pare ot arterint homal. TWe of the fous cliam: leen of the lieart 4 A danl "I yeceive the indtowing blowed, and are termed Gie emurinles: while the other two sliambern $\left(\begin{array}{ll}15 & 601 \\ 16\end{array}\right)$, lirive the blant to the lompe fund If the aroweral ay etem rempeetively nial nee terinet the ientiotes. The vessole that loring blatist to tlin anriclas are (romeel terims and the lital is , Iriven frame the coutricles are known aa Irterica (q.a.) Wewill ony thace thet fayme of the blanel, as incoligated 1y the armowe of the theriant eonimencing with the risht somiche
A . The right quriele contrueting 日gnon the with which we moppooe it to be flled, drivee thin into the right ventricle, B, through an opening

Fig 1.-Diagram of Ciroulating Eynteme (frow guarded by a triple (or tricuapid) valve, which almont antirely prevente the regurgitation of the blood from the ventricle into the auricle. The ventricle, B, being now filled, contracts, and an the blood cannot return into the suricle, it is driven along the dark vasel, es which is the pulmonary artery, conveying the blood to the lungs. At its commencement it is guanded by erescent abtraped (bemilunar) valves, which enLirely prevent the blood which has once been propelled into the pulmonary artery from re-entering the ventricle. The pulmonary artery gradually divides into amaller and analler branchee, which ultimately emerge into capillarien freely diatributed over the interior of the air-cells of the langs. There the blood gives off carbonie acid gas, and aboorbe oxygen, becoming thereby 'pure." The espillariea, in which the blood is purified, gradoally unite to form larger veasels, and finally the blood is collected into the pulnonsry veins, which pour their eontents into the left auricle, C . Thence it in propelled into the left ventricle, D, through an opening guarded by a double (mitral or bicuspid) valve, which entirely preventa the reflux of the blood. The left ventricle contracte and drives its contenta into the large artery, e, or Aorta (q.v.), which by measa of ito various brsuches suppliea the whole body with pure blood. From the sorta and ite
various subdividing branehes the blood peesor into the capillaries, J, H, which ocear in every part of the syatem. In these capillisries it parte with fite oxygen to the tissues, and becemes chargod with the waste carbonic scid gas. The capillariee unite into larger veins, and these gradnally unite to form two large trunks, a, b, the saperior and inferios venae cava, which pour their contente into the right saricle-the point trom which we started. The diagram also sbows how the venose blood from
vean eava, ques thmugh the liver, F, in what is known ns the liepatic jortal sysiens.
Ifelore jlowing to the evinjarative staty of thes circulation, we most notice a few of the above lacts in greater sletail. The Heart (ins.) is lecriles in anequarate articler Since all the arterial Blowl lemreg the beart througth the moints. to trace the inculation of the jure doeel invelres follow. iagt the bunches of that preat vesel. For this ree Aomrta. It is sutficiont, withemt forther anatomical details, ten shy that the rabuffecalismen of the arterie althuilate the arterind ldowl to die Capillaries (q.v.) whels Juervele every part of thie baly. It atracily evielont thas the fasfowasary
arteries form flen tiathi rentricle carti inpure lasul ta the loump armi that from blamd retime frow the tonge to the left anibite fy tan malnomary veins.

Tire tems, Jike the Arterios, ate fumsal in neanly every tientio: they conanisncts itr

which communicate with the eapillaries Branches frous these setwarks aniting together, form veins, which, by joiaing incrense in size on they pow onwand towarde the heart. If we extopt ceriain venoss struetires (called rivsurt) ecourring in the interiar of the skall, we misy divide the veins into two sete-the sigporfoint or centanconus, and the derp veins. The deep veind meomnpany the arterise, and are zaually inciosed in the same shenth nf tissoce. In the ease of she sumaller arteries they geberally exiat in pairs, one on esch side of the srtery, while the larger arteries have tuagally andy ous accompanying vein. The auperficial veins oncur ismedistely lieosath the integument; they niet only rettirn the blowl from the skin and adjucent structures, bat commanicate with the deep weink All the veint finally lead by two large tranks, the muperior and inferior sena anna, inte the right curicle of the heart. The superior veas cava is formed by the waion of the reitus frase the heed and neek (the jugularn) wish thooe from the amme the sabclavisus), while the inferior wens cava bringe back the blond from the lower extremition the trunk, and the visoern.
We muas refer to the article Vrin for the strue ture of the walle of this part of the circuletery syatern. There is anly ane point that imperatively requiree notioe here-viz. that whille the arterial systeni presente no valvee exeopt at the pointh Where the two great trunke leave the heari, the veins contain a great numler of valves, which are formeal by a doabling of thrir lining taembrane, and resemble pocket like folds or poochen, which allow the blood free passage townrd the heart, but prevent its reflus. The weine are much less elsutic than the arteries, and their total capacity is matuch greater.

There is one part of the venous circulation which, from ita great importance, requires apecial notice -vis that of the spleen, paneress, stomach, und inteatinal cansl, The hlood supplied to those organs by the oplise anil the two neeenteric arteries is not retarned directly to the inferior rena cava, but passes ly several veins into one large vesel-the portal vein, which enters the liver, and breaks up into a capillary network.

There the blowd undergoen impertant changea associated with the bile-necreting and glyoogenforming fractions of the liver. The bload, enteriny the liver from two sources, fromi the portal veis and fiom the hepratic artery, leaves it by the bepatic veins, which join the inferior vens cava. It in alma important ta notice the entirely distinet set of veroels knawn as lymplation, whichi conduet the products of digestion into the veins (see LYMPH)
The above-dencrilied doulle circulation (through the lungs and through the boaly) in exhibited by the blood from the time of birth daring the whole period of life. The circulation of the blond, however, lieginh before hirth-indeed, at a very early period of intra-aterine or fotal exintence ; and the circumstance that before birth the langa do not met an organe of respiration induces a very important modification in the coarse of the blood in fuetal life which will be deecriked under FGTUB,
II. Ciny wowitive. - The circulatary system in man, as above deacribed, miny nerve an type of the highest develapuent, differing bat slightly from that of other mazamele, or that of biris. It is convenient now to begin at the other end, and to note lariefly the salient stepes of pragrens in the gradual evola. tims of the sykten stiraughant the animal berien. In the suieellalar animals the movement of the protoplasi and the apecial activity of 'contractile vacuoles,' represent, to some extent at leant, a circalatniy function hefore the appearsnee of any nyten. The ranaln which eo conpletely irrignte a ejonge, likewine illubtrate in fow exprenaion a circulatory aystem not yet sepurated off frinn the otlers, In Cusenteraten too, the bysten is atill uneeparated gratro-vasentar' prolongations of the alimentary onvity penctrate the Linly, as may be very well reen in the diac of a coriniton jelly.fiah. In the lawer worre-1ypee alsa, where no dintinet body. cavity in yel ileveloped, the nutritive flaid nimply diffaeen tirough the lindy, and no vaacular syatem is differentiated. But in higher womas there is seacrally s body-esvity, and with it the grainal sypearsance of a sefinite vascular ayntem. In some We aimply find a fluld maving in the body-cavity occaniunally elear, Benally with eorpunclea; in sthers, prortione of the lody-cavity are soparinted off ai blood-ejuces, or eventually as blood-veneda these niny remsin is connection with the general cavity, or may at length form a chased byntom, The manifold worm-typer afforl almadent illuatra tion of all the etagre in thin differentiation. In the briatle-footed worms (Chactopods, Q.y.), and in satrie others, the perfecting of the blood-driving mechaniam may be instructively trioed. Often e doreal venuel in diffusely contrictile, lene frequently the ventral; or there may lie contractile connecting loope between donal and ventral vensele, as in the carthworms or lastly, a special region in the dorsal vensel masy become the main sent of the vascular sintractility. Such a doreal heart is found from thie point onwarde throughout the Arthropode and Molluncs: (The well-developed and very difficult vascular ayntem of Echinoderms, which se-exists with an sbundant body-cavity flaid with relatively few corpuncles, has no special interest for this genersl survey.) In eruntaceans, the dorsal heart, nutially inclosed in a special spece or 'pericardial sinus,' drives blood by more or lete weil-developed arteries through the body. The reat of the system is beat dencribed as lecuasr. The venoun blood pases along body-cavity spacea to the gille for porification, thence returna to the perieardial siauk, and entering the heart is redia tribated. In insecta a ehambered domal heart incloned in a ninam an before, strives the blood forward, but at one would expect from the very efficient respiratory agparatus, the general vas cular bystem is but sightly differentisted. The blood, purified by diffusion from the everywhere present sir-tubes, pasmee hack by venous channele into the siden of the pericardium and heart. In myriapods, scorpions, and king-erab, the syatem in more definitely developed, but illustratee no new ndyance except that of more complete eatahlishment and wider extension of veasels. In mollases, however, some progrena is observable. Except in the Elephants' Tooth Shell (Dentalinm), sheart is present, and the arterial nyntem is oftem very well developed, even to the extent of capil lanes in some cuttle-fishes and mails. Usuaily, however, the venons blood travele along lacune, though gradual transitiona occur between these and true veins. The blood purified in the pille or pulmonary chamber pasees bnck into a special portion of the body-cavity-the pericardiunn, and thence into the hesrt. In certain worm-types,
several contractile Iateral vesaels niay oftea be observed to onter the donsal vewel ; in the Pesriy Nantilus, which has four gills, four efferent vessels dilating into four indistinct nuriclen, enter the melian dorsal heart or ventricle; in alnoost all bivalvea the entrant dilatations or aariclen are reduced to two, one on esch side; while in mosest Ganteropodn and Pteropods the apecialisation han gone further, and the heart consiatn of a pingle suriele aud a thicker musular ventricle. The latter driven the blood through the body by s single or douhle anits.

Faking now with equal brevity through the vertebrate neries, we notice finat that the lieart arinen as a ililatation no lopger of a dorsal, but of a ventral veinel. Up to and including anphilians, the heart lreging as a specialisation of the tapbintentinal vein' in the throat region ; in monet, if not sil higher vertebrates, it arises froms the favion of two vevela, It always lies in a pericardial sha,
(1) Among the degenerate Tuniesta there in considerable varioty in the varcular nyntem. In one cane no lieart in prenent; in neveral there are no definite veaseln or blood-corpusclec, The main point, however, in that in moet cases a tubolar ventral heart driven blood to the repirntory pharynx. In all eanea where the hesrt has been obeerved, the direction of ita benth has been aeen to undergo roveral at regular short intervalo, a ploenomenum which han alno been noticed as a rarity in certain worm-types.
(2) The vancular syatem of the lameelet or amphioxue is of a peculiarly diffune and undifferentiated nature. It lian in one sense no heart, in anntber nenne many ; for while there is no maln centre of contractility, there are amall polasting dilatations at the banes of the vemela prasing to the gill-alita, whiln the partal vein and ventral vomel in the anterior pharyngeal region are both naid to be enntractile. In general courso, the cirealation In like that of a finh; the liboot pusien from ventral vensel to reppirstory region, thence to dornal norta, thense to borly, thence ly united sub-intentins veins to the liver esecum, and thence to the ventral veniel from which it startel.
(3) In the Rounsl Mouthe (Cyclontomints) the typieal finh-circulation is entablished. The musealar yentricle driven the blood by a ventral venal ('ventral aorta') to the gill-wicas ; thence the parified blood is gathered into efferent dornal reemila, which form in uniting the 'dorsal aorta. The latter gives off branches to the greater pert of the body, the head-region boing directly supplied fron the anterior efferent Grabehiala The blood returns from the asterior and poolerior regions into a usiting veasel behind the heart ('the sinus venosia'), thence inte the receiving auricle, and from that to the muscalar ventricle.
(4) It is enough after the shove to notice in regard to the finhem proper, that with the exception of the double-breathing mud-fish (Dipeof), the beart never containa anything bus inopurt blood, that it driven thin wholly to the renpiretory organa, and is in no direet degree 'syatemic." The 'dorsal norta' kupplying inont of the body ta formed from the asion of efferent brunchials, and doem not nrime, an in higher vertoloniten, from the beart It is important to notice thas the five or no archen which npring fros the ventral aorts are alnost all quite slike, and arise (except in Dipnoi) at slight intervaly from one another. A great part of the differentintion in higher vertoloraten obrionaly concerna them aortic arehes, which are nsen in, Cyclontonasta and finher in prionitive uniformity, but become modified in higher vertibrates into the caro-
 arteries. The heart of a hads ennsists of the sumat cemavos or zepueal jusution, maning tranakepady Inchint the heart (fuesiating hence onvanis, except in rulalt linls and roaumaly) onit the furiele omu ventricle, and except in Telenntei of a specindised contractile portion of the latter known as the comus arterionsa. A dilatation of the beginning of the ventral marta is distinguished as the bulbor arteriosisa. In regard to the general system, it is worth noticing that in fiahes (ta_{s} in smphibians and all reptiles except Chelonians) there is a rensl portal, wis well as an hepatic portal system. Yeins from the caudal region of the finh come into the same relations with the kidneys as the portal veina do in regard to the liver. The hepatic veins retuming from the liver do not paite with the other ponterior veins, bot enter the sinas venoum independently. Thus fishes have no inferior send caved. (sa) The Dipnoi are interesting es leading on to amphibians. The

Fies 3-Artorial Syntew of Fish:
II, heiat fe sel $<$; anterfirney

Wintrrelesis.

Fig. 1-Arterial Systera

- A Auplinine:
 5, vestich ; en, twans auter Buns: 2 arsit artor
 acita: pe, pinmestry sticry: pi, jalismay reiss, ra re saves soperat 15vas tham
 storion
heart receiven pure ar well as impure blood, driven blond to longa in addition to gills, is in part syatemie (driving pare hlowd is Protepterun and Lepidosiren through the Sint two pairs of archen), has the ronte af the aortie arches close together, and is practically three-clisulitrel In these reapecis it resulues forwand to the condition mben is these supphibisse which retain their gills.
(3) The beart of anaphibinas is throe-chsminered, as right abricle reveiving impere blood from the toolls, a loft auricle receiving parified blood Jram the lunge or (romy the Jong sud gills, a single ventricle which striver the blood, mingling lest thas raight be sopyosed, to heal or boily or reapiratory organs. In same enoes, os obe would expret, the pantition lintween right snd left suricle is imperfect Is the tadpoles at the fish-like stage there are faar aurtie seches, of whirh the firat three supply gilts. Where gilts persint, sach supply is alwnys of course in wame tlegree maintaibed. In sueh as metamorplianis as that of the frog. where all truce of gills in lost, the 6 rst borsnchial areh beennee the caroitid; the second is the nystemic, which forms, loy sniting with its fellow, the dorsal sorta the thind frimiles awny, the fourth supplies the trags.

The same is genernilly true of the higher rartehrates, except that it is usaally the thiril branehial which forms the pulmonary artery. An inferior cena coca is definitely entalitished in abuphi. bians; there is a renal portal as well an an hepatic purtal nystem: special lymph hearis are annetimes present connecting the lywih ayatem with the viciealar,
(6) Among the reptilen, the differentiation of the heart goes a ptep further. In Cbelonians, Lacertilia, sod Ophialio, a strong vouscular ridge forme isis throuplete pestitiou, diviling the veatrele inta is right fortion cautaining [mrely renous hoom, ansl a loft portion eontaiuegt suisel and arterial Howd, The pabmmary artay piving from the right cavity fakes juarely venowe hlosi to the tumge of the twe aortic anchen rimise fous the left bavity tlee left abrcs opintains wate veamus than arterini bood, the rijtht anta nunve arterial than veronts. Io Crocomilia, howeres, there is of complete septun in tho veatricle, and thus for the first time a fourchambered heart, though it is not certain that tho ilivinion is exactly comparnble to that of birds and manumals. Frum the right or venous ventricle rive the pulmonary artery and left anrtic arcly (taking verucs, nut mised, blood to the visern); frum the left ur arterial ventricle rimes the rigit sorta, with pare thimel to the greater part of the loods. Though the division of arterial ased renoue shmuibers brings the crocodilias leent to the hind or mammal level, therese two aurtir arrlien, ane venous, the nther arterial, which anite no poual, and alvo conamanicnte luy a forsmen at their ruate. In all reptiles there are two superiar remecomr, in inleriot tena riva formed from the anios of the two efferent renals, and a renal partal system except in Chelnnis In birls and mammalo a simele anrtic arch forma the donsal anrta, not two ar mare no in reptiles. In linds the airta goes to the right, in mammalx to the left,

Batt except in this varintion and in the sl racture of the Hent (q.v.), the circulation in Bivin (q.v.) and mammala (suywa) is practically identical.
III. Physiolupy. - The most important conditions of circulatory function are (1) a jemeral conatancy and rapidity of llow, and (2) a jower of adapting this forsuectal needu. The combitionson the former are mainly meclanical and pliynical-thoase of the Istter depreni upon the nervonak aystesu.
(1) The Merhumisum of Cirrinlotion chiefty depends upon the rhythmic contraetility of tho heart, the elaticity of the vesals, and the frietion in the innscular pump contracting under the influence of its antomatic nervous mechanism, lut alao reapond. ing in the nature of ith leat to the eonditionn of the hooly. The foman henrt usually beath about
seventy-twn timasi a minate, mat in the cight.
 diatinet events ocenr-tic coutroction (agatole) of the ventricles, a 'poraive intervat' of relaxntion (dinstofe) of Luth anricles rani ventricles, and the decidonly leriefer contritetion of the suntieles, The painging wetion of the luort is thos whevonaly un interinitest farce which shiver the libuel thongh the clomeal surios of elastic tulees formed lyy the blowal-vosocls. To the lates sttentien thene now Ine tlisucterl.
 and are constactite as well an lighaly thotio As they lerak as inter batholen from the aurta to slie eapullaries, the equmeity for hotding blamel is ren-
 them, thasgh contionasis, cuasm in gusher sowse. squasiling to the bears-behte. The velatity of the streatio in pratent the nuager the heart. Thet mine
 sunch zrrater sutal equeity for liohling litimi. An they waite fomb the efodlitrion to she venat cavias the total eqnacicy in continuatly , timimintina The
 relalively litite foree ant stasil veloents: The twipillories losve a very tuall endiow, lat ine lath
 Bloide, unt shasidow the conpunder to prons dirouph fluir waila. The kelostity of the tow in here ut its minnimest. The veristance th she flow of blow, the to the friction of those minute ganager, wink lanch aborge the arlarial nyntem to the lowert, wiel in sues of the suost inuportant factorn in fletermining the ninture of the cirembethor.

To rotam row ta the Actual mechanism, it in only neckavary to note ("I) that the whate nyntemin fluays bever filleal with blons, which ewinequently caumen a weretre on the wally; (b) that the cumse if the eiren lation is the difforemce of pissutre latwern
 the une hamal anil the vena cave pail putmonary veins on the other ; (e) that thil ditierence of pressnre is she to the contrnction of the heart ; and (d) that the ibtarrujed cument, which would naturally arise frum Lbe inforaittent action of the beart,

Tig. 5. - Crenlation of a Reptile (Tortvise):

 Numb)
laries, anal the elasticity of the arterial walls.
(2) The Contral of the Circulations.-Thes phesomem referrel to above are mainly plysical and mechanical, nuth in their essential featares ena be
 living onganinn there in a voratenat necossity for notilialifity. The arposs vary in their requipemencs, not the extersal coublitions are freyuently chasging. Monlifestiany in thes cireahatias ure berosht almet ly vhariay in the lienvt's leat, and in she catilite aum resbitation of the ancall arteries. Bboth thesed changere are under the direet control of
 immertanee abse ureer in the espithary rexistabre onil in the totiol quabtity of Noonls Lait ther importunt puint or mimply the gemeral faet that the regnircmenta of the neganitu are net by the doniminh of the terynas synteas uver the eircelation.

 the provaltut metion that the arterion containel

 pioty hat of divehne metiniti of che centrifinal dow In Jues Walinu thasey jubliched tio Ejopotote
 rectibas, it which his dismnery of the real natare If the Problatiote wioc ypponialuh. Nina after, the
 and tarerwentoek (that) what Ilarvey had becti
 utterier and poine shates thane dave clardetasiled
 the axtion of the leeat tued its valve, abil the turvona combrot lave hash wotkot at by basay of the greatest filyevingenta

Citric Acld, $\mathrm{H}_{3} \mathrm{C}, \mathrm{H}_{3} \mathrm{O}_{\text {\% }}$, in the acid to which lemen und lime juse owe their nourries. It also oceurs, in nome casen along with tartaric acid, in oranges, claprien, currants, Enoundorries, and other Iruits having a salmeisl tanie. For praclical porposenil it in ulwayn oltained from lemon, lime, or berganot juice, which contain it in large quantity. The fint named of theme containa frons 20 to 40 graits of citric acid in eseh ftrid ousce.
Citrie unid is prepared frasi these juices by a very sinuple procesa. The juice haviag leeno heated to the boiling joint to clarify to frome albumen, mueilage, Re. is mixed with ehalk, CaCO_{3}, which, combining with the eitrie seid, falla to the bottom en eitrate of stalcium. The superaataat liquid boing drawn off, salphuric acid in added to the procipitate, deconuponing it, with the formation of eitrie scid and sulphate of lime, CasO. By cryatallisation it may be obtainel pure in the form of colourlens, oflosilleen prinus, which ofltoreocn is dry air, and poopesen an ngreesble scid teate and an neid renction It in remilily nolublo in water nod aleohal, bute alnust insolufle in athar and chlorofurm. A selution of is in water connot be kapt owing to ite tendency to farment. Dissolved in nyrup it keepm much longer, and is usel largely io the manufacture of lemonaile and other serated beverages, communicating an acid, fruity teate Whes hivatesl, the crystaln melt, then decompose. and are finally redaced to a combuatible form of charcoal. In addition to its smployment an a flavouring agent it in largely used in the mastinfactures. Calico-printers omploy it for discharging the mordant from the cloth in pattorna, nad is it ased in dyeing silk with saftlower, \&c.
Citric acid may alao be prepared artificially, bat the procens is hon complex ever to come into prisetical use, Chemically it is of great interest an exemplifying that as noon is the eliemical constitution in known there in is ponsibility of producing tho substance artificially. There in a popular idea that nome day quimine, morphia, and other nataral producte will be formed ly the random mixing wogether of chemicsle in the chemiat'a beaker, bat the firat step towardn this reault muat be the knowledge of their conatitation, to be followed by a series of carefol experimenta.
Citric acid is a powerful tribusic acid (see AcIDs) and the solution in water readily dimsolves zine and iron. It forms a claws of salta callod Citratea, many of which sre employed in medicine.
This no-callod Citrate of Magnesia, a pramulas subetance, which effervescen on the addition of water, and is very popular as a gentle aperient, is not really a citrate at all, but consiats of a mixture of tartaric and citric acids, bicarbnnate of oods, and
sugar, with perhapa a trace of nomo maggeaium aaft to juatify the name. The granulating is effectod by mixing the powders and placing them in 5 pas heated by steam, when, in proportion to the citric acid preaent, the powden rum together into a pasty mass. This is forced through a coprese riddle, and the granale are dried by s gentle heat.
Citrate of Potash, $\mathrm{K}_{4} \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}, \mathrm{H}, \mathrm{O}$, is propsered by neotraliaing citric neid with biestbonste of noda If forms a white, granular, deliguescent powder, whieh acts as a cooling disphoretic in cases of fever. Dhasolved in lemen-juice it is of much value in rheumatiami. It is given in dames of 30 to 30 grain.
Citrate of Ammionia can only be obtained in solation, at when this is evapornted decomposition takes plince asd antomis ecoper. it is enployed, tike the potash salt, in febrile disonsen.
Citrate of Iruin and Catrate of Iron and Quinine are but examplen of a large number of componode obtained in the form of brown or greenish brown scalen which are largely used in medicine. In these the medicinal value ties not in the citrie aeid, but in the igon or quinine with which it is anoriated, althooghi the acid has doabtliem a nobsidiary actien. A pecaliarity about these 'ncale preparations,' as they are called, is that the inky taile, so charneterintic of iros is the formin of steel dropes, is in great messare memovel. Citrie acid sleo forms a seriea of organie valte calleal eitrie ethern, of wbich citrite of etbyl in an example Lemen-jalee, in which citric aeld in the moet active ingrodient, is a most valaable medicine in scurvy, and when it cannot be obtained the seid may be used an a sub atitute. Citric acid is solation doea oot, bowever, appear to be nenrly so elfetive as the juim itsell.

Clarificaition ts the proms id cleariog a lluid frime is surbid condition, on in then cose to ther $1!(-5)$ or in the setine of grelatin in fimme British wimes Satoral watorn arstaniaj nouct terastic anater is hevelabical safperblen and in chesencal solation sre elarifiol by shie aldition of a lietlut stuns, whel is prectintated $\mathbf{k u h}$ the origatice matter, and the water then leconnes healliyy and refrebling. Liguids are often clapilied by atraining through several layers of cloth, wr throught nasal or eharema. The one of the Clearing Nut (e.v.) for elarifying water is general in India i very intereating and useful method of clarification in that in whiclos 'centrifugat' is employed. 'Tlow consiste of a circular vesel provited with as notirt in the centre and aloa at the eircasterence. anal which is so conatructal at to le expesble of laingt made to revolve at a very high vieol. When the maddy liquid is placed in the verel, and the whule causel to revalve, it iv frumat that the particlen of duat, suad, os other mather ils to the circumiferenre, tesving the liquid in the owntre practically elear. By suitadle strangements the clear liquide ean be drawn off.
Coagralation, the amorphous (q.F.) molidti6cation of a liquid, or part of a ligeid, so whet the casein of milk is wollalised by reonet in making Chees ($\mathrm{q} . \mathrm{v}$.) ar the white of ne ekg by boiling. The procen varies in variatu mbintances. Albowen, or the white of as egg, cospralates st a tempernture of 160°. Mirk in congalated or curdled by the action of remnet ar lyy aeids. The Gibrin in the blood, chyle, and lymph of spimals is congailated by the soperstion of thone fluids from theliving body.
Coal-tar, or Gas.tak, is a thiek, bleck, opnque liguid, which conies over and erodemen is the pipes when eosal or perroleum is dlastilled. Now besually nbtained in the manufacture of pres, Lar wha alomit 1782 extracted frums coal by the ninth Earl of Dundonald under a patent, expresely for the purpose of bing used for protecting alips from rothing. Cas). tar is alightly liesvier thian water, and has o strong, disagreeable odour. The mmount of tar so obtained of coarse varies with the natore of the coal em ployed, hut it in alive dependent on the sverage temperatare of distillation. With a low tempera. tare, a large quantity of tar in producod, along with a amall yield of a highly illuminating gak. At first this tar Was reganded as swate product, or, 21 appareat that an a mource of Benzene (q, v,), and through it of the Aniline Dyed (q.v.), it wis is commodity of great commercial value.
When enal car is distilled, s large number of volatile subatancon pass over the the tempersture risee higher and higher. At firat varinus gases, ammoniz and naphths, are abtained to the extont of aboot rath pari of the original ter, and then dis. tillation cesees, although the temperatore gradu-

Ally risen. After a pering of aboust an liour, mare oils, like the former, lighter than water, whe obtained, and to ot the dentillation proceeln, with sucessive intervala, yielding what are known as Creomote vils, and finally Anthracene oils, the residue in the still being pitch.
At first, when anthracene win of little importance distillation was not pushed so far, and the snthrucese oils were allowed to remain it the pitch; bat since the dincovery of the procesen for making ertificial Alizarin (q.v.), the heat is puthed ar for an poniblo consistent with the production of a pilel thant will sell. The fint light oila yield chisefly benzol, carbolic acid, and aaphtha, The ereosote oiln yield creownte anst naphthaline, while the anthracene oile prodace antliracene and lubricating oila
Afler thin enumeration of the chief conl.tar producta, it will be pensible to realine the great im pertance of this aulmance. The naplatha, lienitles being unet as a solvent for india-rubber ant guth perchs, is barned to produce of fine variety of curlon for printiag ink. The leneal, ineloding in this term many nearly allived mulstaves, not only yieldn many brilliant dyes, but in ased for cleaning gloven. silke, sec, sad ather artiolen which would be injured by washing. The croosoto in ith crude form in largely uned for preaerving wood, enabling it to be exposed is darap nituations without rotting, while, when bursed, ite tnoke yielda lampblack. The nephthatiae, lenides being a source of many dyen, is employed is the Albocerban light to give \&) ordinary coal-pas very high illuminating power. Finslly, the reidual pitch is in conatant requinition for making ruafing felt and anphate pasement. Beniden these primary producte of coal-Lar, there ure of courne numerime compounde derivel moren or fesuromotely from it. Bueh are the aniline dyen, the quinine subtititates, ankipyrin, antifelrin. ©e, and the sweetaning sutmisares, Snecharioe (q, v,), which tany bo seed to replice nugat io many canen.

Co'es (Aryihraaptan Cerrin-which has of counve no coniectieft with Coexa ur with Corem-nats), a thirul of the onder Erythroxylacear, of whinh the
 The slewh is of of \& feet high, athl moinewhat re. armblien a backthom boob the lesven are avate. Inthoesinte, simpie, ami with entire nul sleftety wayed magaines, and ntrougly markerl veins, if which cars th each wite of the midrith sou pincoilled

 coryteral Many if the Smiliane of the Forsflan
 and ite we is guite jeneral jthinhas tham, heablea retenaling on men of Eurequan rave, The dried lraven arr elhewod with n liftle tinols powdered onndaked limes, of with the alkalime neties inf

 wim rlewer takes at these abont forer times dails In suathing cllice it recalls toliacos, latt ite inflo. pher is a mueh mara rerourkalile one. It sreatly lowesta the slesire for umbinary fanfi, and at thie take time permite of mach more sunthimel eser. Thas. ween wiclimat seep p is affecta the norma

Coca (Eryiduvaralon Coca):
the hodiana, to whom lumer and, filtimalt journeyn. lienwy lnudens, and constant pifistiou lave always heen familiar

Cocsinz-In Eurojee, little impartance was uCtrelial to com until the veleraus pharmacologiet Chisistiven awaketend itternst by fumpunlly verifyins in whe age ics sustaibing powers. Jtivestigar tians followed, sat the aikatnat ewomaty Digan

 "f ifentiolyy, but mish m, tions, van las pethirmast wibhum ehlernform. Tr sentinis it is of mevinl stive, at onter dilating the

 slumb fomed in the vastum garts of thatia, uad in the Mishyan Archerplajian It was intumbend jebn Bisuin if the litis cxotory bus the fingaee of
 by lianf is acts an an Bethe nasentio poimen, unat

 is fa lapgely mond in the manafarkon al that hever:
 ittenion wien therter to ile point, but se bridente

 of (he Ithand thovenues stasted that it he cave were tho abliege of the departinent able in slataet it
 (Of the linvo quandisy limpurted inte Elegelani, mombly shote is tesexporteol to the Eontinent.

 for to purworm, tien, Ne. fort wlien nepuliol to the senty it in ont mastemien with manger, nat several

Cocinineaf, a ifocus emplocel in dreing

(kochineal conkinte simply of the laplics of thes
 bestanse it feeds uperis phatty of the Cactos family, partienlarly on one, therefrre dexatmpteif the onchtheal plant. Init known in Mexien as the Soped (Opentio cocrimilifion), Figared in the yutielt Cactese. This plent fin nearly allied to the prickly poer, and sesumes a somewhat tree-kike of Mexico and other werm parts of Ameries, but they are now cultivated chiefly in Gustemsis. Thin cultivation wes carried on by the Mexicana long before the country wis known to Europeans. The innect ia not uneommon on will eacti in Texes and Florids. Both plant and insect have been succeenfnlly introduced into the Canary Islends, Algoria.

Cochinal (Cherrr rarfil)

Javs, and Auatralia. Hat the attempt to prodnce cocbinesal in Indis liss been practically is failure.

The cochineal insect is a small crestrore, a pound of cochineal being calcalated to evantain 70,000 in a dried atate. The male is of a deep-red colour, and has white wingo. The femsle, which in winglens, is of a deep-brown colous, epvered with 4 white waxy powder ; fat besesth, oenves ahove.
In wine parta of Guatemala large plastationa of Nopal exiat for the cultivation of the C, cacti. Before the rainy wewons commences, losaches of this cartus plast covered wish these insecte are cut off and atored in baildinga to proteet them from the westher. When the wet neawn is over, four or five montha afterwarda (Octoler), the plantstione are opnin stocked from these supplien. Litale tmeste of soms vegetable fibre, aseb contiaining about a dosen femairs, are placed on the apisen of the cacti. The egge are soon depoited, and whes the young fernales are doveloped, they spreed over the plante, attaching thamopiven to the leaves, and looking more like vegetable excrenceneth thas insecte. They bocone sovered with a cottony entatance. The Fint erop of pregnant females, only those being Faluable for cochinesa, is gathered in Deceruber, and soveral more crope are abtained till the folloerlag May.
la the Canary Ialands the innecte are resered in rinter and pat ont on the cactus lesves from May to Jafy. Bmail gaase bege oveisining prognant lomalve are houg on the nectas plants, from which the yotrag wheo doveloped apread over the lawies. In Kaguat and Beptember, jast belore the femalan are ramdy to depoeit thair egrs, they are colleeted is thay evening in an oves heated to isor F. Pinced ero afterwarfe more thoroughly dried to the agn. Hot from and boiling water sit who used in killing
the fowecta. Acoording to the way the iompet is the lmaecta. Aboording to the way the insect is merpe sa silver er bleck; as inferior kind being of eochineal in eallod cochinealin or corminie acid, of eochineal in exlled cochineslin or asmmic acid, oenk of pare dye, slthough the ntmount is generkily cuppoed to be maeb grester. Carraine hes also been demonatrated to other kinds of oocen and in aphidias
The cochinesi findnatry hes snflered very mpch through the introduction of aniline dyee.

Codefne, an alkaloid obtained from poppyhesd. See Popry.
Cod-llver OIf is generally ghtained from the livers of the common Cod (q v,), lat likewive frum allied species, as ling, dorse, coal-firds, tursk, sic. In these fiolt the Aulipme Tiswar (q. v.) contrining oi) is simest entirely ennfined to the liver, in which they agree with the slark trile, whilut in other fioli, sa in the herring and malman, the sil is sliffused inver the entife otructure uf the asimal. The satp: plie of medirinal enot liver nil usal to te derived mainly from Newfeandianal, latt Norway now mapplies the bulk of thas uoed in Cireat tritain: The mom famums of the Noritegian fishimg growndy is thas af ther Lonfolen Dalandx. On the wuter shomes of there ishorvis inmerne chonsls of fish lepin to srrive in flecemiler, fant oraite th the stortus to whirh the cosst are lisble, only a cimpuratively sorall namber of boat- (nome don) engage in the fatringe Later on, in the leginning of drauntr, the fisle pase in betvreen the i-linulh amil enter the
calmer watere of the Weatfoand $60 \rightarrow \mathrm{pmwa}$. Then the lialsersuen, fosembiting is imuente sumbers, cately the lishl ling not ot hatied line. A pood entch for a trosk, with a crew bif tive mesi cunt a lay, is frum fari to J200 lish 3 and smme islen of the imjortance of thin indoatsy is obtainem from the fact that in a wimgle vant thene fistierim alune ensplayed 400 m vemoly, with a crow of 27,000

 Gish are st once cleaned, and the livers removed. Thron may bre trentert in different ways, the various qualitien of cod liver oil being the result. The fineat oil, known as 'non-frcozing pale oil,' is obthiaed liy wrimibg the liven by means of ateam lieat, when the iil separates, sud it either removed lyy straining or by allowing it to float to the surface. It is then cooled to $14^{\circ} \mathrm{C}-10^{\circ}$ C.h and Sittered, either by mechanical preseure or in the asual way. A while tallow-like nult stance remains in the flamel filter, and a liright col-liver oil preses thromgh, which if now capsble of being exposed to frost withent turning tarlid.
Is the case of those fisherien which are fitunted st somn dislance from the share, the livers are placed in tankn, till s anffieimet quantity thas been collected, with the regale that partial putrefaction take place. The oil obtainor in this way is of A dark-lrown colour, and prownats is nashgous smpyrounatie lante
X still soarset variety in masufartored for une in leather-making. In it the livels of the ood, herring, haldoch, \&e tire indiseriminately used, a very fohy-tacted ain being the resulf.
It will lie neen from the slanve that the cifferent varletien of cosdiliver oil may be pronlaced frast the exne livers. Thise, that oftaisiod loy prememere of ateath heat from frople liveni is the freent from tante and calant, while sha oil hemonen darker und farkur so the livers brcome Jeas fredh. It bas lueen mup poned hy notas anthoratirn bhat the dark heown mif th the more efticachous, font others hat mo ditherence in actasal praction, while the prile ofl cean slone bo tolerated by velicate ntomuths. Ciod-1iver oil mainly comanta of olnic, Atearie, and petmitic asidn, to comhenstion wizh glyomern io culditins fo thems, godioin, asulatance of Latiary urgin, hiut persersi ing no roeagnised medicinal virtues, is proment along with iodine and tromine. Some lave escribed the virtuee of collifver oil to the faline or liromise, but, ns the iovisue is only prosent in the proportion of I part is 500% prith io the siol, thio tiew seems antenable, Sometimes the oif is adnl serated with apurious oiln, the which todine hius boen sudded, and this may ber fassmons if the peoportion of iodine excersln that stated above, There are onforhanataly an cherminal lents that can with oertininty dotect the prenence of other nils, althonghi there are testh which distimgutah liver oile from thame of other origin. Thas with nitric moth, rod liver oil yieldn a purple colour, changing to a lorown; while s drop of mulphuric seid prodncen is violet coloar, soon elisnging to browninh red. in order to prevent it from beconing rancid and finhy. tasated, it is well to keep it reclindod from the air,
Cod-liver nil is at present one of the mast importnit remedien th the Materia Medica. Although possessing a high repotation on the Continent, it was not tit 1841, when Profersat Haghes Benmett
 if came into gencral ase in Brizain. It in mont valued in conea of pulnionary consutoption, chronic theurostism, and gont, bester sil thense of a scrofulous rature, In all these it is, however, uselens to expees good reaults noless the reanedy has been regularly taken for neveral weekn. Its mode of action if uncertain. While nome hold that it merely ncts ns a nutrient, it is certain that pork-fat, butter, and other digeatible oils, do not have the aame apecifie action that charscterises sod-liver oil. It in given in donea of from lasif a tenproonful to one fableapoonful three or four timee a day, and it does not neem that excessive doses, such se is cupfal or more, sre of any real bonefit, while they are a severe strain on the digentive argann.

As ite peculiar fisvour is very repalsive to many pastiente, various devicen lave been adopted to render it more palatable. The nddition of a trace of aulplurie ether, while rendering it more asaily digoeted, does not improve the fisvour. It masy, however, be mside intos jelly with ininglens, or be taken liosting on the surfact of portera while in the form of Emtulaion, of which muny verieties are tin the market, the finvour is more or lese skilfully
dirguised. Moet droggistn aloo keep, gelatin capsules, containing from one to one and a hall leaspoonful, which kre esaily awallowed.

Coheston depends upon the trolecular forces which koep together the parts of bedies, and are inuensible at sensible distances. In the exae of a amstl body these forcen are much miore efficient in keeping the parth together than are the mintual gravitational attractions of the parth. On the other hand, in the case of a large body, such as the earth. gravitation is much more powerfal in pre venting rupture than sohenion. The term adhenon is genersilly, though quite nnnecenasily, used when the cohering particlen are dissimilar-as when water elinga to glatia.

After the parta of a body bave been meparaterl, so wo to form an incoberent mina, the force of coheriun may be Again brought into action by the applitestion of premare sufficient to force the particles close enough together. Thua two amooth, freshly cut piecta of leal can be made to where by slight presaure ncompanied by a nerewing motion. Also twe Vary mineoth slaba of marble athere, if prenned tor gother, no that conaiderable force must be exerted to moparate them. Barton made a set of cuben with surfnces mo trae that, If tweive of them were piled one over the stlier, the whole serien could be hifted by raising the upper one. Lead pebeil are mide hy spplying preanure to powdered graphite, to as to make it cohere.
Coke ina form at fuel ohtained by the heating of enal In coathail apaces whernby its more volatile ematituents are driven uff. Caking eual is that mont mitable for ther ainnufactare of eake, which. in ite princijal qualities, is appromehed by the hand antbracitic conle. The procest of coking is cons. (lucted (1) is heaps or puansily, or (2) in oveno: hat coke is ndan proxducel in thas retoris, where. Inowever, if in masely a aceusulary produeh Cak. ing in momote is method now little praedived-in ilone in a way sinillar to shat omployed for prepar-
 cound atueks, atrund a wite open chinney or colstion, the larger misues heing placeil in the pentre, and nmall lorions cont nutinde, the whole foing covered with wot colsedast, excepi at ewrtain airholoa. Tlies mound of cool is ighited frome Alove, fod lompre grimlunlly downward and out wately, giving off at fins much smula nail vajust whisli coment mainly of Lar water oust eraifgas. When the tife ceines to be anoiky, the proceas of
 the exflude aft amt excioguizlc comblation, and coolint of the mamol in added by drenching is with wherer The jrinejpte uf making cuko in enke. nvens in the nsme, lint the prowes is mach quicker and twom ecomointial, and the rostalting ruke is bettor on guality shan that mule in monnds Formarly the lietu and volatitergrues given off in coking were allowed freuly th purape, lint in mpelers
 combuntion is one retopt to force the heat of arr otloer, log prasiog the hot geves in the sument contigubur uvens. The while of she ghase pay from Theat thes into is sotoman Hue, by whath they are carried awey to beat ntesmbloilen in is shmilar way the coal has is, from certain hinde of avelag, enhmited and hurned, hod the tar-water
 arumbuia anf gad-tar prodnets.
Cobe is is huted, loritile, porous solid, with a steel. gray, sumewhat metallic liastre, , tad it Ifoes mot moil the fingen when lecing handed. It is principally vitued for the tolerses brat which it gives off in combustim, fot its freeskon Irmos srave in buraing, and leerange it loss not becunn pasty and sodhesive in the fire. The proceas of eaking Blecy drives off a fouml leal of the walphar which may lie preaent in conh, and all thene properties render coke a minot valuable faet for many metalhargical operations, and for the where intense smokelees cornhastion is a desideratim. The higher the tempersatire to which coal in roking is sulfmitted, the harder and mure valuahle in the rewnlting coke, and the heat it given off iu relatively more interse. In chemical conatitulion coke consista of a modified form of igraphite contaninated with earthy impurities from the ash present in casal. Cond sielils by weight alowe 20 per eent, of coke, which, lensecer, increases in Falume in the pracyses of woking by abobat one:
frompli. (coke will alsumb alnaist 30 per cent. of inciature from the sir, \& eirenostance whicb slonali be lorme in minal in its purehate and ite wes. For
sach moisture in laing driven off greatly reluces the calorifie salue of the sulatance.

Colcothar is the name given by the slchemists to the red pewder (mainly red oxide of iron) which remains in the retorts when greeb vitriol ar the sulphate of tron is caleined. It is nsed for polishing glass and the like, and is estled croces by artiate
Cold Crean is the term applied to an ointment containing roeewster which is ased on s mild and enoling drewing for the okin. It may bet prepared by melting together almond-oil five parth spernacgeti ons part, and white wax one with briak stirring, which is continsed till the whele is eool, snd of a zoft creanny oonsintence. As eold cream prepsind in this way is liable to turn rancid, glycerine is asmetimes ndded, or the
slmand-cil is replacol by white vaneline. Cold cream is a pleavint application ta irritsted anrfuses, protacting them from the infleences of the weather, and prorioting the besling of wnande sad chapped hanife.

Celte (Gir. rolon, 'Dive harge fatestive ;'see IxTETixjs), a name employed by the later Greek and the Itomatl jhysicisns 10 semote dinapses attemital with sevpry fain and Batalent slistensime of the almienuen, wilhme Alarghen on loveromes sil

 irregolar mustractiona of the finmetulas oval ul the intretines r ita mppoed partiralar connertions with the solon, or largen intestine, lawevet, is not
 fal dianniers of ther lemelo are vers lrejowat in permens who are not attentive to the mgola ovactiations, spierlaily when Hey are experel th rold as is to esperinoce elall no collugs of the Feet, which witl uftes anfice to luing ons as atherh of colle. The ilisnae in masialls allomied with
 action of the leverels is restared, altlungits ofter in this ense the uperalions of melinine is ailemind lo enertinged pais for is time. W irm fraventations for the al-lemen inny le enajloyed with alkantapry; somntions melicated wifh oforas, of decoction of poppy-heade! anal great relied is sumaninly esperi enved from fruction wath a whom limiment, sueli as oporteldog or the anay abal opisto lisiment. Press sure with the luand over klee juinfal part consurasly dimintelies ther meferingr for the time in simple
 Warnath to the feel, iusal the recubibent jeoturs, are also to to recumburnded is very severe ir proteacteni easeo quimes rasy ie laken internally. A somel retnenls in sith caues is a Inll dowe of
 in or 35 Arope of Aquianess, of uf entut ian of
 except meiler fuedical solfiex, suil in tery rethiceil tloses) Whim colie relite such mibl and atuple vemedies a. the shove- slapn is i- nocospuanied by temierzes uf the leslly, ur log hanf awelling is any patt of it-slien constijastion is colsbinate, of vomatiIng is juresent- when there is feveri-liteon, or tem.
 teliei elest is was slepebil on asas other saune sian
 in the intestines, ber time slowit leloat io eooking the leat inesliral sobibtauce tlat rasi le faveared? for cotic is cluaple allied es a egtrpitnes to spretal
 onimplicsted formes of celte isvermel Mers, it thase
 inteljuet Ilewos It is atecualeal witl (alotruction of the farwel, wiften from werhameal iswitiog of Insvbution of one part with anolloer blamer (ermed
 diangey. The onl) treatsuest shat can tor at (rsugted withest medliral nexiolance is the mendownent of large injectiuns loy the loker howel, and topnom in molerate ainl repeated tures i $\frac{1}{\text { grain }}$ t. 1 praik or
 fully watched, arot diecoptivioel if there i< any sign of earcotions lae Chrirys Colic puivs ase also
 obts form of tivener; and llery form now marked symptem of the slow pobrosipg lay leal, opeaciotailly
 frinking water los hositen cisterse ke. In thu form. the sreathont iv Aifferent irnow that of siruple cricic, and vill bo treated of unbler Lesirs. potsosisian

Callimator, a anlesidiary telewcype "sed in thetert or correct errara in conlimation (i.c. in ing for trawit nlservatiom, When the vertical shrrad in the fied of view exactly cuisuches wibli She vertical axis of a ielewaple, the instrument ix colluanforl vertiosalls : and wheas the homizontal
 instrusunt is comert in limizantal collimation if

 therin, she principle of correction hecomas slommt
 callimatops $1 \mathrm{AA}^{\prime}$ and Bit ia lizs ave miljanted thl the cross-wires in one caincide perfectly with thooe of the other in all ponsible positiona. Then re. placing the 'tranait circle,' it in examined and vented by reference, firat ψ one, snd then the other collimator, the verification rejuiring that it be curned through 180° till the threade in the three fieldn of view aboolntely coincide, and the collima: tion is promathesel perfect.
Practical antronnmers net grent value on the collimator (in the arrasgement jont deseribed) for lanving entirely wupernoded the 'meridian mark.' By Ritienhouse'r prinejple a telencope can lecome itw uwn cullimator, especially is deterroining the naliy point. When the axis is vertical aver a
venuel contaisiag foercury, the selescope will be collimated when (lun eromen wiren are lironght to exact coincidence with their fmage seen in the mercury.

Collodion (Gr. Rollac, '1 stick') in is molistion of Gun-ootton (a, v.) or pyroxylin. Cotton itwelf ls not soluble in sleolol or etlier, but when treated, eicher in the form of cotton-wool, bugh, or paper, with a mixture of live paria of etrong nifric acid, and six of andphurio acid, it is found that it coll buw he dimilved in ether, of in a mixture of ether sad aleohel. To thin msilifieation the name pyrioxylim is applied. There are many varietien of collodion divisible into asintical or meilicated collodions, and photographic collodions. When one part of pyruxylin ts dismalved in thirity-six parts of other abil twelve parts of aleohol, athickish líquid Is obtained, whicl evaparates rapidly, leaving a thin filan of pyroxylin. As an spplication to wounde, where it in desired th leeep the edgen clone tegretler, thin form of collodiun is of uset, owing to the contractility of the pyroxylin finm which it leaves, lai for genema purposes a flexile or flexible colloriom, at it in caller, is deaimable. Thin in groduced by the suldition of a litule Cmmia babam and casior nil to the ordinary variety. Flexile collodion in largely uned as a covering for nbraled nurfaces, as a remiedy for burns, for hore nipples, \&e. and it te also the losis for many medicated oollodione, such tas ktyptie colleclion, cantharidal or blistering collodion, \&e. Salicylated collodion in well krown an a popular com cure, and it is certsinly moat elfectanl in removing hard or soft corn with but slight inconvenience. It contains, in addlition to salicylic acid, the active principle, a little extract of Indian hemp, which preventa the slight pain, which night otherwise prove troublesome. Collodion playe n very important part in Photogtaphy (q.v. $)_{4}$

Collold in a natue applied by Grahani to any soluble subatance which, when expored to Dialywis $(g . v$.$) does not pres through the porous membiane.$ Stareh, kam, abumen, and gelatin are examplea of collonils; and the name in used in contradiatinction to crystalloids.

Coma, areck word issed in medicine, to signify a state of more or leps profound insensibility adlied to sleep, layt differing frusu natami sleep in its characters as well as in the circumstances under which it aecars. In coma the patient lies on hin
back, and is either simply insensible to external impreseions, or has a confased and dull pereeption of then, with restlessuess and low Delirimm (q.w. . The former kind of eoma securs in apoplexy and opilepsy, and also in many other urganic disensea of the bomin and its membranes, of which, indeed, it may be said to be the natural ternination. It is alsu seen in nareotic pwisuning, and most charnetevintically in poisoning by Opism (q.v.) In the trust fatal forms, the lresthing is very slow and noisy (sroring or stertorpins) accompanien with puffing of the elacelss; the pulse is at first strong aid regular afterwards feeble; there is often lividity; and the papilg are either contracted of excossively dilated, but in either ease inumoveble, and totally insensible to light. In the seenend variets of coma, there is perpetual restless delorina, without enough of sensibility to lead to mpons tancmes and regalar volantary moveraenta; the patient mutters slightly, and graspa feebly and without purpose at any ahject in bis way; the pupiln are communly contracted, and the tongue is ript to he slry and lirewn. Thit kind of coma bo mininly geen in masy fevers, and forms one of the misiles of their fatal termination. The treatment of enpte in that of the disense or aceilent lenaling to it. Where there is a reasonable chance of removery, the patient hust be rouseil to eonomioninneme in bunch of pawihle, elther loy fregume pavements
 uf ralvanium, en as ts mutintain the respimation (se OHt'Mt Bistering of the heat io slen stmetimes insinftel to with gronil effect.

Combustion in the term commonly applied to thase chetnical processes which are acopngstried in a marked degree by the production of heat and light Thes must Ianiliar of such purocesan are those in which oxygen if the atroinphere enombines chemigally with slie cunstituenk of what arr ordinarily apoken of at combitatible suletances. much at woot, toal. fath, ollh, \&o. Chemionl fom bination is, wi is rule, weconpuanied by the ovolutions uf hent and frejuently of light (ine Cweventiky) f hat every vare of plemical cathbtnation io not called eibilhastion, lrevaune in many cowes she quantity of heat evolved is incom-iderahife.

When we njeisk of clie comblanation of, for inutance, coat or winal, we mean the clemical prowtus which con-imis, in iseneral ternis, in the cramhaniton of the nasges of the air with the earlom and ligitngen which ematitute the freater fiart of the comitnisible portinm af eithor of these
 and water. Many intutne are kmown to chenuala in whieh the mayien requirel for as entulastion io mut denven ilirectly (rons the athiuphers, loat from
 freguentl: Lhe place of the oxygos may he altogether taken by some other element, ax, fur imtance,
 cblorine:
The vanhustion of every combuntible sulatance in hecemproitest by the evulusina iof a quite definite givatity of lieat, which is invariable for sach xubintances whetlien the enmbinasion taken plare rapuilly of slinily. A piece of pliperihnims for instance, is is well known, glowe it the dark. This is as firreess of very slow conburtion, and is never acconjianied by muels rise of temperature When moxlerately heated in air, a pieee of phangphorus burste inte llame, and the eumbastion is Fapid and is accominaniei by a considerable rise of temperaturet whifut if the phosplomias lee burined in pure oxygen, the comilastion is an extremely lirilliant *pectncle, and a liggh temperafure is ackinel. In each case the actual quantity of licat riven oat is islentical for the asme weight of phosplanus, but the time oecopied by the combustism variex, sul consequently the temperature at any given instant bust alsn vary-
The juantities of beat givea rut by the emoberstion of the same wrights of differewt substances vary greatly. The measitrement of quantities of heat praduced by tomilnstion and in other ways is callod calonimetry (see Hrat).
The nume combustion is applied to a partienlar Pricess in the analysis of organic conapounds See Avalysis (UmGanic). See almo Spontaneova cumbestion.
Comfrey (Symphyf(ma), \& commenn pankenretic geous of Birnginacese, monewliat enance fuerential herhes, althagh oscasionally to be sees in fower-

(yellawi are frequent in shaty and maint places,
 vulnerary, It yousk leaves and it Hlancheel shouts are xtill encaxionally neal as laniled vejetalile The Prickly Cotufrey (S enjocrinawn). π mative of Sileria, fi-10 feet in beighit, has been reconainended for feeding eatcle The ntamens are coveral in thit tgenus by five awl-sliapest protesars pustred in from the ortuide of the corolla. and luevtim: an as to form a fulse bettena itspossable to ants, llies, asil ether zanall boneythieven, luat which sain loe tirnal avide ly the

Lumble-leepa sficls afote fortilies the dower.

 than he reen to le staital bath io the Irgitimete and illegitimate way.

Compasis, MAniskn's, is a magnetic innifuinent wael by mariners to implicate the direction of the aloy wif reasert to the magnetic anoth and mash lise, ur, in melare worily, bio give the azinash nt the ship with reapect th the asagaetic merialian. Thas the misrinet may know hit Jliection with revect of the geographical mendias. he nuot know the angle lecweon the Bragnetic and kengraphical mectidians fare lhactisATtors), and an this angle is differest in differmi years anil at dilferest places wn the aurface of the gluteg the mariner must be alile at any time to detertuine live jowitions, when his chart- will give latm the unceentry daus to abpplement hir cobipan readiog.

The tifective property of the mugtiel neene to hase freen anktommi in Romoje till the I2th ceotury. If reppears, lowever, of vecy towal suthanty that it wat kfown in IThins subl timanglanat the Enst kelierally it a very temute jerial. The clianese
 when they vas an instrumeent for ibslicstangt the smath was comstrictal loy the Enveror Huation-ti. The earlient reference to the ruaking of magures is in a ctinere dictionary of 121 A 1 L , where helemunde is defingil as 'a scetae with whirls an attracthen can Ive given tu the needle: Inat Dhe projerty of the Jodeatone cumila not hail to lonve iecil ofserved at a very mach earlier tiove At firut the Chmese would sppear tov lise azool the compaes exclubively the fouilasce in travelling by land, and wre hear of their being it hy sos wnily sumetaliere alvat 3×0 A.b. Acoorlitigy to otre account, a knowierlge of the conplow wnas levanglat to Europe by Marce Pola an lis retarn fron lis tritelk in Cotlay: Int as againest this, the bite Mr Witliam Chaperell, in in
 alueed evistence to show that we owe thaappearance of the runupase in Fravue in the 12th century tu inlenebilent lisepery. and not to imqurtation from Chims.

Pig. L.

Fies,
 up as fullowsi The mertle is a mangel Iapd strip of sted, in fit slit liettes cinnjeivers a number of this ntrifar magnetivel Equarately amb then Lhami bagether This in latanced as in in swing lompiam. tally on a tine giant. Favtomeil to ther
 with it bs a sdredlar ated marked witi the thirty twe : joanter and laving the jeint marked F qumeilintels mer the
 bush. The pisot on whist the riendle Aninge slande itp from tliv lwatem of \& copper bowl, which lise as glase zomerien to jrotect tlow rambate Jtan hival abl
 erpper fa somel cominctor of elpertricil) I in onfor to damp the vitirations of the neefles. for the nextle in nioritig laiduces exurenth of clectricity io the colper bowl. The electron matemetion forries of whidi

 paua-land in mometimes filled with - Neirit, lat the ablititional frietion of the liguid interferes with the peneitiveniess of the needle. The howl is ripported

 placol in the bianacle, situnterl when fansible in the fore asel aft line, and trating provirman for the placiong of latipa tor illtiminate the conaprom vient by nielat.
The compasteatil ie reforspatyal in lige 1. Plae four carsiand Jlirections on + juinth ' are monkied S. E. S. W., and there is as emosenient notations for
 tween N. and E. is calleil NE., thini agnia letween X. nal SE is salled NXE (resul nertle-north-east),

NiE. (resit north by kith are nemed un a plaw which will tie reculify made out loy ith exammation of the figure These thirty-twn pointo are ofter

 to ther moth, the N . peribt ona the saral io diverted towacdu a l lack line, rallesf the lablers? lise,

Stowitived formox of che compane are in ase on hand In arveguo- ant suiner, nat thend thet le forther allasted th there
Is way if sumbumsing the ynatifications of

 - inste prodle there are eifhe thin pirios of seerl fa-teas by ther walk flowet- is -lewn in the figure.
 internal- at that the poetractian and expanuions the the shange uf tempernture may not praluee warpue of the aluminimu. The while arrangeInat wrigha only 300 unsion ir roo, and than there in very little cuatency th thaten the puiat of the moppartiong nevelfe, Henco the friction ermis ean Ime mate vory nuall- in fact, if if it found thas is eart can le made to reat even haif a degree wat in the magnetio meridian, the mappartiog print is Tejected har a nlasploer noe
The wright, wheh is is la The weyght, whech os ic la
heimes moedly is the ring.
 the carid bl lowe so sounds ot sin) whied mather the rast very steally, The luewl io naverl trun violent reelilatien by having ie the loctom agmantityof cuater ․ㅠt The finhlata are any martel on knife culyrom, anal their laring madle uf hinase wire-rope the gensed with the tite very itomble india rabletr paif. metcerwisis sued. A simple devies prevenza the rand from jownug uff the perot whom heavy gina are tirodithatter of whiec impertance in co etwatement The binbacle his compdete frownina for stowing away the mastuets, soft turs harm, asol pphetes sanul to cousteract the wagnetisis of the (than of the slap.
Alung wath Thomesthis cotepreer is alupplied a

 anthtented at the utherver's ege by the peryethoum if swos ohjecta ne the benienstal plane.
Fut the eartios suthot ot a magnetined needle

 of the whij's magnesiatio, of which part in kope tidesiol permabent, and part \rightarrow lue tor the wift iron is temparacy, tuit variss with the positioe id the shigh varimes mestants were in ane to rogniste thin diftienlty, which in irm vergels it memetimes $\rightarrow 0$ great is th mike ath undinaty somprom allusist nelesa, The priteipal are 111 counter acting the permanent indurel nuignesion by properly placed permaneat liar magruets; anil (2) peryplying about the comyass moft inm triames in pich a way that, however thit thip turriog the thurifent indtceel magnetian wh the left of the cumpass alall he exacily equivalent to that us the
iuht. Many of the leat nhipe easry a ntandard
 the alip, especially from vertical muveres like iroal masts and frumeche When it is mentioned that an orrot of one puint ($1 \mathrm{H}^{\circ}$) in mitering meana an error of alout une mile in five, the necespity for the varinus precongtinna wilt he readily recogninef. For
 there given.
Compressed-air Motors. One moble of employing nir as a nustive power bas been deccribel
is in encmpers she see anal tharts appaly it in the

 the leat whach rowaits from the Joigh rampireseicin of thic sir. will almays sender tive emidoygient of shelr a trantice poneer very " basteriul There are, howrever, many cusylitiotis unfer whirl the mee of
 The axi-gun. allhorapt mane $t \log$ thani of tisefyl werterle, to ore of the oldes enasipte of a com preocet-aif pantar. Partly Ity empmession ant purcls by esfanolines ol sír, jromumatier lables are wrwhenl is evnnesifios vith central powt-ofices for the tranomionion of lettefe And rim-ouger 50 and frous sarivan dortricts in layge citter Is Voriog in mises, uas is blasting ani tonnelling openalions, cotepresonl air is an exponifigiy orefill agent, the

 itw primary dus v , is iff gear valiae for aulfing the ventifations of tibt Fquors. In the ajplication of astennatic lrake to pouepricot irimes.
 cumverient Jonwer.

Air enaripesuel and stored in a revervuic maler the vrehtele hat inlmo besin propraed as a woilse jwerer for thannwy cars. In a dillereat slifection the aperaey of campreaned air is bioportant ior the articial pondertems of culd foe elitling lanser for murat jqe*etvartoh on
 fris) mavat on trasil s neath.

Compression ant fompressiblily, When a lenlg os anhjeslot in the acion of any foree whied toukits it to orvorgy lese volacme, it ie and to te
 coumpirgaiony, Thin tersy overpornailility is tre

 is is olveres that thip saine solume of sarivaie
 and, to swavere thit chasise, the chatjeresiduldy is ifelimet las lie Cler ralins uf the asususi is

 Presulife gover Hie averape ©ompromeblitity ipof

 is, giver hy Doyks Las jnes ilsakey vic. Des
 jortinual os its preanre Veves slis if fidlums thas Bn cumproustulity is inverenty jotuparfionel ta the

 (eorjelsature lla zos rabs, and if ahove i) manere lis Inguefient by presoan Hymelisetion fise lecen elfertel in thes

 Ispliof it was comeloftel that them were incumpreralble, lral Cabatom bs 1Tez, by a coloparatively árapife evpert treest, whwed that the vanajetershitity of water thanght arall it cioite apow. cable, sool that if te lese nt hifles thikn of lawer terngeratureh Thir mensuremurut of phe coupheushBity of lijuil - is esesaily rumie is a plave vesoei

 at suse cad into a cylinitrical bulh. AI5, Arpl at the other intes ctetern, D. The Ibuit experimentei an fills the malt. and stern ba C, from whieh point 10 D, merciry fills the take. On the sni face nf the mapreary at C ar indey
flobls, The anstriment is placed in a latger ant iajuch strulager vesat containing water to whish pressampe (immownred by an atituelud gange) is applied. The vantents of the piezommeter heine this compjetssisi, the suereury eolumn iucenal in the stem, and when the fressure is relieved the index is leit at thint print ba which the mercepy rone ontalet the lifनliest presoure applied. The sctual sumunt of compresosion, ansl the original valomes, as well as the pressare, lieing known, the conapresilality enn be thereby calculated, in corree. Sion beciot fintilly tulded for the compirension of the
 with sucls apparatinn, Use fallowing enaciusions (see Repmot tha sumere if the 1'hysimal Iregienties of Freah 1 sater and Ser-iceter; by Profesocg I' if. Tait;
 shd Chemintry, jart [v_{1} I seem bew to lee well estab. liehed regbiding the cumpressibility of liquids, more eppecially of water. The enmipemaitality is water decreases os hath the temperature and jresaute are
 strioupherest it las a puint of ninimuni value nlsont

 selst- Sem-water is loss camparessible than freali watert the ratio of Llw casurvinaibility of the former wo the lutter beine -915. Solathas of eannmon bait are leas camopranalile ah fluy are stroniger: the conapuessabality fallime sit ueiformly with in. erepaed stefogth. Ibetli hea-water sud nalt mblitions
 pirmanre io the satme rmanger as frest water: It ase alen twew provial that the maxianma-density poist of wister is lowsed by permare; the awtand

 inantarol of at 4 , min sinder ordinary atomopiserie pressare.
Tha cema वemmilality of sulids is Eenerally very mblich smaifer than that of rither Ispuids of ques, It is lonst mosustion by notiog the phorlemings of a sod or dilore of the instraing tested while
 prenelbifiy has shbisimi in, bo a miliaunt degree

fionerete. There in lint lithe difierence bev
 in the bsaannry of cantles ainl clugrehen erocted Buring the mulills neres in in fact if comerete with small pelables imsteal of the larger anes stand in tmolerti eonercta, Any staixtare of lime, wand, and water, with broken sooden or bricki, bits of slag. criavol, or ather hard matariul, is aslled a oonorete.
 montar in whieh they sre embedifed in enlled the metrix The inixtare varien with the nosute and quality of the innterial., bat it often eonajiste of I part in quieklimee, 2 of sumal, and 5 of gravel. It is oetiot th ase mach is moterisi as brokon otome rather Smis water rolleal sravel, which has often tossmooth a marince Lime concrete, ta tht kind above de. scribed may be fersomed, is ased primeipally for founds times, that in, a thick bed of it in formed below the cowest caserve of stones or larieks in wallo, in emes where the cround ithelf is bot nutheiently firm and valid. Not unfreruently, in mothe countrien, walls theraselves are forimed of eamerete, by laying in font of two of it in bejght as a time hetween boarcis, and siving it some tince to handen. It then forms an artificial wfotes intier methomb of fruilsing walle

 theing the cerment along with surne now broken
 Frit amil ai tiurk Harlaus bave norrly the same rigurmalien. Ther cnhie sand of it at the formet
 max fews, of tabsid to culvic feet, abil of lmoken
 along mall 231 galbum of water. A conerete with thene matasink in masit the rame propurtion las lecen tiad at whit flacers, hat diferent proportions ate alos equplayed Thatanal evinent being the biryifige material is this enserete, Hee question atines whet her liwm in sallicieast experience nf its dasalality. esopectully where it is expmened ta the actinis inf seal water, ta warrant iter entploysuent int Nirmsidaral works of groat of even of noulerate size. Ser Cements.
f'an-rete masle of the Ingritaulic linue from Teil
in Fratice, which comtains B6I IC cent of silicate of lime, has been enpluyeal in the construction of lareakwaters and ximilar works ots. Cherlwargs, Marveilles, aus isther places. The Thil hvalraulic lime is ate of the ntrongrest known, and the concrete maule with if las respisted the aetion of weta water for miny years. Orlinary line comerete dons whe set unsler water
A comerete in mule of fomken stanes and tar, alowi 12 gallons of the latter heing basel fors every cebie yard of ebperete, Ititnateat or ingpluali is befler thun gass.tar for this jurpoises asul withet way be latrieneal lay the introulurtion of slriol and pommedral lime, clay, or liriek-dush. The materials slonddle luested hefore being nixed with the tar or hitumers. For locking urnour plates in forth a concrele of cont iron thrnings, anpliatt, and gitel han been nsad. (travel mixal with nather more tham a thirtieth part, by batk, of imo boringet, weas suecesofully uhed ins is concrete at Stranaraer pier.

Condenser is an apparathe it n liefl agueons or other water is condensed into a lopuid form either ly the introluction of cold water, as is the
 tion; by placing the condenaer in anither vipoel, through which a current of cold water paoes. When the water:supply ie deficient at set or ou the const, salt water way ler distilleil and ennderseit. See Distillation, Gak.
The Busctuc Cosbessen it ad apparatus cons. siating cusentially of two parallel conducting phater, separated by a layer tof min-condarting material of ilielectric, employed to reconve amal ntain guamLities of electricity greater than eitier of laith of shee plates would dis ulane The siuplest and typical fomi of complenser is that which was firut weint hy Franklin. It in pimply is sheet of ghan, C (eve Gig.), both sides of which, excepting is nismin at
 the ellser, are covered with tinioil. A sud is To elaarge sech is cunilenser, one of the nheets uf tuntail, say B. if conneeted with the gronnat, E fibilier by swae metallic conosts. tion oy by laing placel on the hand of the expernmenter), white the thert, A, remaina lamiated If A to now daryed twith tedecricity. pacitiva for example is negrative charge is Iminued on that nite of 18 nearee A. While san equal quantity pances in the zronnal. Inemising the charge in A induces A corro. upanding increane it it. This gus ceen, although by neann of it licpe quantitien of aleetricity may io accausalated, esinnot yo 50 on intelinitely: for on reachings a certain limit, lopending on the dimemain, \&e. of the appunitus, the aature of the dielvetrio oued, and the difference of potential of the twa cons. dueting plates, vilher a dimtrptale divehauge (see ELECTBICITY) takee place, or the charge passes off through the insulating supporta of she condenser.

A11 the varions forms of condensers natisfy the definition given alove. One useful form is that in which the two conducting plates are fised oo the endis of braws rokis which pase through brues knole on the tope of two glaws pillars, the dielectrio in this chse being air. The more common fors, law ever, is the Leyden Jar (q.v.) Ansther is made up of wheetn of tinfoil and parsifinel paper, placed alternately in layers; the fint, thint, firth, \&c. abeets of tinfoil are connected to one terrainal, and the second, fourth, sixtb, \&e, to annther.
The capacity of a condenser ia defined to be that quantily of electricity with which one plate mast bo charged in order to raise iter potential by one
unit. It can be shown that, in the case of coadensers of the Loyden jar form, the capacity in numerically equal to the product of the outer and of the radili-i.e. Is greater as that difference in less. Hence the thinner (within sertain linita)
the glaga between the two costing of such a condensor, the greater is ita capacity.

Condiments, or sesoning agents, are those nubstances which are employed at table for the purpone of imparting a flavour or seasoning to the ordinary solid or tiquid food. The principal compl menlume asine subatances, such as conmon sait: oily condiments, such as butter shit olive-oil;
asceharine subatances, sach as sugar and honey;
and nromatic mad prometat eondiuments, sach na mustant, ginger, pepper, and prickle.

Condecters and Non-conductory of Electricity. When an electrified boty is placed upon a metalice atand, so that it in in metalie cons: neetion with the earth, nll trace of electrification disappear ; het it placel upon supporte of yles or elonite, ita clasige in still retained, the boily then being said to be wiculatod In the former cave, tho electric charge has ving pussed to the groand through
 disetor of electricity; in the lafter, the ghanen
 since by its messs the claske is poeventel from teaving the holls. This distimetion is monewhat axtificial, since no sulatasee is known to be ethur a perfecs cenducter or abs almalate insulator. The sulotance is frepuent one wo cosultarious anil nuas
 of their consfactivity, legioning with the holSilver, copper, old. Unes pase platiugs, fise tik, leal, mogreve, fienuso sitreo, graplitie, cm
 wster rure witer, alouteol, womel, imx -egetabte odit, limen, elalk, exeplem, perrelain, woud, hasir, wilk, glam, was, pulphat, roin, subler, gutha perchas, ole tlac, paraiki, elmenite sir and offer goves.
It is Tound that the efliciency if a polt condactor, When aust as as insoulator in elestmustion ekyent plents, dy pende very toroty on the nitin at if

 whe tie appscatas repuices to bo levated of the
 vamiel, ppaer mbict motutyre ihes eat ac paridy depait In wapsale, oiniluruing puavy dectens whes the tonoperatam is thing ion Hur athur

 onlinary lempmathins, cushel , wy murb bemer whos rumbl to as meltricsify biche tompratare (1) has beve oferved that a viries of nietate amangen in order of Heir evectriest casduatin:
 arranivel for thes thormal molseligg jornersi in
 conduct lenat well. Alow, that when two specinetes.
 they diffor in thersuaf teudictivity, sef in the "atur way- Xee Lfarramo 1 sonertive

Convulsfon, in Medicine, in mamelimers nosed of any involisitary contraction of ibe toflasiary miselfe of ther tooly, het erpecially of edraies in
 pontractions, thus asoibifity sent coloniary motion
 almat always itolioster the premier of trave

 fiefure the nge u/ throc yoins, they sreof nernch sume. conimmn accabener, and, throuph eriocs in themselves, may lee dinn to lampurary nsal complarsikely
 chiefy to the maveliones of billien. A hit of ponvmhions miny lei frum a few sinutes to emme withon a shers jefiod. The fiest symetuas abserved is ottes a twitabing of partionlar masecled
 exprasiots of ollast of the heere will diotenion of the featares, soil tuming of the gloles of the rye noddenly epwarle. Toe fingos arr sometfine elencleed in the palm, and por foct tunved inwaris: sobnetimes, however, oxntmisians terat aimolataly without wargings of this kinal, hand even io the
 usually to le finmal in some surre of irritation, eppecially in the dicestive argans 5 on in invtarioc, disordered dentitions wotme in the intostiace, it Higertible of mamitalle foal, ise Most epdetroic fevers are albo kpt be Ire attewidel, it rlialdien, by convalsions in their earls nompes, asi if severte, particularly is the exese of whooping enagh, during their progress as well; and dipesses of the bridn and ith tnembrsoes at every stage Coavuleinion are grestly promotal by bed ventilation shil io judicinas leefling, with deficient exercion 5 and a great part of the cure consints is diecoveriag and remoring the causers of the divense
Whan a child is suldenly reizod with $=$ tend. oncy to speans, such ts twitching of the features, of
pontrachooer nf the fibgers and toes, it should be placel at once in a very free current of air, with its feet towards the fires the extremities should be kept warm, and a cold lotion may be applied to the heed, egpecially if there is muck flushing of the fince; a little cestor-oil may le given unlese the bowels are loose, and if there is flatalence, thit belly suay be rubber with a warm hand, or with monie aimple stimulisting liniment, anch as camphorated oil. If an actas convalaion oscur, the feet, or if posilile the whole hody, aleoald at once be pat in hot water to which a litile mantand has been added and clothe wrung out of cold water frequently applied to the heal. If there is any suspicion
that wormes or undifested foad may be the caune that worms or undifested food may be the cause. a purgative Clyster (4, w.) should be given: amil pherient medician by the mouth se well, if the
child ho able to swallow. Nothing mare plould le atterpted nithout medical advico. The further trentment gensally consiata in the administration of nerve nolativen, especially loromide of sodiam of potassiuin and chloral, and in olstinate cave9 chleralormi, with cavefal attention of conrae to any cause of irritation that may be present.
Convalaima sre rave amougat horsea nod catle. In young dogn, however, they Irequently ocest troun intostinal worma, dimordered digration, or in connaction with diatemper or other delifiltating diseinen they asuafly disappucar wher their apowing
cansen are rmaved

Copaiba, or Coparya, Balamm or, a valuable drug, consiating chielly of a revin (resia of copaiba) and s volatle oil (oil of capailia) It flows from Iociuians in the stetan of various apecica of copaifera (roma, nativenaf tho Arwerican tropics, which helong wh the antural onder Leguminosms, When thene treea beoorue old ar nurcharged with copaibit, it in no undual thing for the ntomen to lenat will, is loud boom. ing mond. The balian lines s peculliar, arumatic, bats not diagroentile nduar, which, however, in lighly porisutent, white is taite is slecidedty arrid. If hus metinalent properties, ie diereties laxative, and in large deses often so wetive porgative. It in, how. ever, enethy on seconet of let powerful action on the macoses membrane that it is used, and it in neoordingly mash suphayel in alfeetions of the urivo gentinl Hystem, in ehronic colarrin, \&e, The rewin fteelf huis beesf found eflicadous given in the
 timen whlulienteet with cestuse of or volatile oflec The forner af stiene is reality detected if any milkimisn is produced when the budinan is shaken with tem bimss its volume of petroleum bonkin. The volatile aile ansy be recognised by alaking the beaketi with a litule aleofal, whor, being more sulyble, thiny are removed fint.
Copal, a resinmen substance haed for a variety of parpoest in the arta. It aypean in comaneroe in sunoth rosuded masics, colourices or lemonyellaw, traswlucent or tranjparenh, rather britle, tad is a cold ctate, simmat without smell or taste. It is rentily fanilite and inflamuahle, in insolation in water, atal only partially nolable in atcoliol and ail of torjuatine, mit hecomes entirely nolable in Whem whes it has ham for as Ahort time meited, Yarionie usefol pele yellan of almast caluorlema vornighes nud laoguens me made ly dissolving buelted sopul in alcobol, oil of turpentine, or Loiled lineeed-aiL. The chiet mouscoy of copal are the Enat Imiliex, Africa, and suath America, but the varietie derivel from thewe conatrem differ in their origie. The Einst Indinn is the exudation of a large tree, Vateria Indina, and powaibly also of different *restion of Hymenea, which probably yield the Enailian varity, Minch copa! to obtained from Weel Afries, where it is found in rounded masses, embedded it mandy soil, Gum Anome is the name applied te is ropal of this oature.
Copalcht IRark, a hark resembling Caecarilis Hark (g.vi) in ite propertien, and produced by a abrub of the anme genni, Croton mivers, a native of Central Americh (sege Crotos). The lark is in guilh a fout or twa jo lepreth, and hins a thin corky cpidermis. Copelchi Bark is much osed as a substitute for pinchoum in Mexico, where it goee by the napoe of Qufina blatica, and is imported, although hot ta a large extent, into Europe. It containe a minate proportion of a litter alkaloid resembling quinine

Copper. This appears to have been the first metal enpplayeal by man hoth in war and the peace ful arta. Like gold and silver, it is found native. birt, except in one or two districtos, only to a smali
extent. It can, however, be extracted from its ores at os comparatively low heas, and it is not altered by exposare to dry air ; although in moist air, in the presence of earbonie soid, it soon takes on a coating of the green carbonate of eopper. The ase of copper by smeient nations jo well known, through the weapons ant other objecta of Bronze (g.v.) that ix, copper mixed with a small quantity of tin, \&e, - which have been so lajgely eollected hy prehreologista. Sorne prehistoric istplaments are, however, of analloyed eopper. It was obtained by the anciente from varions places, but eapecially from Cyprus-whence the mame- Copper has a charaeterstic fine red colour and takes a brilliant polish. It is nearly mine times heavier then water, its specific grevity being frome 8.8 to $8 \cdot 95$. Neas
tu kilver it is the bent condiactor of heat and electricity, hence ita many uneful applications. Its point of fution lies between silver and gold, lut unlike these metals, it aborks oxygen when strongly lieated in the air, and scales of haack maide forta rapidly on its nurface, Copper is moderately liad, and is bighly maileable, duetile, and tenncions, sithongh not se strong es iron. When held, is the form of nhect or wire, in is flame, it enmmaniestes to it a foghly clasracteristic greent colour. Whereas ateel in hamened by beioer laented to rednesa and suddenly cooled in cotd water, copper is soffened by the same pruceas, Copper forms two impariant enmpounds with oxygen-eupross and eupric oxides.

Cupraas Oride (rod oxide, mub-oxide), $\mathrm{CH}_{2} \mathrm{O}$ This in olntained by heating to redpess the blaele oxide with pearly Jte own weight of finely divisind copper in a well covered erneible, to pentect the mixtare front the oxidining netion of the air. It is got as in hydroxide by adding zrapersugar to a sola tion of aulphate of espprer, nail then canstie seala, Ull a blue precipitate, which in first formel, is re
disaolved. The solation, on being gently wimued, dogosita the hydroxide an a rich ornage-yellow powder. On continaing the heating till the liquid has reached the boiling-point, and maintaising the sbullition for nome time, the powder changsin into the red anhyylroun oxide. Thin oxide is used is coloaring glaw a fine ribly tint. It in not seted wn by air or molature, and far this resson is prosfaced on copper surface as a liroaze to keep the metal itself from becoming stained. The salta of this
bxide are generally colomrles, but thay sere liable In abborb oxygen and pow into the hlue-enleared cupric nalte. Cuprovs chlorisle in the mose tosportant ealt, beiog ased for sbborbing esrlonie oxide in gas anatyois.

Cupric Oride (eopper monoxide, black oxidn). CuO, is the seale or rust of cupper which peele oft the surface of the metal when heated. It is got for chemies! parpoees by beating nitrate of eopper to rednens in a critelhle with occasional atirring, and carefnilly avoiding any posuble ndmisaion of cesty matter. By the ase of cupric oxhte Lieligg eatsbfinhed the method by which the composition of all organic aubatancen live heew determined, ne it readily given up its oxygen at a red heat to earbon and liydrogen, convertiog them, reapectively, into carbonid wiel and water, from the weight of which the comprosities of the organie body is caloulated. This oxide in ased for ataining glase, to wlojh is imparta a green colour ; und ita anlation in armonis has the remarkable property of dienolvige entton fibre. The Hydroxide, $\mathrm{Cu}(\mathrm{OH}$, at ob obtained as a blue precipitate by midiag enostic soda to aulphate. of other salt, of copper, which, ay in the craes of the cuprous oxide, secomes anhyitrons on boiling, the blue precipitate becoming black sud granular. The salts of cuptic oxide are readily olvtained by
divsolving it in the necessary acidn, for example, dinsolving it in the necessary seids for example,
in sulphurie scid for the nolpliate, and in nitrie acir for the nitrate of copper.
Cupric Sulphate (nulphate of copper, blue vitriol). CuSO $_{6}$, occurs mative in veins of copper and iron
pyrites, and is manafinetareal on a large scale by pyrites, and is mauafictured on a large scale by
gently roasting native copper aulphide reopper pyrites), when oxygen is absorbed from the air, the anhydrons nalphate thes obtainod being diesolved in water, and from this solution the salts as found in commeroe erystallines ont. The eryatals are large, transparent, and bave a fine blue colour. They are much used by the dyer and calico-printer, in elsetroplating, and in the preservation of orgmic materials Cuprie Nilrale, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$. The erystals of this salt are of sin intenue bluc colour and deliquescent.
It is much used in calico-printing no an axidfaing it is ma

Cupric Cyanide, CuCys, along with cyanide of potassium, gives the solution from which copper is
doposited on an irousurface. It is not, however,
nechasary to prepare pare caprie cyanide, sa the sat phate in sxcees of potasaium cyenide servea the purpose.
Cupric Araonite, $\mathrm{CaH} / \mathrm{AsO}_{5}$ (Schecle's grees), is a Well-known green pigorent, got by adding ast alka line arsenite to cupric aulphate, and washing the precipitate till free frum salphate, and drying, has heen suppesed to have insasitary eflocts. See Absestic.

Copper dectaie, $\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{O}_{4}\right)_{n}$ is got by adding oapper hydroxile, of earbonate, to scetic seid. It farms dark bloe prisme If acetiencid is allowed to act on metallie copper in the preacace of air and moisture, a basio scetate is slowly formed termed verdigrit; this has less seetie scid than the previous compoand, asd is meeh less soluble. It has a bloishgreen ealuer. Vendigris and arsenious acid boiled together in water linm the fine colour termed caverald green-an moeto-mamito of copper.

Clpper Srearate is obtained by alling stearsie of sods to sulphate of eopper in hot nolutinins. It is a light haish-gremn powder nood fer colouring eandles,

The pigruent, Bnomack grieli, ussi is the arts, in an oxyebloride of copper.
Copper in any Iiquit in exally slissovered by placing in it a plate of polishell iron, when it wih) be olservel coatinic tle melal with its well-known reddiah tins, baking ita Ayprearnove over the part of the plate inatamnol is the fuhd. If the guatity of eopper in very small, the fiquid shonld for cosorn. trated 1 ill it lolf tilt a wateloglath, and or loiplot steel needle used in place of an jron plate. Soln. tions ef eqpric nalte wave an lioe or geeenish-blue exlosif, hat this on andistion of mannoria in excoes becoilies an fatense perplisly Llue

Natime Coppen, although fropoently thet with wherever eupper ore ncesc, is yet narely discovered bs suffielens quanticy to sulmit of ite being nyiters. atically workel. It is fonet eryatalliast in calien sued in modiffeationa of thes formir alow in surbenes.

 s layer of ret oxite sad theol Is mospal hayer of ent. boontt of coppler ermupd is. The latgest spases of nutive osppor are uhtaisual from misam in fienvia sent from owptor learisg strata la the neightaner lavel of Lake fonperiot. One make viat molned at Minnesota in 1 iss, weichipg 500 (ons, which requirel the worl of forify mien lar a yeser to extcact it. The largont yet nhtsimel was gut in 1846 at the Central mines. Lake Soperis, nnal reighed 800 toms

The seres of coplet art mumiompe, Cripule, rubly
 ricfeet ore 11 analation, when pare, mearly wh. poi cent. of eopper. Mirlartnce (q. V.i, or gruen carbunate of copper, connents, when purne, in 57 per surek of the motal. Thio are (ecours largely is thenta, South Australia, and in some lonalatier in Mouth Auserina CMongtift, asarity, or Mar curbonale af cofyers, in a pare state enstains bi per cent of emper. Chal
 phide of mepier and iron, is, from ito alontalance. the mous linjortant of coppler ares Albuwath containing. wlen perte, Ni jur cent uf repgus, yet vo wrount of impurstien, what is mibed in
 8 per eeht of the noul some of the marificrose copper pyrites of the weolers slate of Ausrica
 Coble: Erubracito, or juarple nyyer arl, is aloo a salpliple of coppen in which the Muy-artion of the netal saries frum in to 70 fer cenl. Thewhentrify ter yrny coppor orr, ie a snfpleantimanite of cesper of very tariable enoproution, lat ofter comtaihing
 (q vy) bs on exgelshaile of sypuse miaed in Chiili, and fenant in nther conmines, Mrfaranits, nt btock taride of copper. iopal Chrymolle, is ailicame of copper, wre sometiaurs suseltod is arts of the toctal
Coppersmelitisu, - In practice, the process of emelting coppor frow are (oopper pyrites) bike the Cornish is sameshat enmplicausif, but in theory it is eomparatively simple. The moin imporities of the are are gnarls inon, salplisir, and very catn monly arsenie. Tlre procese iv oonducted with the viev of erparaking the ivon and quartz ns a fusible slag, and at dissipating the enlphur and armetric, by converting thens into sutpharpos and arsentions selda, blorougli ocidation in zle furmace. At Swan: sea, which is the clifef seat of exppersanelting in this omentry, reverleratory furnaces sae used, and these sre of two klidot, talled repectively calciners and melting furnsces. Gss, slong with Siemens regenerntive spparntors, is seve to mone extent used
in siffereat parts of the world for supplying heat to copper furnaces, but at some places it has been given up, efter a short trial, owing to the costly repairs which it eausea. There are never fewer than six operations in the Welsh process of copper-smelting, and when so limited, a favourable admixture of ares, such ss copper pyrites and copper carbonater, is necessary. In the forst, the ore is calcined in a furtace for at lenat twelve bours, by which time the greater part of the antphide of iroo is deconaposed, and mach sulphurous and other acids lave farmed and escaped in fumes -i.e. a partial oxidation of the iron sud sulphur

Fis. 1- Nection of s Ftoverturatary Coqpur.mepiting Varnace:
A. Arephleve: B_{1} tire-lirliger; C , bod of and; D , melted copper taken place. In the recazd, the calcined ore is melted along with ailigenus slage abtained in later elages of the procens. Ilere a furible slag, coneisting is grent part of silirate of iron, in lomzed, hide the nulphinlea of iran and coppler are ron off is a regulas, termed courne metal, and grabalated in wator. Λ esetion of a melting furnace is given in fig. I. In the third, the consse metal in catemed ruain for tweoty-four Jusors, during which time moet of che nulplade, of Imon in converted inte oxide. In the fourth, the ealcined coane metal In melted with slags rich in oxide of coprem, and aho with rich oros, as oxide asil carbonato. Thene oxidime suy sutphide al iran remaining, and is regolas callesl sehile metal is forined, enneining almost entively of malplide of oopper, hatd concairing ahont 75 jor cont, of the metal. In the $/ / / t_{i}$, called 'ronating,' the regulan is very slowly melted, sis mito allow of the gradual and thorasgh redacton of the astphinle Iny heaked atmespleric sir through the formation of oxides of cupper, Whes oxide and bulphide of eopper are hested togrelher, thery slesompose esth other, the emiplegr secapes as mulphuroum acid, and impore mortallic copper, ealled btisfor copper, in produced. while other forejgy baliee are for the rasab fint renomes in the why. In the spath the copper from the pievinos operation in refined. To effeet this it fe mintial in a furnace, and exposed to the oxulising inflaenes of the air for frob fitieen to twenty houri, lay which time it is full of dioxide, and this is is tura redased loy throwing pure eal on the merfice of the molten methl, anil then stirriag it with a pole of green hireltowond.
At thom smelting works where the bulphuroun neil producest in the enlejting or ruasting of sopper pyrites is saved for the mannfacture of aulphuric acin, peculiar furtiacer, wueh is Gerstenhbfer's, Hasenclever anil Helligis, and Maletta'h, are ased for toanting the ore Shaft or cupola furraces, iastead of thame of a revepheratory kind, are ased th some cuantries, for smelting cipper ores where these are litghly ferruginotis, of oxidlued, or compuratively poon Coke, anthrisite, or charcoal is used an furl in cupola furnaces, which require a blast of air at a moderate pernare.

Wer Comper Extrodtion Process,-Soon after iron pyrites (sulphide of iron) began to be ured about
thirty yens ago on the source of sulphar for the Whirty years ago as the source of sulphar for the manufacture of salphuric acid, it was thought denirable to recover the copper, amounting to a Buall per cent. of the pyrites used. The burnt pyrites, consisting chiedy of oxide of iron, slong with 4 or 5 per cent, of copper, in mixed with from 12 to 15 per cent. of cruahed rock-4alt and the mixture properly calcined, when the whole of the copper is onnverted into a soluble chloride. The runsted mass is then lixivisted, and the copper contained in the solution thrown down as metal by scrap iros, This precipitate contains about 75 per cent, of pure onpper, and is mixed with the coppler
of the later stapes of puritication got in the dr? process.

Applications of Copprel - The metal is used for a great variety of purposes. It is most largely con. eumed along with zinc in the production of Brasx (q.v.). To a less, but still considerable extent, it

15 made into bronze and gun-phetal, in which is os alloyed with tin and other metals (see Bkoszes) Alone it is emplayed for lvoilers, stalls, eouking vessels, seamless and other pipes, wire and wire. cloth, matls, and spikes. In the form of thin plates it laas long bosen in demand for engraving snd vtelying tupon, and in the shape of strong rollens it ts extensively employed for a like purpoese by the calico-printer. Copper docs mot cust very well, hur is is sdmirably mapted for producing works of ari in eloctrodeposit instead of casting them. This process is extensively emploged, sund domeven for objecta at large as lije-sized statuea. In this way engravings fus patges of type me alwo copied for the printing jress. For its mse in soating other mefals. Bee 1 koszisc . Copplet is the metal nsually ehyeest for lightainge coniluekors, Writiug yerns as bade of an alloy coszatsting for the mont part of copper, abil for mos purpuces are better shan those made of Ateel, os they do not vomode mearls be moon. Thest pens are usmally white in calaur. An alloy of copper, 'yellaw metal,' is usal fos sheathing the bottoms of Limber shijes. An ise In [revent taullame and sebweels frime encaullering them. (v)l|er, bwiug to its duetility, may lee mats
 withemet luest

Copperas is the commercial term for the aulphate of iron, amil is used extensively in slyejng black, in muking ink, monl ham been fonnd melisl os it irnesing for kropes.

Coriander (Curanarkom intomum) an snosed plant of the mations enter Umbelliferm, with grancling ateif, I 4,2 feet high, the lower leaves biplinnate, the ipper leaves mater compensid, ard glolvase fruit. ft is a nasive of the misth of Eqrope sail if tho Enat, INu! fos long been cul tivated for she alke of its Iruis ; and has thas beoone natiralined in mome parle of Einglant, itshought ito fruit / curimater mevil if mach lese uand in Britain than is Cermany and some other Karsh pean eosntriva The whole plant, when freal, has is very offonsive small; but the ripe and perfectly dry fruit has an aqteresble aromastic omell und a aweotipl aromatie tastes It fo itaed in medicine on A carminative, hisd is a corrective of certain juryon tives; alim in domoutid economy ou an aromation being very often mixed with bread in the north of Etarope ; ipprituous liquass are llavourod with it : tind confectiones pover it with atger to make as welt-known kasi of comili. In bbe eouth si Kngland it is common to now errimater and cariway togetletr, the soriander yielding a erup in the first year, and the caraway in years following. Cort. ander defighta is a rich mot, and in much cultivaterl noul used in Indtis.

Corrosive Sabliminte, the popular name of the higlily foponsas bichlorite of merewry / metcurid chloritel. Sue MERCURY

Corrugated Metal, Irmin and ether metals in sheeta and plates have rommonicated to thers enornonaly Increasei righithty and power to reatist buckling ani collapme by lieing corrugatel. The procese is merely an application to metallic salsatances of the old eantrivasee of 'goffering' or 'piping,' by mesas of which frills are stiffened and kept in shape. The metal to be corragatel is pased between pain of zollen with tidged sarfaces, the ridgees of one fitting intos the hollown of the other, and the sheets of plates opertitel on are leent and compresaed into slie wasy oatline of the rolla. Walls and roofs of light and teruporary baildingn are extensively made of corrugated galvinisied fron-i.e. pleeet-iron first corrugated and subBequently cosated with zine by digping the nheets into a bath of the liguid metal. The moat important mechanical application of corrugated metal has been for the llues of large rieam-boilers. About 1878 a yystem of annalar corngated iron thes was introduced, which incremaed the resislance of the flue to collajpe, and seved fuel becnuse of the greater heating surface presented by the cormgations. A njiral comrugated flue gives the grentest fimount of strength.

Connter-irritants, agents applied to the skin so in to redilen (rubefarients), to vesicste (yesicatories or Blisters, q.v.), to to produre pustules, purulent issues, or even sloughs of skin and of the subcutanenas textures. The miller counter-irribants fire mustard (see Cataplasm) +
turpentine ayplied on wspm cloths, and apurit or acetic scid in lotion. The strubger ste lositers of Cantharis (oc V.) pe of ammonis ; of Crotemeni! (q.v.) or Tartar Emetic (4. V.). in oinfment: setorss caustic or pea-isanco, and the nava; and showe nll, the netoal Cautery (g.v.) ur hnt irm. Nooe of the stronger eounter-mritants shanid be used without careful comaideration and medical advice; greal mithlief is often done by their careloss or inaproper $n=$ Cor Counter-irritants relieve iaternal paim, eheck inflammatims, and tend to promete the abeargtion of murhid elfusions. Their effect in prolably due mainly to reflex setion, produoed by the impresion shey cause upoin the nerves of the skin to which they are sppilied.

Araongot harses, cosnter irritante are ninch ased for strimins and disesses of the jointa, lont should never bo applied, to they toa oftell are, in recent eases, of whilst the pari is loot or inflamaed. Cantharidine grogarntions, or ointrient of biniodide of mereury, are the moest concuriest. For cows, une fonsentations, followed by the smart infriction of anastard-pate; for dego, moap-lisiment, streagthened, if requiret, loy mansonia or tarpeatine.

Sowhage, Cowagk, or Cowrfen, consiste of ehuet, slender, brittle lasin, whieb oover the pods of spories uf Macuns, a papilianarnoun elianter, particalarly M. proriches of the Wient Indien and M. serens of the Fast. Theser haire repolily stick in the akis and canse Intelerable Itchieg, sid were bepos furmerly used | as still in their sntive conntry) as a vernilfuge. They are siministesed in nyrap, and of course act meolistically. The asripe pode are eaten like kiducy-leans.

Crank, in Mnelinety, io a levey ar arm in a shaft, slivets ly lowid iez- \# winch-lasailinh or ley
 reasting umblem late jotayy motion. Kipowe canks whels convert slat to anel fra batias of the yi-ques
 מectel to she fu-tom and voil to tive cethnertires ond. They afe, when eingtes of sted, wrougelt incu, os

 form is quell lalancol. Wherwhentite, as is ovenal in

af strel, the twa arna lorieg shrunk han to the -bsic,
 tnin, a comnecting-yoif exerts net [ewert of rotatam. Tliese are whien rol A azisl crank arme if rite par allel lar in hor. 3 and oymovite juefition 1 , and are the
 eaven prosture on shaft-learius. Tu carre the erank ower these pents ellors a lipary wheel (H ywhed) is attuchet to the shaft, which atoren up enener during other parts of the recolution, and given it init at these prints, or elve twe or mary cranker are to placel on the deaft that when one is on its dead centre, the others are esetting nearty their maxinuses effurt, which is when rol aml crank are at right angles.

Cream of Tartar exivte nahually in grape juice, lutt being insolulble in alcobol, it is gradually deposited, in the form of argol, as the sugar of the juice becomes ennvected inke slooliol by ferment ation. In the preparation of cream af tartar the argol is diswolved in hut water, to which charcoal or fine clay is added, to take up che colouring matter: by loiltag, ind filtering at elear colourless anlation is a'tained, from which, on pooling, the eream of tartar sepiarates in erysialy. These crystals, after being exposed on linen for several days, become whiter and canstitute the cryatals of tartar. or, when groand stitute the cryutals of fartar, Although cream
of tartar ie practacally spernkitg, the bitartrate of potash, $\mathrm{KHC}_{3} \mathrm{H}_{4} \mathrm{O}$ e I see TARTAREIC AcID), yet it usually contains from 5 2o 10 per cent, of tartrate of lime, while adulterants, properly speakin:, may abso be present. The tartrate of lime is derived from she clay added to parify it, and is thore of leno present in all cormmercial mamples in 1888 , Towever, creath of tartat was offered in the warket condsining 93 per cents of bitartrate of potash, so that it anay or anspmed that in froture a purer artiele will be forthcoming. Creath of taytar in readily soluble in lus water, though it takes (6) farte of cold water to dissomve orne part of ith Soluble crean of Carlar is prepared by dissolving logether 2 parts of Boras $(4, \mathrm{v}$,) and 5 parts of creany of tartar, evaponating to divbenn and powdering Crean of tartar has an achd tivte and gritty feet. When taken repeatedly in spall dosen of a seruple to is slrachm, it acta as a refrigerant and diviretio: is dowes of one to two struchans it is uneful as an aperient ; and in larger sloses of from two to shroe druolum it set- an a purging agents nownhpanied by flatularico ind griping Imperzal Tigued is jrepured by diesplving wbout a drachm of reatis of tarat in a juiot of boiling water, and shding a litule lenum jous and sagar to Dayour it ; whem an agreeable refrigerant drisk in ohtainot, which is mighly servacealule in ablaying thirst in feverinh cases. Crean of tartar whey is alsatined by aldieg 1 wy drachan of the nalt to a pint of Buile
©reasote (Gr. Lrars, 'Iliah!' soso, 't prearye') is an ably suhatanco nhamed from the tat prodseed hy 3he destraedive ifistillation of Wood. Whera Cualitar 1ga. in ilintillesi, a corucin portion called crensote ofld petson wor, anil from this
 This, althaght similiat in mane roupecta to wand crwisinle, is gufto ilstinct clamuically, The cial
 orovert anil xylens), white the wood product, th

 fromin 392 to $42 x^{\prime}\left(200^{\prime}\right.$ 299r C . The lemding clat ater in wood creaseste is that it innantly congolatarn
 in this reajmet diflefing from earibelie moth. It how a very remarkable poweer of arrestines the decay of buat of womL und when meat is fented with mot small a jewpurtion me ore-huninsilith of its wright nf creobiter and expmand to the aif, it them foet juicrefy, but leconne hand and ifry, mastamirit the Lante and odont of mouked mest Indeed, there can be so doubt that liome cured lyy mans af
 enine exteat bo the valable creanote in thie mincike. Itailway decpors and wool liable ot lue frequently Wet are aitep katanteal with then coal the crenublal of, wlere eccuspmy is not sus ssasntial, with the wood ereisote, and are thersby preagrved indefinitely. In toribaghe, where the cause of pain is a carusus cumth with the exposed, inflamed nerve, a dmp of ecenvate, eierfally inserted, after previvath cleathing the oavity, will often give relief. In this mase if neta by oongulating the alhumen and destruying the neives. Creanote ncto jower folly on the skin, pmincing a white atain when applienl to it. A few dopje mdeded to a pint of ink proserve it framy nomblioess. Meilicitialty, it is grives in alnses tof wae at fwn siroply, nad hoe heell foiand efticsactoun where there it a tendency to fermentation of che contents of the utumach and bowels. owing tarita metion on the skin it acta as an energetie jubun when taken in large donedThe Orewate Pinnt (Larforst atestroni), growing abminatily of the loordens of the Cohneala Desert, enits a xtrong whaur of cremmote. The oflour arisen Irume an exudatious similar tor Imbian gum-lac, and is causod by the punctares of ath insect, Carteria Lexracis.

Creatin, of Kreatis (Gr Kreaz, 'Hesh'ל, a combant and chararterintic constitoent of the atriped unsweleos vertebrates. 1t was diseovernel by (lievreul iili 1435 , hat little sis known about it till lieligg paldished hifs berearchers of the Chomintry of Fowd Fin |ssis. Ita dremient formula is $\mathrm{C}_{4} \mathrm{H}_{p} \mathrm{~N}_{3} \mathrm{O}_{2}$. Except in come dubbtol rase, it lips riwuye been found wh atove indicuted ; it is very uncertain if it ever occurs in unstriped muscles, ned it has mever heen demonatrated in inverteberates. A debydrated form, known as Creatioim, $\mathrm{C}_{4} \mathrm{H}_{-} \mathrm{N}_{3} \mathrm{O}_{\text {s }}$-necurn is a constant cm stituent of urine, sad bas also beens demonntrated in fish muscles, Dnder the intlisence of acides, creatin beonthes creatinin, and by hydration the trinsfor
mation may be reversed. As these changee msy readily oocur during extraction, there is often doulit whether erentin or creatinin is present in a given case.

Oricket (Gryl/us), a fumiliar genus of insects in the order Orthoptera, near locusts, grawahoppens, sce. A substantial body, a thick bead, long feelers, a rasping organ on the wing covers of the males, wingo closely folded lengthwise, but often along witb-the wing covers degenerate, great powery of leaping, and a retiring, more or lesa subternanean habit of life, are some of the more important charsacteristics of the family (Gryllidie) of which the ericket is a type, The fermates are fertilised by meanas of peculiar spermatophorea, and as in allied Orthoptera there is no marked metamorphosis in the life-history. In the genus Gryllus the head is bunt, the antennar are long and thin, the wings arealways preaent, the hind-legs are very broad and strong, and the temales have a straight protruding egg laying organ. - The Field Cricket (G.campestrit) is very common thronghont Europe in fields and menlows (local in England), and is very well known from the sound, by means of whica the nade eaptivates his mate. The bouly is compresaed, the heal is black and alining, the wing-covera are brown und yellow at the roots. As in other crickets, the noise of the males is made by rubbing the wing: covers againat one another. The naler aide of one of the neryurea bears over a liundred sharp tranaverse ridges or teeth. Thene insects hide in burrown in the ground, and sometimes do much datnage to vegetables. The female lays nimueroun egge in the borrow, and the larvie remain as nuch through the winter, - The Houne Cricket (G. dontesticus) bas a lanker, yellowish hrown boly an linel long. A recent arrival in the United'Stater, it ia common throughous Europe in houses, is said to oceur in the open air in Madeira, and aven in Britain ocea. sionally wanders out of deors in summer. It biden in nonka and arevices, and Ioven the neighbourhood of the fire, especially in winter. Ita merry note hai liecome ansociated with illeas of domesticity (an in Diekens's Crochet on the JIow(14)

Whenst the bead of the fire, it bemosus mnve or leas dommant in winter. It remaina quiet suring the diy, but bimes about aelively at night

for erumbs and other scraps both 'animel and vegetable. For the sake of both food and warmath it often frequents bakehouses, The larvie are winglees, and the pupee have only rudimentiary winge. The londent noise made by s cricket is probably that of a Sicilian species (G. megalo-
eephalus), which is said to make iteelt heard 'st a diatance of a mile. Cloeely sllied to the above genas is Myrmecophils, a wingless cricket with extremely strong hind loge. Onfy the fermalos sure known, and theae live parasitically in ante' pesta. The Mole Cricket (Gryilotalpa) belongn to the same family, and io diatinguished by the enormous burrowing fore-legs, by the large size of the anterior ring of the thorax, and by the aleence of an ovipositor in the fersales. The ooly Eurapean species (G. valgaris) is a large and formidable insect, sometimes attaining a length of two inches. It is of a grayish-brown coloar, with a silken sheen. It burrows like a mole it fields and mucadows, but is sometimes seen in flight is the evenings. Numerous egge, inelowat in a croonn, are laid underground. The larve are long in lecoming adialt. The move ericket often does denaspe by biting at the roots of vegetable cropa. Like the field ericket, however, it feeds very largely on gruend insects and the like. A South American ani West Indlan species (G. didactyta) damages the sagar onnes.

Critical Temperatare is that vemperature below which a sulotance niny, and alove which it cannat, le liquefied by prosiure alous. This lemperatare for carlonic acill gas, for exanple. is 3099^{+}C. Le below that inmperatare, the liquefine. tins of the salentance nisy be rasily effected if sufficient prespure be spplind; Lat Shove it the sablanee cannot be liquetiol, nar matter liow grest he the gresate to which it is mbjected. The Jiscevary of the eritical temaperstare by Dr Amileows in ist9 firat gave the means on thisamguiehing between is true gior and a trae vapour ; for the former is is sulalance aloss, the listfer oft below, its eritical smapmetiture. When any suletanen is at the tenperature is is in the crition rate-Le. its
 which the swo jurtis, hipuhl and ghorous, mange iotas mase asother ine to reoder thene uptically imitis. singuahable The enitidl tepoteralares of oxygen, hydroges, and nitroges jlarsuely tenned' versaanent gave) are all exirvarly tow, and lipnee lifoefastian can only he effected (as it has alrendy lowed) by the spplication of inrewse sulit on well not considernible presare On the opler lisud, such
 vajuew, ether vajoen, kee, car, proviliel the jtes aure le suiteientl gocal, Le lapuedieal at ordinury
 eritiral Wemperatwer.

 the gast, the lewntriget wne pulloi flowe botaite

 os ortheal hos Jonel of fient f. som Flatical in yusition a mode ls loy is calch or $\mathrm{M}=\mathrm{m}$
 ares thers lair
 Then tajp:34 the Fle=1, ant the theyry keing Jast will a एия *inlerahie mbithetrt inf pawer. Tlie ennrse, deFivicled on the size aI ther
 l.6inz Fomb. patatively small nanl exils lemollen, while nthert were nf latae dimenaibers, myil requuri a machive of tloe astere of
 the low to ine jopierls lent. The ereaclamen of the tith ceptuty beere alimest all thes ejurygrel. The "quarrebs" Suphored farionl with the vipe of the low. hais getacrally shey wete slont stogt slvalts shost IN inclues long, winged sirly beaze or leatleer, and latimiz a mefal joint, which was sometimes
 dentesl at the sides. Sinne crosebmow had a tulier or harrel, with a slit for the bowshring und divcharged balls of clay, marble, or lead with such force that they were more formidable weapons than the earliest firearmu. The larger crosslows were really military engines, which required neveral mest to work thein, and threw proportionally lueavy missiles (suse Balilista). The cronembow wan oves) in Eingland chielly during the 13th century; after that it gave fluce to the Longbow, which whas found to be the more convenient and easily hasalled wespon of the two. Its use, however, was general ameng she sontinental nationn of Etrope after the i2th century; though the Lateran Council of 1139 forhade ita use as heing too murder. ous a weapoti for Christians to empley againat one anotlier.
Croten. a gernas uf plants bit the natumal order Euphorlsacest, with nimeroos species, which ive mostly sropical or suhtropical tetes of slomba, is fow herbiacesuse The suset injurtant lo the Puging Cowtun (C C Tighimis), a small Lree, a native

 Asta. The leaven ide ostremely acrid! the sond

 Catlerly dienteof on Account of vialquey ent sacer. taintr of action, atthemgs atill valuable as viehting emonemi Tbey aie avat os ovalopilonig, atnest them -ios of lidhl-emens Sor meat is their aeridity. that slasisctome ellerth have enamal from kopkitige for asmo lyara with packages of thens. The ent is whaineyl mosty ly experseion, and partly liy treasug the mahe with aterkent. The woml and

 ditrerent are the propertam if the -Hecies mhich
 Orlier species are etill suore aronatie, nuil some delightfalty tragrant, containing in mreat sbund. ance a thickikh balsumice nap. The enp of C,
 at the Ciape aif hami Hipme ; that uf C. argmaflacom

 and is pwotheat if itstrimgent pospurties.

C'lampotith, is she wit expresomel trom the aruela of the 15 Tighioun, total is is sleetry colontied, viscid

 a sumber of oily bolies, tuse of which lave as set Ineen slefinitely shown to he the catise of its parchative and vesicating properties. Crotun-xil is a vinlent purgutive, in mot cases a singla drip heing suflicient to remove constipation. When ralitienl upor the skin it prishatees riblefaction aud pioptular enuption, and therely tends to relieve somes affectionts of the internal urgins, It is used either by itself in the onmixed state, oc dilntell with olive. od, sosp liniment, atcohol, $\mathcal{E} \mathrm{c}$, It is not to be employed except under the advice of a doctor.

Cromp, a tean used in Scatland from an early perioul te deorribe a certatin crain af haryngenl symptons, was linst applind hy De Franei- Wowe, in ti65, to an acute intlonamitosy ant num-entagions aflection of the Larynx ($2, v_{2}$), in which there is the Jormation of a falad membrane or fibrinops deponit on the mucous surfsce of the windpipe. The invanion of the disesec resembles that of gimple Catarrh (q.v.), and rany be very insidious. The child is languid, feverish, and thirsty, and a dry, nhrill cough is gritually developed, lout thene symptoms sooner or later give way to those of the necond utage. Here the respiration becomes dift. cult, the drawing of each breath having a hissing and 'croupy' sound ; the voice is almost innudible ur greatly modified, and acomapanied by a harsh. brasay, or may be atifled cough; the face is red and swollen, and covered with sweat; and the nostrile aro rapidly working. If the little patient to not relieved by coughing or vomiting up some membraneoun slireds and glairy mucus, a state of greater dyspnoes ensuen: the lipu become livid and the nalls blue; the lever is higher, the pulse quicker hut weaker ; and the ohild'h efforte to relleve the increaning obntruction of the breathing are most distreasing to witneas. A period of extrenue restlewnesh and suffering in (bnltsu relieved by imme: diate treatment-nee below) soon followed by death from increasing coma, Hypicope, or exhanstion,
Croup seems to be caumed by a slangy atinomphere of Jow iemperature, and is got in exposed altuations. It is moat frequently met with between the yearm of two and ten, although all ages and elswen are liable to anffer from it. It is comanoner in boye than girls. Croap requires to be dintingabhed from simple catarrh of the windpije; from so-ealled false croup s apasmadic affection of the larynxthe Laryngiamus Stridules of Dr Mason Ganofi asad frum Diplitheria (g.v.), as infectious disease in Which is false membrane is tisually found on the pharynx or palate, lut well an in the Jatynat. As croup in an acute and very fatal divenae, the treat. ment requires to be aetive and slecisfed. If the cave in seon early, apply an licerlant to the throat and give ice to buck, bit if you suapect the pres. ence of false membrane, give s full slone al an emetle, auch a ipecacaanhi, sulphate of copper, or sulphate of zinc, which shonhd be repeated in three of four hours if necensary and effectan in rolieving the freathiog. The floild abouh st in: tervals be placed in the hat lasth and inhalations of atoam or medicated vapouns indministered. An inhalation of lactie acid fa often of great use in the fins itage. If these mesens fail, Tractientany ($2, y$,) muel be at ouece resorted to, to save the life of the patient, as recommended by Trommeas.

Craeibleg (Low Lat crucibulum; frum the root of Old Fr. eruche, 'a jout'I are vesuela made of materialu eapahle of lieing es poned to high semperatures withont alteration, and nsed for fusing suletancem togother, Buch wa the ruaterials for glas making, or metallic ores, with varipus flaxes to obtsin the euveral metals they yield. Crueibles aboutd restab: the corrusive setinn of the nulotances brought into coutact with them, and are generally male of fireclay, porcelain, graphite, iron,
Cracible platinum, and, for nome special operations, of
ailver. See Asavira.

Gryathllography (from the Greek krustatlos,

Fig. 1.
Drewinga of two cryatala differting much in appearance, but With angles at a shown to be constant when simitar sectiona me made.
'ice," an iifiea smong the anciente being that rock-crystal, which may be taken ise at type of eryntalline minerals, resulted from the subjection of water to intense cold). Minerals, salts, and inorganic bodies geherally (examplea, rock-erystal, flaor-apar, alem, and angar) exist in the crystalline ntate; and when we examine all crystals, whether oceurring outurally or obtained artfífially, certain laws have leen discovered, and phenomena obecrved, and these Iswa and phenomena constitute the science of erystallography. The following are the more important laws and principles of the science 3
(1) Laur of Constancy of Angles-Crystals of the same sultatance may sliffer much in groeral appear. ance, bat when the angles betwreen their faces are mieanured these angles are foand coustant. Thus the erystids A and B (fig- 1), when cut throught in the direction xy at right anglen to the prism, give the sections ahown at $\mathbf{A}^{\prime}, \mathrm{B}_{\mathrm{y}}$; and in each section the angles at will be fonsed the stme-viz. 120°; or agein, if the angles letween the faces ab, bo, or ac, be measared, they will be fornd identical in both erystala
(2) Lane of Symimetry,-Suppose we ent a erystal in twa, asd then place the two parts with their cat narfaces of a mirror. The mirror will reflect each part, and may or may not prodace the appesrabee of the original crysta). If the nirror wil produce the sppearanar of the origiaal erystal, we have severed the eryatal in a plane of syumetey. Thus with a eale, if we ent it is vistuer of the planen ade, def. ghk, lmon, opg Thin, 解g, Bn, gmk, and placen in enacli caso the two eevered parts on a enirror is the way desentiod, the reflection together with the object will reprodace a calse There are then in the culie nine plane of rymmetry. The octahedron and dodecaliedron simiGarly bave sine planes of mymmetry. With such a from in a conimion lirick there are three planes of symmetry.

 symientry. fyang nimmbers of planes of bymo ing iomin, intil with a spluere there are an islinite number of plates of \quad y mourtry. for it is obvinus that if anplere be cut anywhere is is plame pawing shrough ite centre, and , the half thas obesined bo lait upwn a migror, the appeirance of a complete splaere will be prodnced. Now exapsining all (bolobedral) crytath, it is Foustil that they fsil into one of the following six calrigurie ir asstema : (1) AnoriAic Syafow,-Ne plane of symmielry exnuples, eopper suljohate anal sharthies. (2) Oblique Nypteal One plane of symbitelry-cypeum and wading meda. (a) Prif: imifie Syitem. - Three planes of syoumetry at right sonfles to each other--harytes, salipetre, and native aufphin 14) Rherohoheifral Syatem. - Three planes of oymmetry of 120r to each other-calcite, parita, and ice. (a) Pymanidiol Syifen--Five plases of oymmetry-cieaiterite, sireon, and ivincrase (5)
Cubte Syutom-Nine planer of nymmetry-fluorepar, galeth, and alum.
(3) Lav of Rationelity of Indicer, - The varions planes of erystals, se explained below, are indicsted in the Minferias system by fhroe numbers, which together form the synatoof of the plane, Thus we have plases represented by 1,2 , by 11 1, by 1 i 0 , se. Now the law of rationality asserte that the symbol of a plane noust le represented by pumbers which are rational-i.e. nimblers which ces be expresed exwetly, not throe like $\sqrt{2} \cdot \sqrt[2]{4}$,

Fig. 3
The piare 1111 in Millers
entation.

Fig. 4.
The piase 123 in Miller's Elatioc.

Ke, which can only be obtained approximately. Thus by the law of rationality, no plane of a crystal can have such a symbol as $1 \sqrt{3} 5,1 \sqrt{2} 0$, \&c.
Cryatallographic Notation.-Several methods of representing planes of crystals by symbols are in use. Two of these only need be mentioned-viz. Miller's notation and Naumann's notation. In both systems the planes are referred to three axea eorresponding in direction to three edges of the aryatal.
Let abc (fig. 3) represent parts or parameters cut off from three axes syy, then in Miller's system the plane 1 I 1 represents a plane which cuts the 2 axis at one-oneth of a, the y sxis at one-oneth of b, and the
z axis st one-oneth of c. Such a plane in indicated by par. The plane 123 means a plane which enth the x axis at one-oneth of a, the y axit at one-balf of 6 , and the z axis at onethird of 6 Such a plane Is represented by $3 t w_{1}$ fig 4. The plane II 0 meuns a plase whicls cuts the x axis at one-moeth of $m_{\text {, }}$, the y axir at ane oneth of b_{4} aud the a axis at ane. noughth of c-i.e. does not

$\mathrm{Fig}_{5} 5$.
The whane 110 in Milter's notation. cat e at all, or in parallel
iof Such a plane is represented by wars in fig. 5 .
In Naumann's systemi some farm is selected as the fanilamental pyra. mid of the erystal, abet hie pyramisl, which cwo renponds to Miller'n
lorm, 111 , is repreventeil Iorm. 111 , is repreventeil by the letter P in all esstems but the culviel if thin system it is called ()) and the rlambelsed. ral (in than aystem it is called 18). Thas the plases marked P (fig. 6) (urn the fandamental

Fig. 6.
A crynial mith the facrs marked on Nkemans'y notation. pyranid, the planes ; P sne those of a pyramid one-half the height, while the basad plane is represented by op or a pyramid of nin height. while the plases ∞ 1'sejrement a 10 ramait of intinite height.
 asodes of representing eryutale have luew malapeted. Perspective slrawing are made ly pmoecting tha stes accovding to thes tilen of I'rijection (q, v.),

Mince of arawing a cryatal from projection of axes.
then the varmus planes are indicaterl, and from thirse their intersections are known, alitl theve intersections form the slraving of the crystal. Fig. 7 represents one octant of the form 2 i 1 Inawn by this method. Some writers represent crystal forms ly orthographic projections-that is, represent them in plan anit front elevation. of all methods, however, of representing cystals from measurements made with the bonioneter, the most elegant and convenient is that of rpherical projections. Two kinds of spherical projection are in use-viz, the gnomic and the oteren. graphic. Imagine a glass sphere placed within a crystal, 48 in fig. 8, and sirpponse the frees of the erystal to nowve prarallel to their original positions until they tomels the

sphere, and where slie faces toueh let dots lo marked on the syluere Thus the face a will protuce the slot a ', the face a) the dot a^{\prime}, ant so nn. When the spliere is thus narked with dots corre. apopilitg to the several faces, the next thing is to make a map of the dots in their proper presition. If the map is to be maule on the promaic projection, the spliere in subproseal to be placed on the paper When planes are eryatul. When planes are thoved
they touch the sphere where they touch the aphere whare
dota art mavked. duta ary maveed. on which the map is to lie tuute, and the eve is then placed at the centre of che spluert. The various dots when projecterl on to the paper is veen loy the eye phacel at the centre of the spliere produce the map. If the mapy is to loe mule un the stereographic projeotion, stippore a piece of glase to pases through the centre of the aphere as in fig. 9, and lat the oye be placel tnaching than sphere at E, then the dots ar tliey appear on the glass to the cyo at B forn the map. Such a map of the eryntal of Eig. 8 is given in fig. 10 , In the stereographic projection all great cirelea on a spheve are represented on the map by either atraight lines or arch of circles, wheress in the promic projection they are represented by straight lines. The map (fig. 10) shown not only the puastion of the dots or poles, but alao great efrcles pisaing through

 fornas of the cishic eyntem. Thiene nterengeraphic maps, is will be necili ly reference to truation on

nf information

Planes of oryntale forin is sump when the inter sections of she pilanes (i.e. the eljgen) aro parallel to each other. Thum, in lise 6 the faves of', il' $P_{\text {, and col'form a zone. Now in Miller's mutation }}$ these forms lave the indicen 00 I , I I 2. I | I. 110, sind it will lie notices! that ifl ther ensiluet luave a comanon ratio-thos, the livis and sconel finlex are ergual to cuelo oflowe. It mopy lue nhown that thin is notiverally trae ; heroer, knowleg the julires uf a phane, we san may whether it bs mba juerticnlas eone, or knowiag that a plane lies in two proses, we can deternine ife intices. Thas, the plames 123 ,

 i4 5 cannnt lie on this whe, lieriopse ife sembluat floes mot contain the rutioy 1 2 \&
 lave all faces present ses required low the lisw uf symmetry are termed lanlotioitral. Wlicerv, no is often the case, sonly one-lialf of these faco are present, the erystal is satil in he hesibiloefral: while if anly one foristh of the fall nomber of form are prenent, the cryutal iu wail to be tetnotaliestral.
Ihysicul Crystellogerofoy.-The playsinal jrn perties of erystals Lave strise interestiog islatinis to the symmetry and form of the crostal, and these properties are incluled generally aith erystallography. Thus, if in the regrular systrie is face
 pecultarity will be formol the earh face which is prowint by the law of schminetry; Agaib, boest crystals cleave (i.e. lireak ensily in entatim directions, and the elervage plases follow the lave of symaetry, Again, when cxamines by priarised light, atier finiquertier of erystaln in relation to symumetry are hrought ont. Tlins, crystals of the regular system (exeept int a lew certain rames) ilo not sumbly refract light, mo taster is what lirecetion the light is inctulent. With ersstal- inf the rhombinheiral system ani the pyranidat systern light is not dosibly refracted when it falls puralled

In the vertical axis, latt in other Alireetions it is flowers consist, in freat part, of dry involucral
 two directions can lee fumed in which the crystals undergoing manch apparent clasnge, so that they of these systemes, they don so in all othor slirections. Again, lieat is complucteil differently in slificrent syotems of erystals. Suppoe crystals turaed in a lathe inte spheres, anpl that the centre is madhe smblenty bot, theo in the regular syntem the heat spreadn egnally, manl after a time the surface of the mpluere is iniformaly raised in temperature; with other systerss the effect is different; with the piramidal and flombaliedral systeas n similar experiment wrald rewill in the surfice of the where loeling herted nnifarraly mer belts corrapondling to an equator and yarallels of latituale, but the tewiperature of the different lelts would le different, than showing that heat in propagated in Iwo directiont a right angles to each abber with diflerent velocities. With otlier nystenen mane camples feralts would be obtained asing th hrat loring jwapugated in three directions with tlifferent velucitiox
Whom anialile rryatals are placel is a salvent the fores are eaten wat difterently, proliseing Gigures terneel lay liemass writers inetsfiatiteb. Thee lifures will often isalieate the aywmetry of the eryatal, and lave lneen useful in wuch sleter. mination. As plywienal jmpertio menernlly are related to elanticily, timith ctates that the bent Why to slefine a erystal is that it is a malia body. the elasticity of whied is the satoe in all pranalfel directions, lat on the contrary in diflerent in dif forent slirections.

Crystallold is a name given by Ciraliam to a cluer of ashetances which when in mplation past eatly through memblonanes; me ofyosed to rolloids. Metallie malta, namer, oxalic neid, are eryctalloids.
Cubebi, or Cr'nke I'кiPkn, the driel lemerien of Pyer Cubeher, a clisiliug slorals, a native of Sunatra, Java, anet Nontleern Bispaco. The leerries are showat ith of an inch in sfinumeter, anal are farnished with a thin stalk a bittle lunger than the tetry linelf. Thu fruits of ather species of Hijer sre mmetimes milotituted for the strae etilels suth at thome of Piper fomptim, Ke., bat in zoneral the stalkw of these salustitutes ane either wanting in are les thas the lemgel of the berty. Althenth knewn ω the Arale in the miblifle ages, and ineel in
 srubtualty into ilision, Iill at the lezisning of thin century all roferetice to it win onaittel in inodical Inowke, anol it iteportation fater Itritain cenvel entirely. It is Agails. Imweyer, contitit into ure. A* A stomschic and carminative in indignotion it han a errais value, while in jute woil in sare

Chbelos ernataigs a valatile mi a verctailime suhs atance callel rideben, and rasionse lisilies, one of which is sabeber imiof. The calelion in inactive, while the volatile oit is not lelievel to have the fill virtue at the culcla. It enters, however, into the pansymition of a well-known vrice poresure, to whieh it insparta bighly stimalating propertios The alisiretie pronurties are held Iry anne to he entirely slate to the reisums bodie, lout on thi pooint there t shifference of opinion. The slove of powdered enteles is from sine to tliree itrachnon, that of the matile oil teli floper, and of the oleoresio five tio thirty dropes

Cudbear. The lichens from which, und the proces ly which, this dyestntl is olitained, are
 timiply arclal pate ilrisel and grounsi. It is very neefal to the wonl-dyer for janslacings, in con
 coluaring materials, rieh shavles of lown and choeniate. Tlie jreparation of arelit, known as Freneh purple, wav iseel for a slunt lime in catien printing, anil profucel tive and deliente slasles of parple. Iat itc employsuest for thiv purjeree cersed som after the introfaction of aniline matave as a dyetaff. The ancient Cretan jumple onv probably ubtained from the sane sorarce as archil. The nume codlear io a oorratution sof Conthleat, anal is deriveil from that of Itr Cublilert fimminn, umier whose managrement the maninfactare of this alventriff was begun in Leith ghout the year 17\%7, by Mr Macintoah uf Glassow.
Cudweed, the popular pame of many small inconspicaons species of conponite veeds of the genera thaphanfum, Filago, and Antennaria, the stems amd leaves of which are roore ur leas coverel with s whitish cottony down. The lieple of the
(q. v-). Antennaziz diviect (also enlled Cat's.font) is very frequent in dry mountain pastures. All the three genera are represented in the Enited Statess, where limepteclimem polyccpholum has sone repute in donestic medicine.

Culm, a kind of impure Anthracite (q.v.) In some distriets the culm obtained from the pits in a broken and crumbling condition is used as frel, being made sip into balls, with me-thind of its bulk of wet viscid elay. It burns withont flame, producing a strong and ateady heat, well adapted for cooking (see Briquettes). The tein Calpmenstares is spplied to the citrlamiferons strata of Devonshire, on account of the workings for culm near Bideford, and other places.

Curarl. Upari. Woonald, of Woorabs, is a celchrated poison used by mane tribos of Soutly Ameriman lodians for jorisaning their armows It is ly smeans of this poiann that the smal arrown shot from the Hawpigie (q, v.) become ma deadly. It in lomught to Eampe as a black, brittle extract, resinimit in Ajpumpance, and encrosting the sibles of little gominls containiny it. The munce of this desully joiviven was for lony onknown, owing to the nativer jerlously goard, ing the necret. The jrrecens of mannifnctare has now, hawever, born witnesaed fund tencrihed ly neveral trivellens, aud in each case pome Ajecfies of ather of Strychans has lwen recogrisod as the nouree of the primon. Thure serem to be four dialinet varieties of curari, emel elatacter. intic uf a slifeerent tract of conatry, ainl prohably varying in this physulegged netion; line for our parpose we ausy contine marrelven to that kind which in weel in jhysinhatical experinuents. Cumeri is one of showe joisuns which bucef lietle action when taken into the stomash, owing to the slifticulty with which they are alraptued, lout when intrislaced into at wounil it sete witl great jumpat.
 [iver, Teplde roppination, anil ieath lay sulfiwation. Ity mivas of artificial renjirition it is pusablele to stistain life far a lougthemed periont, ntslungh the aninial in apparently imetusible to pain. In this why it in employed in vivisection expernmenta as an aniestbetic

At first it wha supposed that curari contained strychsine, but an its netion was no entirelydifferent, this view wha mon abandoned. Prolonged reasarch has neparnted a special alkaloid, C'aterine, which ponsesses the leading propertice of the poison itaelf. Curnerine sliflers from all mther eryntallinable alkajoidr, save one, in containingg no oxygen. It forma enlta, and in said to be twenty times as atrong an cursi. In insligine etirari is very little used It fiss been proposed to employ it in lockjaw, bydropliobia, and as an antidote in possoning by atrychnia; but although it quieta the sposm, it hine no dirwet carative effect, and it may casse an equally fatal paralysic

Besides curari proper, there are two other Arrowproisons called Corroval and Vro. Thead, which are bruaght from New Granhula, have an entirely differeot action on thie body, as they primarily stop the beating of the heart, whereas with cathit the heart continuen to beat after breathing has ceased.

Carrant Wine is made of the juice of red or white currenta, to which is added sbout one pint of water for every four pints of berries employed. About a pound and a half of augar is nfterwards added to each pint of the liquor, a little spirite being generally also added, Lefore it is set aside to ferment. A larger quantity of sagar is eometimes employed, and no water, and a atronger and aweeter currant wine is thun produced. Fermentation requires mevernl weeks, and the wine is not fit for use for et least sonne monthe afterwards. Black currant wine is made in the sanie way from black curranta, but the frait is put on the fire in mesmall a quan. tity of water us possible, and hested to the boiling. point before it is bruiked.

Curry Powder, or Curay Paste, is a compound of turmeric, corisnder, pepper, ginger, and various spices; it is used to a large extent in India and elsewhere as a sepsoning for a variety of diahes.

Caticle, a sheath formed outside a lsyer of cells, either by their secretory activity or by a modification of their externh portioos in the
strict mense, a cutiele is not in itself cellular, but consists of the products or of the modified portiona of underlying cells. The thin envelope which may be readily stripped off a leech or earthworm whea killed in spirit supplies a convenient example. A cuticle is usually formed outaide relatively pasaive cello, but even cilinted Epitheliun (q-v,) msy have its euticular outer layer through the porea of which the cilis smerge. By continuous modificatious of the cells considernble thickness of cuticle may be developed an eg. she hard lining of the gizzard in many birds, By chemical modification of a well-developed cuticular formation very varied protective and offenaive skin-structures often reault. Thus the pecaliar gelatinoos, cellulosecontaining tunic of Ascidians is for the most part a cuticle; the shelles of miolluach are eutieular formationa plos lime; the ranpers of snails are formed from coticle; the hard armour of Arthropode is a cuticle pasociated with the formation of Chitin (q, v_{t}) ; the bristles, jawa, and firm aheaths of many wormas are also enticular, and so on. For the une of the term in apecial connectionn-eg, the esticle of the hatr or of the teeth, hee apecial artieles. The term most not be confusel with entiv, one of the sames for the under akin or dermis; nor ahould it syer be naed as equivalnat to skin.

Outting are branclien or portions of brinchea of trees or shrulas, employed to produce new plants, by burying the lower end in the earth so that new rooth may arise from the nodes, Nothing is nuore ehay, than to propegate willown, fuchaiss pioko, geraniumis, curfints, guoseletries, \& ic. in thin way; but many ofher planta, commanly propagatel by, euttingt, require greater attention on the part of the gardenes, warmth, a anifurin damp atmooplore, and ahade. The temi cutting is, however, usefully extended by mont horticistisel writers bo any part of a plant which caa be reparated to become an individusl similar to its parent, then mane planta may be propejgated moes reudily (som simple leaven or jortion of laaves, othera fram a negnieat of atem bearing a single louf with a had at its bave, others from offatiosta at the hase of the parent plans, some again from the younger slvoots, and others from partially ripesed wood, and so oti. Hence there is room for considersble experience and skill, and detailed inatructions should be sought by the amateur floriat in works on hortieatture le.g. Johnnon's Dictimary of Gardening L The moet convenient geueral method, however, is to atrikn cutting in well-drained shallow pote or boxed of ailver sasd overlying is little andy peat or loam: ahade and water loeing applied with diseretion, and bottomi heat only in apecial cases, which of course inelude the majority of stove planta. Hardy fruittrees may be best propagated by cuttingn taken after the fall of the leaf, and planted on the north aide of a wall, but not so close as to be constantly in shmele.
©yanogen, CN in Cy, althongh intrinaically of hittle importance, is bue of the moat interenting compounde of carbon. It wat the first knows compound body which wra proved to be able to unite with elements in the same way as theae mulatancee unite with each otber. Thus bydrogen. H, uniten with chlorine, C1, is form lyyruchlorie acid, and sodium, Na, unites with chlorine to form chloride of sodium, NaCl. Like these elements, H, Cl, or Na , each a single substance, the group CN, consisting of 12 parts of carbon and 14 of nitrogen, enkers into combination, acting an if it alao were for the sime being an elemeut, thus it forma cyanide of sodiom, NaON , or NaCl_{1} and hydrocyanic usid, HCN, or HCy. There are now many thousands of such radicles known, of which the groupa methyl, CH_{3}, ethyl, $\mathrm{C}_{3} \mathrm{H}_{8}$. See thay be taken as other examples.
Cyanogen is a colourlear, poisonous gas, which burns with a purplish flame. It is soluble in Water, and can be condensed to a liquid, under a pressure of ahout four atrosopheren (60 Ih per sq . ineh). It may be obtained by heating the cyanide of mercury, HgCy_{5}, when the cyanogen passen off in the gaseous state.

Gyanogen forms poisonous compounds with metale called cyantides, of which the leest known is the cyaride of potassium, a salt of much importance in photography. With bydrogen it forms the deadly prussic or hydrocyanie acid. while it is
united with oxygen in eyanie achl. For the pro perties of cyandes, see Hynsocyastic AcrD.

Cgraaic Acid is a componnd of cyanogen which cas hardly be prepared in the free state, owing: to its great tendency to decompone. It formu a clevs of salts called cymates, of which the chief is the eyanate of potask. This selt is prow duced when cyanogen pho is paosesl into ralution of potash. The formula of eyanic acid is HCyO , that of the potesh salt being KCyO.

Cystif, or Cvistic Oxios forms a rave variety of urinary Caleules (q.v.). Its chearical comporition is $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NSO}_{2}$ sad is forrss a whitish or dirty yellow depasit eonsisting of six-sided crystalline tablets. If is soluble in mumonis, sand is thereby distinguished from the similar erystals of oric actl.

Dasameening, or Damaskesimg, is a name which is given (I) to the watered or stristed structure seen in certain aworiblades and other weaprona, and (2) to the ornamental ibcrastatios with gold and silver of aleel and imus surfacen. The terna in both ite spplications origiantes from the city of Danisacus, whence the crusulen brought into Europe swords and ather weapone of retokeksble atrength, elanticity, snd keensme of edje, the sarfaces of which were beastifully stristed with waved dark and light lines. The hilts of sach Weapons, and the whole surface of defecsive armour from the same suyrce were in many cases elaborately omatiented with isernated gold, and benoo one term came to be appliod to the peculiar structure of the peetal, and to tie orssmental trestiment. Is in promisble that even in the cruanders timen the making of the sorsalled Damancua Wailes and the art of Jamancening were Persinn, and to thit day they remain clasracteristie of that country, the practice having spread thepee ensward into Indin, while the Persisns still supply the Turks on the weat with their leat and mont highly ornamensed weapons. The prodection of a watered or desmans cened surface in illontrated by the manninctave of 'Damascas twiat' Jarrels for sporting gana. The metal for the larrels is prepared from rode of iron and ateel, piled alternately and forgeol and welded fegretleer into a siagle molis rud of small sective. Three of these cumpraike rode are ewed in forming a larrel. They sre separately twisted in contrary directions till each han the appearance of n fine threaded ncrew, then thay are welded together into a sulid ribloen, which in its turn is spirnly woned and welded by the efiges in the repuinite length and lare of harrel are formeal. The reaalt of the intertwiating of line laninas of ateel and iron is a beautifully damaicened surfnce which shows itwiff whin the liarrel has been trented with acid. The incrustation of arras, armour, and other objects of ateel and iron with gold, and mure rarcly, with ailver, is very extenaively practived in the Nurthwet Proviners of India. so well as in Pernia In Inslis it is known as Kuft work or Kuftgari. The dexign to le worknel out is sneterent in the notal, inte this the gold ar silver wire is loid, and the scarp edge is Geaten dowa ritb os brumer, thu: securiag the wire in itn position. Another mation emnsistn in veratching the surfoce, and beatiog inter the neratched line the gold it silyer wire, nfter which the whole surfice is bum bed to remove the inciaions.

Damping off, in Horticalt e_{i} the death of plants from excese of mointure in the noil and atmusphere Young soedting in stoves and hotbeds are particularly linble to it. Although the cause is sufficiensly obrious, provention is not always enay; not orily becown some plants sore very sensitive sa to moisture, but sla bocause the necessity of keoping sanahee cloeed on sesount of temperature often stands in the way of the ventiletion which wnulh otherwise be deairsble, snd it is whem a moist atmesphere stagpatee sroond them, and the semperature is not very low, that plants are most liable to damp off.

Dechination Needle, or Dearusionernit. The magneetic merivian paviong through any place on the earth's surface is a vertical plane whose direption is that inc whirli a magnetic prealle, frep dirertina is mone atoot a vertical asis, coimest ta rest tinder the toffineper of the enith mangnetir force. In general, the sazgnetic and teengraplued (or astronmonivical) meridian are not coimcitent ; the angie hetween is terniod the nagroetic dechations, or

I in naminal phorsealery) the variation. It in east of weat acoconlige ae the inagiovtic io pant or wost

 tabilit tire two tiecomary elennent--ybz the thece tivns, it the placy if thocrembions, of the swo

 the tope of which resth the axis of the telencope T. A sradiasted are, A. in fixed to the latetem of one of the "prighta, and the angle of elevation of the telenope is rathed by the vernier on the orm E,
 hatig Lle leyel I. for miljusting the inatrament prectisus to making ain ofvervation. Inshle the compass bax is anothor itraduntesl sirsle F, the hine joinitis the xerm puinta if which in parnalel to the sxis of the telcucenif. The compun-lars sant tele. scope thas mave mund together im an axio puaigg throught the centre of the aximuthat eircle. When an oleservation in miule, the inntriment in firut of all lexelles. and the telesonpe ilireoted to a star which if either on the antronomiont meridian or whose pasition with reapect to it is known. The reading of the inner eirele then gives the slecliostian at once, in the former ease; If the latter-i.e. it she ntar loe not on the merridian, the reading of the inner circle las to lee eorrected by adding or suldractions, an thie cane many be, the position of Ghe atar for molmuth, in corler to give the declina. tion. In order fo shivinte termor sue to the noncoincidence of the mogmetic and gosmetric axem of the needle, a aceunil rrasiong is takien with the face of thas oesille reveruen : thie mentr of the two read ioges is laken tas the crise fectinatiom.
It in fouml, lawever, that this instrament only gives realld mpproximately correct, and har in conseqnenen lochn supuraeded in olservatories and magrmetic sarveys by a form of the unifflar magnet. umeter. For an mecrmint of the determination of dectination liy thin latter ibstriment; mee MaranetoMkTER. Detaile ae to the valur and secular change of the declination at different placen on the earth'r surfiace will he found under MAosetism.

Decoction, she terin applied in pharmncy to the solution procured by hoiling an organic substrnce with wrfer.

Becolorim'eter, an instroment for determin ing the power of portions of lone-black or animal charcoml to ahetrnct colouring matter. See ChaR50 At .

Decomposition in the rather comprehensive uerm applied to the breaking up of complex sub. stances, of subatances of delicate stability, into others which are lese complex or more atable. Such lreaking app is very familiar in many chenical changes, and bacy result frons increase of tempera. ture, the action of ligbt, the action of ferments and tnierv-nganisms, and so on. The ordinary process of aleobolic fermentation is in good exaniple of
decomposition, which takes place in the presence of, and is dependent upon, the life and growth of yeast in the saccharine aolution. Similarly the oxidntion of nitrogenous organic matters with formation of nitrates, if not dependent upon, is greatly accelerated by the preseace of a mieroorganism.
The terni deconppasition is constantly applied in chemistry to the changes which compounds andergo in the moat varied sircumstances when subjected to change of comulitions: See also Chemstry, Fermentation Putbefaction.

Defagration is the terar applied to the rapid combustion of ignited ehareoal when a nitrate (such tas nitrate of potash) or a chlorate (such as chlorate of potanh) is thrown thereon. As chlorates do not occur maturally, it follows that deflagration with a natural salt indicates an nitrste, ani if the deflsgration be aceompanied by it viblet flame, it is charActeristic of aitrate of potash (ordinary nitre or saltpetre): and if by a pirnog yellow flame, is is indicative of nitrate of modis (cubical nitre).

Deliquescence in the term applied to the property which certain tulatances have of absarbmg moistare from the air, and beconning lamp, and even runaing inte Iiquid. Casatic potash, and the chloriden of calcoum and magnesium, are examples of subetances which indergo this changes.
Delirinm is is condition in which there is mervervion of the mental peocessos. In its poential natore thiksymptam is ansloggots to insanity f iopanity is, in short, a similar atate, unaccompanied by the obvfous ranallionn which are the causes of letieiam.
In licalth the mental processes corrospond io present nemiory impressions of to the raemary of those which are past, but in itelirinm thin eorreaponidence ceases, and the reasto of cerebral activity beat $s u$ trate relation to reality. De Lirium has theer well known mental phenomena, any or all of which may be present in any iodividana instance. The mimi maty be pasaesied by false ideas or dedurtans a seanory impresaions aay produce lalas pereeptions of illiments; or there may be fielicians perceptions or Aulfucimatians, without the preschon of any nenuory iurpresaims.

The mare comroon caunay of steliriom are four. (i) Local slineisen of the firain or to pavelopes, on in the cave of influmastins of the liningeteres or in the (2) Toxie sulatandra efrestatiog in the blond, which may have their origil within the syutam, as in the rebention of waste praluete during the final stigene of kidnoy disenee, of may be introduded from without, anch as the speccifie poinonis of the acute infortinus slineases, or active nubatascen like alonhos. (9) High burly tempers. tares, whielt may oecar apart from any blowil poison in a focal inflamimation of yome distant ofgan. (4) luantibit, which may ufleo be seen in the coneliting jerinds of wasting liseases.

Dellrium Tremens is the term enployed to denote one of the meste phasea ariaing in the course of chronio Alenholiam (quy) It is as a rule pre. eipitated by a perical of indulgencer in exemsive drinking, and shows itself at first in the form of genera! nimeasinene and restlessmess during the day, followed by sleeplesanses, ur thisturhed sliep with ilintressing dreams, at night. These mitial symptoma asher io the sage of delirinm, always acomapanied by comstant moseulat tremors. The defirium almoat invariably presente the three main varieties of mental diaturbance-illasions, hallacinations, and delusions-to which reference han been mide in the preceilimg article. An attack generally liast fubut three days, but it may exist for a perind of six or seven days, and, so far tha in at present known, there is no means of shortening ite duration. The chief danger lier in the great tendency to exhaustion which the diaease shows. One attack appears to bave a power of predispoting the individual who has suffered from it to sipbsequent recurrence. The affection frequently induces some degree of mental weakness, and this is more likely to be the esset in those who belong to families which lave a hereditary sendency to insanity, As above nientioned, no mesns is known of cutting nhort an attack, and the employment of druga in this disesse is of at leant doubtiful utility. The only rational treatment consists in the use of every expedient which can tend to austain the patient, and avert the great tendency to exhanstion of the vital centres.

Bemand and Supply, In Political Econony demand has reference to the quantity of goods asked for in the market, and supply has reference to the quantity of goons offered. The laws of temanal and supply misy be thus stated : when
the demand exceeds the sapply, competition grows atronger among the buyers, and prices rise, and when the demand falls short of the supply, conspetition frowx stromerer among the willepx, and prices fall; or thus, falling prices ueual to leven the supply and increave the demand, while rising prices tend te increase the supply and lessen the denaand. A rise in prices teods to encourage production, while a fall in prices tends to discoutare it. Conversely, eomsunptiou is promoted by falling sand lessened loy riviag prices. The resaft in that demand and supply continually senal to equililorium. Under mueh a system it is assamed that buyers and sellern or producen and conswaters are free Lo fix their own prices In other words, the laws of supply and demand prevait under a syatern of free combetition.
Demalcents (Lat, domsicro, 'I soften'), Hand and lubsicating liquid sulatatices, taken by the mouth, for the parpoes of soothing irritation of the macona membranes, and protnoting the dilution of the blond, anal the increnase of the secretiona. Demalcents are chiefly entrposed of Starch ($q, v.)_{1}$ or Gum ($\mathrm{q} \cdot \mathrm{v}_{\mathrm{V}}$), or of sulstances containing these, dissolved in water; sometimes aboo of oily inatters, of the white of eghes, swal other Allumpinous or gelatinous substances largely diluted. The decoetion of althoss, er marab-mallow, ie a favourite form of detanioent.

Dengue, or Bricak- hons; Firver, almo called Dasidy and BUCKKT FEYER, is s dimense firet certainly known to have occurred in 1779.80 in Epypt, parte of the Eart Inctio, and prohably in Pbilnilelphia sinere that tise there have been great epidenion in Inalia and Further India (182425). America and Wet Julirs (1526-28) Sosthern United Stater (1NS0), Enct Africn, Aralan, Indin, and China ($1870-73$), besiles nulacrotes minor outbreske. The disesier socars almost excluwively is the tropies, in het weather, and in towns eithet sear the sea coant or on large rivers. It is characterised by sudden ohweh, with high fever, and ex. tremely violent pains in the bones, muscien, and jointe : by a remimsion, osundly st the ebd of woe or two days, doring whieh the patient feeln alrooet well, sad affer noe or twa day more by a second period of fever, lene ievere than the finst, which lasta for two or three days. Esch sttack of lever in often accompanied by a well-marked skiseruption. Though often followed by zuch eme: ciation and loes of strength, it is very rarely fatal or succeeded ly periaus sffer-effects. It ocetirs almoet slways in well-marked ejudenaice; but obervem are mech divided sipon the question whiether it is commanicable directly frow the sick to the healthy. See Hinch, Grographical and Hutorical Pathology, vol. 1.

Deodorlsers are chemical suletaners em ployed for the parpoise of abasibing or deatroying the odoriferona pinciples evnlved especially from decomposing anitroal and vegetable tentter, Thus, freshly burtied clarcoal is a puwerful deodoriser because it absorla sulphurnos neid jas, sannonis. and other odarese paser. They belong to the elasses of solatances Knewn as Antiesptice (g.v.) and Disinfectants ($\%, \sigma_{2}$).

Deoxidation is the term applied to the process of withlrairing the Gogyoen frum e evonpound, as in the reduction of the native pernxide of irom is the smelting-furnaces to the enndition of metallie iron. On the small scale, in experimental inquiries, the proerst of deoxsdation may be carriesl ni before the Blowpipe (q, v). Where the inner or relsicing fiame is essentially a deoxflising one.

Dephlogisticated Air. Soe PhLogiston.
Depilatories iLat, digilo, ' 1 pull out the hafr') are chemical agents employed for removing superfluoun hair from the skin. They were extensively uned by the ancients, but are now rentricted in their employment to the face, and to the removal of the hair from the scalp in the treatment of certain diseases. They should only be used under medical salviet.

Desiccants, in Melicine, are substances with
antringent properties, which are serviceable in checking secretion aph exhalation.
Desiccation is the precess of arying liy the raployznent of hont, dry air, of chemical ngents which have on attinity for water. Examples of the class of desircernts or drying subetances are freed chloride of caleiun, quicklime, fused carlanate of potasls, and sil of vitriol. The latter is employed by being placed in a separate vessel near the salstance to be stried, and under a bell jar,

Not a few of the lower animato are said to he able th endure drying up withont loeing the power of recovery. Sosue of the Protozoa form protective sheaths on cysts from which they emerge on the return of moisture. Nematodes or thread-worms (prate-tels) liave been known to revive after fourtien years' slesiccution, lout triale beyond this limit were unasceessful. With those minimals the interesting fact has been noticed that the tonger the period of desiccation, the longer the time rexuiral for recovery, Rotifers are alea dtscribed an reviviag after prolonged and thorough deniecation, but experineenta have shown that, in the case in question at least, only the associated egga retained their life. The egign rapidlly developed on the return of moisture, but the adalt ogzanisus proved to be really iled. The bear-anisanleules or Tardigrades hove been thoronghly slesiccated and even lieated to a ligh temperature without, it is said, losing power of retrivification. A state of tatent Iffe is also assumed in enasequence of cold, absence of stimu Tus. Sreis esil a relative quiescence decups nata rally in thbernation, or fathologically in trance, Among the lower planta, renting spores, \&e, may survive desiecation; and, among the higher, needn are well knowa to have a similar power.

Desmids (Desmidear) are a group of conjugnte Alge (sice ALos) related to dintomin. Int rexlily distinguished from thrne by their hright green insteal of browniah yellow colour, their celhiloee instead of silliafled walle, and their genersi form, which in untially more or len deeply conntricted in the middle lise. An with diatomn the lower formn are, however, suited in long chains, wo indicating a relstionnhip to the lower and filamentous Conjn: gatie (Spirogyra, \&e.). About four hundred epecien and ill defined. All are inhabitants of freah water, but chielly occur in the ntanding pools of heathis and pent-momoc. They rarely form large aggregntipns; but namblly nocur astocibted with filtaneth ans uled, tiatanac, atal ofles forme of microsengio Fite. Oha acconat of the shinglas lusaty of their Eetsenal fotin they are miteh jmized lis the sumern
 set akis th that of dtatars, the two halvis inf the oull leing passest apart at the mealing custriment

by the development of two new budhalves to complete them (see fig.), two new desninds leing thus gradually formed, which become na symmetrical as the original one, yet with the two apparently similar halves of very unequal age. Comjogation also occurs, with formation of a reating spore; the cyst of which may have peculiar markings or hook-like prominences.

Dextrine (syn. 'British gam,' torrebed日tach ${ }^{2}$). When itareb is carefully heated ta $3 \mathrm{~B}^{\circ}$ $\left(200^{\circ} \mathrm{C}\right.$.), or watil vapotirs arise from it, it beconies soluble in cold.and hot water, and loses its gelatinous character; it ulan has the property, When viewed by polarised Fight, of turning the plane of polarishtion to the right; bence its name It is often used as a substitute for cum arabice in the froceayes of ealicu-printing, and for stiffening different goods : it is also applied to the back of posiage-stranps, Ies value ass a siabstitate for gum consista in its leing more tlexible and leso leittle whea dry than that aubiance. Slateb may be converted into dextrine by the long euntiaued action of dilute acids at a high temperature + also by the netion of Diastase ($4 . v$.) Dextrine and starch are isomeric both being composed of $\mathrm{C}_{4} \mathrm{H}_{65} \mathrm{O}_{5}$; bet dextrine may be distinguisfied from the latter body by ita not being rendered blac by iodine, which gives with it in dingy purple tint.

Binbe'tes (Gn, lit, 'a syphon,' from diabaind, 'I go or flow throughr'), \& disorder of the genersi kyatern, of which the principal symptom is a greatly increasist How af arine. Disbetes in of two ilistinet kinde: the one, diabefes impipifut, is is mere exaggeration of the whter excreting function of the kidneyn, sucompanied by extreme thims, and herice enlled polydysia (Gr., 'excen of thirat') by tome authorisies; the other is a more complex diaorder of the assimilation, consequent on the forinatiom first, and the excretion by the kidneya afterwards, of an enortaoui excess of abimal sugar (see suoar) the sugar being found in exesed not only in the renal excretion, but in the blood. and in nearly all the secretions whicl have been examined. The pathology uf thia dimense, called diahetea meilitus (Lat mal, 'honey'). is very ntmeure, bolwithatanding the nameroos recent physiological remearches which tend to throw light on the developrnent of auger in the animal organ. ism, enpecially in the liver, and whieh must andoubtedly be reginded an hearing on the solution of the problems connected with this diseaser Unhappily, the eure of it in still entirely unknown. except in so far mat it may be controlled or retarded by grod manozemont of the diet, drink, and clothIng The courne of the disease, however, in very different at differest perioda of liff. Before middle age is in wevere, progrenpive, und almoes ipvariably fucal. After that period previsely aimilar nymptomas often appent, eapecially in trouty pernons, hat sere no mand los dangerous, ant no mach more easily controlled, that nuay authorities are tumbilling to plase them in the marne clase as true diabetes. All diabetion are anbject to progreapive emaciation, and they often become nabject to a elaronic disenae of the luogs, clobely resenbling trie tubereular Consumpition (q.v.) ; it it chiefly in warding off thin termination, or anus other more quickly fatal, and in mitigatiog the nymptome of the Inialaily, that the maxlical art can be of aervice.
The first fact otmerved in casm of diabetes is usually tbe incrensed flow of urine, when it becomer mo great an to smonint to a practical inconvenienee , and aluo a conaiderable incresse of the appetite, and an unquenchable shimt, which nurely fail to accompany the disease from the beginning, but often din bot attract atten: tion, ow at least muggest the idees of anything Wrong, till an advancesl atage of the dinorder. When the patient demando medical assiatance he in tisually somewhat thin + the pulee in guiet, the akin cool, the heat of the surface, indeed, habitually rather low and esurily depressed. There is often a complete abuence of perigirations. which givee a peculiar feeling of harshnese to the narface, espercially of the palma of the hande. With these symptoms the first appruaches of pulmotary disease may concur. In the very lant atafes there is sometimes dropay of the feet; and the arine may be nestural in qquuntity, or even diminished For the other charscters of diabetic arine, see Urisp, Diabetic pernons bear excitement nord fatigue, either mental or bodily, extremely badly, and im. prudence in this respect is not unfrequently follawed
by sudden or rapid collapee and death. The treatment consista mainly in removing from the diet, as everything which easily turns to the formation of animal sugar in the syetem, especially all excess of farinaceous food. The complete aupprestion of sugar-forming food, however, at recommended long Ago by Rollo, hat not been found pomible in prac-
tice in the majority of cases. Brend composed of gluten of wheas without starch, or bran-cakes buked with eggos, or biscuits maile of almonds, have leen strongly reenmmended ; and in must of the great capitals, se Londos and Paris, bakers may be found whe regularly furnish lread suitable for this us. fortunate claas of sulferers; indeed, any intelligent haker who will take the trouble may, under medical direction, be got to mgnufictore euch bread when required ; of it may le orodered in the form of cakea and biscuito, in quantities at a time, from Londan houser, It is of importance, bowever, thas it be ascertained that the lreal or flruar napplied is reslly suitable; for Ior Pavy, one of the ehief sathrrities on this disease, uncertained that some of the no-ealled foods for dialsotion cuntain litule lese starch than ordinary bread Saccharin (q, v,) has lately been of groat nervice ta dinhetion, as it supplies the flavour of sugar without ite objectionable propertios Medicipen proper should be aned only ander the sdviee of the physician. There is no sperific, and the unguanded use of atrong remedies is to be cundenmed. Of all medicines that have leen used, however, upiam and anorphia have been lound miont frequently unetal in telayng the progrese of the tharse Fisnuel should be wors next the akin, sad the langoid fasction of the cataneous perrpiration sideal by the warm bath, enpocially, perhay=, the ropour liathe. R. that forro known an the Kusoian listh. The Tapkish bath, which atmitraita a large quantily of water through tie k k in , is lon aupitable to suels esarex
Dlagrests (Gr., fronx dia, 'thrmight' asal grien's. knowledge'), in Medicine, the Aixcriminatus nt diseseses. It Inclesler the stady of all the vital phenomurna of diwedaes, and slog of cheir appear ances after death, in to far as this rso aud Heeir discuvery during the life of the patiens. It is usuat to speak of ratianal or ployiofogical Aliagnonis, or Aingnoeds by nymploms.-ie changer chiofly fons tional, olnerved hy clem putient; apal of plysical diagnonid, or diagnoms loy signo-ie. pligective pluenumpa appreciable by che senses of thic oberver. The lacter methed of diagnonis liat been mach enlaried in scope sad incravest is importance ly the moders taethods in ruedhase of Auscultation (q, K.) and I'roceuzion (q.v.L. and alm by the grest advances male in physiological chem istry, and by the use of the tacrisevye Skill in dlagnomis is one of the higheat gifte of the phys cian, and nothing distingoriafies the man of lonk experience frum the tyro mete than this amerring

Dial and Dialling. A win-dinal' in an inatra. ment for membaring titoe loy weans of the motion if the sun'e shadow rat by a stite erected on its marface it is out instrument of very greas satighity. and befure elucks and watolies lecaute comphom, it win in geaeral nar an a Lime-keeper. Some old aun-dinty are very elalorste-eg. that at bilasuas Caatle, Forfarahire ; and many lear quasint motionen (de. Leimere Howir, 1870. F. 413 ; and Mry Gatty's
 then sis important biranch of snathenastical studly? now it is mare an olbject of earivaity than utility. A dial conaiate of twe parts-the stive of emomors, usually the elige of a plate at uental, always mose parallel to the earth; Axio, and pointing tewnaris the borth poie; and the shal ploner, which mas be of any hard solmtance, aud on which are marked the directions of the shondow for the seteral homin of the day, their lalves, quarters, \&c. Dials receive various names, scounding , wiostly to the positions which they are comatructed to vocupy . When the dial plsne is on the piaise of the horizin, the dial is esilled a buritontal dial; whem jerpendieviar ta that plase, a vertical disal. An equinoctial dial is one whose plane is parallel to the equinoctial plane The south dial, north dial, east dial, west dial, polar dial, declining dial, are nanuel from the position of the dial-plane The cylindrical ilial is n diel drswn on the eurvel surfince of a cylinder. The ring dial is an ingenions sniall portable diel, but rather a carious toy thans a philosophical inatrument. A urght or moetursal dial it ath instrument for showing the liour of the night by the shosdow of the moon or stars. Moon dials may be canstructed relative to the moon's nootion; of the bour miny le frond by the moon's shadow on a sun-dial ${ }^{7}$ Bet because of the irregularity of the moon's motion, due to its varying speed at different parts of its orbit, the time so found is sabject to cossiderable
error.
Dhallagg- Tlae sfote of ut dial beime parmblet to the carth's akis, those faumitiar with splievical trigo aonietry will readily see that the problem of constructing is dial resolves inself into that of ascor. uaining where the hour liuen cut a given circle, with A view we the graduation of the dial plane. Soppoue Pep (6g. 1) a losliow and transparent spheres as of glass, we represent the pareli fort sulifigas the equater divaded tates 24 equal patis ley the 1000
 gives place, way Lamilos (see flerkizont as tho poibt ce. If the laur of twalve lee markish at thet oquator, bath oti the Lutser meritiats aml that opposite it, anil all the rest of the hours if oridec os the other meridians, those meridians will he the
 ter move round the enoth in 24 lomer, the will jows from ove vieridian to abother in one hour. Them, if the ephere has an opagoe axis, the Hop, cenaime. inge in the pwise Pand of the Abyincy if tho- axi= would falt, it the eaurse of the ilay, of everyy juttieafar meridian and hour, as the zan mund ta the plane of the apjusite meridiens and wemble theu show the time at Jonslon, and at all other [fiacen
 were eat through the middle by a plune AbM), it the rational horizon of lendon, and if atraight linee were drawn from the centre, Es of the plane ba the points where ine circomieresey in eat loy the hour-cirrlen of the mplaere, thome linem wouht foe the lans.lines of a Jorizontal dial for Londous for 1 lom
 hour line of the liat, when it fetl upon the like dowt cipcle of the mphers. Sitailarly, 31 we suģume the

Fer 1.
spbere cut by any ather plane facing the meridian the hasespircles of the apliere will ent the isl fe of
 mont be grawn etraight lom the centref sul the axie of the sphere will rint a thulow on these tirees at the reapective lounc. The like wall hod of ithy plame, whether it face the meridian or Hot, pmotiled it do not tribgide with it, ar do fote enincide witlof pisae thomagh the pules, and purpermimolor to llas plane of the equator. In the latter caue, the asia

would have no elevation above the plane of the dial; in the former, the shasdow would not move eirecilariy.
The wriversal diolling cylinder, an invention of Ferguson's, is represented in fig. 2. ABCD is a plars cylindrieal tithe, climed at Joth ends with brusp plates, on the centres of which at wire or axis, EFC, is fixed. The tube is either fixed to a horizontal board, H , at an angle equal to the latitade of the place, or moves on a joint, so that it may be elevated till ite axis is paralfel to the earth's at any latitude. The 24 hour lines are drawn on the out: side of the glinst, equidistant from one another, and paralle! to the axis. The XII next B stands for midnight; the XII next the boand, for noon. When the axis is adjusted for the latitude, and the board levelled, with the lime HN on the meridian, anl the end tawards the north, the axis EFG, when the sun shines, will serve as atile, and cast a finalow on the hour of the day unong the parsllel looar-lines. An the plate ADr is parallel to the equator, and EFG perpendicular to it, right lines drawn from the centre to the extrenaties of the paratlels will be the hour lines of an equinoctial dial, and the axin will be the stile, A horixantal plate, gy, if put into the tube, with linen drawn from the centre to the soveral juarallels cutting ita edge, will be a horizontal dial for the gives latitude fand nimilarly is vertical plate fronting the tueridian, and touching the tube with ita edge, with Bnes drawn from its centre to the parallels, will be a vertical south dial, the nxis of the instrument in both casea nerving for the stille; and similarly for any other plate placed in the cylinder. If inntead of being of glans, the cylinder were of wood, any of these dials night be obtained from is by simply outhing it in the planes of the plates, and drawing the lines on the surface of the wection.

Dialling notnetimes ocours is a term for gurveyigy by help if a compius with sights, such as in calle a 'miner'a dial,' and in aned enpecially in underground ourveyn ind mine eurveying-

Blastase is in peculiar ferment devaloped during the germination of all seeda. An impure anlation of dimatase may bo procured by adding one part of hat water to two parte of ground malt (see Bekn), or freohly germinated barley, and, after otanding for a nhort time, ntraining through as eloth. The proportion of djastase in malt in not more than functiona, Thas diatives hise is powerfal netion upon starch, and at a temperature of $150^{\circ} \mathrm{F}$. one part is considered powerful enough to change 8000 porte of atareh inte dextriae, and then intomaltame. a variety of nugar. When obtained meparately, diantase in is whits rusteles mulataber, oolable is water and in weak pleobil, and having no action on gua or nugar. A nimilar principle in found in the saliva of animain, the action of which on atarch in identical with sliat of sliachace. When bread is minaticated, the saliva is rupidly secreted, and the soinul dingtnae converth the atarch intosugar.

Dia'thestis (it. did, "thromgh," ant mithrme. I) place or arratase'), a Greel wuil simbifying o dixpusition be arramgment, and applial hy ilie obl mealicat anthoss to the pereliaposimen or constita. tion of the honly which remilet it protue to certain itfeaseil thater Iby mernt writers the term of ifypied to the genicral comatitutionisl temdency of an inlivistral, to indipale not mercly the elawe nf disonses to which be is mast likely to ber liathe, bist aleus in muny enses the manner in which hif normal fotrection=, botis bordily anal mental. we corried on and is thes opposed to Cachexia (9, tr) an unlecalthy comslition esssociated with actual diseave. Thontith the stods of diatheris ryart frotis existhy; dinesase is very apt to learl to overtodibement and the pursuit of intangible alistrae tions, yet a preper apprecintion ot a person's oontritutionul proclivities or aliathesis often eanaldes a ruedical man to solfixe him how to regnlate bis life and Jabites to tho beet islrantage- what to alo wad what to newid-and may furuesh insportant mididance as to his treathent in disense. The diathesus mast usually recoppisaxl are the staguine, the toryons or nesuratic, the hitions, the Ignpphatic,
 biledi varicties are also described by some writers.

Diatoms (Distoanzeere) are at grouy of alge which, on acconant of their microseapie interest and geological importanee, have aequired an un-
usual share of seientifie and even poprular nttention. They were divemered by Leepwenhoek is 1702 , and tineir movements by 0 . P. Maller eighty years later ; their thorumbly investigation, however, has only heorar passilile with the development of the comipound mictereope.

The reader whe wislies to view the diatoms other thasi as mere micrownamie murvels must begin with a elpar grosp of the structare same misle of life of the filamenton conjugute nfger, such nas Syirogyro, and mert elverve that of those hifher members of the groun which we know as
 forms nasierstoed, let hink next impribe in desmid (in which the claracteri-tie divivare of the unicellalar leuiv intes laglves is distitucte hat poot tant slecpely markei) to (leconn somewhat whegmally developeal : bext bet these Ise jeverel topether to that the latieer liall slider a firzle way wrer the pmiller, minel like tlue Thil of a canister of the halver of a pill-hoss Let the twn lialves on sluells of the cell wall ters become strunctr siliefifi-d. the cellathow onily remaining unalremal and flexIVle mand sla sarrow 'ginlte haul' contrecting thenw + best Iet varialion arise in the greneral daspe

 unswemetically eirreal : firally, let the -iliarinishells farwaic coverol wilh tlem دasel delicute striations anal maskings, asel these characteriai, cally varied, hoc rasly frome givap to groupl last frome sperios to ejecies. A gelationas esvelope tuay alos le develoyed, or ihis wayy le sectetesl it nase pale ably, furming is stalis

The liviaf fretuplarm slows lras variation than might perliape lave leem expecteals it lines die pilictous sleell, leaving is hare contral sap-ravity, nften traveried ly protapdamio slaninemts Yery scammundy, lacwever, thio io diviles ly a larze central tuan of purlogiann urnally cobiainine the mueless, while shinilar accomulathore many lo formed

 Toistinai tuit

at the endh. The enlosisise nualifer may oceur in mimite eranaleo, or low callectenl inte tine of two large epoloplovese-plate: " it somasiste of chlore. plyyl, naakent loy a elosely alliel yellow pitgucat
 ptoently peesent, citloc in suinste racuule sq collectol miso a siugle large ilrop

The nueclnsetons of the feculiar crepping or rather gliding movenients lou logy lallied invest. cators: theaf, lowever, are not ithe io diflusion enrrento as same leare buintaised, por co the agenes of any omolinary ellia or peendopodis, but seem to lee effectet low meane of a lvecominior hand of protoplami shimi is mal io In puatroded through is lamgitualinas shit is the sarface nit the sifinerus sliell- / nee ligs If.

The mande of sublriplication is priasarily by divaion, and is eflected an the same pruaciple as in Desnids (4-5.). Thas the two haloes of the liatoni are hot only of maequal ares, lat since the new lasif is alwais formed withir ther pitroisus one, is enotinumas dinuination uf sipe taker plare, At a certain linsit, liwwever, divisime sioves, and rejovessescence may necear, sith fommation of a nesting spoure; mone frequently, hosever, this is precetted by conjugation is in termids, thaugh sometinue- complete union many not take place. The resultant 'amxnopore' has a cobtinupus cella-
lone oxat, butt developss within it, by rejovenescepice. A fwo sheplen diatom of the largest sixe, whirl insties cos alivile in turn.

Of the 20060 species. 400 are freslowater, the rensainaler sarine. Their alistrilation is ubiqnithas, and the gemerat nad even spocies seem little dryasulent upon temperatore or elimate, many lowitg aggarently ensmopolite, uul same having lasen slesctiluel as necerribg in thacier water, vet alow in lug rprings, Tleir minute sixe and resistAhice to drging favour their sionibution in the form of Jont: hence the calcination of the flust which falle upon ships in mid ocean has been shown to yield an sppreciable dintom reaidue. Every soil which is overllowed teems with them, notably, therefore, that of Egypt; larpour mud often containa one-fourth to one,half its volume of diatom thells, while in many parts of the world there occur strata of purely diatomaceous origin, which are frequently of vasi arei and considerable thickness, These are in all states of preaervation and harinens, from the loose Bergmehl of Siberia and Lapland (which still contains so much undeconposed organic matier as to be mixed with foor in timen of scarcity) to bmilding rtome, and even the extremely hard proliahing slaten of Tripoli. Diatomaceous deposits wers fonind in Skye in is86. The diaformite may be waed for making dyniunite, siliopons glazed peints, steam-pipe canings, Sce. Diatoran live in enormons abondance at the marface of the nea in cold, temperate, and arctic latituden, and the mud of the ses-bottom is henoe very Inrgely cornpoped of the shells of dead dintome, which are inlling from the aurface in a gentle but unconeing rein.

Die-sinling, the art of engraving the die or stanp uned for atriking the impression on coins and medals, and for rtamping thin plates of nietal into various shapes. The method of sinking the dies tseal for cevins or medals will nerve to illantrate the generat thethod of dievinklig. Suppose the coin to lee of the aize of a ahilling: a cylindrical piece of earefully selected steel, about three or four inches in length, asd two is dianaeter, is prepared lyy slightly rounding one end of the cylinder, then lorning and smoothing upon the middle of this a fiat faoe equal to thic nize of the ooin. This blank die, which in oarefutly soltened by the prooems of Annealing (g.v.) in then engravel with the device of the coin in jotaglio. This is a very delicate and artintic operation, and is effected hy a great oumber of careful touehen wich nmall and very bard tteel tools. The face of the die in now protected with a thin coating of lampblack and linseed-oil, and then placed with it face downwards in a cracilite contaioing anitanl clancoal. In this posision it is raised to a cherry-red heat, then taken out, and hanlened by being planged into water, When properly tempered, it in in in state to be used for otamping the coin ; but dien of enperior workmanship, from which many ismprossions are required, are not thons direotly atweal, as the expense of engraving is very great, and the riak of breakage considerable. This tirst engraved slie, ealled the matrix, in therefore renerved only for making other dies. An iropresaion in relief is made from this matrix on a manall block of moft ateel, which is ealled the puncleon f this in retunched and hardened, and from it the dies directly used for atriking the coins or medale are impresked. When the engraving th not very costly, a small number of impressiona re. quired, or a soft metal in to lie atamped, an in livery buttona, for exanple, the work is stamped directly from the engraved lie or matrix. See MINT,
Die-engraving in a very ancient art, and was per. hap first susgented by the closely allied art of engraving gems. Notwithstanding the great number of arcient Greck owins which have been pre nerved, it is atsted by Mr R. S. Poole, of the British Museum, that only one of the many dien which were used for these has ever been found, or at least ouly one believed to be of undoubted eathenticity. The Greek eoins atruek leetween the yenrs 415 nad 336 R,C. show that the art of engraving dies had then reached the highest point of excellence which it ever attained either in ancient or modern times. As works of art, the Italian medisls of the 15 th and 16 th centuries come next in maerit to Greek coins, but none of these of the 15 th, and only the smaller sized ones of the 16th centary time were struck from dies. All the others were cast either from wax modela or from patterns made in other materials. The art of cutting dies.
in the comparatively deep intaglio required for medals, consequently dates from the beginning of the 16 th century. Since then, or soon sfter it, Germany, France, Russia, and England, as well as Italy, have all had many more or less famous dieengravers.
The engraving of dien for medala is perhaps that branch of the sit which gives the greatest scope for artistic skill, although the work on thoee required for coins is nearly identical in its character. Com. parstively few dies of new design are, however, required for coins, while many hundreds of medal dies are annually made in England. The medals ntruck from these are used for such purposes as awards at exhibitions, callegen, and schools; for prizes at varioua games, and in commemoration of varioun eventa. Copper, bronze, and tin are the metala moat commonly employed for medals, the copper being uaually "bronzed' on the surface. A copper medal with a hend in moderately high relief requires half a dozen blows in the trew-press to bring up a sharp impression ; but eome in very bold relief require to be struck with as many as thirty blowa The medal requirea to le frequently annesled during the proceus. Coina are finished at one blow, ao that the devjees apon them ard only in slight velief. When a coln or a medal in being struck, a ateel collar, mecurately fitted to the die, is used to prevent the metal from spreading.
Dies hava heen extensively applied in Biraning: ham and other places to the manufacture of many kinds of objecta to olseet-metal. Thene are of all sizen, from thase required for parts of jowelry up to dien weighing more than a ton: Large ind heavy dies are, however, cust, and only in some casea finished with the graver-thoes for atch articlea as curtain-pole and cornice ornamenta being amiong the largent kinds worked up and finshed with the die-ciatter's coola. Dies have recently been used is America in the alamping or preasing of aotjd piscea of wood into lion'n heads, rowetteo, and other urnsmente, is high reliel, to imitate wood-carving. By the same procese similar ornsniente, in bai-reliel, are innde in pleces of wood formed of ieveral layern of veneers.

Difrusion. The particles of all material bodies, except such iut may be totally devoid of heat, are in rapid motion. In the case of salid bodies the excursiona of any one particle are limited to as small apece; but in 目uids in partiele may move mare or leni freely throughout the whole space occupied. This internixtore of moteculee may occar ahso when different fuaida are placed in contact with each other, lont it may be provented by the existence of tension at the common aurface (bee Surface.tensios and Capithabity). When it doce occur, the fluids are asid to diyfoat into esach other.

Dififusion of Liquids. - The diffusion of dissolved salto may obviouthly be considered under this
Leading. The phenomenon may be convenienty lieading. The phenomenon may be conveniently studied by introducing a atrong solation of some bighly-coloured malt, such as bichromate of potash, into the bottom of a tall glasa oylinder nearly filled with water. The rata of diffuion varien with the natare of the liquida, Gralusn was the firat to investigate the atabject carefully. He filled a number of similar glave vemela with solationa of different malts. The mouths of these yesaela vere carefully ground no that they could be cloeed by tmeans of glans plales. The different vessels were then placed in equal glasa jare, and covered with water to a definite extent. Next the glans covers were cautionely withdrawn, and the difusion was allowed to go on for a certain time. The rate st Which each liquid diffused wes thas obtained. Graham found that, for any one solution, the rate is proportional to the gradient of concentrationi.e. to the rate at which the quantity of salt diseolved per unit-volume varies per unit-lepgth. Thus the law regulating difunion of liquids is analogous to that which regulates the conduction of hest in a homogeneous solid. Hence the equations obtained by Fourier in his Theorie de la Chaleur apply to the problem under conaiderstion.
Grahem found also that rise of temperature grestly ineresenen tho effect. He divided sabetences into two clesses, Colloids and Crystalloids, the members of the first clasa diffusing very much more slowly thisn those of the second. His investigations have been much estended by more receat. observers employing various methode of observstion.

If two miseible liquide be separsted by a membrabe of blsider or of parchment paper, \&ce, diffusion takes place through the septum at rates which are nsually very different for different liquids. This phenotmenon is known as Osmose ($q \cdot v$.$) It was first ehown by Nollet that, if a$ veasel filled with slcohol be closed by a piece of bladder and placed in water, the diffusjon of the Water is so mach moore rapid than that of the alcohol that the bladder is burst because of the increase of the contente of the vessel which it eloses. By this means the various conntituents of a mixtare of colloial and erystalloid subistances may be separated to any destred extent. The rate at which liquidy diffuse into each other through a eeptum depends greatly apon the molecular action between them and the septam.
Diffurion of Gases,-If two fleaks, each filled with a dilferent jes at a given presaure and tempersture, be placed in commanileation with each other, the gases will be found to interdifuse. The rate of interdiffesion is shown by theory to be nearly is invers propertion to tho square root of the product of the denuities of the two gases, and the experimental reaults are in sccordunce with the theory.
Effurion of Gaser-This is exhilited in the pasaage of o pat into vocumm ander manstant prenaure through a masll opening in a very thin plate otherwher imprecvious to it ${ }^{\text {s }}$ The work done in the pasage of a givea velame of the gos is peopartional to the presanere, and the equivalent kinetic energy is proportional to the prodact of then denaity and the square of the ageed of eflusion. Hence the apeed for a given presenre varied in. veriely wa the square rowt of the density. Grahnm showed that this resolt of theory is closely realised by experiment. He showed, farther, thet when s diserepaney exinte, it is due to the finite thicknens of the plate.

Tranppiration of gases in the teras to the painkge of gaven ander jresuare through a fine capillary tube. This aubject was alpo investigeted by Graham, who foned that the rate of pasespe in not affected by the material of the tabe This neems to indicate that the tole bedomen costed internally with a thin film of gas, so that the opponition to the llow of gre in due to Vinocoity (g.v)

The rates at which differeat gases past through fine unglazed evrthenwere so invernoly ns the aquare roots of thetr deneitias. Hence wo bave a means of separnting gaves the densition of which are difforvat (nof ATHoLYass). If the moptam be made of cooutchoac, which is not porous, the pas sage of gsary alill securs. The goe secme to combine with the matter of the meptam on the onoside, to diffose through it, and festly to be given off on the other stid. The pasasge al some gasos, such as carbonic oxide, throngh hot nat-irnn is soslogous.

Digester, Bavis's, is a strmg bailet will a elouely fittiog corer, is which attiofer of fired tuay he boitel at a logher temprrature than $212^{\circ} 1100^{\circ}$ (i). As its asme mijuths, it was inventod by ISapin (果v.), and a continent forme io thom A atorlave, bigi 1, where the liol vas te lumed rousid lutidet elamgs of earr, sand thrsi be Fentered steans-tiphts. Another form is itiveit in lige 2 , where a portion of the side

Ee renmored to exhitiot the interiur, The bia, \boldsymbol{A}_{4} is fastened dowic loy a screw, B, asal the steans geniersted in ther boiler is allowed to cserape at a stopcoek, C, or loy mising the weighted taltre, D. The increaseal Ifesaure tos which the contents of the boiler are exposed ranses the builing:-point of the
water to rise to 400 ($2040 \quad$ C.), and occhaionally lingher. The digester is of great value as zu means of proparing soups of various kinds, and eovecially In the extruction of gelatin from bones.

Digestion is the change which focul underowen it ancter tos prepare it for the ratrition of the subianal frame, and is casied on in the higher inimals int she Dagestive Systam. In sume of the lewest firing of animial life (stmochas) particles of food may liet drawsi inte the body (which possesses ato spectal organs at any part of its surface), zund may thes be difresteal, In higher ay ganisum, however, pievts have lexame evolved, which serve zusne expecinlly Lue functions of sigestion. Thas in the common sea anehume there is + *inople pouch which lemels inwazals from the centre of the clatior of tolt taclec Inte this fikls and betior fond are lyawn and cligested, while tho nomigented porto are after warsls vohled thwogh the same rpertare by wlios they entered. In sfill higher arganisms, nair hinimelf inclusleal, thin simple ponch is shangol futer it coupplex unal greatly elongated tule which is jomvided wish ane aperture (the month) ly whim fond entenc, and anotlier apertu* (the foils) Lhemish which abiligestel mater lowes the lioty, Tho whole ollbentive byntein in linenl with a suft mem. brase, which is richly supplied with blood+vemele. This membrane in eallnd the thucous membrane, sod from it in secrsted by the glands which it contains a viscid subutance calfod mucua. If the finger be thrunt into the back of the mouth, and the raucous membrane gently seraped, the finid which will adthere to the linger is noen to be vincid it is secreted by the glande of the mputh. Not only maens, bnt many other nubatanoes bseful in digeation are formed by little glandn in the mucome membrane, ea that the whole digentive syatem in bathed daring digention with fluid having a digen. tive action on the frod. In addition there are other glasds, anch ns the nalivary, the liver, and the paacress, which we may look upon in glamia of the munnus membrane which have enormounly developed. To so great an extent have they in creaned in niae that they have got far butaide the digestive aystem, and havs becones nitnated in acigh. boaring parts of the body, only connected with the digentive syatera by their ducts or elongated monthe. Through these duch their secrebions, IVke thint of the mictoserpie murous gland, pouer into the cavity of the thigensive nysters. Ontside the mument cunt wa lave the rabsalar coat, the function of which is to move the foot oawasing in its enaree, and to mix it with the digestive juicen In the monsth, throat, and Dien spper part of the grilleb, the sumbelon which move the food onwards, is it ewallowing, sre, when examined by the microsonpe, seen to be transversely striped, and like other striped brascien their contraction in rapid. In other parta of the digestive syntem, however, the mascular coat consists of amooth muscle, sad like all other

Fig, 1.-Section through Mfoath, Nase, te.:

umooth mascles this cost contracts alowly. On this acoount the food rapidly awallowed pasaes very slowly along the reat of the diguative aystem.

Having shown that the digeative aypatem is a muenmuscalar tabe, wo misy now consider it more in detail. The mouth ($\mathrm{fg} 1, \mathrm{~m}$) is lined with mucous prembrane, and into it is poured the secretion of three paire of salivary glands-the parotids, situated in from of the ear 1 the aulimaxillary, within the angle of the lower jaw ; and the sublingual, quder the tongue, The busuth in moset animinin is provided with bard tisssen-teeth, beaks-for the aubdivinion of food before it in eventlowed. Vegethble feeders, eating tough igrainh, roota, and tibres, have large molar of grinding teeth, while the earnivora bave these same theth modified no an to prouent is custing edge, with which and their pointed conines neeat is tom and cut into piecen, which are then awallowed (aee TEkTH) The mucoss membifane of the meuth is cavered externally by the mosclen of the cheek and lipar. Inta ila cavity the museular tongue projecte. On lowking into tho mouth with a looking-glans, one nees beck inte the throat. The entrance to the thront will he observent to be hounded at the difles hy cwo musentar surtaine passing downwarde abliquely to the nider of the moot of the tangue Thene are termenl the anterine pillars of the fquess. and limbind then. one oh each sile, are masees of lymphoid tuane, whbject th enlargement, called

 troin the thentiar port of the moal moity, 1'rajerithe fome it resiter is is littio vane willet the ovals (iige 1$)$ Phe resity of the phorgos, or the interios of the thems, Io aiother eavity limed Ing impous

 Die phacyne therigh 16ie lasiox, jow oreng if voirct Vons! will insir thrmegh the Gharyas finto the kntlol: meet kh. dirsTOP Chenosh ther jhasens
 und windpipes p colve, rome for
 lecynx. The phaysiox
 lemith te the sligendive volen shet thom ins atialory juctages, Aluant, lles pbarynes m"מmonioatm, as linfon itomenlonel, with Lhe mansls sent abey w/th ther mase one
 latros bive ha thrawilly - bonk intathomouth. fant expulithe is log ther matrita, This chombenticalion in of swallawfog, nod - blan slyrine low sims Iny: iff pois wowed.
 sibl the slisure in effectert chiefly by the elevation of the poft palate, which acta as is valve, The pharynx commanicates is ad-

Fig. 2.- Ithman Alimentary Canal:
 intestine it bipglopus s, simall mieste duet: A, awcenalling oplos: is transverse colini ;) feschacd: Ing eolon: 4, roctam dition with the mid- ithe ens ly the Erintachian rabes, and this may be repdered evident if the mouth and nowe be closed, and is violent expirstory effort made at the seme time. As the preseure of sir within the throat is increassed. the Eustachian tubes which
 Bint it litale wave of air at high pressure is forreal inta ble zushllo vup, castaing it buzzing soumal. Oseaginmally Ute middle ear conmonicates with the extermal wit through eongenital or vopuired upentures in the inemifinna tympasi. In shese euges aboke may tre fropelleal from the throst out uf sune or bothe eare
The grollet of somphagnt (figa. 1, 2, anul 3) is a
bug talice weximg from the ghary Its rmanns coal is lended with very large mucons Ftanplay plicly saiveles a yantity of very vancid numene Ios tutarniar wallo ennlain strijued filares in the agpecr, unalsipol its the toviner part Thie otomach ftoolf is a nereatly dilisesl juart of the
 It mayy ber suill la combish uff two parts, eveds in the

 The Jarge ditatinl portine inta wlich the gullet spens is tevasist entrianc, and the opening the caviliac to userphaneal oppesing. Tho narrow jurt
 and the apeningt the pylaric oferning the whole in lifel with macras memorate whinh, in the eaprty stentach, in thown intes grvjecting fobbe or ruysus lat thate fobls are eflaced when

$V_{\text {id }}$ 2-Xideriona if the Ktatesah:
 f. nadue crage.
 the biggestive jueno of the ntorawails |figs it If the *arfice of the inontoqane ler cramineal with antuag
 lat wees. Tlary tys shan lenan the surfane intur the devper forts al the macans fisentonatie. They are
 platris siskatel in tmacest atendatict lave the

 hy will Iterow the ther lithe solec is lined by

 the ghant thentaguillariva vanafy, which anppily the ghous eith memblowont, evestling it to matho-

 is bovinedilerie whit This is fomend at the cac-

 Lar hatocoles conts, und uvifel in it by a lesse sleficate layes-subnucuis coat - is the muscular coas. This is similar to that of the ned of the alimentary nemil, excege that there ase in aulitions to the
 titutes Tlue ctucilat Eibres are very thick indeot at the pylanie sparture hatwing: is cincular sphiseter hasil, which eantmats anal herge loci. the heel in the Etvinach whtil pastric digeotival放 pearly tomptetos
The fool, riow called the shymer, pooser into the suratl intestine, in teled sonase tos feet lomg This tuba, lesifie the tmaseniar and monerab eots, passuect in coldation an ex. terial onst of lowe filrnas

Fig. 4.
tivsue, covered liy is situghe layer of Ilat equithelial celle Thta rasat is jualomged inter, and lweles to foriat the imeseaters, a metulatie comuecting the intestine with the abduminal walle, which ure fineol with a similar filuseepuithelial cout.
This membrane is called she
pericopeuth, and is ammetinats inflaned (zerrikanitis) ats a fesolt of cold, injuries, \&c. The small intestine is smusewlat arhitrarily slividesi intu Lhree patituin-the upeget (ditonlenumi), the thatdic (јејииин) and the lowes (ilewn). in all paris the mascalar coat is similse to that of the reat of the digestive systeri. The taticous cont cuntaius alande very like the pyloric stansk of

B, carliac thand froms the: midate no the hramab slaimach Tlixientions on wall of the thime lined athltare aver nue leatsis) celle; b, 1 . sane estlo pulatel 6) muchated cals i4 culumatar gibatis-

 ches: of on the stanaeh, catleal Lietarkilin's folliches. Theses, liowever, adely hranch. They vercete the intertinal juice. In the dhat
 plamde called Itronaser' 'Dasse extetal rifht dowa
 cemiong thicir funtlios. In lueth the suscosh and

 nimilar to that fontod in at lymphatic jghad yig. b) These fac cortiest molitury thends, low it sumb
 juwe concerneal in Jligention. Jlobir function is poolablay evelimested with she homed fud the haval

forming oblang patcles about iwo inchon towif, sre eafleul Teyer's patelacs. Thase she ahterted in typhond fever. In malision to she fullieles af Lieberkuhn nad the flands of 15 romnor, thera are twe very impurtant eflandalar ntructmra, the liver and the panerean, whel puar thoir digontive joices inte the small intestine (hige fi). The hile, which is the wecection af tho liver, is fomand condinually
 greatly influeneed by the kimi itaid quantity of foul taken. It jwextion oblof slie liver by the two

Fig. Ci--Section of Lntestinal Mucaus Mentbrane:
 pert of a sulibary glinel; 3 , wimestay tiburn
hepatic dacts, and much of it passess by the eystic duct into the gall blakler, where it is stored up.
From this the bile passes into the common bile duct, which joing the duet of the pancreas, nad the two open into the duoderus by a common sperture. The bile is to be looked upon not only as a digentive juice, but an in drain or channel of excretion, whereby effete and naeless matters are removed from the body. The llow of bile is easily rentrained, as by inflammation of the duet, or the preasence of a tumour preasing on the duct, of a gall-stone, In this case, the bile already formed is reabeorbed with the blood, through the fymphatien, and we have janndice due to akeorption of the colouring matter of the bile. The secretion of bile goee on before birth : the meconium of infante consisting chiefly of biliary matter. The pancreas is very immilar in structure to a aalivary gland. It secretee the pancreatic juice which pouns with the bile into the digestive system. The mucous membrane of the nioall intestine contains, in addition to the atructares already mentioned, little projectionn called villi (6 g . 6). These are mot to amy great extent at least, secretive, but they are important absorbanta. This property they share with the whole of the digestive aystem, through any part of which, and especially through the walla of the stomach and amall intestive, difeeted matiter passen into the aumerons bloow-capillarim which form evarywhere a denee network. The villi are pectaliar, however, for each one containa, in addition to blood-veasels, a amall lymph-veasel or lacteal. Nearly sll the fat sboorbed by the digeative syaten ia taken $0 p$ by the little cells of the vili, and pansen on inta the lecteslo, and thence to the blood (flg. 7). If some nomic acid, which blackens fat, be poured into the intestine of a milk rabbis, killod during active digestion, and if the villi bo exaniined with a asicroecope, shey will be soen to have been blackened, enpecially at thrir ijus, while the rent af the inteatian will have jre reivel its orfluany entour. on forthur examina tioni it will liod iston thate the fist has lowist akam ajy in miems nespie glolation it Lie vofly sogering
the villi, ant that blegy ite yasains in a wasy which in an yot not detmitely pettert, into the cubral lactan.
Thee nemalt inten the in is buther of greal importatice, inst in onder of in the trmeons ment brane is elevaterl, in then "بyuer jart

Y尼, 7. - The Tiet of a Villes Fot glofalen are mproveridetar onet
 thei silber, 1, lifto She omptry
tuptain, lo intu thusverse fold (the valvethe conniventes, ifs, B).
'The anaborbied foot, inixed with the variona gecrefiona we lave mentionsi, new paroks intu the lagge intistite, when fath iligeation and absecjetho mio 01, ilthough to is loas axtent. The latge fotes

Yig 8-Small In testusa distented nlouhol, and Indal ojpeht to Ehow mixtutes.

Fig. 3,-Cectan intluted. driet. and oprest to show the arrangeaterte of the valve:
buminativn af the thenna : 6, a eevel.
 verse eouatructhon piriveeling lusw
 separating tie sunhlf frum the lises atesthe io, the vefulturul sypen ilix of the ate
tine is only 5 feel in length, bat ils girith is marl greaker thas that of the small intestine. It cums thences with the corcum, a alilated part, into which pasace a littla lininl camal (the vermifurtu appen ifix., a laree ami important stracture in same minuak. The foed repsoment (ifiral mintter) in preventent, umbler onliusary circumstances, Iroun jolonip back into the masill intextine, loy a slondle falif of uncons memberane (the ilio-cical valve, fig 9) The large intestine ascenuls on the right side (asceend ing colun), crowass uver to the left sjide (transverse culota), abhl slescrats aggin (Joscemling colun), anal maskes a besul (sigmont Bexare), anil fitally ter. minutes is a sonnevtat enlarged. Foction (rectuni)
The anal ajerture is eloped toy arsecloc, an Internal sphincter of noll-rtripos, abol an external of slriate
 difien from that of the sniall Intestine in coutain ime no vill, of Itruaser glanole Liefrethoulh's athel whitury glainta ave jerpent, lest the agkrgotiva ul
 ramas.

Moomentr of Food in the Alimentary Canal. When food in taken fote the mouth it is st once avallowod, unlese it is in the solid form. In this cane it is clowed or manticsted; the ase of which is to divide the solid fragmente takeil inte a ookvenient size for awallowing, for which purpose it, in addition, is mixed with the viscid saliva and juioes of the routh. The chewed food, moroovar, is bure easily digeated, inaamuch sa the goutric and other joices can act more readily upon finely divided than apon larger manses of food. Many animaln cas bardly be asid to masticate; such sre the carnivara (llog_{1} cak, 太e.), and they are not provided with grinding leeth. Is roent snimals living on vegelable food, which frequently enosists of hard grains, roota, and fibres, large fat grinaling molare are found. In these animale, not only is the food fioely divided in the mouth, but the food, largely conninting of atarch, is partisily digrated by the salivin. In matatication, the head is firmuly 6xed by the powerfal muscles of the seck, while the lower jaw is noved upon the upper. The tawer jaw io spproximsted to the sipper by powerful tasaclen (th) teroporal, mawoter, and internal pterygoida) which puas upwarde, and are attaclied to the side of the hend and face. Their coatraction may be fele by placing the havil in front of the ear and voluntarily contracting the jave. The Iower jsw is depressed by museles which paon down the Irunt of the neck. Moes of these spring from the hyodid bone, which may be felt deop in the tinsuen of the seck strove the 'Adan's spple' Rotatiog nooveinenta and those of protruaion and retraction of the jaw are prodinced chiefly by the action of the pterygoid muscles. It is obvious that duriag masticatime the food would naturally tend to escape from between she grinding sarfaces of the teeth, and would colleet within the mouth and outeide the gums. This is prevented, however, by tho musclet placed in the antatance of the cheeks (boceinatorn and lipe (orbicalaris oris). These keep the cheek and lip wallo clecely opposed to the ortside of the teeth. On this acconat food will only excape from between the grinders into the interior of tho mouth, from which it is collected and pushed back between the teeth by the musculat tongee.
The very complex muscular movementa just imeribed reault trom yery perfectly eo-ordinated aervous impulies, which pass fromt the brain to the mascles, and cause and regalate their contractions. One can masticate 'at vilf'-that is to say, one can conscionaly catise the muscles to contract In order that the mastication may be effective, how-
ever, it is necessary not only to knew the sizes, but also to be aware of the ever-changing positions of the particles of food. This is effected by sensory nerves, which pses to the brain from the mucous nembrane of the mouth. Although mustication is frequently voluntary, yet, like most other volunary actione frequently performed, it can be performed reflexly. In this case the sensory impulses pass from the mucous membrane to tbe brain, and initiate sppropriste motor impulses which pesse to the musclea, without exciting attention and apecial rolition in their parasge.
As a reanit of mastication, the food is gathered in the form of a round moist bolue on the upper surface of the tongue (see fig. 1). It is now ready to le swallowed. In the first place, it is pushed back wards by the tongue, and seizent by muscles, many of which are atteched to the hyoid bons, which ean be felt to move during their contraction. According
to the mont recent investigation, the bolus is propelled with great rapidity through the pharynx and gallet into the stomach. If the finger be placed upon the hyoid bone, or Adam's spple, and the ear placed agsinst the upper third of the back of a patient, the movement of the hvoid bone indieating the cormencerment of awallowing is almoet $00-$ incident with the pasasge of food down the gullet, which prodaces a very audible nound. Following the propalaion of the food downwards, there is a wave of contraction, which, commencing in the pharynx, travels dowawards through the gullot This, however, is compsaratively slow. It in seen then that swallowing is not due to the falling of liquids down the throst. A horse drinks 'up hill, ${ }^{*}$ and the jugglers, or indoed any one, can drink or swallow with the head vertically down wards.

When the food has reached the lanck of the mouth, the rest of the act of swallowing oecnrn Irrespective of the setion of the will. The nerven which cornmence in the macous mernbrane of the pharyax and gullet (Rensory brenchen of vagus), carry impressiont to the brain, which dinengage of themselves the appropriate muscular movesienta without necenaarily involving either the will or con scionssess. Thus, in aicohelic ntaper, or fainting from drowning, in both of which conditions con scioushens is aunpended, food and liquid placed at the bsok of the month sise at once nwallowed.

Them is a pousibility that during awallowing the food may go the wrong way-ie, it may pan into the larynx and wimpipe. It will ba seen from the diagram that tho food in ita panasage to the guilet muat sotually paan over the aperture of the larynx. It is prevented from pasaing into it by the elovation of the larynx (this can be felt by the hand placed on the throat), which puasen ith aperture against and under bbe back of the tongue. which at the asme time in punhed hackwards. In addition, there is a valve called the epiglottion which in pushed down over the laryax by the move ment jusi deacribed, and by toanoutar tibres, which act upon it for that oppecial purpose. If the opiglottis be destroypd, ni by alcerntion, gun whot wounds, \& ${ }^{2}$, it in nescenary for the patient to have the food le takes carried over the aperture of the larynx inte the gullet by is feeding'tube. It in obvious that one oannot speak with the larynx shat, and witb the laryux open we canot nataly swallow. Food is prevented from pasaing inte the nose by the elovation of the moft palate which meete the conntricting pharyox, and shute off the cavity of the none like a valve (6ge, 1).

The walle of the Alomich and intentine ars, like the gulleh, provided with muncular fibre. An ex teran layer pasaes in the length of the gut, and within this a circular layer. These musclen. onlike the totimelen of the limis, enntract slowly on stimalation, and they are ontaide the domain of volnntary action. During digention they contract perintaltically, urging the food towards the rectum. The peristaltic waves may begin in any part of the cut and pase slowly downwards, followeel at vary ing intervaln by other waves. It is probable that what is called antiperistaltio waven may occasion ally occur, tending to bring the food bick towarde the mouth, for bilious matter in frequently vomited the bile having in all probability pasaed upwards into the stomach by antiperistalnis from the duodenum.

Eructations are frequently caused by antiperis talsis, and by a movement of this kind food in brougbt back into the mouth for further chewing in the ruminants (shecp, oxen, ke.). The peristalsis is particularly active draing digestion, and is pro duced in great part by the food atimulating the macous membpare. If a portion of the intentine of the stomnch be rerooved from the body, peristalsil tnay continue or may be prodaced artificially, espe cially by irritating the mucous numbrane. In the body the caral is under the influence of additions nerven (vagun), through which fibres the digentive processes are chiefly regulated anuong themsolvea
The peristatois in the stouach is comblined by irregralar elonratig taveratents

The act of voniting is is rellex mervousant. It can be expited by stimalating the laanches of the vagus nerve, which are dimtrilonted to the stonathe or when indicrestible and irritative foud is taken; or emetics, sach at muxdand, hut waler, of it loot saline soluthon, tartar emptic, ijmencoanha, sulphate of xinc, and alitu are wiministered. By tickling the hack of the throat with in foather, the fowenc:
pharymeal herve is stinglatel, ani vomither man readily be prod bued. It is of frequent oceltreice whea painful ircitation of the aterine nerver in prege natacs, of the aervea of the liver and tivineya doring the prassage of a linpalic or
remat stone, or inslued whon
 Yurvelting
Norrh asic to vanateril

 irtitation of nay sellowy impulless nuty jans lo thoo brian theouth any one of slieec ehanuels 14 g . 10% of nay lie excited in the luain itaele by the siond of tatiodt or even the olowifhe uf tuy. thiths Jinetuctims abol thery grothes, if the juranis he cumselinus, a feolung of smasea. In uary che there fo a ilfe chavge of betve inpulaten whidh, us a rearie of thas ntimulatine, panant to the
phands uf the matin thramente Cles chandis iympani marce, any frothaces athabl haw of raliva. In militima, motor merven eary impotion to she moramlar walle of the aledunme, lathd Lo Ule walls nf the stanseft ifsell An s porth if the fatiocilay con: towecon whictr followen the contents of the sumach are propetleq upwands inte clow unaitio Joni leflure vomiling an loguintion gaterally
 the Jaryax (ybossio) io clatent.

The dioplogati- the mumfer which repatalof the

 the aet of vonitings. Giese in whele imtatimg in
 fink every one phoald las aware thas in largy phaw tity of hot liguld, vapuepally if it oentain mash sall,

toe in a valuable aedative, rad ofinn preverste vomiting. The undigoated food whan it reache the lower part of the inteatioe \{yectum ox exites sennory nerves which carry impulase to the brain and ppinal oord. A feeling of diateasion resalis. and voluntary cosirnetion of the sbdoralesi muncle and of the diephragn-sn inspisation usially taking place expela the usdigented buster. This voluntary effort is aided by the contraction of the bowel fisnelf, and by the refosntime of the band of maseular fibres (sphincters) which, during the is tervals between evacuatione, remain contracted.
In many snimala, awoh se she aloep, ox, and camal, the stommeh consint of peveral cavitios coms. pupiesting with poe another. In the ax sud whedp both the cardise and the pyloric portions are each anhdivided into swo compartmente. The cardiac pert consinta of a very dilased eavity, the parneh \{rumen\}, into which the food io plused as soms an awallowed. In addition there is a amaller part. the roticulum (hoseycomb), as antind from the folds of lining mucona membrane which interseot, forming a reticulam. The pyloric balt is divided into two purta. The paidoriubi (masiphes), so culled Ernes the lismetlated ayjumanueo of it mucots mentiram, Gommusicates with the lont divi-ius, the rennel btomiach (abomastin, lig. 11 I.

Fluid pasese eithor intas the lisst, eerond, of thind parta of the staracti, ani thenced on isw ther fassth. Solisl matker, surl as amoss, mato, dee, faose esther ints the pacuseh in motioulane. This is mixed with the saliva swallowed wils it, and in malition is bs toixed with juices forned ly the mimcous-membrane of these catifiks. When the unifed has libisheal foeling, it fen stown and ymmimatime crmbuetices, Dise in part to the consiaction of the shednovinal
 form of rounded peglets frohs the pumels shat refi cthum ug into the nonth. The jellets are there thowsughly manticaled, and are rethrnen in a parlyy condition to the siamiach. Now, lownever, tle from

 the conisistency of the fool determines imts whiels jart of the stannach it passex. The walls of the btomach near the gallet are thrown inte two folds or lips which, when in contact, form st trbe leading from the gullet into the paslterium. Along this tolbe the masticated and fluid food ean peus. The tulbe the mathe of graces which are first swallowed pear

between their lijes, and find their why at once inte the paunch or retieulum.
In the bird wome interesting modifientians in the structure of the slimestary canal are seen ($6 \mathrm{~g}, 12$). The fullet at almac she niddle of its cogurse is proviled with a pooch or crop Inte this she food pasanm, and is fathed by a secretime lormed by ite glands Is is thet propelled onwante ioto a dilated cavity, the proventriculus, sral in neted on by diges. tive juicen. Thenoe it peres iato the giraad. This cavity is provided Fowh masialar walis of eborzaous thicknont in the enee of bicte that sre regetablefeedem. It is lined by thick anil carneoun epitheliam, and in ite interior ste generally found piecee of stone, chalk, toe. The giaserd is a powerfu!
mill, which grinds the foos into a note pulp, upee milich the digentive juices call readily act,
The Aetios of ehe Diyestive Juices.-By digeation is meanh that procens by which food is rundered eapable of paseing througle the walls of the iligentive pyetera into the hoodvessels and lymphintion, in such a form shas it ruay lee of lise to the ecosomny. The mont menestial change which forel undergeve is sue of sulution. Albaimen, starch. fat, and other fool-atntlo are quite insolalide in the etreslating thest of the body, and were they injected into the blowi thoy wriall simply block up She amsller Whoul-veseln Thating allgoation these pow either inton aearly allied cliemical malestances which are reailly timolved in wister, or in the case of fat partly into a moluble soapk, and partly into a state of mincracopically minute subliviwion. It is not aullicient, however, marely ta bave a soluble foot-talf in voder shat it many lee abworbed and used loy the lualy. Cane (tablet engar is molulile in water, llout it in of no use an cane augitr to the body. If injecteal into the linooivesels, it is st ware encreted by the kilneys. During dipestion it is converted into anmiher nugarles moluble, but in a form which ran le osel by the ecunomy.
It must elearly be nurlerstood that food introducel into the simineh is not received into the system. It is still'oatside the body" It is only when it las become alonslech, and lins gasoed in a auitalale form, carried loy the blood, to the tiensea of the lirait, totelec, Se, thint it is mate tuse of in so-called rital manifestations. The relief and stay that a meal giver in clrielly tue to yervous actinn, Lhe result of gastric stistenaian. Clay and athes non-hutritise naatter may Ire swallowed, and will Sempurarily prodere the same effeel.

The sifgeatinin of $/ \mathrm{m}=\mathrm{l}$ is lorought about by the astinn of juicer, Lhe saliva, the enotric, pavereatic, inteatianl, ice These are mixed with the finely sliviniel food by the mavenuents of the alimeatary ranal The digertive juioes are in all casen mecreted by tiee micrucopic oflls which line the varions glandy mpenibg intw the digestive system. The algertive jaice, whatever he its source, comtains either an acid sulatance ar an alkalige one, annl in aldition a sulatance termed an unomganised ferment. These fermacnts liffer in many particulars from the organiser ferneents \{ bacteria, microeocei), fotrol is putrefaction, disesses such as anthrax, scuster fever, cluolera, itc The lacter are whole

Jivisg cells, having definite purts or organs. They live and multiply, consume, and excrete th the llail they inhathit. The digestive fernemta are not while cells, they are the prodiucts of cells, They are not the lomken-down useless substanses, such as carlomic acid, water, \&ic, which all cells give out, and which an animal, like inan (an beggregation of cells), excretes, They consist of very contplex netive matter, of which we know atmost nothing, shd which we class with some other substances of which wo know little more, under the head 'albuminomds. Thene ferments in fact possess many of the qualities of cells shenselves. They are killed loy the temperatare of boiling water, like of other living thinith, whing wave, within whine they evince activity, and within the limits of that range they are more active the ligher the twaperature. Then agnin they require the presence of water, in which Iluid they are soluble, In their astion they reem to be hyslrolytic, that in, they prosluce inipertant elonges in the sulostances thoy attach by, sonomget other things, addiag the efensents of water. These digostive ferments, tingether with the other comstit uents of the digrative jnicen, are secreted by the cells of the digestive plands. If we study thest gianals and their cells with the morobeope, they all prevent peveral points nt similarity. Each gland hise a duct, which, as in the chae ray of the salfary glaudis, dividen fato several byinulase. The duct, or ite braneloer in the latter case, terminate in thr secreting tubiales of the gland. These mre little to ben, which are fined by the necreting cells, lenving only n amill catity is the centre of pach tulule for the escape of the serection into the slumt. Outvide the tubule thers is a dense network of fine blood. capplaries, from which the liquor of the bloox cocaper, hathing the glind and the cells within it. Thean bahite the liquor, and they lowe alraont certainly the power of metecting suels constituenter of it no they regnire. The nabstancen detived from the hood are used loy the eethe, which manufsetore the juice whirh they excrete. The constituents of the eametion sor not fousd, it will lee ohmevend, in the flood t they reanti from diemical processor which go on whita the eeplle, whech use hood is a raw meterial. Thus cells am very inall, being about riboth to ats, th of as inch feront. They lewe eachis very Dian envelope, within which the linely errumiar contente of the celt iere neem. In the ocostre is a kurhel or mucleak. During ilhestion the cell enlargets, and gramales ajgear in it. Theme are lie mannfactared prombacta they inc dinchargad into the duet of the gland.
We have urw to contifler how it in that (he glania are rrgelated in their mecreting powers, how it to that at certinin times, abd in mithosent quantity, the enereting juice is poured inte the sligestive aybtebs. This is bronstht rfosit lay the metion of she nervous ayptem. Mlelumgh is nome caver-0.g. the ntrmach, freal nerve cella julaced tis the walle of the iligeative syatem itwelf, seem to regalate in part the rectetion, yet in ull enses Herve.cellu plncein in the brain are chiesly soncerpad It was thourht at one sime that
 che krain actud by pasuiug the bhoodvensets of tho arpil to entarge, and ith connequenes the ford. Thpriy and mexretion of llie gland to lerone greater. That this is not the whole truth, is shown by the alministration of lepltadonna. If a ratlier large sloee of this drag le iaken, the munth locomee vory dry and unplenenat, and it is slifficult to mpak and to uwailow. It other worde, the celly of the salivary glanis are paralysel, and the custumary flow of saliva ie for the time boing at an cmi. It is froms, bowever, that during this condition the blood. verbela are by mo menss contracied. This experinent, tagether with othere, engeresto that althangh during the secretion of a digestive juice the bluartvosels slilate, the activity of the secertiog celly is oot alwass associated with the condition of the hluod-vearels, The latter are undoulitedly under the influence of aeryes (vaso-mokor) which regulate their cuasition, and it is probable that the secreting cells- are themselves buder the influence of other nerven, which are सpeciul secreting nerves lye lave alreally seen that in the crae of the movencents of the ligestiva system, the motor inypulses which started from the central nervous system were called into nction by pensory iupulses starting from the mucoias membrane of the cligeative system. So in like nianner the nervous impulses which pany to the blood-vesels and the glands are cansed, in the first instance, by sensory impulses from the mucous membrane. If food be taken into the mouth, espe-
foiows, and even the tickling of the mosth by a ieather, or the stimulation of the mucoas membrane with electricity, will produce thesame reault. In this case sensory impulses pass to the lirnin tlironghisnch nerves it the lingual and glossopharyageal, ausl reflexly excite the glands through the medium of the brain, the outgoing impalses passing through nerves such as the chorda tympant (fig. 13). See Brain. In the case of salivary secretion, the smell or sight of food may excite a secretion. In this case the sensory impalses pass from the nose or eye along the nerves of these organs to the brain. When the thought of food prodaces is flow, this in due to the recalling of previous sight and amell impreanions in the brain.
When food is pessed into the atomach, secretion oceurs. This wo may result from meehanical irritation, at when through an opening (fistala) the mucoma membrane is brushed with a feather. In all cares the atomach, pale before, beemmes suffused

Fig. 13.,-Nerveus Meqhanises of Sectrotion:
B, Linain; C, spinal nunt ; 8, nerve pasa.
log trim raicmas mestinine of mumith to Deain: Bs , perye raning to cell in

After a little time snother portion vested in a similar way givea no reaction whatever, the erythrodextrine hasing in ith tarn dissppeared. The stareh is now converted into sugar. mixed with a little anconverted dextrine This beisg an schroodestrine, unoploured like the erythro-dextrine by tineture of jodine,

$$
\begin{aligned}
& \text { Starch. Water } \\
& \mathrm{C}_{4} \mathrm{H}_{22} \mathrm{O}_{4}+\mathrm{H}_{8} \mathrm{O}=\mathrm{C}_{4} \mathrm{H}_{42} \mathrm{O}_{5}
\end{aligned}
$$

The ptyalin wasy be extracted from the saliva or froni the salivary glands thenaselves. It does not appear to be nuel exlauated during its sctivity and has the general characters already dikeussed of unorganised fersuente. The salivs is alkaline, and the starchy food is no duabt partly omiverted into augar dariag ita sojourn in the mouth and gallet by ite action. When the food has reached the stomach and the weld gavtric juice has mixed with it, the salliva is unable to met, andi is probably killed. Any andigested starch is eulasoquently convertert into suggr when the food remeliter the small intestine by the penereatie jeice.

When the food reachet the stomelh it caames a relles sectetion of cintric juices. This is bat slowly prodaced wben insipial luesvy food, sach as soagalated whice of egg, hoiled meat, sagos, de., in taten, but flows resulity when asups, brether, and flaide eantainigg aalle and extractions in altandance are taken. Thon we have a scientific reseon for commencing a dinser with soap, preservieg the puike de revistonce until the stomach bas secreted ghatrie juice for its digostion. The gnstrie jaice, aeveral ponsuls of whieh are necreted daily, in achal in renction asstaising free hydroehloric ncill. In addition lactic and lratyric acide are formed duriag the progrest of digostion. The fermeet pecalier to the stamach is termed pepeine, and it requires, anlike the jptyalin of the salives, an neid medium for ita action. Pejmine and hydrochloric neid onnvert proteids into mitatances terned protopec. The later bodies are moluble in water, and are not cosgrulated by boiling like many of the proteide. In addition trey pasa readily through in animal mendirane, and are theretare esvily absorbed. The proteid does not pasin directly intir the preptroee, bet like the atarch is charmod into at leait one internaediste busly. In the fint esse the proteid becornes oosveried by the hydrochlorio Mrh into what is called nytomin, or accl protein, and it is thie syntonis Which alone the pepaine hiss power to change inte peptone. The syntonin becones a gropuptono which is intermediste in ite propertion hetween a proteid and puptone faself. It is very proballe that the whole change from proteid to peptome conrinte in aume simple change in the molecalar elistacter of the protejd, logether with the addition of water A peptone inay be cermied therefore a hyalrated proteid, and the pepeine a hydrolytic ferment. Within the stomach, and cspable of being readily estracted frum the stomusch of a calf, is a ferment calleil the milk coagalating ferment (reanet). This cause milk to coagulste, asd forts a elot or curd. It subsequently contricts and squeezes out some fuid termed the whey. It is difitienlt to asoign sny ase to this fermest, for the neid of the gantric jaice irould eavee of itself the milk to curdle. Still more difficalt is it te explain the exintence of a similar ferment is the pascreatie juice, for we cannot suppose that sny mill enn oven peas through the atomach to be subjected to ite setion.
The milk indeed often forms dense clote which eannot aftervards be digented, and which csume considerable guatrie irritation. Milk when drank is frequently found to disagree with some stomachs hat even in atich caves it misy offen lee 'sipped with impanity. In this evive the formastion al larpe elote is prevented. I.ime-biter caumos the milk to cuagralate in mall soft clote.

The prodnets of digestion, peptone and suger, together with water and many soluble salts, sre abeorbed into the Blood-vessel which ramily in the gantric mucous membraae. When gostric ligestion is vver, the undigeated food (chyme) passes through the relaxod pyloric uphincter of sotne proteid and starchy matter, together with fist and oil and indigestible substances sach as vegetable fibre, pure "Wax, cartilage, ite mixed with gastric juice. Intestinal digestion is an alkaline noe, and all the digestive juices of this parl of the digestive syatem are alknline in their reaction. They soon comnteract the acidity of the chyme, which now becomes alkaline. The pruteids whick rematiped undigeeted by the stonush are now seted upoti by a ferment allod trypsin
found in the juiee of the pancreas. This converts the proteids into peptanes through an intermediate propeptone. The jisucreatic juice contains other ferments which opernte during digestion, notably a hydrolytic ferment, similar in its action to ptyalin, wherely the remaining starch is converted inte augar. The juice itaelf 38 thick and viscous. It is strongly alkaline and secreted in rather small quantity. It is said to possess a ferment capable of splitting oil and fat into glycerime and fatty acid, which it does by udding water to the fat, which is then decomposed. The fatty acid unites with the free alkali present, and a soap is formed which is malsengaently alsombed. The alkaline contenta of the alimentary canal alon emulaify fat -i.e. they cuase it to become very Ireely divided, forming a suilky faid. The minute microscopic globulen which resule pase readily through the walls of the alimentary canal into the lymplatica (lacteals). The ennalsification of an oil can readily be shown by adding alopat hulf its volume of earbonate of mada (3 per cent.) molution to cod-liver oil. The laster heromes at once very similar to milk in ita appearance.

The intertinal juice, the mecretion of Lieberkuhn's follicies, is strongly alkaline. It hasinta in the digestion of ktarch und of proteid matter. In adeltion an important ferment cudled 'invertin,' is found. This lias the power of changing cane inte grape-sugior and an allind nishatance, levulase, Both these bodies bwve the same formula, but differ feam ane another in their action on polarined lights

$$
\begin{aligned}
& \text { Cenz-agar Water Grape-duger. Leviloner, } \\
& \mathrm{C}_{n 1} \mathrm{H}_{n 0} \mathrm{O}_{11}+\mathrm{H}_{4} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{20} \mathrm{O}_{2}+\mathrm{C}_{2} \mathrm{H}_{19} \mathrm{O}_{2}
\end{aligned}
$$

The injportance of thin ferment will be appresiated when we coninder how lirge a quantity of food in taken in the form of cant-hugar, and that canebogar introluced into the hlood is not of any une to Llem boly, and is eliminated at once ly the kidney. The bile may he looked upon both as an excretion from the body and as a digentive juice. The colouring of the feces and urine in due in part to a pligmeat hydrobilimibin (urobilin). which is an altered bile pigmont, If bile is excreted rapidly, the farcen ste dark in colous, and they misy be white owing in deficient excretion. Many mil. Mances ench an muein, sholenterin, ke. found in the bite are excreted to form part of the fiecea. On the other hand mury lofle comntituente, nisch an the bile salte, are reabiorbed and ased agnin in the econsray. Bile hoss as impritant action in digention, no nay be shown by making hilinty fistola in doge, Wherelys the life leaves the lrody at onee through an aperture it the sbalomen. In this case the animal lases flenh; the fat which it takes with its fow poses nnaboorted through its digestive sypteth, and ith excrefions are offensive. The bile sessus then to ansiet in fat abmorption, and to have some astiseptic notion whereby putrefaction is prevented or leasenes within the digeative nyeten. thile avista in the absorption of fot not only by sasisting in the crisintication, bat alsat by belping in same way or other the epithelial cells, covering the villi La take up the minute fatty particlos. in addition it is mppeseel to atimulate minute muscular fibrei within the vilh, which by their contraction pomp the shaorbed fat on inte the larger

Within the small intestiner mont of the food andigested by the stoninch is rendered fit for sbeoption. This takes place through the tinsue of the mucous membrane: much of the nugar and peptones find their way inte capillary blood-vessels. Alworbed products, and notably fat globules, pasis into the lacteals, and thence into the blood, cir enlating through the veins at the root of the neck. The contents of the lacteals during aboorption are ealled chyle. The conventa of the amall inteatine pass into the large intestine, whers digention occurs to a very slight extent. A beorption is, how. ever, more rapud, and the contenta become far more nolid at they pasa towards the rectum, due to the deprivation of water and soluble subatances. The alsorptive power of the large intestine is important to remember; for injectione per rectam of liquid food, especially if it has already been artificially digested, may frequently suntain life for long periouls.

Arlificial Digention.- The digestive juices are occasionally defective in smount or in quality, and in this case they may be nupplied artificially. All the digestive fermente may be separated by very simple processes from the glands which secrete
them, and many may readily be obtained in the market. Pepaine and hydrochloric acid, taken with or before a meal, are often of great aervice, the most relisble preparstions of pepaine being the ordinary pepaina porci. Food may be digested outpide the body before its administration. Beeftea and mill-gruel may be prepared in the following way: To bring the food to the proper tempera. ture, boil half of it, mix it with the other half, and keep warm near the fire, To this add a prepara-
tion of the pancreatic fermente in the proportion given in the directions which invariably accompany the bottle containing the subintance. The food should now be kept warm for an hour or so, and then boiled in order to prevent any further action of the ferment. It may be taken by the mouth or administered as an enema Preparations of the pancreas are alone to be used in peptonising food outside the body, as pepaine preparationa produce a bitter and unpleasant taste. Pancreatic proparstions on the other hand are unelens when taken with the food, at they are dentroyed within the stomseh.

Digitalis, a gonus of Serophulariacese, natives chiefly of the sonth of Europe and temperate parta of Anis. One only, the Common Foxglove (q,v.), (D. purpurea), is a native of Britain. Other apecies have been introduced, notably D, butea and grandiAlora, with yellow flowers. The botanical name Digitalis (Iate Lat, digitale, 'the finger of a glove') refers, like the popular English name, to the form of the flowers.
The leaves of the Digitalia purpursa, colleoted
efore the expanaion of the tlowers and dried, are before the expanion of the tlowers and dried, are largely used in medieine, either in the form of powder, or as tincture or infuaion. Digitalin granules, containing minute quantitiea of a mixtare of
the active principles, are almo employed. The the active principles, are alme employed. The
leavea owe their activity to the presence of certain boilien, which have been named digitalin, digitalein, digitoxin, and digitonin, the three first mentioned having the characteristic digitalis action, while the fourth is entirely different, and closely renemblen saponio in ite effecta. The leaves and their preparations have a bitter taste. When given in large doses by the mouth, they produce vibleat vomitiog and purging this may prevent their absorption inla the blood, but if aboorbed, they may canae death by paralyaing the heart's action. When the leaved are administered in medicinal doees, a pecnliar action is sxerted on the muscular substance of the heart And blood-venesla, causing the former to beat more alowly, regularly, and powerfully, and contracting the latter- By this combined action the blood-pressure is raised, and if tropsy be present, a diuretio action in exerted. Digitalis is aloh uned in many organic forms of heart-diseaie, in pervons and functional irregularity of the heart's action, in cardiac weaknenh from long-continued diseane, in oolema of the lungs, interna) hemorrhages, and other conditions, When taken for a long time it may cause ruanea and other digentive disturbances, and in a yory few cases sudden sail nerinas symptorss of poisoning come on. This conatitutes the so called cumndative action of digitalis. In therapeutic dones digitalis should slow the polee? If too large doses be given, the pulse becomes ribid and irregular.

Dippel's Anlenal Of1 s panaces invented by Johann Konrad Dippel (1073-1734), s German ohemist and alchemiat It was obtained in the manufacture of smmonisesal producte by the distillation of boner A mixtare of oila panee over, and theee, after being repeatedly diatilled, aventaally yiold an aromatic liquid, froe from fetid odour. This obtained a great repatation as an antispasmodic, and boing prenent in the old spirit of harta-
horn, geve it propertiee somewhat different from horn, gave it properties somewhat different from
those of the modorn sal volatile. Owing to the caraless way in which it was usually manufactured, and the consequent disgusting odour and teste is no longor uned in medicine.

Disternper is a typhoid inflammation affecting the mucous membranes of yonng dogs, and rosembling in many respects the strangles of young horses, and the scarlatins and other auch oomplainto of chidron. Like theae, it is graneraly contagions, is sccompanied by law fever and debility, and is moet nucceasfully trested by good nursing and
attention to diet and regimen. It is divided into five different forms-catarrhal, paeumonic, intes-
tiasal, hepatic (known as yellowa), and mervoun The catarthal slways acomppanies and freyuently precedes the other formas. The eyes are red or yellow, weak, and vistery; the pose dry and hot; draughts of air or movements of the snimal readily excite sneering or cough; there in dullness, fever. and loes of appetite. The thickened slimy mucus which the inflamed membrane after some days socretes, socumulates about the eyes and nostrila,
and lodging in the bronchial tubes, prevents the free scooen of air and the proper purification of the blood. Hence enave distroweed bresthing, increasing weskneas, and symptoms of bervous distarbance, wich as ataggering, gait, chores, snd delieate and highly lired varletien eniffer most severely, and smongat them the mortality is very great Blowing. physicking, and all irritating, anal roducing renuctios, mast be carefally svoided, and a good dry bed in a corntortablo airy plsee provided. The stomsch, which is gener ally overlouded, should he relieved of ite onotente by an emetic, which, for an ortinary aized Engtivh terrier, rany consiat of two grains wech of tartar ernetic and ipscacuanlas, with eight or ten graina of common salt, given in a wine glasiful of tepid water. If no effect is produced, the doee mast be repeated in twesty minntea. Constipation, if present, should be corrected by half an oancer ench of cantor sad olive oil, to which, in large dops, a fow prains of gray powder Is a nocful addition. The folorile symptoms, if scate, may be alloviated by giving four times dsily, in cold water, five drope of findanum, snd fyve grains ench of nitre sad byper sulphite of ants Distrosed breathing will be ralieved by applying to the chent and adee, for an hoor or two sontinuously, s thick flannel sloth, vrang at short istervals uut of hot water. The throat may slse be rabbed with hartahora and oil, and the sentrils aponged and eteamed cocnsiunally. Give frengently, and in arall quantities at a time. milk and bread, of any other euch simple and digeitible food; snd when moovery is tarily, and wenknees ensuse, endesviar ly pursing, koaics, and stimalanta, to sapport the atrength. See rolfa Bill (new ed. Lond. I APt).

The term distempor is sonsotiasen spplied to In. flaeass is honses, and epitootic Pleuro-paeamonia (a.vitin patile

Distitiation is the stue given to the procest of applying beat to a liquid, or, it may be, a nolld, in order that onrthin conotituente may pene away in vapour, and, by naitable arragrementa, be obtained in the torm of a liquid. Wben the vapoer doen not condense as a liquid, bent only ma is fie dent or flear, the procen is called SuMimation (q-v.). The natural evaparstion of wster, by the lonst of the oun, of warm air esrrente, the woent of the vapuot inth the selder regions of the stmomphere, and the eondensation there inte cloode and miste, with the sobeequent rain-ahower, forms together the grasdent exansple of distillstive. The apporstos for artificial diatilation esentially consiats of three parte, the Still (or Rspoxt, p.v.), Condenmer, nud Receiver. The atill ta made of glam, copper, iros, or esrthenware, acoorling to the estare of the substaneep to be placed in it In esperimental chemical work, glas is slmost the only material sdmis. sible, whils in the preparation of sleobol from grin, supper-atills are commonly employed. The oonderuer In insie in an infinity of forms, the from the still as rapidly and effoctailfy so ponible. For thin purpoee it in important that the ontilenwer nhall expoee a large sarfice to the conling modinm, water or air. Owing to ite rapidity in condocting heat, and the thinness of pipes mate of oopper, this moisl is generstly employed in the construction of poodeasera. Whatever the form, the principle in the ssme-vis that the hot vepours peas through s tabe or vessel surronaded with cold water, which ranning in s constanh strears, pessos sway more or less warm sfiter it has done ite work. The rectiver merely poosiste of s seitable vessel in which to roceive the diatillate. As the forms of apparatos are capable of infinite variety, so the cosapparatas are capable of intimite variety, so the beat defined typer going under the names of Frectional Distillation, Deatractive Distillation, and Distillation in Vacuo.

In Fractiomal Dietillation a mixture of liquide having different boiling-points is put in the still
to pass over together and the diatillate to be received in a single receiver, it is evident that nothing wonld be gained ; for the different liquids would re-mingle in the receiver. If, however, the temperntane be raised very slowly and especially if the vapour requires to rise through a high head, or tabe, before parking into the condenser, it will be found that the more volatile liquida pais over finst in a state of comparative purity, and while the others follow an the heat is in creased. If the receiver be frequently changed, series of fractions, or portions of liquid, are obtained,
corresponding to the different sulishances prenent in the still. For example, if a mixture of glycerine, weter, slcohol, chloroform, and ether were distilled, the ether woald alistil first, then the chloroform, next the alcohol, and lastly, the water, while nearly al the glyoerine would be left behind. This then is fractional distillation.
Destructive Dietillation, or Dry Distillation as it in sametimen called, is beat exemplified when coal is hented in an imn still or retort, fis in the manufacture of ghas. Now, in canl there are only traces of moisture capuble of diatillation, but when atrongly heated, the soal is deatroyed, or decompooed, and a large number of nubistancen dintil over, some of which, like lighting giu, are permis neatly in the geseoun ntate, othisn like Creanote (q.v.) are liquid, while others, nuch as naphthaline, are solid bodies at the ordinary tamperature. Here no distillation takes place until the sulustance heated is dentroyed, hance the term destructive distillation. Further exsmplain are the diatillation of wool in clome vensels, at a red heat, whem char conal in left in the vassel, and wood-vinegar, womi girit, tar, do. paes over in vapour, and are 600 densed : and the liesting of bones in aimilar re toria, when animal charooal is left in the retort, and Dippel's aninul oil dintile over. See Chamoosl, COAL-TAR, and DIFPEL'/ ANimat. Oil.

Distillation in Varno.-When water in leated in a kettle it eventually boils, and if a therasometer be planged into it, the mercury is seen to remain stationary at a temperature of about $212^{\circ}\left(100^{\circ} \mathrm{C}\right.$) It will les notioed, however, that when the barometer in low, the femperature of the boiling water ia sanewhat helow $212^{\prime}\left(100^{\circ} \mathrm{C}\right)$, and that when the barometer in yory high, the temperitare in aliog high On the summit of Moat Blane, it is tound that water boils at ahout $180^{\circ}\left(\mathrm{b2}^{\circ} \mathrm{C}_{\text {r }}\right)$; while in a veasel from which the air luan leen removed by an sir pump, it continaes ta hoil even when the tempera ture falla dewn to the freexing-point (see Bontino.) There are many mubutanced which are Injured by heas, nuch an extrint of malt and augar, and when solutions of these bodies require to be ovaporated on a large ncale, they are always distilleal in vacwó, so that the water may be remaved withant unduly benting the vemanl.
There is another very intereeting metbod of dibtillation whereby liquide whielh, Alone, cannot bo diatilled without deoonposition, are ronde to distil in preneace of the vapour of some oflier liquid. Thus, glycerine is pot, practically spenkings, capable of boing diatilled, bat when heated with high pressure stemn, it readily distiln over, and can thus bo purified. The great object of distillation is purificaflon, and in the manufacture of the fragrant volatile oils of lomon, lsvender, \&ce., it is necesesary to distil them slong will water so as to avoid overheating of the oils, nad eonsequent injury. Not ouly is the flavour improved by this treatment, but they dintal at a lower tempersture along with water than when alone. The term distillation in excise language refers to the distallation of alcolsol alone. For information on this abbject, eee FERMENTATION, Alouhol, Bramdy, GIN, Spirits, and eapecially Whisky + under which latter head the subject of the dutien payable and of illicit distillation are also trested.

Distilled Whater is the condensed product obtnined by the diatillation of, water. All natural watere, even rain-water, contain certain saline matters (common salt, \&c.) in a state of solution, from which they can only be completely freed by the prooese of distillation. The characteristica of distilled water are, that it ponsesess a mawkish, insipid taste, without odour or colour, and when evaporated to drynens in a veesel, it ought to lasve no reaidue. Unlese very specislly propared, it is sure to contain traces of free ammonis, and, when this is the case, it is liable to form a grem vegetable growth in any bottle containing it The other properties of diatilled water will be noticed under W ATER.

Distilled Waters in the name for what is obtained by distilling water along withe the parts of planta containing essential oils Rose-wster and lavenderwater are familiar examplea.

Buetility is that property of molite in virtue of Which they can len drawn out se an to inereuse their leagth at the expense of their cruas dimensious. Thus ailver is as very ductile metal, while platiaus ta not no ductile. But althoogh platianm cansont ho drawn out to any very great extent loy the ardinary proceas of wire drawing, is may le drawn out by Wollaston's procena. Woltauton fittel a platinam wire inta the interiop of a hollow rod of nifver, und then drew out the compound rod to an extent limited only by the daotility of silver. He then dissolved of the silver, and mo ultaised an exceenively line plationat wire, the dlaneter of
 alme moyn that, by itrawing out a thiekty gite silver roil ${ }^{n}$ film of gohl umly poshes inch in diameter comid to obtained. See MALLEABEITTY. Wire

Dulse (Rhodymenta palmata), a seaweed, aue of the Floridee (nee SEAWkRDS), growing on toeks in the mea, and uned on food by the poor on the conste of Scotland, frolard, and othor northern countries It is eaten raw or roasted, and with vinegar. It is an imporiant plant to the I Ieelandens,
and sfter being wanlied and drind, and sfeer being washed and dried, is etered in canka, to be eaten with bish or boiled with raink. is Kamehatka, a formented liquor. in insule from
it. Sheep are fond of it.-One or two other edible it, sheep are fond of it. One or two other eclible
Florides bear the same name on slifferent parte of the coast, and the pungont Samremain pinalatiflda in known as pepper altise.
Dyelng is the art of imparting colourn to textile and other materiala, such as cotton, silk, Wool, and leather. It has been practised among satern nations from time immemnrial a and in the Old
Testanent, we read of the purpledyed vestTestament, we read of the purpledyed veat-
miente of the high-prieate, of finen elotha dyed blae. purple, and scarlet, and of rams' akins dyed red. The fanous Tyrian purple, obtained from one or two apecies of ahell-jish, is lielieved to have been dincovered by an inhabitant of Tyre fifteon hundred years B.C. : afterwards this purple becanis the badge of royalty, and eloth dyed with It commanded a princely price. Purple of varioun ahades was dyed not only at Tyre, bist at Tansus, Alexandria, snd other plsces on the shores of the Mediterranemi, though other colours were of eaurse amployed. Tha Egyptians; Greekm, and Remans practised the art of dycing, There is an ancient Roman dyer's workshop with its apparatus to be seen among the ruins of Pompeii. Gradually the art became more and more witespresd as civilisation advanced, In enrlier times, dyeing wa,
much more extensively followed as it doneatir much more extensively followed as a domeatic
art than it in at present, lunt in some autlying parts of Europe and even in the Highlandis of Scotiand, the colours imparted to home-made
fabrics are atill to aome extent obtained from fabrics are atill to nome extent obtained from
native vegetable dyes. Many of the ordinary dye staffs and dyeing agentr have been nserd in England for more than four centlariee, and to these Americs added cochineal, as well ns some important dye-
woods and barks. Dyeiny with colours obtsined
from natural prodacte had reached a high state of perfection When Perkin, in 1856, introduced the hrat of the coal-tar colours. Since that date the progrisa of artifieial colour making has been so rapid, and the spplication of the new dyes made so aimple, that it now seems doubtful whether many of the older dyestaffs and processes can continue wach langer in use. The experience acquirsd in dyeing with any coloaring material muat not be undervalued on sccount of itm partial dimase; and some illeatrations, though of less practical inuportance than they wers lately, may aere be given, in describing the genpral principles of dyeing.
Akauming that the textile material has been anbjected to the cleansing and whitening operations deseribed under BLEACuIMg; that the water is noft and clear, and the veasels free from ruat and perIectly clean, the next point to ponsider is the nature of the fibra, Very offen if this is of animal origin, such as silk or wool, a simple immersion in a bath containing the colnur will dye the fabrie ; but colous so applied to s vegetable aubstance as cotton, linen, or jute, would be easily washed away. The fibre in the latter case reguirts mome special preparation to make the dye sodhere, and = mondant is employed for this purpose
dants are esually
ilante are usually mineral salte applied to the yarn or cloth, so as to leave their honco in intinaste contact with the filve. A elase of mineral coloum many he first described, as their prodaction deppends on simple resections similar to thase rocurring in the
use of mocdants. One of these colloring use of mordanta. One of these colinam, chroine yellew, has bees strasdy noticed noder cabjcoprintina. They are the result of an interchange of the basen sad aelils of two soluble aslte is the material of the flise, one of the sow walte being soluble and reallily washed oul, the othor insoluble and the grabetance having the colour.
Prumajas blue (q, v.) May be takea in as ins. atance of thi mode of dyeing. A bath 10
dye 7 it of silk in made op is followas. 10 gallone water 524 oz mate op as followas of fron nolation, specific Grsvity 1 of 402 stamneun chtoride. And
snether bath with 10 gallons snether bath with 10 gallons watery 6 op
yellaw prumiate of posesh; 3 ox sulphurie seld, yellow prusiste of pocshl; 3 ox sulphurie scid,
The frat hach has s temporseare of $130^{\prime} \mathrm{F}$. The silk is turned through it till it it thoroughly pene trated with the liguner, theo washed, and transferred to the eacond listh, which is slso warm. The ailk, withous walhing to retarned to the fint beth, after which it if eqouin washed and placed in the aecond beth. Tho first listh is now atrengthened With 6 oz. of nitrate of Iron and 9 oz, of ctanoean chloride. and the second liath with is on of sulphuric seid asd 2 oz of yellow prusiste of potash. Once more the ailk is retornef to the firot bath. washed, and truasfectal to the becond lash. After this ateop. if is wrung out and left for anx hours, when it is walled, tsised, and Aried in the ais.
There are aeveral things- to be learned from theis procesa. (1) The solutions must be dilute 5 (2) several operntiuns are required te get an equal shade : (3) an acill solutina is sereseary to provent iron oxide from depositing on the cloith, aad this is made more certain by atrengthening it in the Lat dipping: and (4) time is giveli for shy action of the air luefore the final washigg is given to the dyed wilk. These or similar matters require attention in dyeing generally.
Blaff is prodncel oe cottua by a bath at nitrate of irun, followed hy one of dilate and clesr limewater, wathing and drying. In this case pervaile of iron is left in the fibre, and formon the colowing tasterial; the sitrate of line being resdily poluble in water, Whathen ous. This is an instanice, however, in which the cloth has been morlanted se well as dyed, and If we wish to give it, say, s black or dark purple oolour, it andy reguires to be immersed in a bath of
logwood.

Supponing that in place of nitrate of iron we had used a molation of alum no other noluble salt of alamins, ine the rulphate (alun cake) or acctate (red liquor), we sloutld lave had the hydrate of aluinina deponited in the filore. As, however, this is simply white, the appearance of the cloth would not have altered, but if puacel in a logwood hath, a pink or red colnnor would be the revilt, the tint and depth varying with the atrength of the polustions. In such s case the eloth is tyed with an aluminoses mordant.
The mordants most iaryely used are the salts of iron, alumina, and tin. Acetates and sulphatee of
both oxilen of iron, as well as of alumina, and the
two chlorides of tin and ntuntate of moda, form the greater portion of the materials employed.
Suppone that cloth in impregnated with acetate of iron, which in a combination of the peroxide of imn with acetic scid. This axile in a feeble base, and the acid is volatile. Conneguently, when the cloth is placed in a hot chamlaer filled with moist air, the scetie seid is expelled, anil the oxide of iron is left in the filire, which is what the dyer requiren. The application of the reetate of alumina as a mordant is explained in the same way.
In the cave of ualth with mon-volatile acids (nitrate of iron or suljhate of nlomina, for example), limewoter, casstic noin, earlsunte of soala, or similar bodies are naoal to precipitate the mordsnts in the material to be dyed, as inthe instancen given above, But in some kinds of slyeing the faristance of an alkali is not necensary to desompase the salt, an merely boiling it with the fibre in sulficient to separate the brse and libernte the acid, the eloth retaining the former, and the latter adding to the acidity of the bath. If fresh alumina were added the the bath to cambine with the liberated acid, the procens could to on indelinitely, but when a certain ammunt of free acisl has nceomulated, the tithe cesaes to effect the deconjpasition of the salt. In practice thies is not the method followed, but a potash malt of an urganic acid is mided to the bath, the potant of which noutralines the ntwong mineral aold; the weaker organic acial being net froe, which lins not the name power of preventing the almorp.
tion of aluminn by the tibre tisn of alumina by the tibre. Tariar or argol (im. pare aciil tartrate of potush) is much ased siomg with alun for wool-mordanting, and also in silkdyeing with tin mordants,

Several ealtr of tin are nuch uned nes monlantathe moet impertant leing stannous eliforide in muriate of tin-alme callest tin salta' and 'tin erystala, Starmic chloride or perchloride of tin in Hikewise used, and a volution of the metal in hydrochlarie sunt nitric solids, called 'tho gpirita' sad 'oxymuriate of tin,' Is in genernl ine, The Intter in A misture nf stamnous and mbannic silta. and reyairen very ifrent eare in ith preparation. The salth of tin are decomponed readily by the frore, and the tin ipirita require to he uned when freahly ranule, an doposith soon appear in the nola. tione Stannate of eode ia aleo minch eveployed in fyeing. When the Elire is cltarked with it the insolnble stanaie neid lo liberated with dilate sulphisic neid.
The mordants mentionel nbove are employed chiefly in cotton-dyeing with the vegetable dyen or the similar nrtificial Alizarin coloair. Wool and silk are not sumatly bsordanted in the manner described, and the following olvervations apply to cotton and other regetable fibre.
Often, in dyeing, copper boilers are thed with an ordinary fireplace for heating them. The dyentuffa are sweal either in powiler or ragung aumoty the
water, ar their extracts are enplespet. The dye water, ar their extracts are emplesed. Thes dye
solutians are jenenerally warm or boiling, and the somals inmersed in then require to lie kept in constant mention, or bearly no, to insure uniformity of nlearption.
Dyecing of Cotton,-The following io a lrief oust line of the procenaes in nue for a few inuportant
colourn

Black in proulaced by stexping the grode in a
 nextation uf ncetate of irua. After wholing, they are next piased throiggt a decoction of lrgwood.
Brown is asually obtained by pasaing the cloth 1)urnugh a desoction of enitch ar Catecha (q.v. $)_{1}$ ani aiterwands throsigh a solution of biehrominte of
patash. Logwool, fastic, or any of the reat colout protash. Logwood, fastic, or any of the red colour:
ing stuffs, can be afterwards adlled acoording to the shade of brown wanted,

Purples nad lilhes are got from logwood and alizurin with mixtures of imn and alutuina. With fuadder colours, reds and pinks are got by the tise of aluminh and tiou.

Reds are alsa yot from varions dyewoods, as appan-wood, penchwood, barwood, ske, with tin or alumina, the cloth being first sonked in an astrin-
gent, as sumac or gall tiats. The coul-tar colomine safranine, sce, brave slmokt entirely tar colours, these woods in the dyeing of reds,
Yellow is got from fuet
Yellow is got from fustic, quercitron bark, Persian berries, \&cc, with tin or alumina mordants. Better shades of yellow are now, however, produced by sremine rust other coal-tar dyea. Blue colours with the asual mordants, and green is produced
by dyeing a yellow such as fustic over cloth
already rendered blue. already rendered blue.
The production of P.
The production of Prussian blue on silk has been fulty given, and the same methe dyeing of indigo blue.

Turkey-red is a very bright and permanemt eolour on cotton, obtained till recently from madder, but now alauost entirely from alizarin, by a special process in the treatment. An oil mordant, as it is termed, is employed in combination with the bibre. Formerly a coarse olive-oil was made into an emul. sion with a weak solution of erude pearl-athes, through which the cloth was paseed, then wruag out and hang up in a stove. The oil aheorbis oxygen, and thickens inte a varnish containing free fatty acids. The operation was repeated six or eight titues. A Turkey red oil ha now sold which is chielly the oleic acid of castor-oil in combination with ammonis or soda, and of this oil the eloth requires onily one or two applications. The eloth is also tuprodated with slumina as asual, and then pased into the dye-bath, which is gradlually rasised to luiling. The lath may be clarged with ground madiler, namaral alizarin, or the artificial product, and gonerally sumac or sonte substance containing tannin is added. The gookls are brightened by leviling in soby sotation, and finally in a hath of in apirite.
In dyeing cotton with coul tar coloura (with the exception of the man groap), the poods are lint mordanted by prasing thens throughy R oollation of tannie neid, ind then through one of tartar emetie; or they arn first pasaed througth a decoetins of sumanc. and afterwards throuith a solution of starnate of noita. The yoode are usnally pat into the dyebeck in is cold state, and gratually raised to a heas $a \times 0$ group of emlouss (nees below) no previoua mordanting in required, bat a little sulphate of poda or conimon salt is added to the dye beek to make the colour go on more evenly. These azo colours are dyed at a bviling lueak. The redo of this groap are not very natinfactory on cotton.
Aniliae thack it pasiblacel on cotcon yorn diveetly by the oxidatiom of aniline with belomamate of potanis and liydochlerie weit.
Dyving of Weol,--This filime almurbes listh culuara and mordiate so wuel more rewilly than cottom, that for the mose part the methode of dyeing it (tiffer frum thase that bave been toseribent, Sulplaric achl has little action on woul os ounpared with cotton, conuequently many operstions is woul-slyeing are romplucted in acid sulutions at light temperatures, where cotton wuoth he detriyel. In instance of prolucint, a Pruation blue ons woratedy may ho given 1 Woratel, 100 lh. Make cold solutions of 0 lb . rel promatiate of potash, 2f lb , Lartarie acid, 2 j lb , axalic meid, anbl 2 Ib in compasition. Pour thene topether and abl the mixtare of produced to about 300 galloes of water at $100^{\circ} \mathrm{F}_{3}$, and further adh 121 lh kool oil of vitriol. Enter the gonds, turn well, heat inf slowly to the boithgg gnint, and boil for half an hogur.
Here it will be sest no salt with an irms bave in present to form a Prusian blue, and consequently thin conatituent mitat be got from the decurapasition of the reil prussiate by the oil of vitriul, the wonl aboorling the colour no it is forned. A blae pro-
duced in the way alrealy fiven for silk would he duced in the way alrealy given for salk wominier coloura obtained lyy the matual interchange of acides and baser in the fibite are succesufal with wool. Wool is dyeil to in mutely larger extent than wither cotton or silk with dark solours, and for these logwood and the estringent dyes catechn, ont galls, sumac, \&e., are chietly esed along with indigo. alizarin, and fustic for special shates. The wool is finst, iu a rule, brited with bichiromate of potash, sulphate of copper, aull oil of vitriol, thes with the dyes-for inntance: Black. For 35 the wool. Boil with 17 oz . each chromate, blaestone, and oil of vitriol for 14 bonr. Dye in 221 l . logwood and i 1b, fustic, boiling 1 hour.' Sonietinter the chromate is mixed with tartar for the first treatment of the wool, with or withont sulplaric acid. Woalsel blacks are the best for woollen elohes. By this methed the wool of cloth is flirst dyed in the indigo vat a light or medinm shade It is thendyed a clirome black by a process the sanie or tiinilar to that just given in which bichromate of potash and logwood are the chief ingredients nased.
Generally when dyes oul wool are required to stand milling (see Woothen Masuqactues), Ure gookls are lirat mondanted by boiling them for an
hour in a solation of bichronate of pothah and tartar. Brown, alive, drab, and aimilar coloarp are dyed with madder or alizarin, camwood, fustic, and logwood, in proportions varying with the shade nequirel.
Until quite recently, the most important of the material for tyeing wool, next to indigo, wha eochines. It gives with tim and slarmina morTlants very leilliant pinks, crimmmes, anil mearlets. Ta poouluce scarlet the eloth is boiled in tin spirite - geperally with allition of erean of tartar-until monlantel with stannic oxide, then washed and bailed in the ground eochinesl till the solution gets colourless, thit is, till all the dye is absorhed. A seconal boiling is given with occhineal mixed with a' little anore kordant and tartar. Benaidine reds sre now replacing coelineal.

With coal-tar dyes slmost every sonceivable colvur can lee sbtained on wool. In most casses it is only nocenosiry 60 auld a little aulphate of noda and salplanic acid to the dye beck, no previous mordanting being neceseary. Tin npirita and tartar brighteas number of the onlears.
In dyeing wool, alizaria blae solution is said to give henutifal deep ldan slahles, as fast ha iniligo to Fghte and milling, and is regarded as a great sacove an a anlatitate for the nataral syeware; artificial indlisi bs at yet tow espenaive o competitor.
silk, when ilyel dark rohoios, bing le used with. out thet same hleaching operations for the removal of the guis. reyuirel for lorizhter tinta. The Ayee and ituonlants for thear are tusels the satee as for Wool, but the latho are uobally lant saiap molutions containing the drex Coclineal kiven a poppy rel wilh is tin ar slemila isosilant, and anoutto in Alkatime mulations asi comage vellowe witls the latter. Arphil and sathoter jive vinlets and píbks withont a pasibant, hat they are fugitive.
sills in dyed with the mal-tar evlunern lay a simpte immeniour is a volution in water ur. if noevesary, in ppiric, Uvastly the saiap molation of the silk gum in taken, and the eviloar lerightened ly rinaing in acetic acis! For the asyam dyes salplaric achi is added to the lath.

DVEsti'Fox-The primeiplea of the art of dyeing being alresaly stated unaler the liend of DVKISta, it is ouly necepory to sutice here, in the firt place, the thare impurtant of the older dyestalfs of canguere, anal then to pive mone account of the remarkable group, of artificial dye knawn on the 'coad-tar colmurs: The lint of those wha intro: shacel in iscs, and the numler ai them tow in nee is evasiderabile. Stall many of the ohler ooluuriny nasterials ta a large extesit liold their jcroand, and it is loy on bieant bertain that they will ever be entirely slisplacol by purely chonically prepared dyes. Nafural dyenteffs are chielly jurslecta of the verchable and animal kinglouss.

Vegetable dye sre nbtained froin all parta of plants, such gos the roots, the wood, the bark, the leave, she flowers, anal the seedr or fruits. That the dye-yielding part, but soanetimes die whole plant is emijdoyed. The number of plants which yicld colouring materials such as evallat be sppliest in the tinctorial srte is very groat, and if we include thome enrplaged bo surape moes, the number of chesedyentuffoctunally used is still Ingge. Thone, liowever, which are vell known sre nat very namerost A foller nconant of a few of the more important of thooe noticel below is given under their separste heada.

Marder (q.w.), from the root of Rubia fisuctorrem, her leen eses! for dyeing red and for provlueing, slong with other dyen and with certain moidants, compound eslours ainces smejent times. Until the direovery of a proces of making artificial Alizarin (q. v.)-the chief colouring principle of madder-it was lagkely enitivated in the Levant. Madder, and not artificial slizarin, io ntill uned for dyeing colide in Persis sad eonie parts of Indio, but a eomparatively wmall quantity is now brought to wentern Europe. There nee other two species of Kalita yielding dye somewlat resembling madder which are employed in Indin. These sre R. oordifotia and I. niklimensis, the dye from the former lveing calleal 'manjit' or Indian unsdder.
Garameine is a red dyestuff prepared by treating opent madder with sulphuric acid. It is of less importance now then formerly.
sinflower, froms the flower-heads of Carthamass tinctoriua, yields both a red and a yellow dye, but it is only the former that is ansefni. The red, or rather pink, is s beautiful, though not a permsment, colour applied to the dyeing of silk,-and noore spar-
ingly to cotton. It is a costly material, and before the introdnction of aniline colours, the enltivation of safflower was an important industry in India.

Brazil-toood (q.v.), oldtained from one or more species of Cresalpinis, according to some authorities from C : braziliensis, scoording to others from C. schinata. Peachwood and Lims-wood are prohably mere varieties, and the coloaring matter from afl three is supposed to be identical. These red-woodn, as they are called, are chiefly used for cheap calico prints, and to some extent for dyeing silk.
Archil (q, v.) and Cwalberr (\mathbf{q}, v.) Are dyes prepared frum lichens. The oolouring, principle in each appears to be the same, and in fact cliere is no essential slifference lietween the two stuffis. Archil is of a purple colour, and la most aseful, along with other colouring matterd, in the dyelng of wool varions shades of brown and chocolate.
Paatma Crimson.- Thia dye in used by the nativen of the Isthmus of Paramin for dyeing their straw-hata a fine crimson tind, which is sadid to withotand in a remarkable manner the action of sun and rain. It is obtained from a vine, bat is scarcely know'n in commerce.

Chryarannaic acid in a dye oltained by trenting Aloes (q.v.) with nitrie acil. From it a prople can be obtained on silk, hack on wool, and pink on Iinen. If ean lee used with alvantage along with anilise dyes.

Bariepod and Cemnesond (η, v_{1}), which are produced by the same tree, rire emplayed in the ground state alang with proper morlants for dye. ing wool quirt reils and reddinh browns ! also for producing an initation of Turkey-red on cotton. On whal the colonme are permanent, but the dye on catton is lews ma.

Querciteos.-From the bark of Querceis tinctoria s avefal yellow dye is obtainet. An extrint of this bark called 'flavine' fe uned by woolten-dyers. Quercitron hark is mont largely uned as tha yellow part in entrgound colours.

Fantín (q.v.).-Tinw wre two dyentaffa called by this name; the one in 'young fantic,' and the other 'old fustic.' The latter in the produce of Morus timetoria, a large tree growing in Central America, and is the more important. The woed of this tree is ground, of an extract of it in inales, and used like quercitron bark in the dyeing of sompotand coloun on wool and eotton, for which it firninlien tho yellow part.
Persian Berrics, the rruit of Rhamans infectorius, and perhispe other apecies. They are known alao an Yellow Berrich, French Berries, and Turkish Berries. Tise fruit is not much lariger than a pea. The dye is employed for wool, luit mont largely in the printing of calion or the yellow part in wach colomins as green or orange, Λ decoction of the berries is made. The coloner abtuined in liright, bat not very permanaent.
Tarmeric the roat of Cancumia longat, is plant largely coltivated in South Asin it is rich in yellow colotoring matter, which is, however, very fagitive. It is one of the fow dyes which will fix itself on vegetable fibre without the belp of mordanta. Turmeric in largely ased for colonring teabpaper for chernical purposes, but ite nae as dye for pextiles is falling off.

Aluatte or Arnotto (4.v.), a preparation from the seelf of Brax orellana: it pruluces a hinff colonir npom ontton, and a fleah colone upon silk, no mordante being required. The colours obtained from this dye are fugitive. The chief une of it is to improve the appearance of other dyed colouns

Fudigo $(\mathrm{q} \cdot \mathrm{v})$ is obtained froin two or three species of Indigofera, chielly I. tisctoria. The indigo-plant is found wild over mont parta of India, fut generally near places where it has been cultivated. In that country the plant in exten. sively growrs, there being two sowings in the year. It in cut jout as the dowers begin to appear. The process of extracting the dye consista in steeping the plant for twelve hours, or rather more, in a vat with water, iffer which it is transferred to another wat where men agitate the liquid with stijeka, thereby effecting the oxidation of the green colouringt matter into hue particles of indigotin, which settle down as a sediment. This is next boiled for five houri and repeatedly passed through a strainer, by which the dye-particles are separated. After drying, the dye in pressed into klaha 31 inches thick, from which the cubes of comnumerce are cut. For other plants from which indigo cau be obtained see 1sDiac. This dye is ane of the shlent known and is atill largely uspel for the dyeing of wool and
(2m.
Wient-This is believed to be the Hhse dye with which the ancient Britoms stained or coloured their skins. It is olltained from the leaves of the cruciferons plant Iwrtis timetorin, which has been long enltivated in tireat Britain. In Fingiand woad is still usad along with indigo in the dyeing of wool, but it is no longer epmployed in France or Ger: many.

Logeconal (q, x.),-This well-known dyestaff cangista of the lient wanal of Hervutforylon cremprehicuman, a tree indigenous to Central Amerioa Applied in small quantity to textile naterials, the colour which logwood gives to them is a fugitive blue. At sume placea on the Continent it is ined along with a mavilant containing a largo propiortion of alam ta ilye wrol a bloe colous. It is emplayed to some extent on the line part of comspound colours in the dy eing of cotton, hut the chief use of lngwood is in the production of different shauks of black on cotton and wosol, for which maitable mowdanta are necesary. This dye atanda loest whoh apulied in large quantitien for dark colaurs.
The following vegetable stye are of some importance in Irulim, in few of shem being alno ased in Europes Sappar wond (Cieadpoinite Sappara) yielda a red colour; Sanders.wood (I'terocirgnas santalinus), a pink; Catecha (q, v.) (an extract of Arvitia Catechif), browns, dralos, and grays : the rowts of Morinda citrifoliou, a usefni red ; the twifn of Strobilmithes gorcidifulitio, Asouns indigo : the fraitrind ist the pomegranate (P wimion gmontuma) ${ }^{a}$ yellow, and stie powder called 'Kamisha, ' Frons the fruit nf Mfallotws philippisesuis (otherwine called Rotllera tinstoría)
Several plants, either indigenous or naturalised, in Great Britain yield dyea. Anpog others, weld, the stalks of Reseda Lutcola, was asest fur dyeing yellow up to revent timee. Dyer's Broon (Gentsfa toretoria) alno yielda a yollow enloiaring naster. From hhummus natharticina and 16 . fraHgulla green and yellow dyes are obtained. the eultivation of the conmon yellow berlatraw (Gudium surkm) for red and yellow dyeatalis was at one tinue atempited.
The following are the chief dyen derived from animal mubatasicen
Gechiacal ($\left\lceil, v_{1}\right.$), ohtained from the insect Cocriva eacti, th the wust important red colouring matter for Animal filrea, See nbave.
Kormes:-A colouring matter which, though not obtained from the name inaect, in ilentical with cochineal. Severil specien of Gnoesen, of which the mons common is C. Nicis, yield kermes. This dye: staff is cliefly employed for dyeing woollene and leather in the countrien of which the inwet in a native-vix, Spain, Turkvy, Moroceo, and thet mouth of Prance.

Lac-dye,-In the wahhing of atiek-lae (mee Lac), the colosaring matter secretel by the lac insect (Coceus lecece) in diwelved in the water, and recoveres by boiling down the washingn. The red dye is then made up in the form of amall cakea. Lav-alye usually producen duller red coloum than enchineal, but from a pure extract of it the same, or very nimilar, coloars sue sbtained, It is atill used as
Europe.

Mureride-This beantifil and telicste purple dye, prapared by the action of dilute nitric acdel upon uric acid and treatment of the product with smmonia, wat largely unell in L855 and IR36 for dyeing wool and silk, and for printing upun calico. The uric acid reyuired far ita proslurtion wha got from guano. Murexide hast only lieen tried for a year or two when ith manufacture win. rendered unprofitable ly the introbluction of antiline colours.
The only mineral tyes of nueh importance are Prusainh blue anll Chrome Yellow i?.v.) The method of proflueing the furmer in given sader Dyeisg.

Coud har Colours.-The dyes nnw nannufactured from producta obtsineal in the distillstion of conl-tur are extremely numernas, and hew one are daily udided to the list. With the exception nif anthracene, from which artilicial alizarin is pre phed, the raw materiuls chielly useer are the naphthin or lomzene anul carbalic acid. naphethaJene, a sryatalline solin borly, has lately been conaing much into use as wefl, more especially for dyes conupeting with cochineal, These suthatances, although not constitntinj a large percentage of the tar, are more than rufficient in sumount for any supply that coulh be required, the quantity of Lar
from the fon-wurko in Great Britain alone beiby nearly half a million tons per annam. The tental annual value of these molors prowncel itt Eligland, Germany, and France is abvat $[4,000,000$.
The rapid developmont of this indastry is the reanit of the prognow of onganic chemintry, and there Alyea ean wily le norlernbinad and slastified from a clsemical print of siow, Leaving ontt artifi: cial alizarin and indlyal at prement, these colaurs miay be arrangel in tiree diviodians: (1) Aniline Dyex-These are sumponal aunines, bodies of the nature of bures. (2) Phrnol Dyex.-These are derivatives of carlalic acid or phemal and similar chemical londion anol lave move or leso acid propertien (3) Aza Diges-These are hoolies containiag aznte no nitrugen connecting two zroajk, and may he netateal, lont the groujor may aloo be either of a lissic va acisl mature.

1. Ariline Dges - The prejaration and propertien of aniline have lven deveribel muler that heml. A lives of the same series, tolaisline, and another frum maphthalene, are unol aling with if for certain colonion The niethoal of prepuaration for all thest boxtier io nearly nlike-viz by the action uf buacent hylroger on the requisite nitro-conpound and Alotillation of the prosluct with mala Iron filiopg, sod loyilroplatoric acid are generatly taken to obtain the hyilrugen.

When a mixture of aniline and tolantine is lusites with amenie acil for severnal hours ta a tengeratore uf atoout 380 line is meparatent, the conapposile of whirh cliefty forn the aniline ilyos, alanaie ehluride can le used in place of strepion andi, bat the latter gives better tesulta : careful attention is required in the segsaration of arnenic fram the dses. The rediue after conoling is prwilered and trvated with lailing Water, which dissolces arsebiate and arspaite of roaniline, ant leare a refilae contalining ather eolouring matters. When the molution lens comonon salt inixed with it, daoble decosuprosition take place, and the arsenical malte remain is molution. while roasinitine as hydrochlaride is precipitated This miletaner is inat insolalie in waier, last is water containing salr it i- precipitatel on 'salted aut.'

The mixthre of bover troatel, sallel 'aniline oil, ${ }^{*}$ contuise with oxygen fross the arkenic nejhl, which removes hydrogen in the foris of water, the reviduen coalecing into the more complex molecule of the colouring matter Ansher process-the ons now chiefly used- Jur the preparation of meaviline is heatiog asiline sith nitmineazine, protachilorite of imn, and iton filinga: in shis cave the oxyges in tlerivind from the nitrulenzene. The reasdipe is trealed as in the previone proces. The product is purifiel lay crvatsilination frem water, and the hydro-hlorite of ronasilime so obtainel is the colos bajerta.

Rowaniline itself to colostrless, and erystallises in teedliey ur plates It sejerate from magrenta un ahling vada to Its wolution, hot heing very nolahile in water: it diswolves neare renolily is alcohol. It fomis valta with acils, and thene aue the aniline red 4ye. Mastenta, or fnilinine, is chirifly hydruchloriale, ruspine the acetate, sraleine the sitrate, but jare simpite salte are not insually soldil. The salt- lase usually a sgeen meetallic fostie, and reil in thin plater by trammaited liylht. The nolutiont linte as intense crimean culowr, and are not 月uorescent
Kosanilize is socompranied, zs usually manufsetured, by an almoet similar subetanoe- fuerarosanilinc, The difference is that of honologues of the sarse serion, nod as pararoaniline is the lower, we ahall we it in the following coniparative formintir. showing the replecements producing the various coloun.
Methane I trarsh-gasf, CH_{3} is the simplest of a aeries of hydrocarlons, and contains I atotn of carbon and 4 of lyydrogen. The liylrogen atomas way be replised une after anether by various elemente or campound groapa. In chloroform 3 are replared by chlorine. giving the formuls CHCl, ; and if this body, under certain conditions, acts on benzene, $\mathrm{C}_{4} \mathrm{H}_{e}$, we get hydrochloric acid and a hydrocarbon mamed tri-phenyl-methane.

$\mathrm{CHCl}_{2}+3 \mathrm{C}_{2} \mathrm{H}_{4}=\mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{2} \mathrm{H}+3 \mathrm{HCl}$

The aubstitution prodactes, or their compenals, derived from this lyydrocarbon are the various aniline dyes.

By treating iri-pluenyl-methane in the sume nanner as benzene is treated to get aniline, we get a tri-amido base termed paraleucaniline. By the suddition of an atom of oxygen to this body we get pararemaniline, Which by solution in acials, as alresdy
atated, forma the aniline verls. The following are
the respective formulie: rermulie

$\mathrm{C}\left\{\begin{array}{l}\mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{NH}_{2} \\ \mathrm{C}_{4} \mathrm{H}_{4} \cdot \mathrm{NH}_{2} \\ \mathrm{H}_{4}\end{array}\right.$

A witine Biwe.- When the hydrogen atoms in the amido groupe (NH_{3}) become replaced in pararosaniline by phenyl, $\mathrm{C}_{6} \mathrm{H}_{3}$ tnethyl, CH_{3}, ethyl, $\mathrm{C}_{2} \mathrm{H}_{8}$, or similar groupe, the amilline blue colours are fro. duced. The ordinary tuirit soluble blue has an atoun in each of the amido groups replaced by phenyl, and is the hydrochloride of triphenylated pacarasaniline, anal hus the following formula :

$$
C\left\{\begin{array}{l}
\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{3} \\
\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{C}_{6} \mathrm{H}_{3} \\
\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}=\mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{HCl} .
\end{array}\right.
$$

This bue is oltakined by leating rosaniline to a hight temperatare with a large excest of aniline alung: with mane benzoic acid-the action of which is nut understanal. Amnania is formed duriny lies operatian, and escmps along with the excess of anilise, which in thstilled off. Whes the action suans, the product in cooled, and expena of ligilesphlario acid alded, which forms an innolable com. paunil of the base, giving, when whathed and dried, the spisit blue.

It will lae seen lyy the farmala that there ave still two free aloias of lystrogen in the abidide jeroujin:

Tlanes can he nubatituted by mintivy or ethyl, and Athon of a pirer shaste olitained. All the varietien are only sululble in ngirit, and to at noall extent: they five very pure howe colours.

Solubla Bowe- The suirit blue, me valled from being inmoluble in water, is th n large extent convortest inta a ramanabint midable in whter, termed ' notuble hane.' thereley givinge it o much wider range in ita application. The compround is a sulphonic seid malt, anil is prepared in the usual manner by miking with sulpharie Acid, gently Warming, and after a time pooring the mixture info cold water, in which the free neid is innoluble After wailing, it is cantiously dimolved in moda molution, and salted ont It is then driod gently, froning a browninli aake. It dianolven readily in water. This is monomilphonate of the dye, and called alkali hlue

Water Bhe or Caftos Blue in a trisulphonnte, and is prepared by lonjer locating at a temperatare s litile over $219^{\circ} F$. The excesh of sulphuric acid uned is sepsrated from the solution by milk of lime. this sulphonic acid being solable in watee it is Mothyd Volet soda or ammonis salt.
Mothyl Violet. If five of the amido-lydrogen ntomi in rosaniline are sulntituted by methyl, this colour is produced. The methyl groups aro subatituted in the aniline, and the process of oxilation in then nearly the amme in in the preperation of magenta. Pure di-methyl-aniline is treated with chloride of copper, sad nome common salt is uned to moderate the action. After the mans is cold it is carcfally treated with whter, to form a ptrong sulution of the salt, in which the colour is insoluble. After the salt is carefully drained off, the colour io dissolved in water and any copper removed lyy mat. plusetted hydrogen. The salt or form in which this colonr is sold in often a double chloride of the colour base with ehloride of zinc, which is erystal. line. The double zinc salts are frequently used for a similng purpone, as they crystallise readily, giving the proluct a definite form and appearance, and the oxide of zinc is readily soluble in acide and in caustic alkalies, and having no colour does not interfere with the dyes.

Bensyl-rasanaline Violet. - The methyl groups in the violet deacribed can be replaced by heating the colour with the chlonide of benzyl, a body prepared with toluidine, the benzyl group, $\mathrm{C}_{7} \mathrm{H}_{7}$, producing a bluer colour.

Malochite Green.-This is a colour belonging to a class having only two amido groups in tri-plenylmethane. The formula will beat illustrate its structure. That of brilliant green is slso given.

In malachite green 4 hydrogen atoms are replaced in the amido groupe by methyl, and in brilliant green by ethyl. These colotirs are chielly sold as zinc double aalts or oxalatea. They generilly have a rich metallic lastre, and are readily solnble in water.
Helvetia green and others are sulphonic acid derivatives of these coloaring mutters.
2. Phenot Dyes.-When the hydrogen atoms of benzene are replaced by hydroxyl, OH , bodies of an acid or semi-acid kind are formed, called phenols, These are mono-scid, di-acid, ke, according to the number of hydrogen stoms subatituted. This is feen in the foflowing formalla :

$$
\begin{aligned}
& \text { Reswrein, di-hydroxyl-benzene.. } \mathrm{C}_{4} \mathrm{H}_{4} \text { (HO), } \\
& \text { Pyrogallic acid } \ldots \ldots, \ldots, \ldots+\ldots \ldots \mathrm{C}_{8} \mathrm{H}_{3}(\mathrm{HO})_{2}
\end{aligned}
$$

Naphthalene yields the noes important bodien of thin class, called naplithols. A gonersl methed for their preparation is to melt the sulphonic acid of the hydrocarlons with caustic soda, and add to the solution of the reaidue an excenh of hydrochloric scid, which meparates the phenol.
Some of the important yellow dyea are nitm com. pounds of these bodies. They are got by cantiounly mixing the phenoln with strong nitrie acid, and generally finishing with the ald of heat. Practi. cally better reasfa are got by firnt forming the sulphonie acid.

Pierie Acid is trinitro-plenel. Ita formula is $\mathrm{C}_{4} \mathrm{H}_{3}\left(\mathrm{NO} \mathrm{O}_{3} \mathrm{OOH}_{\text {on }}\right.$ It is aparingly aoluble in water, to which it givea an intenarly hitter taste, reeognisable in filiren which have been dyed with it. It eryatallinesi in thin yellow lamine, The
salta form fine eryntals, and are more or lesa salta form
explosive.

Naphthot Yellow, Martius' Yellour-This in di-nitro-naphthol, and was the first colour of value made from naphthalene. It in innoluble in water, but given tine yellow or orange coloured astia, eryatalline and moluble in water. They elonely resemble the piersten. A sulphonie acia of this yellow ia alao uaed an a dye,
Rosolic Acid, Aurin. - If tri-phenyl-methane contained phenol instead of smine groupm, as in roasailine, if would reprenent these dyea. Is fact, the roanlie acida and rosanilines are convertible into each other. These dyen are now of little importance in practice.
Phinaleins.-These form a very inuportant elase of dye-yielding materisla, and are formed by the anion of phenola wich the anhydride of phthalte acid. Phthalic anhydride is obtained from naphthalene by first forming a chlorine addition produet. and then oxidiainit with nitric acid. Crude phethalie acid no obtained is converted into water stul the anhydride of phthalic acid (which is volatile) by besting.
Gallein wat the first discovered of sheee colours, and was produced by heating pyrogallic aeid with the anhydride. It is chiefly made into cerulein.
Cerulein is obtained fron gallein by heating with sulphuric acid to $400^{\circ} \mathrm{F}$, till the colour changen to brownish green, then, on eooling, nixing with a large quanticy of cold water. The treatment han removed an atom of water. The cerulein forma a blackish powder. It is insoluble in water, bat disaolven in alkalies with a beactiful green colour.
Ftworescein, Eosin.-This is the resprein phthalein, and is prepared by lieating the materials to $400^{\circ} \mathrm{F}$. till water ceases to be given off. The mass renasining is Huorescein. From the remaskable fluorescence of ita compounds it derives ite bame, and an alkaline solution of it is takea as a striking example of this phenomenon. It is slightly molnble in water, with a yellow colour, and in the dry state is a reddish crystalline powder.
Fluorescein itself is scarcely used an a dye. But when part of its hydrogen is substituted by bromine, chlorine, or codine, the, beautiful dyea called owing are formed. The tetrabrominated eosin, or nather its potash salt, hes been nont largely uned. It fornis red erystals with yellowish-green reflections The solutions are rose-coloured with intense green tuoreacence. One of the most beatiful colours of this gronp is the replacement by 2 ehlorine sad 4 iodine atoms, called phloxine. Methyl and ethyl

ethem of this body are also dyestuffig.

3. Azo Dyes. - The first nection of the coal-tar colonrs consisted of aniline and similar borlien
coslesced into more complex besic forms. The enecond of phenols, with suletitutions yielding weid eormpounda. The thinl section, now to be considered, in its siropleat ferm is meatral, lut by resctions with amines (bases) or phemols (acidn) can produce culouring bodies with the chemienl properties of either of the ather sections. This class is obtained by a reducing action on nitro compounds, leaving twe resilnes in combination by the mateal affinity of the nitrogen atomshence the mame, from azote (sitrogen). The comstruction will be understood from the following equation:

$$
\begin{gathered}
\text { Nitrobenaise } \\
2 \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NO}_{2}+4 \mathrm{H}_{2}
\end{gathered}=4 \mathrm{H}_{4} \mathrm{O}+\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{NNC}_{5} \mathrm{H}_{4}
$$

We have here, it will be sech, simgle pheny! groupa enmhined with two nitrogen atonts, and from the abselice of amillo or hydroxyl frowns, the sulstance is neither basic nor acid. If in jlace of nitrobenszene a nitro derisative of a Nifferent hydrocarbon lial been tsken, is curreaponiting nzo eomponind would have been prodaced. Tive principal development of the coal-tar colours of late years has been connected with this reaction. It con le seen that by manipulating the hyolrocarlman groaps with smide and hydroxyl groupr an with the faolies in the ether sections of the onfonin, asyy aumiler al aza dya may be shtained.

Mont of these dyes from lenzenc and the lower memben of tis serie are yellem or brown, lut when hydrocarbons with more carlon stame sre used, auch as cyrual and naphothatens realn and blues are produexal; some of the searleta lasving almnet altaplaced the colours from cochineal.

Bimath Broten. Phriglene Browed, isc.-This is an example of a colour with asaido derivativer, and is selected as being the firet of the axs celeurrs laving a manafacturing success it is jurepared by the actios of oitruas acal on the ali asnine of pheay. lene, The reaction is stown in she equation:

$$
2 \mathrm{C}_{1} \mathrm{H}_{1}\left(\mathrm{NH}_{3}\right)_{2}+\mathrm{HNO}=2 \mathrm{H}_{2} \mathrm{O}+
$$

$$
\mathrm{NH}_{3}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NNC}_{3} \mathrm{H}_{2} 2\left(\mathrm{NH}_{4}\right)
$$

Thesc colourn are very exally propared ; an a rule the colour precijitates when its cotopeopents are lorought together. Besides the dyring of cutton anol wrol, this onlour is mach sued for ilyeing leather. Is is used an the hydruchlorile, a dark powder.

Fiant Yellone is the potasiuit salt of a nulphonic acid. Ite comstriction is seen ly the formula;

$$
\mathrm{KSO}_{3}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NNC}_{3} \mathrm{H}_{4} \cdot \mathrm{NH}_{r}
$$

Oxyszo dyea are propared with phenoly, and have become the mont inprortant of the conl-tar colourn They are nearly all stipfornic arid cumpoasuls, and used in the firm of emfo salto of these scils. The yellow and aranjfe coloars are mold as Trojucolitis : last red, Aloceelfing elares rel. Bordeaux; scarleth, Biebrich, Croerin, de. An exanple may be given of the conyposition of one of these colours, finst known a Melater's scarleh, kuw sablel as sosarlet (it

$$
\mathrm{C}_{4} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NNC}_{4} \mathrm{H}_{4}(\mathrm{OH})\left(\mathrm{HSO}_{3}\right)_{2}
$$

This dye is the sulyduapic aril jterli, int asandy an alkaline andt is enplayed in the olyeing proess, as the seids are zare wr les insulnble, A compound of the aciuls with alkaline hisalphites lise lately beent used with some success.

The benaidine and allied colruss recemtly inirndaced belong to the tetrazn grosig of the uxy azo dyes. Thes lisve the valanble property of dyeing cottuer vitheut a mordant. Almont any shande of blue, green, yellow, and red can in obtained foum then. Ther stand sonaring and isilling, and are considerel hast to light on wool ; bit soones, at least, are not permanent on cotton. There exists a strong belief that the benaidine coloun will be thoee most lurgely male from coal-tar prodacts in the futare since they are of sienply spplied. Sise Phesyl. Costrousbs.

Anthracene Dyes.-These are anly a anall group, and are reganied ather men artificial prodactions of the sataral colours of haselder than coal Lat colouns Artificial slizarin is bow, however, funnufacturel op a large scale, anil bas alunst completely taken the place of the nstirnal prodict. In England it wes first nosule in 1870 . In the nuanufictare of these dyes notlorscene is first eopverted into anthta guinone log oxivlation with solution contaiving chromic acid, and then inte sulphonie acid, or rather sulphanic wisk, for there are several formed. This require faming sniphurie acid, and a temperatore nf $320^{\circ} \mathrm{F}$. The achis are converted inso soda salts, and masy he separated by crystallivation. Mono-arin prolnces blue, di-acidy tuore of the red
and orange coleatrs
The sola salte of the sulphonic acids are now mixed with a casali proportion of chlorate of potash, and heated under presuure with cunstic soda to $400^{\circ} \mathrm{F}$. for twenty-four houns. Wster is addel in sufficient jurntity to keep the soda liquid, anil the maixture requires to be constantly stirred, or the materials would not cone together. The mase obtained is gromad and dissolved in water nentralised with hydrochloric acid, when the alizarin separntes. It is filtered and pressed.
Alizarin as solu contains three colouring matters -alizarin, giving blue: anthrapurpurin, red and favopurpurin, orauge shades. They mayy all be produced separately from the different Anlphouic acids. Their properties as dyen are nimilar.

Dynamo-electric Machines are machines

 for genersting electric currents by means of the relative movement of conductorn and magnets. Faraday discovered in 1831 that an electric current in induced in a conductor when it is moved across the pole of a magnet, so that it eute the lines of magnetie force, or (more generally) whenever the aumber of thene lines which passes through the cirouit of the conductor in in any way varied. If, for exaraple, a coil of wire, the ends of which are connected so that the whole forms a cloasd circuit, be muddenly withdraws from the pole of a magnet, a transient electric current is induced in it, while the linen of magnetic force which proceed from the pole are ceaning to be preaent within the coil. If the coil be replaced, a current will again be Induced, but is the contrary direction. Sinilarly, is trannient current in induced if the coil the held at reet while the magnet is drawn away; or, again, if the ooil bo turned round no that the dirsction of the linee of foree through it hecomen reverned, in which case the effect will be twice as great oh bofore. Any movenient whicli causen ant alteration to take ploce is the amount of magnetic induction through the coil broduces a transient curront. the electromotive foree of which is proportional to the rate at which this alteration taken place. The whole anuount of electricity produced is the anme whetlaer the novpinent be fast or alow. When the movement if dow, the current Insto longer in propnrtion as its atrength in lesa, To produce the movement requires an exertion of mechanical work, which finds its equivatent in the energy of the indaced eurrent.Faralay'n disenvery was immediately followed by the invention of numerous forms of magnetoelectric machines, al cliey were then called, in mont of which a steel honvephoe magaet was made to
motate over a pair of coils wound on a tixed smas tare, or the armature ishl coilh wore mule to rotate while the matiot whes held fixes. Fig. 1 is an exauple of one of these eurly forms, in whith tho crmatore, 13 B , with the imbinne, ${ }^{2}$, D, whech connist of cuile wound appot iron eores fixed to the armathre, revolves in front of thee ringret polen, N, S. Inevery luaff-revolutions the lines of thugnetic force throngh the boblitian litwe their direction reversed, ainl a meribe of transient carrents are consequently proluces in the cuils. These jouse to the excermal part of the circiat thrmgh thes spring lorusles, H, K, which make eontact with a revolving collector, eonsisting of insulatel metallic ringe on the axle, to which the etisls, mi, \%, of the soils are attachesl. If as were noways in contact with H, and u with K, it is obvious that encls successive tranmient eutrent woold take the shirection opprosite to its prealecesorr -the direction of the current wonld alternate at every half-revolution. On the other loand, it is easy, by splitting the rimus, to arrange the collector so that \vec{H} is him contact with in for

(x)
half a revolumin, and then with at for the otlier half, while K is is con lact first witls n, and then with as. with the effiset that thet siteceraive carronts all liave the same direction in the external portion of the cirenic The collector for sheat called a com runtator. A emmmon form of com mutatar is ahown in fig. 2.

An sdeally simple form of dynama is represented diagrammatically in fig. 3 , which represents a conducter Fig. 2. consiating of a single loop of wire revolving in the magretic field hetween the poles of a magnet, NS, no that at every lialf-revolution the lines of force have their direction of pasaing through the loop reversed, and n serien of transient eurreats is consequently inducet in the loop. Here, ngin, a enmmitator is
 arop in entting the lines of force in one direction, ant the nide, b, is rutting them in the other, and hoth these movements are contributing to produce electromotive force in one direction round the loop; the other two silles (i.e. the front and the back) of the loop do not cust lines of force, and therefore do not contribate to the production of electromative force Δs the lomp approachen the vertical pooition (shawn by ilottel
lineu), the component motion of the sides neroes the lines of magnetic fores becones refuced, and the electronntive foree sliminishes, till, at the yerticat poifition, it divappean entirely, for there the niden of tha loop are noving (at the thatast) ulong the linee of force. After tlust they begin to eat the lines of force again, hot is the reverne diwe tion, and an eleotronative force oppmatite to the last bogina to act, whish reaches ite maximam when the coil in again horizoutal. The gabue variations are ropanted is the coil turns throggh the remainiog hatf of ita cevolation. The atrength of the carrent follown sluilar lluetuations, lwing ileterminet by the electromotive force and hy the resiatunco of the cirenit, inchaling the resistance of the revolviug loop ftaelf.
The efifeet of the revelving eondsetor is prolaeing electromotive foreb may be increased (1) hy increasing the queed of rotation $;$ (2) by forming the loop with more than ofte thrn of wisese an to make a coil, the whole effect in then the enan of the eflecto due to the inilividual tarne: (3) by strengthening the magnatic fiell. One very ibportant method of doming thin in to furnish the revolving coil with as fros eore, the etfeet of which is to increase the magnete induetion thenogb the loop, neross the espace froto pole to pole, by jenvinting an earier patli, for the lines of masnetic force to croes this gap. In early dynamon the anmature (as the revolving.piece is
called) (requently consinted of a coil of many stims wound on an iron core, in the masner illuatruted by fig. 4, which shows in peetion the simple shutulewound arisatise intere-
 The eayls of the coil The emis of the coil were lmouglit to a commistator like that of fige 2, and the eflect was to prosluce currents which were anitorm in direction. They were, however, very tar from uniform in prength, varying from zero to a maxinium twice in every revolution of the shaft.
In the early dynamor permanent steel magnets were ased to proluce the field in which the armature moved, but it was eoon recognised that electromagneta might be employed instead, and in 1863 Mr Wilde introduced a machine with large electromagneta, which were excited by a amall anxitary armatare revolving letween the polen of a permanent magnet. Before this it had been proposed in maelinees with permannent magnets to supplement the magnetisni when the machine was in action, by having coils wound npon the magnets, and by allowing the current proinced in the machine itself to pess through these coils. It whas not till 1867,
honever, that it became known that ateel nuagnets were wholly unnecesary; and that dynsmoe with electro-maf.eets might be made entirely self-exciting Even when the cores of the electro-nangnets are of soft irom, there is emouglt residnial magnetism to initiate a feeble current; thid Aecelope mare zushnetistis, which in it大 thrn develops more current, ansl so the process poes on until full rasgoctisation is remeher. The primeiple of self-excitstion was enumciated indepenslently, and almont vimultanoonaly, by Wheatatose, Werner Siemens, and S. A. Varley ; it is now malle ase of in all except the smallet machines The term 'dywamo-electric' was at first applied to Jistinguish thnse minchines which were self exciting from 'magneto-electrie' mathines, which had permaneat magnels 10 give the field - bate this distinction is so longer main. tained, and the name 'dynamo 'is now used in the wiler sense defined sbove.
An extremely impertant step in the development of the dynams wat taken in 1870 by Gramne, who
introduced a form of armature which, fer the first time, gave a carrent not maerely cuotinumas in difection, bet sloo pebribly uniform in etrenigth. The Gramsue ring armatore is sliovit diaprastmatieally is fig. 5. It comeists of a sing olapiod iras care, mvolving is thie thapricilie liatd. aud havisg a A, B, C, \&Cr weand eymes are jolied to ope inumblier Ith a compinus oha serien, asal shat to the fusulutel -ryguanals nf
\& Covirsizator, 4, A, C. binat revorves with the viag. and from whimh tiat earcent is takes by lursues II. K. Tynaldec auw the anthas of the foht is gum datingt eleriommotire force in ang tme nf thie evilis, epheh is A. Near tion plaor in mlich it is sketelust, the voit A in mavins in a diferction janalled, of nearly farallel, to Mar lisen uf luroe, and, thersfoge,
 if: Ioot by the (brae the rigg lise made halif a revolation, the vanne cail will lave thin hine of fore whilh if reverand. Heiwes (bee cwe puaitionia,
 electranmative forcy, ansl this will in fact le goirg on isuat selively hall.way letwevt the Iwo plames Tlie eoil C ' is at paeant dae sasif sutive rantailaster
 in front of ant belliat in, are nbo consiturting a shars, iunt the whole electloineotive force lettreen A ausl E, to far se that sile of the rimg in oun. cernct, bill les tha sum of stie several eflocts the to all the cuils from A as R. A litule considerntion will show thas Iher sauc action in growe on ve Hec other
 st atal e they will take off to the external prortion af the eirenit a evarens, lalf of whith is contributal by une diale, ansl lailf hy the other Inde of the ting, the twe sirles acting then twa goveps of latlery ceti arranife! in paralte! smal of eqsil maitance and equal electmasation forre. Tho whalie olectromotive foper in the armasture is the same as blent problyrot loy the coils ati whe sale slone, lait the twiteras refintance in Ialvol lyy the divinion of the etorrent letween the bwo sisles Ia acien! díanmoe smiatures, the number nf coile on tive fiag is tety murle greatas than the nuinber slown it the sheteli, and oadt
 cotumutatur tu furucls twou of the megrients at ance. Hewee the exyment to neres interruptel, whil the
 segment puses unt of civilact and awothor conves in , thay for male alionst ivilefinitely manill. As
 thrimght the lecrish, futd itim wordhl give rise to A waste of eurgy in the call and to ajarking at the lamsincs were it mot flest the limusior ate sat is leent on the ounamilator at the Infints wlyese the development of electronientive forse to the earresponiling juir of wils in a mininouti. Thene neutral pointy, as they are cilled, are not exactly minluay between $\$$ aml N , Iatt are in alvance of that position in conserquehce of the taagnetie fiell within the ring leciog alistorted through the action of the carreots in the armatare enith, Hence the

Lerusloes require to lave what is culled 'leat,' and this leat has in general to he mijatsted whenever Whe ontpal of the macline is eonsideralily raried, more lead lecing mosled if it haflich that the artan tare current is inereassed while the fieh maguets remain of constant, of nearly constant, ztrength. The adjustment of the brushes is an matter of much
 dymano, for the aparking to which fuulty fuljustment gives rise speedily wean away the commat. tatar hars as well as the brashes themselves.

A buall jazactical Giranme dynimo of an early form is shown in Gif. $_{6} 6$. In thits exaniple two field. trapthets eonspire to produce a north pale at N . fad other twi ta prodace a south pule at S. The

V / z. IE
cambintator in a nerise of ropper liens mounted on 6n insulatiog lnob fixed to the nlouft and neparated frum one suother ly thin striper of mion of at ber
 jestiong, whiteh ase soldered th the jumetions of sucoesodve ermatare cosila Euch Loruli consistu of a llat bualle of copper wien jusand lightly watinat the commatator lyy is sjoriog. The eore of the
 tron wire, on whel jesulated onyper wire in woind to fone the coiln It is eveuting that the core of Has aranature sbould not le witid, for in that case curvents wouh te verebhired In the ealmatace of the nooviry fron itself to mueh on extutit an vers neriuasly to isujait thie eilicioncy of the machanes 1fance the cume of dynano abmataren in alwiy minnlivided, ley being made ap vifleo of wire, or prore usailly of thim plates muse ow lens eurefally masslates from one anothes. Vhg 7 blows the

Pig. 7.
armature of a shabll branne dynama, removed from ite place betwern the pole-pieces.

Two years after the introbluction of the ring annadure by Gramme, it was shown by Von Hefuer Alteneck that the Siconeng armature ($6 \mathrm{~g}, 4$) might lie motified so that it also slimild give contimous eurrenta of practicalty constant strength. In the original Sieraens armatare there was but one coil, all wound parallel to one plane, nud the eurrent fluctuatel from buthing to a maximum in every tealf-revalution. In the modified form the coil is diviled inte mang parter, which are wound aver the sarae eare, lat in a series of different planes, the plane of each suecessive cavil heing a little inctioed to the ptane of the coil liefore it. The oult are all joineal in serien, and their junctions are eonnested to the lars of a combutatery jutat as in the Gramme ring. The Sienuss-Alteneek of drum armature may, in fact, he compared to at Grannue arinatore, in which the emils, instend of being wonnd on successive portions of a rimg are all wumal on one piece of corc, preserving, however, the angular position they would liave in the ring Their action depends on their angular nomtion, and
is therefore the same in both easea. Aa the dranm revolves, that coil which is pressing the neatral phane friz the plase perpenticular to the lines of furce) is for the moment inaperative, and the bruslies auk set on touch those hara of the conmmator that are commected with it. The other coils are more or less ojserative, the nust active contriliator of electromotive force heing that ane which is for the monemt perjembicular to the neutral plane The electrical effects in drum and in ring armatisrea ave the sinue Nearly fall conatinuons eturrent dynamus have one or the other ; most miskers frefer the ring tyjue, mainly from consideratinns of eonvenience in construction: but the dram type hobdis ics place in sume of the best modern. нисһрияз.

An importunt element in the elassification of dynasux it the manuer in which magnetian is inducest in the peld-ungrots. There may of eomese lee excited from an indejemlent aonree of electricity; but when the machine it nelfexciting, there are three impurdat altermative methoris. In the early machines the coils wn the fiehl-nagrats were onnnected is reriea with the extarnal part of the circhit, wisl conserguently the whenle eurrent jwodnces! by the machime paved thangh both. This arraitemont is distingolishod as scries veruding, and is shown slingrammatiedly in fig os. It was liont petinted ont by Whentstorie, in 1B67, that sher magnet coils, instevit of being pat in serinat with the extemal conshetor, might be arranged an a whant (s) it, therelhy forming an alternative jath throngh whiche fo jortion only of the catrent would

Fife

Fig. D
pana, In this erringoment, which bealled othoul
 tirar of emmparatively fine wire, no that thoy rasy nut ilivert an escemive y bantity of eurrent frum the external circuts. Fibally, in twmponed minding (fig 10) (the two previous inethoda are eombineal. The liehl-uagracts sro wound with two cuils one of these (which is short and thek) is enumeotesl is series whtr the external cirestit, and the other (which is long and fine) is cubsuected us a shant tsit. This plan appears is huve heen finct axtel In Varley in 18\%6, and uterwanis by Drush. whes paintel out that it, chone with simple shant whings, has the mivan. there if maintaining the magnetic fieh aven when the extemal eirentit is interrapted. It lias, however, when properly appiseri, anuther and more impontant inerit, as will apiear below.
In a series-wonnd गynano the magnets do not heamie excited if the external cirenat is ofer,

Fig 10 anst bectate obly feelbly excitel when the external resistance ts high. Let the external resistance be reduced, while the armatare is foreed $t 0$ tarn at the same speed. The comrent will mow increase, probincing a stronger rangictic field! the electronative force is therefore greater than before. A curve drawn to show the relation between the current and the difference of protential hetween the terminala of the machine (x hich is a little short of the fall electronotive force, in consequences of the resistance of that part of the circait which is within the machine Itself) will in its early partion rise
fast tak the earrent increases, in ennsequence of the rapid angracitation of the marbetie Jiehl, Such a eurve ia called the characteristic curve of the machine, and is shawn as A in firs, 11.
If we continine to increase thecurrent If we continne to facrease thecurrent by taagnets tend to lrecone saturatel, and tinally even liake their magpetion somewlat weakenel an account of the inflisence of the carrents in the armatare onils. Further, the loss of polential, sliruagh tuternal resistanee, liecsines trote considerable. The differenice of potential he
 anal beromes omminterally realurod shen the current is mach angroentel, as empeape in lig 11. The
 shown the BB in the aquet figure. Here the strcnath of the marnotic fielli is mearly constant, hat dueresusto a little when the machine is giving nach correat, partly lecaitse the eument in the ndant circuit is then somewhat relucel, and partly because the current in the srustaro coils zenis to oppose the iongretisatioa. Hense the jotential faflo wif as the earrent increases. This fall will, however, be alight If the reaiatance of the armatare is very low and if the bield-magnete are very atrong, and ander thene conditions a shant-wound dynamo will give a ncarly conatant difference of potential whether much or little current be taken from it, provided, of course, that the speed remain anchanges. To make the difference of potantial more exactly conntant, it is nocomary that the magnetic field should loconsen stronger when the mschine is giving much current, and compound winding achieven this. A com-pound-wound dyname may be reganied as a shunt machine in which the action of the shunt winding is appplemented by thet of a series coil on the maighete When the ansphine is running on opet cireait, the shant coil alune is aperative; as the eurrent taken fram the machino is increased, the series cotl primlace a targer and larger aspplementary offect on the magnets, and by choosing a proper uunaber of series windings. their effect tnay be made to peutralise with irest exactares the droog in the charscteristio earve which wwali ecrar if the abunt

Whea mine or fewer lampe are in action. Shantwound machines are also largely used for incandescent lighting, the potentinl leing adjusted to a constant valne by varying the apeed of the machime, or by throwing resistance into or out of the magnet shont circuit. Shant machines are the moest saitable for charging ntomage batteries and for electro-plating, becanse of their not being liahle to have their polarity reversed by a back current from the laltery or lath.

Fig. 12 illustrates the Edismn. Hopkinson dyrumo which may lue cited as an exceflent instance of modern constrictions. Here a drum armature is used, not a ring: and in this instance the amature coils, instend of heing of wire as they are in amaller nuchines, are formesl of copper hars insulated with mica, each pair of spposite hara being joined to form a loop; the ends of which are connected to opposite segments of the crmmatator, wh well far to the lousw which oonse next in order. The field-magnets are shant-wound, and ture set vertuanly with the pole-pieces at she lrottom. Machiner of this class are made of sumficient rize to give a eurrent of bbo stupires, with is putential of 108 volts : the output of electrical enerzy is therefore at the rate of 69, $\left.3 \mathrm{yn}_{0}\right)$ watte, or over 92 lisper prower. There whe five bruelies on elther sable of the rommutator, giving a 'large aren of contact, and these are neparately removalile to allow of their leing trimmed or cleaneil while the machine is rinning

In most dynamow the field magnets are devigned to form on mimple a magnetic circuit an pompible, with two poles which stand at opponite ends of one dismeter of the combibtator. In same cases four or asore folen are need, efricent at mant intervals ruatal the wranture, sfoch then takes more or les the form uf a aline, in which she similarly affected coile may loe connectesi tayet ber, bas that in pinglo faif of lezzhef still server te Lake off the curment, In same cess- the deils are contiecterl to exanma caton of preeial devjem, which have the stlect that

Fie. 11.
Compound machines wround for constant petential give a nearly strnight horizontal line for their claracteristic: CC in fig. 11 is an actual example. By making the series coil more infuential, so that the potential at the terminals rises slightly as the burrent increases, the machine may be eomponnal-wound to give eomstant potential at the ends of long lealing-wrires by which the current is conducted to a alintance.

Series-wound dynamos sre Iargely employed for electric lighting lyy are lamps. Compoand-wound machines are eapecially suitsble for incandescent lighting, where the lamps are eomnected in parallel, and where it is important that the potential shall not vary
each coil in mutircly eat ont of circuit for it time. during thas juat of itv unvenent in which there is little er $n 0$ electrutnotive foree intiscod in it. The Brash dysaamo. which took a prominent place in the early industrial alcwelopunent of electrie lighting, thal the Thenuson-Huoston tywame, are instances in proint.
In atterwate rmatent dgaramo the armature consiote hasatly of a group of osils, joined in parallel or scrjes, atiacheel tor a dise which revolver in the syace lectween a contectumding group of phirs of makmet-poles, sur that mpilly alternating trankjent
 pooles, wad theve entrent- pase to the external circuit
 tator. In sume cases the armathe is stationary, atad the fielol-manem- zevalse. The foch is msanlly excites for ats auxiliaty slynaum of the csmotianoar
current type. It in imposuible in the space at our disposal to describe the great variety of forms which alternate current machinea have taken in the hanils of Siemenn, Gordon. Ferrenti, Westinghouse. Mordey, and others. Dynsmos of this clam are now acquiring a upecial importance from their use in connection with trannformers in Electric Lighting (q, v.), and are being male for this purpose of very great size and jower. In alternate current dynannos, the relation between the strength of the current and electromotive forse induced in the moving coils depeniln not merely on the resintance of the circuit, lut alno on its coefficient of self. induction, which has the effect of making the maxi. mam of ntrengt i in each tranaient current lag behind the maximum of electromotive force. It has been shown experimentally and theoretically, by Adama and Hopkinmon, that in consequence of selfinducLion two nimilar alteruate current machines driven

Independently, but atarted at the same apeed, and connacted in parallel, will control one another, so that the phases of the currents will continue to egree.

Dynanoa, of whatever type, may be regarded as machinen for converting enorgy from a mechanical into an electrical form, and from this point of view a matter of prime importance is what is called the efficiency of the machine, which in the ratio of the electrical power the dynsmo gives off, available for use outaide the machine, to the power unsd to drive the machine. The elsetrical energy given off fall. short of the mechanical energy aboorbed, in consequenee of (1) mechanical friction; (2) the generstion of eddy currepts, to he prevented as mucir as posaible by laminsting the iron core of the armataro: (3) magnetic Priction or 'hysterenis,' by which every reversal of maguetimm in the iron esuaes dimalpation of energy, apart from the production of ouldy currente: (4) the energy eno. sumed in maintaining the magnetie field; and (5) the haating of the armatian in consequenet of the reaistance of ita own coila. The aggregste effect of these nources of lons in that in a good machine ahout 90 per cent. of the driving power is available an electric energy in the extermal circuis. Dr Hopkinson has ahown by carefal measureraenta that machines of the type iflustrated in lig. 12 rasy attain an etficiency of over 93 per cenk.

The Dymame tis a Motori-Just as a comiduptor when made to move acrose the linen of magnetic force has a current genersted in it, as when a eue rent in mude to pase along s conductor placed in a magnetic field, the conslactor tende to move acrova the field in the direction which would reduce the current by inducing an oppyeing electromotive force. Even bafore Farndiy's discovery of the indaction of current in a conductor by ite movemont in a magnetic field, he had ulown (in 1821) that the reverse procen wha posaible, and soon afterwarde various forms of magneto-eleetric engine were devised by Barlow and Stuageon, and later by Ritohie, Henry, Dal Negro, Joule, and others, which employed electric currente to do mechanical work on a nmall acale, In 1838 Jaeobi constructed an electric motor of aufficient power to propel a amall boat, using a kroup of electro-magnets, which revolved on a dinc between opposite groups of other electro-magnete, which were fixed, some time before the application of the ring-arnatiore to dynamos by Gramme, it had been used in a moter by Pacinotti, and the principle had hoen explicitly stated that any electric motor might be used to produce currenta but it wan not until Gramme'a time that the full significance of this principle was generally recognised. The action of the dynamo ie in fact reversible : the sane machine which converte mechanical into electrical enongy will nerve the opposite function equally well. Power may therefore be conveyed to any dintance by using is
dynamo to proluee currents, conducting thene tos the slintant apot, and atilising them shere to produce mechanical effect by masis of another dymame acting su a motor. The second dynamo may be a coanterpert of the first; in nome capos, however, it may be deairable, for the sake of lightneat or for other epecial reasone, to adopt a different construction in the motor. In general, however, the mout efficient generator is also the moet effleient motor. The experiments of Hopkinson, in a case where some 50 horse-power was being tranamittod in this way, ahow that the double coorversion of energy from the mechanical to the electrical, and back again to the meehanical form, may
be eecensplisised with is total loes of no more than 13 per conts; the officiency of the motor and that of the gouerstor being osch sbove 98 per ceak
Alternate current Cymamos form fairly efficjent motors when Iriven by alternste curreats; they require, however, to be started in nynchronism with the impulsen roceived from the genersting machine, but once started they tend to remsin in'synchronism: Bpecial forms of tuoter for alvernate curreats have beea deaigned by several inventorn, bet thene have ncarcely an yet passed the experimental stage.
Ear. The apparates of hearing, as it existe in man and the mannmalis, is composed of three parte -the external ear, the middle ear or bympanurn, and the internal ear or labyriath.
The external tar consists of two portions, the auriche or ginna (the part popularly recognised an the ear), and the awditory canal or external meatios. In man, the suricle, on its outer or more exposed aarface, pronento varions eaninescen snd depresionons, resulting from the form of ita cartilaginous fratnework. These have recelved npecial anatomical namen, to which it is unneceenary to advert further than to mention that the deep eapaciocs ceatral space to which soversl grooves converge is termed the concha, sad that the lowest sad pendulous porlion of the ear is termed the tobe. The cartifige forraing the hevis of the external ear convista of one principal piece, is which there are seversl fisesres, which are filled ap by fibrons membrane. Several muncles sre dencribed as passing from one part of the suricle to another, bat they are so little developed in man that they Ho not require notise: there are alditionally three museles-the attolleas durem (or ruperior gieris), the attrateng averm (or anterior asru), and the retratena awren (or popterior asria), which paes from sdjecent parta of the soslp so the ear, asm which, though mone develoged than the yrevious groups, are of litile or no real inaportance is mas fat least is his eivilined neate), but are of combilerable use in thany mamonals, Their actions are sufticiently inilicated by their aanass.

Yi. 1,-Sedtiunal vire of the priernal nadale, sod ioternal Ear, slowing the isterion of tho Auditury Canel, Tyuyusie Cayity, and Juathchian Tole

The anilitory canal jiaves fons the conelas for waric, mat ac fittle formaril. for ratler bame than an iwel. If is Earrowes as elan mibletle thian at either extrenity $:$ Ami an thiv sersusht llawe iv ofteb cob. silemale diffirtily in estracting forvign lemins that lave luan inpurtel inta it. The menslofare of the tympantan whiell ternuinates it is pacell oldivquely. in curbeyuence of the liwer sariane of the mientis terme longer thon the ofper. The eanal is party cartilugisons and partly comeons; the rosocuts jurtion rennisting in Ulor fatiss of a ring of lone, aches which the invalrane is otretrluel, and in niany animsls remainigg persistently as a separste bope. The orifice of the meatus is concealed by a pointed procese, which projects from the facind direction over it like a valve, and which is called the fragus, probably from being rometimes covered with bristly hair like that of a goat (fragos); and it is forther dofended by an aloundance of ceraminnos glands, which furniah an adhesive, yellow, and litter secretion, the cerunes or wax, which eatangles staall insects, partiele of dust, and other amall foreign bodies, and prevente their further pasasge into the mestas
The suiddle ear, no covity of the tympanum, is a apace filled with air which is received from the Pharyux (q.v.) through the Eustachian tube (nee
fig. $1, b, c$, and traversed by a chain of very amall moveble bones (fig. 2), which connect the mambrane of the tympanum with the internal ear. It lies, as its bame implits, between the oxternal meatus and the labyrinth or internal ear, and opens posteriorly into the cells contained in the mastoid portion of the temporal bone, and anteriorly into the Eustachian tube. The eavity in of an irregalar shape, and is lined by a very delicate ciliated epithelinm, which is a prolongation of that of the pharynx through the Eastachian tabe.

Its external wall is in great part formed by the membrsne of the tympanum, which is nearly oval, and placed in a direction slanting inwards, no an to form an angle of about 45 degreen with the floor of the auditory canal (see fig. 1). The handle of the
malleus (or lammuer), the first of the chain of csaicles (see fio. 2), is firmly attached to the frieer side of thin membrane in a vertical direetion ms far downwards an tho centre, and by drawing it inwando, venders its external surface exacave

Its internal wall has two openings commumienting with the internal earr, eacla of which is closed by a delicate membrane, Tiese operings are termed Froin their respective shapes, the fencstruc onadis, and the foriestra ritwodu; this farmep lends to the veatibule, and is cormectesl by fla membrane with the hase of the stapes (or stirrop-bone), the last of the clacin of esodicles; while the latter opiens into the cochles.

The asacles of the tympanoni are thres-via. the mallens, the incus (or atrvil), and the stronss. We have already axplaineal how the mislesis ia connected with the nemblernas of the tympanim by meanis of ite hasdle. Tlarough this connection, the tension of that mombrane may le moxlified lyy the agency of a muscle which is ablached to thin onalele. Thin musclo is Ule teagor tympani, which nrines from the ander marfase of the potpous portion of the temporal bone, athel to lamerteal fictor the handle of the matlous inmodiataly below the somamercement of the

Fig. 2-Onsielen of the left Kar. as seen froms the outuide mad below
m, horad of tite malicasi s. the
 preiller A the wanitrame ur

 brad of the stajem: 5 . the hesel of the slapes. Noquiterl theve dismetern:
of the atapee is attached. The which the head onficiently described by the The stapes is almont neek, two branchee, and as figure. It has a head, slresaly mentioned, fite into the fenestru ovalit. A minete muscle, the stopedins, taken its origin from a hollow conical eminence termed the pyramid, which lies behind the fenestra ovalis, and is ineerted into the neek of the atapes; its function in probably to act an an antagonist to the tensor

The Eustachian tube, into which the tympanic osvity opens apteriorly, is sbout an inch snd a half in length, and pasaes downwards, forwards, and inwerdis to its opening in the pharynx. It in partly oseeons, but chiefly cartilaginous. Its chief une in to allow the free pasaage of sir in and out of the tympanum.
The internal ear or labyrinth is the essential part of the orgas of hearing, being the portion to which the ultimate filamenter of the auditory nerve (see Biais, Nervous Sysitgm) are distributed. It is composed of three parts-vis the vestibule, the anmeincular canala, and the cochlea, which form a arisa of cavitios presenting a very complicated
part of the petrous portion of the temporal liome. They conmmicate extermally with the tympanima by the two openings already described - the
fersestra vodis, and the fenestrot rotunda; and intermally with the internal ambitory eanal, which conveys the anditury nerve fion the cranial cavity to the intertal ear. The very thethe hones ismantiately bounding these cavities is ternael the bssecus labyrinth, to distinguish it from the wrembressuks labyrinth. which lies withas is portion of IL .

The mestizule is a common central eavity inte whieh the semicireutur canats and the cochlea spers [see lig. 3, VA. if is aboist a lifth of sia Theli it heindt aut in lengts from thedore tackwands, its trabseerat ditineter (from shile to sille) living sumetwhat lese. On ios josteriur wall are live uritiees

Khit Al-litepian wh the Gacuas Lahyrinth:

tow the nelufotrendar eandy, one of thet imificon leolig

 urato, And on ita imser are the maenlo eribrosic, eintaining neversl sinate orifices for the entrance of tilaniente of the disilitory nerve
The senicircoder citunds are three in numiler, and open into the vestilule by meanh of five orificest, the two vertical canaly laving at their nom-ampul late extremities a common orifice. They yaly in length and natwithoranaling their name, esch fo ennsiderably mare than a semicirele, the superior vertical cansi lreing the longeat. The average diameter is aboot is twenticth of an incl. ooe extremity of each canal exhibiting a dilatation or ampulfa. Each canal lies in a different plane, very nearly at right anglea to the planes of the other two. hence their mamess of the superior rertical, the inferiar expliend, and the herisontal cannle.
The cochlea, which derives itn name from its resembliance to a common snait-shell, forme the anterior portion of the baby riath. It consints of an ospeang and gradually tapering carial, about an inch ant a half in lengeli, which makes two carns and a halt epirnlly around a central axis, termed the modiodris, which is perforated at ite hase for the entrance of the filanients of the cochlest portion of the suditory serve. This spiral canal gralually diminishes towarils the spex of the cochlen. At its lase it presenta an opening into the vestibale, partially divided into two. In the recent stite, one of these openings gacokit (ywiperi) does not conustricate with the sesti. bulte, latt in elosed Iny thes memblarme of the

 vestifudi, ami is lower phe, the arcing tyoppaidii.es 1leo division is inconiplete on for iss the sketeton goes, lam is estupletas , turing biife by soft purts ufterwast: In le tescribed. At the apex these two pasptyos costmanicate by an ojening to which the fernin helorolocius hat been applies.
We sums retnrin to the wewborbouns lulyyinth. The memininuins sud onneons labyrintles have the satue slaper lut

$\mathrm{FI} \%$ 4.-Schrome of Mrameahian 1.ahyrinct:
x_{1} nubiele: s, worvie; \& ayorderses oving to subtrale =and tarol onjec vinfy; d, exialio us Hestan mion
catilaslay pertione cermiste of f twa ears, an Hiper med larger one, of tain exal phaper, beriaet the viriosides, anif a lower and samiker une, of a diolanlar shame,
 ussaiks mocsulde in forna and asrangosaest the unstous enual. which inchere thern, lat are eally ode thint of ther dianeter of the laster.

If will lee remeailered thas that assemus structure
 quite aliriled ifto twa loy the lamiou spicalis tiven: The divinimy is vompletal loy the lasiua

Vis. 6 - Dovether shopech the Codiles of a Iturias Tinlage

 jasot C , sesta youthal
 Fromb rese the jumetian of thed unowne with the
 1ivisher, wibirlo, stretelinger astes to the sall of

 Helse Mindly et lath enils, lant near its lawer estrenity is Gwnerted with the sapcule throuph a delicate trentisnienos elasonel knewn as the dactua reunires U'joen the laqilar thenhlorate he situateal the argan of Curti, shicti coulai-t- of the following:
 trom withits notwanis: (1) a single Jaw of sis-

 of moter liair-celte. These are agoin poutectied by the cartain like nocinboner forteturom.
The asilitney uerve lowes the tuedulla oblengha tregether with the facial, asal jassing inta the internal suditary mosatos, stiviles fite two hmurhes, which H ves rejectively to the restibale atal the enctifeat The furuser ends in a poculintly modified epthelinon with projecting processes sitwaied in the wompulla of the senfeirvalar casals nonl of oertain spats withip the saconle anot utriche, Khown 2s. the moncwhe erwative In vise latfer eituatiun are aloo fonithl suall eryststline lodies, called

Fig. 6

atolithes, which are knsjented monat the macule: lay exactly what beans this mispeasuon is eflecteri is 74 purvent unknowi, The coclateat liransh uf the auslitary nerve proladily ternimater in the buner and suter latir-cellos of the organ of forif (x*e Fig- 6). The saceale unil zuicle esumathicate wilh each other and wilh the interiar of the akull thimagh the reigerelertas restitnoti, while the aquenducfaes auchfor wambets the perilymph of the scala tympani witi tho araclnuial sprace.
 aupiele only exists in the tonthmelia, athe in this Flase it varies fomi little zune that an ioverularly sloajeel cartilaghanbs sise with litte on sus motion
 fermel-hliagned vat-terimper masable is all difecLiotss ley auncomas larye fanceles, ab in tho larse, thee absa atod the lout. The ranile in whath we
 highly slevedinual malficiently indivater that ita

 and the nstarial anfliary aybatue, flom thet those faila are abo aslaphes to sentey into vilizations if unimis with thane of the wis: and lee
 tivectious nf slillerent jupter of its nurfius, conht always weawt to the air a certain momlen if Jutts whome tiferlinis in at rught anglen will that uf thit

(2) Uf the Jympunane vad itc Coutints. - Savanlis expromeste soew that the memblane of she tymo parani fy throws inta vilation log the sif, ant
 to thone of the somationt lusly which excliten the cocillationio in slie pir. He farfler mevertained that the malleus garticipates in the oacillatione of the tympanic membrane, and that these vilirationa are propagated to the incus and supers, and thin to the zaemirnon of the fenestrn aenlis. The malleus has farther the office of regulating, Diraugh the frusur tympani muscle, the tenatun of the tympanic umm brane; and to allow of the motion necensary for this purpone, we find movable joints between it ind the incus, and again letween the latter home and the stapes. The contraction of the stapedian musce similatly iandifies the tenajon of the memblase of the fencatra ocalio; and an cumpressibos or lle recerne exercisod on thin membrane extemis to the peri lymph, und is propagated through it to she fowestris rotwinda, the tenaon of the membrane of the latter openitg is aloo influenced by the truscle in quegtion. The incas is mucli more limited in its motions than either of the other bonce, and ite une spems to be to equpplete the chBin of oudicley in such a manner as to prevent any sudden ur violant tension of the thembirnnes, such so we can easily conceive might occar if the conductor hetween the membranes were a kingle bone. The presence of air in the tympanic cavity serven a double purpone it the litst plase, it prosirves a uniform tempera ture on the outer warfacen of the fenestral membranes, and thus nupports a lixel clasticity in them, which would ont be the case if they were freely expasel to ordinary atmoepheric clianges : and recondly, the netion of the chain of ossioles ass conductons of unund is materially increased in their being completely murroundosl by air, as is obvjout from the first principles of acmatios; further, wem it not for the presence of sir within the tympmenam; the drum membrane would the nrebed inwards, and the resalting displacement and change of tension would proutnce deafnenh.
(3) Of the Iethyrinth,-Somprous vibrations maty be conducted to the lalyyrinth through the lones of the akull; lut laring the ordinary act of hearinfo the movementa of the tympanic membrane are propagated through the chain of rasuicles and the Isbyrinth, and thus perceived by the anilitory nerve. A considerable amonint of myntery surrounds the functions of the veccule and utricle; indeed, on this subject so little is at present nocurately known that not knod parpsate would be served hy disussing it further. The view, until recently ancepterl, that these partw were concerned in the perception of sounda dis distinguished from
tones (i.et moles fo has been rendered itonbstis) by recent researclies.
The nemicirculat canals laye been uf lace jears masle objects of inquiy by riany plysuinlogiato. It has now been comelasively dinnmatruted that they are intimately associated with the maintabatre of eircular canul temin la [rodiace routrengy monvenaent-

 emplified in the luwer trinats loy [iricking the eart and rotation of the fomet, Fromin experitarents ont Animals, and ahasprations wn the lumann nubject in dinerse, it has now been prosed that a leaine of ther aemicireular vanala is fullaweil ly gidrlíneos in vertigo. which manifoses itenelf mother in imwnlontars folling, metaim, wr in 4 valivective cmmation, dor ing the continanace of which saromboling abjects heera to revolve round the jutiont. It is generally believed by phyaishlagints that that coschicis hus the npecial fanetiom of marilysing sanatis. It lins beret found that the bovilar smermbinane is ant equaliy broad througlout, bat that it inerenses gradonls from buse to njex. It therefore momente is aeries of atrimgi of slifferent lengths. and slue alvort mass are aumpmed to vilirate in the perception of lagh sotes, while the long rinis inve utinuslated to niotion by lav toume The lower part of the ecoblea io therefore shiefly conserneal in the perceptiss of noumde of high piteli, while che apper parte respand to thone of low pitch. Sotne olmerven, hawever, do not soogpt this view - ig. Voltolini nail Rother ford, bat believe that mounile are ahalyand in the auditury contre, which, arobeting to the inventiga tions of Munk and Fecrier, is Incated in the fom poral lolee, For the hearian of loinds, repitles, 太ke. wee Btro, Keptilys, de

The Drakaser in Tige Eab-It is manifesty imponable to attenute suy arvount nf the varioue individual par ildences in ats attiole like the prosent Since cural stirgery has lecome an exact sp iother, the medical profeneion have oome to realine that nush phranep os is 'cute for deafores, or ac. 'Trebtment
 Theafress-varying in terree from a slighe isprairment of hoantig up ta total inalility to perceive
 and any of these caunes bay problace noit only dest
 canal mby be hlotekeil loy wax, the protuets if akin

 Ke. The cympanie membatie may he diftleatet or thickenesi. the ranclem may for imputed in sheir movements lay the grenence of exmbation, or ly
 Lurne within the tympanum. Then again those
parth may lue injured either by ilisease or loy parth may lue injured cither by disease or by
volence, Plue anditory nerve nay loe aflected in any part of fty coanse from the tuditory eentre to the labyrinth, and tbas deifness may repalt. We have only indicated nome of the puthotogical casees of jmpaired hearings hut eroush lias loem matid to nhow that hefore ileajnese can hor jresecriluel for with any hope of maccess, an examination of the eat must te toade ly a competent medioal man.

Turning now to earmelie, let us eonshlet somie of its couses. Sometimes it it due to the presence of hoiln in the suditory chanh, or the whole lining membrnne of the jowauge, inctading the mater
 ache is inflammation of the sfommeratity Sach inflammation often stope lefore the intlammatory perducts have taken ous a plirulent chavioter This mild form is very common is elijalren, urol appropinte treatment be noe applien Checasion afly carache in ultogether doe to the preacnce of a disersed tocth, whipl need tot nevesoarily le tember or painful. By far the most dangerobs form, how called 'ruming esr.' The general meaning of thin symptom in such caspa in ath nevanulation ot decumposing mauter and sumetimes dispased laste in
close proximity to the lirain, snd as fatal rewult is ley no means uncummon. V'ertign in gieldiness, is a very frequent scomptom of ent iliseuse, and catr of hen be relieves or cerreit loy attention to thix organs.
A feeling of frllness in the lowat, and , lisinclinas Rarer or less important ssmptoms uf aural affer
tirns are (1) anomalies of taste, awing to involve ment of the cloorda tympani newe on its way throngh the drum-eavity ; (2) parnixymaal cough and snexzing; (3) nearnlgis of the hrad; and (4)
efailensy; the last namad leing fortunately ex. palepay; the last namod leing fortunately ex-
iremely inncomann. We shomld not le juatified in unitting to brention that naoul di-cares, expecislly it children, are often the caums of desfnems. This is all the tmore important, becasse such cases when taken early can afnuel always be curel.
From what has been ssid, it will be obrious that any remarke we could, withoat undaly extending this article, make with regard to treatment would be aseless. We foel it, however, to le mar duty to Warn those who saffer from ear disease from connulting onqualified quacks. This resort to empinco is all the mere unralled for as there sre now nutnbers of respectalle lighly-qualified practitioners who devote attention to aural nasladies.

There sre, however, a few paints of general intereat and of great iniportance which miny be tomehed apon.
It is a mamman delowion that it is a dangerons thag to cure a diveharge from the ear. Now this is by ho mears true: indeed it misy be at once atated that lifer is never safe an loag os a chronic putrid discharght issures from the rar. In all such cuses it is not only sale leal meresesry to syringe the mestess with a warris slisinfecting soletion, such a Loracie lotian, or water bo whieh mome Condy's Ifrid luav lueen whleal. The ear should then be driesl liy earefully introdncine in wiek of almarlent cothon wool. The origin of the supenctition anent the damger of stoppiog a dischange is evaily ex-plainel- If the puitret mitier ber peracht. it is better that if slanald find its way ant Now^{2}, if in seck a erave sonie plywical mbiniarle provents its exit, a fatal resslt is apt to sapervene. It luat J/us licen noticed that in masy cines the ' ranniog frung ther ear' stapped lefore dangeroms symptons net in, and hence the slelavion. Another proint as to which mash misapprelienvins exicts. is the
 the sar. It hat levn olserved loy a poted specialint that "the poithi of a slagger in the meatus is less
 if: Now whicavopr mhahil ever le asate to tenoove
 ia the dark is to be aleofately avoided. Muni estrasecus ulojorta can be reuswel simply by mocana of warm waley anal a oyrimge uned loy a skilles
liand. If the ahiect lue a fues, beans, of any other londy whicls of likely is vwelt frum aluarbing monstire, it is letternct even tol asterupt syringing, and to wait untsl ckilled alvice can le obliainol.
Shunild ans inceet get into the car, it can almost isvariahly to ayringed oit with warm water, or \mathbf{i} a syrnage lie mat at hand, the ear may be filled with Tarn $u \boldsymbol{i}$ ur even water.
Theafoem vecanamally runs in families, and the syniptom be the sesally dese to elaronic thickening of the tyinganic sfructares. Versuss in whoro thir hersiliary tendeney exiats slionid, un the firmt indication of ear trouble, wech advice.

If meel fardly lee evill that pieking the ears ought to lie avmides. 'This luabit may lead tur the 'ear pick' leing driven thrumph the drum mipmbrase, Shomid the car lie suade to lisol, and droold there be ariy doult as lin whellaer the strum racsulanale be woinnded. sermpulinas care shavid the taken to prevent the entrance of lluid. If the tympanic mem.

 th fall off a littie, lout except poevilidy in extreme obl age, marked ilesfunco for convernation is always alinomal. It iv a curious fact that elderly jeepple whon requirea watel to las $j^{\text {mit }}$ quite elnse to the ear. can often hesar emarenation trell. Thiv is explained by the fiect that after mindile fife the anditary nerve is lass atheitive, anit clre power of-rewitly perceiving light piephest tapes in then les acoute.
Acconling to the writer's experience, alnonat complefe iteafniss in ote ear, while the other is perfect does not neresarily endanizer the waund organ. Othen, howerer, take the opprosite vjew. It munt be remembernd that in asnat caser, impsirment of hearing is litiaternl, and this in slwars the case when desf persons have to be aldressed in an elevated voice

The instruction and craining of children who have been born deaf is dealt with in the artiele
Deaf And DrMa.

E,AR-TICHMPETS, Se-The namber of ear-trum-
pets now advertised makes shy detailed nocount of
them ioapossible. The application of one of three principles exists in nost, if not all, to wit : (1) a tube with a saitable ear-piece at one extrenity, and a more or less conical moutlipiece at the other : (2) a bell-rdaped sound-oollectur, with an ear-piece for insertion into the suditory canul; (3) appliances for tilting the auricle forwards. There can be no doubt that a person who dexires to purchase an eartrumpet will best gain his ensl by carefully teating a large mumber of instrunenta, fnd choosing that which suits him best
As a rule suall invixible instrimenth are uselens. Politzer has constructed a small tube made of vntcanite mad fiesh-tinterl, the olyject of which is to prolong the trague backwards ; in a very few casea this is fornd to loe an exception to the stove rite. The sume authority lias attempteal, by a insecial applianee, to conduct the vilirntionn of the furible directly to the tymipanic membrane. The Auliphane (q.v.) and dentiphone ave anly useful in a few cases ; in both the object is to convey somorous ribrations throagh the teeth aral the auditory neive. The so-called foniforn is a roal for comuecting the larynx of the speaker with the teeth of the anditor. In sumec cases- those in which the stram membrane is destroyed the intrombetion of an artiticial drum is uneful. This fact has heen takea alvantare of by snerrapuloun quachs, who sell for neveral joumis an mpdiance not cliffering in its porentials from "Toynhee's artificinal tymyunum,' which can be liad for a shilling or two.

Earths, the name applied by the alcheminta and earlier cheminte to certain nubutances now known
to be oxiden of metals, whieh were dintinguinhel to be oxides of metals, which were distinguinhed The term was mide to inclade the oxides of calciam strontium, and barium, which undergo chemical chasge by contact with water, and yield alkaline solutions. On account of thin property these oxiden Fere called the alkaline earths. The term earth is now dimppearing from modern text-brokn of chemintry. Sees Soria.

Raa de Colegne, a celebrated perfume, the ropated inventor of wbich is Johsinn Maria Farina (1ess-1766), a native of Piedmont, who mettled in Cologne in 1700 , though his claim to be the investor
is not undisputed. Thi mecret of the proceus of is not undisputed. The necret of the procens of ite manufocturt in elaimed by from thirty to forty Cologes. The recipe is mid to be twelve dropa of sach of the oseential oils neroli, citron, bergamet orange, and rosemary, along with one drachm of Malaber eardamoms and one gallon of rectified apirt. The whole in dintilled together, and the condensed liquid sountitute Emu de Colognes. In Great Britain, where cheminta and othern make an article little, if at all, inferior to the imported one, apirit, and the subeequent dintillation diapenaed epint,
wih,

Eficrrescemes. Nearly all gases are more or les molnhle in water, the smoant of solability depending on various conditions of proware and
tempernture. As a rale, the lower the temperatars and the groater the prosure, the greater is the
solnbility of a gas, so that when the temperature of such s nolution is naised, or the preseare lowered, phenomenon of effervesonce. The moet femilis. inatance of efferveecence is when a bottle of nodaWater is uncorked, the excese of carbonic acid gea vescence. Agnin, when a soidlitz powder is mixed with whter, efforvescence oecurn, owing to the inability of the water to retain the gan in solation.
Many slight circumatancen affect offervencence. Many slight circumatancen affect offervescence.
Most people know that by ntirring a glase of sodar
Water, or by dropping into it a fragment of cork or a crumb of braad, greater effervescence occurs. Bometimes the liquid is rather viscid, and a per. sistent froth is produced, as when a siphon of lemonade is discharged into a tumbler. In auch a case, the addition of a few drope of milk or of a little aloohol causen more rapid effervescence and sottling of the froth. In the former of thene cases, the bread crumb or the stirring acts by making it more easy for the gas to form bubbles and eacape. In the latter case, the effect of milk may have a twafold cause, one similar to that of the crumb, similar to the calming influence of oil on sea foam,
the nataral oil, butter, here coming into play. The alcohol merely acts by thinning the liquid.

Rfilorescence, in Chemistry, is the term applied to the appearance of a white incruatation on the surface of certain bodies, as when a salt losee ita water of eryatallisation, and presente a White powdery appearance on the aurface. Common wnahing-eods expoesd to the air affords a good illatiration of this phenomenon.
Electrlefty* If ${ }^{*}$ wtick of sealing wax is ruhbed vigurously with woollen cloth it will lee fontin capable of attractits small slirects of paper. This is the simpleat experinuent in electricityMany ather sulatancea, such as resin, vuleanite, glass, \&e. can he made to show the sanue plomennenan. To nblain the heat effact with any given mbatance, a partieglar rabber nisat lie clonsen. For nxumple, a cat's fur, slightly warmel. is very eth cient in electrifying valeanite or rerin ; while nilk, amongat simple sulatances, shousd he aved to excite glass. It is now known. however, that any two Cifferetic mibatancen, which can le mbhed together, become electrified by the friction. Thus, if wax and glass are mbbed together, they will looth luecome electrified-i,e, cayable of attracting light objects And no, in the other instancee, it can be shown by experiment that the cloth is electrified as well is the wax, the eat's fir as well at the valcasite, the silk is well as the glasa. Morwover, the two nulb. atancen so electrified by mutual rnibling are found ta attract one another, being insleed oppositely electrified-a leem which the following experiment will elucidate.
Let two pieces of glasa be electritied by rubling each with a distinct piece of reail. The pjeces of resin will also lie electrifiol, and it will be found (1) that the piecen of glas repeel each ather; (2) that the piecos of ratain repel eaph other: (3) that each pieen of slasa attracts each jinese of reain. Exactly the same phenosiena of attraction asad repulsion will be nhown-anly mach hoore power fully becitune of the greater efficiency of than ruh-bing-if the piecea of resin wre rubtied wish cat': for and the pieces of thave with ajlk.
Again, let a amail light body, a pitheball for example, be naipenderl at the end of a silk thread. This will be sttracted by eitlier the resin or the glats. But if it is iblowed to aome into ombluct with, siy, the resin, it will immesliately be repelled by the resin tomi ateongly astracted loy the glave And if it mhonlt be allowed to fouch the plant, it will nt once be repellad by the glnes and atrongly attracted by the rexin. By anch contant the pith. bell itaelf becomen electrified: for it wilt repel a

* For the pise and qhatibution of the baliawing articio, see the opibind in the cobetution jaramph. The wont nectric was Saibsi in the 15th enatury by
mecond pith hall kimilarly treatel. We are that leat to tlie following corndisuions. Kequlatouy exiafs between lanlien which urn sionilarly vectritiel, noud attriction lietwoun hoslien whirly are uppositely

 lyy isothfut with an elvetrified lanly, beconirs efectrition similarly to that body. Sinletanieve whiph like wilk-tuhhed glass reisil silh-ruhtuel glave atel
 pleptritient, while lumber whieh attrnet aif
 Whoffecty electrified. The Iusliention of ther 1 was binde of electribenction ly oflyaite -jph- fo very sppropriates, hat che spplication of the pasifive migh to the vathor than to the other ios a maiter of convention anil purely nrlotrary
To ettuty electricel phonstarna ing sumes nf metallic stiletitures, it is seresoury linat of all io mashlitr them-i.e. to suppuest them on glaso. valeanite, paratlin. de. ne to hang theme by silk thrpuls. Tlie nignificance of the certm fusulation will appear from the following experitnent. Hans two metal halla, whe liy a wilk l liremi sind the ofluer by a wipe, and trath them with a piece of wax atrongly electrilied hy frienime. On trid. the silksaspermias ball will lie fonmal elpetrified: lat unt an the wire-sumpendeal ball. thr, apain, att to netal lall own a plase stipport, lant let a wire copnect it with the table or the hamb. It will he fumm impomihle to electrify it by enntact with an elertrifieil faxly. But renove the ronnecting wire, and inmerliately a siogle contact will sulfice to electrify the ball. Thus we recognive two kinds of sal-

Intter are manalls called rvalarfors, and incinde all oblinary metala. Such conalnetors cat he electrifient only when thes are inmalated.
When a body is sufficiently strondy electrified and lromight very noar another lomly arigimally unelectrified, x sjark will pasor between chem even
Lefore they are tuale to touch If this secmal body is the fiuger or knuckle, the apark will loe accompanied hy a peculiar sennation called in electric shock. Now let wa take such n highly electrified eunductor A, anil liring juetty near in it a seonnd insulated coalactur $\mathrm{B}_{\text {, }}$ inst not so near ast to enuse a spark to poest If, then, the finger le hrought near eniough
to If a shock will ?
 althongh B was mpiginally not electrified. Thos B hus becone elecifified ly beiby brought intes the neighlumerioed of A. This monefe of electribication is called electrification ly induction. An Faralay clearly pointel onit, it thas the claaracter of a firct, exsential, ant fundamental perinciple, and it
thonough couprelienalon is of poinu iventance.
An it is ogr purpose is reyard the whinle moliject from the Faralay point of view, it will la erin. venient ta llefine certain useful ternas. The clertrin firld is any region of air, glan, vilcanite, or other non-conalaeting salotance surroanding of contain ing eleetrifiet belio. In it and thmaght it the electrie froces net; lencet it in convemient to call wuch hasalating malatances dirlectrica, enpecially when attentinn in leing drawn to the role Lhey play on tranmitters of electric action. To inventikate the propertio of an electric field it th generally necernary to bring into it a conductor, an in the experiment juat deseriberl. In that experiment the inducest slectrical condition of E was etudied by means of a plyalological semsation, partly optical, partly mumetiar. A far betler why, how. ever, of etsadyiaif the plamansens of inaluctives is zu ranke ese of the fesilasental faws ni aithacr Lim and repulenm letwees ilectrifies Inalies, wa they are mechanically appliat in sadeli instrinienta A- the rold-leat electrosoges, Cenlosalis tomsion Jimbare. Tnoen-m? spablraut ehvetruseter, te.

In the solut hoaf electrinconal taventeal by Hentaet
 the lowvr eint of as tretal mol, which paoms verti-
 betrio atsl expanols slawo fria a plate it a jueen uf rublesit veiling wax ar ofleer electrified Inely two Isometh mentr the plate, the Hold leaves will rurt eacli inther anal diverge In ether Eworil-, the pasalaclas, con sivlifry of slie pilate, Tunt, and molal feaves, lons beet intro. donest ivita an electric fiedd, sunl has in cowssogessuce thecothe electrifial hy indiuction. Tla for hown ly the repni. vias tacteress the sinitarly electriaind zold leaves The nearer the elestrifiod lanly iv lerousht, the stronger is the elortric fiela sturwandios the electronopue, the wider tha the guill haves stiterpe Here evidently the repulsam tenals to lift the ceutre of graviity of earch zubl leaf, and of finalts halanexd $10 y$ tive action of pravity. A cylimeler of wire pance, flacol just inaifo the glase owo, improves fhe fathon of the instrument The other two instruments auen: timnet almeve ilepend for thrit action sipon the same genemal princifle \rightarrow vic the evaibilerium of a body under the action of tho electrical and what, for diftinction, mighlt lies ealled the materint forecs.

Coulamb's tomina lealance it bistarically the firnt trie eloctroneter-i,e. the lirst instrament whowe fulications were capsble of quantitative interpretation. In it the force wilh which ove small chargeal sphere is rejelled by another vinilatly elargod is halanopl by the tarsjon uf a wire. which actans sumpenxion to a horizontal involatiog rol bearing the nate spitiere at one of ita enals, By rotation of tlat urqier ensl of the sire this aphere can le puale to moove in a louriantal circle; and at
sotne puint it the circuninference of the circle the wher bluere is lixed. If the spheres are clutrged.
tbe mod bearing the movable sphere will take ap a position of equilibrium under the combined action of the electrical force and the toraion of the suapansion; and these, as regards their rotatory effect efasticity, the force of torsion is proportional to the tasist of the wire, and the twist ithelf is as casily botween tho nphare Heace to the dogree of acouracy to which the geometrical configuration of the nyatem ia known, the alectric force can be endenlated in terms of the elastic constanth of the wire. In this way Coulomb proved, in 1785 , that two small charged balle re. pelled each other with in force which diminished as the square of the dietance incressed.

Bir William Thomson's quadrant electrometer is, io a perthin sense, a development of Coulomb's tostion balance. Ite many nice electrical and mechanieal doviooa render it a pecaliarly delicate and iccurste instrument for meanaring minate differenoes in electrification. Eamentially it conaleta of four bollow brass quadrants, which when fitted eloae together formas aquat hollow aylinder bounded above and below by parallel plane faces, For electrical purposeb they muet, however, be
strawa a little apmor, tod thit when louked at from above of frois lushow they bave the appearance as thown in the Jiphor-viz. that of a circalar slase with two imutaally perpendiculas
 rant is iundictisi ems ite own glass suppuat; liet cuols is Jubneal to its oppuitse by a wire sel that dectricusly they
 cach juile a vortiond rual leaula Lo the mitside of the gane in

 Which the wliole is inclaned, Thend rodes ase eatled the diccerodes, and blieir Fanction is to larinas the gmis of quadrunts into electrical dumbetton with externat bodies, The inside क्maer of the top and boitum of such quad. rast is ent awey, se that at the vantive a stimil devalar mpace in left coucentite whth the externitil cylinitrien marface of the quatranto. In the liallow j) ace facloned lay the quadranta a light elarged indy (E in lige 3, a in lige 4) of a eobvenient nluaje
 Die circular central apee junt mentinact. The lighe bouly can wotacu almut infis vertival ux os suly, and fien gurfian ta vontivilled by the butaion of the
 nucoted tengether, the sampention bakees the light lanly lang tso the to lie with ite louger axic of synimetry pratallet to one of the dianeiond clefts equarating Lie quablinte. If, loweref, the piairs of graulants arc disconhected, sanl ly eontiwetion with external bohlien brought into sibment ulectric
contlitions, electrictal forges will at unte act upot Lter chargeil buily and rotate it untal they ate
Ladanced by she rekinting innsion of the yenspetusion. of the ynspension.
Thas let the claarged bouly is (tive, 4) be juaitively chasgel ; and Jet the pairs of quadrante be charited dilfereatly, so that the bines imarked AA have a bigher
 positive elarge that the once markel BB: Then the charged body will move no ne to come more within the quadrants BB^{\prime}. If the relative electrifications of the pairs of quadrants is reversed, the charged body will move the other way. The motion is shown and measured by means of a beam of light reflected from a small mirror fixed to the vertical axis of suspension of the body and moving with it. Henceforth we shall ane the unqualified words electroscope and electrometer as meaning the goldleaf electroscope and quadrant electrometer respec. tively.

We are now in a position to make an accurate study of the phenomens of induction. We shall
auppoes, when nothing is said to the contrary, What all our conductors are of one metal, say brses; that they are at the beginning of every experiment insulated and unelectrified; that the electroscope and electronseter quadrants are likewise nnelectrified at the beginaing of each experiment; and that the dielectric in nir.
Experiment L.-Set a cylindrical limas vensel ot the electroscope; and let down into it, without coming into contact with it, a pooitively charged conductor A. It is convenient to hang this charged bell at the end of a short ailk thread from the lid
of the versel,

by means of a silk thread. As moon net the kell is brought insitie the vessel the gold leaves will diverge, as shown in foge 5 ; and the vepael B, is regaris ontaide oljects, will behave as it ponitively electritiel. Now touch is with the hand or with any nan-insulating material ennnected to sarthvessel to earth - and the gold leaven will fall tagethers, aod all appearanee of electrification will the deatroyed. Nemove the oarth combection ho no to inaralate is once more, and lift away the Fid and the attachest ball, care being taken to provent A consing in
eontace with If. The gohl leaven will Mgain itjverge, forl the vemeel B will be found to be negntively electrified

The nature of the cliarge on the veroel und gold leaven is iaticated as once by the approash nif ats alectrifieal hoily. If is pitove of rabbed sealing-wax or may negatively charged body is brought mar. the gold leaves, it negatively electritind, wilt diverige atill more; if pasitively electnfied, will tend to fall sugether,

In thas charging the veasel it negatively by induction, we have in no wiy dimanislied the original postive charge on \mathbf{A}, and we may use this asme charge an indeffaite number of times in clarging negatively other bodies like B. No iloulte in each body no clunged hy inluetion we liave a new-formed soure of energy; but the han leen derived, not from the earergy opent in onginally elurging the hall, but from the energy spent in neparsting againat their motual attrnction the ponitively charged ball and the negatively charged veamel.
Experiment /I.- Begrin mgnin as io Experiment 1., introducing the charged tunl $\hat{\Lambda}$ into 0 , and putting B to eurtio, on that the gold loaver fall together. Now connect A with B. No effect will ber ohaerved on the electroncope, even though, as in the former experinient, A should be removed, Thus the charge on A has been completely deatroyed ; hence, thure mast have heen an B_{1} fuat before the conticot was made, an equal thit oppoaite charge. This is, is fact, the very charige which made its presence evident when, in Experiment L. the ball A was removed.

Thus, if A cliargenl body A be complelely sarrounded by a ploned veasel B, which is put to earth and then insulated, the charge indoced on If in equal and oppouite to the charge on A. To make this induced clarge apparent wo mint reinove A.
Esperiment $/ I I$. leppeat Experiment 1., sad after having charged B megatively by induction, introdace A into another condactor C, initially without charge and insulated. If C is rating on a gold-leaf electroscope, the gold lesves will diverge with positive electrifiention as in the earlier stage of Experiment I. Bring now Λ into metallic comnection with C . If C completely narroundr A , to change will be observed on the electroncripe, although a spark may be beeard tot the instant the contact is manle. The bill A, if removed without again coming in contact with C , will be found to have loat all ita charge; and if B and C are hrought into metallic connection, all sppesrance of electrification on them also will be destroyed. In other words, the negative charge indinced on B has beed quite destroyed by union with the positive charge tranaferred to C. These chargea therefore mate be oqual and oppoaite. Thns, the charge ariginally on \mathbf{A} has been wholly trannferred to C .
We conclude, then, that when a conductor is slectrified, ita electrification renides wholly on the surface. Any portion of it removed from the inside will be found unelectrified if taken quite out of the
influence of other electrified boalien
This experiment, of one very similar to it, was firet performed in 1772 by Henry Cavendish, who delfucal frum in by riguroas malhenstical reasonung that 'electric straction nall repulsion must be inversely si the equare of the distance. He unchoof a metal glate within a hollow conducting shell whäch wan hailt up of twe hemiopherex. The glope and shell were connected by a wire and ehargel. The globe win then dincuanected froms the shell, and immedintely tberenfter the bemiTheres forming the shell were drawn mander. The globe, dow left expaned, was trotell far electrification; sul, to the degree of acruracy of the experiment, mone was fond

Maxwell rejeated the experiment is a much Diote delicate maner than was powille before the invention of the quadrant electrometer. During the clargisg of the sliell and inclused globe, thene wetir comberted loy a short wire 'fanteaed to a amall roetal diwe hinged to the sloell, and actiag as as lid to s monall hole in it." After the clisrging, this Ini wan laftes up ly meann of a silk thrend, and the cominatication belweell the shell and the gloles done awny with. The whell whas then discharged and kept connected to barth. Through the small liole in the shell a wire wan led connreting the glalee with nase electroin of the qualrass electrometier. Not the slighlest deflection coald be olevervel.

It la imipoasible then to eliarge a body by placing it invide a charget conductor, is other words. there is gan eleetne field within any region bannded by a evindueting aurfacr, horwever maeh that surfince masy flacti lae chargen, bulest there in withis flas regina other insalated and indepremilently charged bodioe. It mastiem not what electrieal plienoniena insy be taking place in the region ourtade suels a condueting surfoce, such extermal electrical phetiomesa hove sloulately no internal electrica! effect; and whe rerab, nay parely internal electrical change can problace no externat elvetrie piffet In slourt, any clowed oonducting ansface divider apoce into two regions, which sere electriestly indejendent the one of the otherL.e. so far so eloctrical metion through either is concemel. This priaejifo is taken edvantage of in the conatruction of the qualrant electrumater. the essential internsl arrangemenis of the isatra, mant boriog inclomed on far an poseible within a condarting vervel, the quadrants commutitionting with eiternat space only by means of their electrodes.

Azperimient IV,-The conclusione junt susted may lee easily illuptrated ly une of the qualrant electrometer, Thea, an in Experiment. L. let the ponitively eharged bexly A be introluced inte an insulaterl and isitially saelectrified closed condurtar B. Then, as we know, If beopnien electrified, and the region sound 8 lecome ati electric field The sondition of this electric field may bo staplind by means of a small epleere C, joined by a long this wire to otse electrode-i a to ane pair if quadrant of the electrometer F . The other electrote is supposed to lo kept onsinected to sarth. Before A wh introlaced into B, the eloctrometer showed no agen of electrification. Bet as soom as A is introduced into B, C and ith eonnected quadrante becume electrifioi. The deffectiou produced on the electrometer will depend upoti the ponition of \mathbf{C} with regand to B and apon the original chatge of A. It is quite indrjendebt, however, of the particular position of A , which may bo moved sbout inavie B without ie any way Affecting the deflection on the electronieter. A miny oven be brought into coptack with It (me it Experiment III.) no an conptetely th lone ite charge ; and yot the electrificstian of C , wn shown on the eiectramever

is in no way altered-in other words, the electric
field outajle it is independent altogether of any purely internal changes which myy take place innide B .

Suppose, now, that when A has heen introduced into B, And a carrespoonding deflection obtained on the electrometer, B is put to earth. At once the electric field sround B is deatroyed, C and its connected quadrants recover their original unelectrified condition, and the electrometer givee zero deflection on itn scale. Thus the charge on A is completely maiked by being aurrounded by a closed condactor put to earth.
Further, let B be inuulatad again and A removed with ita charge-then, as we alrendy know, B will be left negatively electrified. The region round B will again become an electric field, and C and ita connected qaadranta once nore electrified. Bat the deflection on the electrometer, though equal to that firnt obtained, will be in the oppoeite direction, opponite because of the opponite character of B'n electrification.
This experiment may be Laken as an illustration of one of the most fundaraental facta in electro-statios-viz that the generation of so mach ponitive cloctrifications implies the generation of as mueh negative electrification, Here in a conductor B apperently withoat charge. Remove from it by any procen a jomitive clarge, and an equal negative elarge in lefi behind. The name is true when toolien sre electrified by friction, an may be proved by operating intide a cloaed innalated conductor joined to one electrosle of the electrometer. The raost energetic rubbing of the twa bodien, and their sulaequent separation, eaph is a highly electritied onndition, produce an effect whatever on the electro-meters-thun showing that their inductive effecta on the inclosing conductor are equal and opposite-i.e. their charges are equal and opposite.

Erperiment V-To study in greater detail the properties of the repetrio field around a given ebarged conductor B, tske two amsil innulated epheres and sonnect Llem by thin wiren to the eleetroden of the electrometer, each to one. Suppone these splierer to be at first in clowe contact at nome part of the field; then, since the paire of quadrants are is the same electrical condition, the electrometer will show zero deflection. Now gently separste the spherve, both innulated of course, and in geaersi a deflection to the right or to the left wilf be olstaiaed on the electrometer. By trial we may find the unique direction of separation which, for s given diatapoe of apparation, given the maximum deflection. This will be to the right or to the loft according to the relative poaition of the two spherve. It will be lound, however, that a separation of the splaser in dirsctionn at right angles to this unique direction doen not canne any deffection on the electrometon. It is far manier indeed to find these directions of neparation for which there is no deflection than ta find the Jirection of mazimom deflection for a given nepara: time Soppose in fact that the one suiall ppliore is fixed in pomition, snd shat the other, which we may call the exploring njphere, in moved away from conunct with it in auch a manner that the oloctrometery Always showe zero deflectian. The centre of the exploring sphere wil deacribe a carve, and enn be misde ly nuc. cemeive triale to
deecribe ni in. finity of curven, sll lying on a certein surface
 which paraer
through the centre of the fixed aphere. We shall call thin the uurface S. Now with the exploring sphere lying anywhere on thin surface, let the fixed spliere be shifted in townords B till the electrometer deflection is unity. Then shift the exploring ephere correwpondingly until the deffection in hrought back Lo sera agsin, and proceed an in the first ponition to trace out a second nurface, which we shall eal $\mathrm{S}+1$, and which will pess through the centre of the fixed rphere in ite necond pootion. Shift the fixed sphere once more till unit deflection in obtained, follow up with the exploring aphere, and trace out the third suriace $\mathrm{S}+2$. In this way, step by step, the electric field may be suppoeed to be mapped out by a series of surfaces, differing in value by unity as measured on the electronueter scale. We may pass out to the surfaces $8-1$.
$\mathrm{S}-2, \mathrm{~S}-3, \mathrm{de}$, , as well as in to the surfaces $\mathrm{S}+1, \mathrm{~S}+2, \mathrm{~s}+3$, \&c. These surfaces are all cloned, and cannot cut anch other. For sappose two did eut each other; then, by patting the fixed sphere in the supposed line of intersection, we could move the exploning sphere from the poeition \mathbf{S} to the powition $S+1$, and produce no change on the electrometer; which is a manifeat abarurdity, as $\mathrm{S}+1$ is defined in terms of 8 and a change. If the electroden of the electrometer terminate on any one of these surfaces there is no deflection; if they terminate on different surfacen the deflection is the difference of the name-valuea of the surfacee. Evi. dently the eonductor B is such a surface, for if the electroden terminate on it, all the quadranth, being in metallic connection, will be in the same electrical condition, and the electrometer will show no deflection.
The ourfaces we have jont described are ealled equipotential surfaces, the term potential having in electricity much the name import an tempersture has in beat or pressure in hydrodyasmics. When a channel existe between two massee of fluid at different presauren, flaid will flow from where the osenaure is higher to where it in lower. Similarly if we have two charged conductors whone electrical conditiona as teated by electroecope or electrometer become shanged after they have lieen conneeted by a wire and dinconnected again, these two conductors are aaid to have been at first at different potentials. If they had been connected to the slectrodee of the electrometer, each to ope, the alectrometer would have ahown a deflection; and thia deflection would have beed a meanare of the differvace of potential If the difference of potential in grat, thes the contact of the two condactorn in evidegeed by an obvious electrical didebarge in the form of s vaihie audible apark
If we directed our attention to conductore only, wo should not find any apecial advantage in aaing the phrase 'diffirence of petential' inatead of 'differently electrified;' but when we follow Fers day in regardiag the dielectric an of at Inate equal importance an the cenductor, the conception of the potential in found to be aso of peculiar valae. Thuin any conductor or any ayaten of tannected conductarn niunt have all pointa at the aame potea tial : wherea, in a dialectric, the potential may vary from point to point, and indeed must vary If the dieloctric is moparating two conductors as if the adieloctric is
Within such a dielectrie we may auppoee traoed out, after the manner of the last sxpenment, a series of equipotential surfaces. To fix our ideas. let the one conductor be completely incloved within the other-eny, a spherical globe within a ooncentric spherical nhell-and lot this outer sholl be put to earth, and let us call itn potential sero. Then we know by Experimenta II. and IV, that the electrie field exista only in the region between the ahell and the glove, which we shall suppoee to be at a high potential V. The nymmetry of the nystem requires that the other equipotential surfacen will all be spheree concentrio with the glohe and shell. Now We may compary this eloctrical syatem of globe, shell, and intermediate equipotential aurfacea to a

Fie \&
sybtem of Contour (q.v.) lines representing a hill with a flat top rising up from the sea-lavel-the suecesaive equipotential surfaces in the electrical syotem correaponding to successive eqiallevel linem in the geographical system. If the subatance of the hill were to becotne fluid, the whole would be redaced to the aea level, sind the contour lines would be effinced.

So, if the dielectric were to become conducting, the equal and opposite chargen (mee Experiments 11. and IV.) on the globe and ahell would combine and deatroy each other, sad the electric field with its imaginary squipotential surfaces would cesse to exist. Again, to carry one poand of matter from the ses-level up to the top of the hill requiren no mach work to be done againat gravity (see Enetay). and this amount of work is proportional to the height lifted through-i.e. to the number of comtouns crosed. So, in the electrical system, to carry s small positive charge from the shell to the glote Will require no mach wark to be done againet the electrieal forces, and this ameunt of work will be proportional to the number of eqnipotential surfadion croseed. Further, exsetly as the pound of matter taken to the top of the hill will ndd to the height of the hill, so will the addition of this small extrit charge to the globe increane ita potentinl. We must not, however, puah the analogy too far, since in the oue case the force of gravity overcome is constant and acls downwards, wheress in the other the electric force varies inversely ss the aquare of the diatasice from the centre and acta outwards.

We have assumed in the sbove discusajon that the succesive equipotential surfares, experimestally determined by niesas of the quadrant electrometer, are really such that the work done in carrying a given snadl charge over the interval separsting any twa contiguous aurfaces is the sabse. It is unual in treatives un the subject to begin with the dymandical definitins of the potential st a point as ithe work done in carrying a usit of positive electricity from infinity to that point. It is then shown that the quadrant electrometer in an instrument ms topoatrueted an to fot in to thus definition.

Asauming then that our equipolential nirlnem have the property juat mentioned, we are in a poaition to atudy the energy relations of the electric hold.
Coulomb entabliahed by experiment that the force of repulsion between two similarly charged bodien was directly an the product of the chargee. Hence. as the charge of the glolve inclowed in the shell is inertased, the electrie farces in the field inerene in the sume proportion. Hence the wark done in carrying a given charge from the sbell to the giobe againat the electric foreen increasen is the name ritio. In other worls, the mimber of equipotential surfacen is the field grows uniformly with the charge. If the potential of the globe in V , we miny write the charge CV, C being a constant no long at the geometrical dimennions of the syetem remain anchanged. Since the shell is slways kept conDected to enrth-ie at zero potential, there is a change - CV distributed over the inaide of the shell. To add a shall extra charge to the glole may tee reganied as equivalent to taking this amall charge from the shell, carrying it scrone the dielectric, and distributing it over the glole. The work done in offecting this is evidently proportional to the charge tsken and ta the number of equipotentinal surfice eroeed. But me the extre charge in sulded, let us auppone, at a ateady rate, the protential of the globe is increased at a proportional steady rate. Hence the whole work done in sdding a given charge is equal to the profuct of the chinge and the mean potential of the globe during the operation. Thun, in charging the globe from zero potential to potential V, we do an smount of work equal to half the product of the (insil potentinal V into the final charge $C V$-in symbisols $\frac{1}{2} \mathrm{CV}^{2}$ of $\frac{1 Q V}{}$ or $\mathrm{SQ}^{2} / \mathrm{C}$, where Q in the charge, and C the constant which depende on the goometrical dimensions of the systent.
We have already neet that poeitive and negative electrifications always co-exint, that it is impon aible to generate so much poajtive charge withoat at the same time generating on much negutive charge. Farsday took implicit account of this trath in lis conception of lines of electric force traversing the dielectric. Since no work in done against the electric forces in passing slong an eqsi potential sarface, we readily see that the electric force as any point in perpendiealar to the equi potential surfnce there. This direction is, in fact, the unique direction of separation of the two terminal apheres in Experiment V_{-}, which, for a given diatance of separation, gave the maximum deflection. If, starting from any point, we move always perpendicular to the equipotential surfsce throagh which we are for the moment pasking, we shall describe a curve which at every point of it is tangential to the direction of the electric force
there. Such a curve is called a Line of Force. Take any mmall aren on an equipotential surface, and draw linen of farce through ith perimeter.
These linee of force will form a so-cslled Tubs of Force, whoss mention in general will vary as we pase slong it. Following thin tube of fores backwsods to ite soorce, we shall finally come to a poaitively charged carbducter; and following it forwanda we shall ultimately conse to a geketively ehargod sondector. Every such tube of force has in shart, two enda. It apringo perpendicularly from - poaitively charged aren, shal uerininaten, alas perpendicularly, in a negatively cliarged area. Aecording to Farmiay'n view, and to the view now gonerally nccepted, it in along thene tubee of foree that electric induction taken place; so that the negative charge of the terminal area in exactly equal to the powitive charge on the area from which the tahe spring.

Is tho nymmetrical symtem of glate and shell the Innes of force are obviounly straight rulial lines, the tabee of force portionis of cones terimimated by the pplierical nurfacen. Some of them are indicated by the dotted liuon in fig. B. If we take each tube as apringing from an aras bearing unit cliarge, then there will be in the region an many tulnes of force an there are anita of charge-ie there will he $\mathrm{Q}(=$ (CV) nnit tulien of force. These Q unit tulien of force with the V equipotential Burfacen will cut up the dielectric into UV imminary cello, each of which may bo rekseded as containigg half a unit of energy, Ia fact, exactly no a atretched piece of india-raluther containn in overy elempat of it mo math energy in virtase of the elantie ntreinein acting throaghoat it, ag we are tor regard on electric field en a kinal if atrain exinting in the stielectric, no thast in every elenient of the dielectrie no math eleotrical energy is tored up in virtue of the electric ntrones. Every conplete unit tuhn of force contaias $\mathrm{g}_{\mathrm{V}} \mathrm{V}$ unith of energy I and between say twa cumplete oquiputential surfaces differing by unity thero ate fQ unita of energy atored ip Chearly the electric ntrain will be kieatent where the unit taben of force are narrowent and where the equipotential nirfaces are clonest.
Suppone, now, that in the region between the glole and miell an thatated conductor orjginally anelectrified in introduced: or, what cones to the asme thing, suppose a markent off region in tha elertric field ta becume conduoting, thin region will at ance be reduced thronghout to the mame petential, and ite airface will form part of ant equipotential nurface. But, nince originally the potential its thin region fell atendily as we passed cutwarde from the globe, a tranaference of eliarge thust have raken place alac ortwarda in order that the poiential ahould bocome engalimed throughout Tho introduced conduchor in fact acta as a channel along which electrification is tranuferred; so that if ueted, the end facing the globe will be found negatively electrified, nad the farther end pmeitively sloctrified.

Now it in evident that the introduction of thin oonductor into the field han very much changed the configuration of the equipotential surfinees in jia ricinity, the now contiguration being something like whet in inds. caterl in the diagram (fig. 9), An a coneequence, the tubes of force, which are necesastily perpendicu. lar to the equi. potential surfacea, muat also sulfer a correnponsting ration A certsin oumber, springing from the globe, will fall perpendicalarly on the uesrer part of the introduced sonductor, while from the farther part an equal number of tutes of force will spring and contintie outwards to the shell. Where the tube end on a oomducting surfece, there we find unit negstive charge; and where it apringn froms a conducting kurlace, there wo find unit pubitive charge. Thun by consideration of the equipotential surfacen and tubes of force, we are led to a conclusion in atrict ncourdance with the experimertal truth that an ancharged conductor brouglit near a charged conductor becomes electrified by induction, so that the nearer end shown an mpowite clrarge, and the farther end nhown a mimilar charge, to that whic!
exista on the charged conductor.
Generally speaking, the effect of the presence of the introduced comuluctor is to crush the tubes of force in the neighbourtiowal clower together, and therefore (since this numher remains enostant) to compel an expansion of them elsewhere. The terminals of the tuber on the globe will obey the same tendency towards concentrstion and expansion. In other words, the charge Q, at firat dis. tributet inniformly over the globe, leeotnes rellis. tributed mad tends to acenmulate on the side facing the conductor. The nearer the conductor and giobe are lirought, the greater will this tendency be: and at lant, when they are near enough, the diclectric is abable to mastain the high electric tenmion along the ever-ahrinking tube of force. It yielils, a more or lema nudden tranaference of chatge lakea place in the form usually of a apark, the potentiala of the glolee and conductor are practically equalized, and the tubea of force lictween them ise annihilated. This is the phenomenom which is exhibited on a large neate in every lightning flash, and on a small ncale in every spork between electrified houliex.
Suppose, hrwever, that before this catantrophe lifu taken place, the conductor is joined loy a wire to the surmaniting abell, and consequently brought to zern potential. All thone equipotential kurfaces which at first incloned the condnctor-i.e. lay hetween, it ant the incloning nhell, will be thiftell mo wit to lie betwien if rut the glole. The tuber of farce will shift currenpondingly ; and as no thlue can now pase from the conducter to the shell, none will npring from it. Hence the charge on the conductor will lee whally negative Now experiment shows that when the coniluctor th brought to zero potential in the way jant deacribed, a spark alwayn pasmer at the inatant the oonnection is made. This apark meisna no nush energy in the form of light, mound, and heist, shit mant therefore mean is slimapparimece of energy in कome other form. This cannot lee other than electrical energy. Consequently the number of unit celle in the dielectrie munt be dinsininhect. But the eharge on A han not changed, so that the nomber of tablew of forcen is exactly in helore The change buat therefore be in the number of equipotential murfacen : and aince the aluell and the condnctor are at zero potential, the diminution munt take place in the potential of A. Thus we nee that the potential of a positively charged booly is dimananed if a confuctor at zero potential is broaght near it.

Thin renalt leadn naturally to the discuanion of onpacily. The espacity of a conslitetor is mesazured by the ratio of its elarge to its potential. Hence if, M in the experimient juat described, we have a ifinumution of potential with comstant charge, this in equivalent to an increase of capacity. The greater the capacity of in conductur, the greater the charge it cian hold at a given putential. Hence if a number of conductors are at the same potential, thie charges mast le diatributed amonget thera directly an the eapacities. The experinient just deecritiod slusws how we may arrange matters as sa greatly to increase the capacity of a given conductor. It is sufficient to have close to it another conductor at zero potential. Such an arrangement of conduchorn in cafled an acewnalator or bendenner: and the mont familiar form of nceumalator anorl in elnctrontatic experimente is the Leyden jar, no called from the city where, it $17+5$, its properties were accidentally disenverest by Caname Aloutt the astue tume, possibly a month or fwo enther, alment exactly the asine dtsedvery was tuate by Klenst at Kammin in Pormerania It its modern firm, a Ley, den jat is a cylindrical ghast bettle, limed ineide anid outside with metal foil up to within a short fletaze firnit the toph it lasas rod confuestel below with the masile coat. ing paseses apwand theophts tle eoark or stopper, athl terminutes gener ally in a hall or knoh A Levilen juer then ceusists essentially of 5 wo conductars, the one almont completely incloked in the otber, and separsted from it ouly by the thickness of the Jielectric. If either condactor is put to earth, and the other insulated and charbed, an opposite aud nearly equal charge is induced on the former. If we could completely satraund the one conductor by the other, the induced charge would, as we have seen, le exactly equal bat opposite to the impluying eharge. Lesilen
jars are indivpensable for carrying out illustrative experiments in electricity. When used in combination, they are said to form an electric battery.

The earential asture of the mode of action of an acommalator or enidenser rayy be illustrated at followe : Take any charger eoliductor with its assodciated electric fich It. Les Q be lis eharge, V its potential, so that 2 QV , is the measure of the elertric energy stored ap in the fiell. Having Sixed oar attention upoa any equipotential surface $\mathrm{V}_{\text {, }}$ inclosing the cooductor, let nos suppone this surfiace to become comalucking. There will be mo trassference of charge over this sorfacs, hecause it is frum the very lenein. ning an equipotential narfice. There will be so chasage of the electric fiedl either insijle of ouside the surface V_{1}; latet these two regions will now lec separated by a montucting sarface. So far te the untsidte reghere is emscernel. we may rrigard the charge Q ina distributal over a ounductar en-esten: sive with the cwndacting surface V_{3} (eee Experinonti 111. and IV. N. and may quite disregash the existenen of the wid giaal conductor at potential V_{e} Thie electrical evergy stured up in thic ents, side region is theryfore a IQV. Lect th sow cosinent this neswfurmed comblaction in eath so mo to redise it to keso potentitil.
By mosloing, we rlischacge the conductor, tumpletely detroying the electric fieht antwile of is anal the (QV) units of electrie esergy stuend my in is. Thir therefore be energy lowt to the notgional systemis ; and the enenty stered op in the dielectrie spgating the two connlactors lecwaps a $\frac{1}{2}\left(\mathrm{~V}_{\mathrm{e}}=\mathrm{V}_{4}\right)$. Nivs since the inclosing combetow has lewn refocesl to zero patential, the quasatity $i \mathrm{~V}_{n}-V_{2} \mid$ mindet nypresat

the new potentia! of the inctoned conductor.

In whart, the lrisging of the inclowing conductor to sero potential, being of purely external electrical change, has in no wsy altered the canfigurataon of the equipotential surfares and taber of force innide; it has nimply reduced the putrntial evalues throughout by the same amaunt-vis. the potentisl of the inclosing conductor hefors it way pist to earth. The potentisl of the inclosed condnctor has fallen frum V_{i} to $V_{n}-V_{i}$ a and hence, an the charge Q han
frmained anclasaged, the capacity bau increaved ia the ratio $\mathrm{V}_{n}-\mathrm{V}_{4} \mathrm{~L}_{v}$. Thos, with either conductor fixed in sile, the capacity of the syptem srows fereater and greater as the thickness of the separal. ing thelostre is dimialshest. If, an in atroost all practiont eave, the dielectric in very thim conujared In the sice of the conductory, we may asume that the suectaive equipotential surlares cume at sersilily equai intervaly, san that the carface halfway hetween the conslneting anrfaces will lave approximately a potential value half-way betweeti the potentials of the conductors. Thiss it is casily seen tlat fir a conilenser luilt up of clusely opposel sariaces, whether plates ar icylionlers, meparated by a given slielectric, she engecity varies trivenely as the thickness of the dielectric.
Take, for exawole, two someentric spheres, ove blightly larger than the nther, nod let the inner one have is clarge Q. and the oeter ons be at zeto patential. The negative charge ots the outer splicre will, by a well-known proposition in attractions, exert no electifie farce throaghoat its interion. Hence, if a is the meath of the roliti of the spheres, we may write $Q /{ }^{2}$ as a very agproximate value fot the moin electric farce actiog in the region separatfiyt the spdeces. If t is the small distance betweem the two surfaces, the work slone in curging unit charge from the onter to the inner surface is Qtice. the proslucs of the distance into thie miean force. This therefince mensure the shifference of potential of the two spheres, so that π^{2} / t is the capacity. Now, we shall swppose that t is hept constant, and that of is made to grow imalefinitely; then if we write $Q=4 \pi 0^{3} \mathrm{~s}$, the quantity $\mathrm{\varepsilon}$ sill be the charge on unit area of the baner surface. Henck, ultimately, when the concentric spheres beconve two purallel planes, the difference of potential lietween then 合 measwred by the quastity $4=\sigma f$, where σ is the clarge on unit surface of the one plane, - I the clarge on the opposisg surface of the other, t the distance between the planes, and

E the ratio of the circumference of a cirele to itg diameter. The forec is measureil loy the rate at which the potential clanges, in this case simply Arg, and is therefore the same not only at every point between the planes, but also for all volues of 1 .

Now the maty caleulate the electric foree very clune to any clarged suriake an the supyosition thit the contigusus suriace element is pars of an infinite plane having the sane chatite jor unit nren-in other manils, the satne starface veneity. By mufisce demaity at any point of atharged conduetor wo bucan the linit id the ratio of the chagge on a small element congaining the paint tor the aren of ther element, as the Hencmi is taken maller abal stmatler. Simeli is the quantity a jinst hizenssend

Thus the clectric faree jost ontside a elamegest cons Alnetor is equal to 4 ros, where of iv the anrises density at the contignous paint af the cominetor. It is an mpalsion whet ar is positive, an attraction when of is negative.

We may use the reanlt jost obtained for findiny the fores actifge on as Hewent of the charged wat face it-rlf. Corisider the two parallet glaneu at dias fance t and difleceneen patensial Arot.ol leing \qquad chabove the charge on
anit area. Hence the Fig. 12.
Hence the
energy ptored up in a tabe of foree atretching from the anit ares ne B to that on A is $f \sigma \times 4 \mathrm{rat}=2 \pi \rho^{2} t$. Now, with A at zero potential, let B be moved owny ta donble ita original dintance from A-i.e. through a dintence t to 1 ?. If the charge on unit area remains oometant, the energy ntored up in the cor reoponding tube of force han lecomen nimply doubled oo that there has been as increase in electrical energy represented by the quantity 2va't. Hat thin mast be equivalent to the wark done in removifg the charge othrough the itmiance t rgainat the electrien force: heneer, the value of this foree ent mated per unit eharge munt be 2re. Than the forse per nnit charge acting on the murfoce is junt half the electric force acting on unit charge at a point in the field just oateinle the surface. Other Wise, if F is the electric foree at a point juat sat side a charged surface, F/4F in the meamiare of the surface denitity of the contiguasun narface element, and if is the force per unit elarge acting on the sarflack
The importanoe of thin remult is that it given ns a nimple method of messtiring electric force in terms of welight. It is the principle of THomemis nbenlute electrometer, which in eneentially two parnllel platen at different potentiale, one of which in macle no that a emall sres at ite centro in musable under the action of the electrical furce. Where thiannall srea is, the electrical syntem doen not Hiffer ajpreciably from what would be the case if the pinter were

Fiet 13.
really infinite
pone the amali atea anas.
pended by pended by a and that when the plates are at the on mo
motential. W ryam m e miant be laid on the amall area to bring it no that it lower surface is flush with the lower surface of the rent of the upper plate. Let the weight W be removed, and the lower plate be put in connection with the conductor whose potential is to ve mensured. Now raise or lower thia plate until the mmall area, which with the rest of the upper plate is kept at zero potential, is brought ngain to be flush with the upper plate. Then we know that the anapension is stretched by a force equal to the weight of W grammen. Now, if the potential of the lower plate is V, and t the distance between the opposed aurfaces, V / t is the oloctris force in the region between the surfaces, and $V / 4 \pi t$ the messure of the charge on unit area. Hence the force noting on unit area in $\overline{i V} / t \times V / 4 \pi t$; n nd finally, if A lhe the area of the small sumpended portion, wa have

$$
W=\frac{V^{2} A}{g_{\pi} t^{2}}
$$

In thin equation W, A, t are all known, nence V in mensured in terms of definite unita. In the universally sulopted system of scientific dynamic unith, we mast multiply W by the quantity g. which meanuree the number of unita of force equivaleat to the weight of one gramme. Then we find

$$
V=t \sqrt{\frac{\mathrm{~s} \pi g W}{A}}
$$

An a special easo, auppose that W is 50 grammen, and λ one square centimetre ; then, with $g=981$, we find $V=1110 t$, and 88.3 unite of charge on the unit ares. The unit of eharge here referred to is that quantity which when placed at 1 centimetre from an equal quantity will repel it with a force of I dyne-Le a force which, acting on I gramime for 1 seoond, will increase ite velocity by I centimetre par socond. This quantity is called the electrostatio ualt of quantity; and the electrostatic unit
of potential ia the potential of a ophere of
radiun I centimetre, and eharged with this unit quantity.
Generally speaking, except in nuch obvioualy symmetrical casce ou concentric apheren, infinite ensaxial right cylinders, and infinite planes, the sarface density will vary fron point to point of a condactor, and where it is numerically greatent there alnoy will the electric furce clone to the nurfaco be greatent. Ia the cane of a sinpple elongated conductor, the mirfowe dematy in greatest at the enda. This may lae proved very easily by experiment, by, for exsinple, measuring the charge which a very amall diac oarriee awny after contact with the conductor. The following reanoning will lead to the name conclunion. Take as unifonmly charged aphere in wide epace, mo that the equipotential aurfacen are eoneentrio sytheres, aud the tules of force rudial concs. If this ephere, by appropriate expansion at right anglen th a given diancter, becomee changes moto an olilate apherial, what is tha nature of the socompanying riange is the surmounding electrie held? Let of be the given djameter, and consider a tale of force nymimetrical Abaut any axis $O X$ perpenilicilar to $O \mathrm{Y}$. Let APQB represent this tale of force for the sphere. Aloug thin tube induction takes place, so that the positive cliarge on $5^{2} Q$ would infuce an equal negative charge on AXB , if the equipotential aturface, of whiels AXB in a part, were

Fig. 14.
to become a conductiog surface. We may exprexn this by maying that the electric displacentent ncross any apetion AXB of a tuhe of force is equal to the charge on $P Q$, the area from which the tobe uprings. Now let the sphere change form io the manner deacribed, but to auch is imall extent that no appreciable change is promuced at the distance OA. The electric diuplacement acrose AXB is therefore the mame as before: and, if we follow back the tahe of force to the conductor, we alanl find the correaponding charge diatributed over the area from which the tube springa. But, the coorductor being itaelf an equipotential sarface, the lines of force must meet it perpenalicularly. Hence, near the deformed conductor, each line of force will suffer a displacement as shown in the figure, where AP' reprepenta the new ponition of what was originally the line of force AP. Similarly the line BQ will bend inwards to the poeition BQ: In other words, the tube of force as it springe from the spheroida! surface $P^{\prime} Q^{\prime}$ liea wholly within the tube of equal strength which sprang at firms from the spherical area PQ. The anit tubes of force which cotmpose the tube which passes through AB are, thereiore, more concentrated in the
region $P Q$ 'than they were in the region $P Q$. Hence, the remsining unit tube of force which spring from the rest of the canducting sarface are. taken as a whole, more expanded over the rewt of the apheroid than they were over the rest of the spbere. Thas, the sverage density over P ' Q ' is greater than the sverage dessity over the rest of the spheroid. Now we may suppose this slmost spherical spheroid to lecome elongated litule by little. At every atep a readjustument of the lines of force will take place, until at length for a pronounced ellipticity they come into the pootitions $P^{-1} A^{-}$, Q'IS. At is far enaugh distance, fiowever. thene liner of force will be indistinguishshle fras the original poaitions PA, QB. Herce, the electric Alisplacensent across a far-awny mectime of the tube being as before. the charge on "Q" will Ie the same as that origioally botne loy FQ. Thas, the mate elongated the elfipmoid larcomes, the greater is the relative coneentration of charge towanls the enuls. It may be esaily shown that the limes of force spriaging frim F'G. are liranches of a hyperloola oinfocal with the apherwil and laving PA. Q1t for mymptotex.

This mecumplation of electric clasgge towants the pails of a pointed conducter io well exemplified in the Lightaing-ennducter, whirh is simply is very elungated rince of metal in contact with fhe earthA chargeil lasly of air, such an we have sccumprayy, ing a thunaler-clousl, paters near it. The to bes of inductive force are at once concentrated on the elongated consluetor: the electric force at the joint bencomes so fintetase that the air can no longer act as is perfecs invulator: electrical diveliango raken place slang times very tense fules of facee: hall in a inure ar lem gratus) manner the clons is mabliest of ita cliarge, and the evil effecto of a sudelen Jight ning-flats minifulaed. On the sasue jribeiple, electrie sivelarge thimugh air in farilitatad hy the luse of puinted conslumtors, asely as the oumben which are as mpartant a detail in sumohimes for getrerstigg plectricity loy tmenes of frietions.

We lonve arm that the eapacity of A cobslenser slepebilo "gan che slistanse betwres the surface. nt plater which conijoue it $;$ is alsu, lanwrver, drpienals very misterially on the nature of the dielectio. Suppone, for examijle, that we lave a series of cion dewaers, masle of then saup eomolacting material, and
 gace relatinm, lont afl dieferine mo regante the thetretrie whish sprasntes their plates. Thus let sone have nir an ita slielectrie, amolier plaie glaw, another jusilfin, smother mion, atad an un. Lat thent buw all le hrunglot to the zsome potentinh, then diveonnectol ant testel as to chargen The elinger will Le fumbl to lon all difterent - leings in tlie four enves we have mumtianal, appraxiyabely projastimal to the mambers 1, 6, 2, 66. The-e four num bers are the values uf what is tremal the speccific vedertire hypmerly of sir. klave, paralis, and trice. Thas ly inerely inacrting a plate of mica lietwren swo platen of an ait enaidenapr, We incienve the rapa city by an subch as it we lowl nyproarlurd the platea in air thrmugh a di-tance eqnal to $851=5$ क/ 5^{-6}) of the thicknews of the mica. Otimerwise, let there he twu matal platen, A, B, separnted bya thin phate of miven, and on the othyry silie uf A let as thied equal-sizel plate C la: no ndjusted that when A is chanrzed, the jeeten-
tialo of H not C , shall tialo of H and C'shall
be equal. Thia cani le be equal. Thie can be
rendily dane by aevernlly eonnectinc 8 and C te the plectroules of the electrnmeter, as in slicated in the figore. Then it will le frumed necemary to auljunt (ec that the distance between \mathbf{A} and \mathbf{B} is ibout 66 timen the dintance between A and C.
We musy bew fitly connider the principles of action of the varinu* machines that are esedt fir generating electricity. The rubhed pieces of resin, sulphur, glown. sc Fere gradually ructeeded hy apheres, cylinders, and circular phates of theve materials, which, in they revolved agsinnt prepsred rubbers, were kept in on constant state of electrificstion. Any insalatel conductor brought near enough to a portion of rach a cylinder of plate at a dintance from the rubler will berome clanged, the dielectric atrength of the air breaking down exnctly Ba in the case of the lightning-oondueter and the
thumber-cloud. Such is the action of the ordi nary frictional machine ; obviounly the condnctor ncquires a charge nimilar to that on the revolving eylinder or
plate. The opponite charge
on the rabber may be trans. ferred to another conduetar, which is asually put to earth. Le Hoy's or Winter'a plate machine in shown in the dingratu (figs. 16)

Eneentially different in its netion is the electrophiorus, invented by Volta in 1771. In its mon!

Fis. 16. impraved mondern furn it conujets of two plates, one of metal and the otlier nf resin, vulcabite, or chamite laceked with mictal. Iamilating bundles ean be serewed an to the backn of the plates; and one plate at least guast lee so inpulated. The marface of the chonite in fint clecirilied by friction, and the metal plate in lomaght isto elose sontact with it. The metal plate, fiom its greater penxinity to the nogatively changel rarface of the chanite, will be at a lower potential thim the metal back to the elonite, If these fore then brought into contaet-conveniently eflectel hy wisars of a metal pin puseing through the shomite-a tramikerence of clinge will take placer su that the metal plate when lifted away will le finasd pumitively clasged, while the metal leach in left regntively eluarged. In this machine. thetoriginal negative electrification on the mbleed ayriace of the aolid dielestric is ural again smil nguin. in accorilance with the joriaciples inf electra. static induction and convection, to proaluce in proctically, unlimited samount of either kind of electrification.
In Nichalan's 'revolving deabler' we linve the jurent form of a nomber of rotatory machines which, like the electrophoras, deperid for their action upon insluctinh and enarectinn. They make direct uee of the prineiple of 'ilonbling ${ }^{+}$slisenvered ly Henset, by which the difference of inteotial leivera two conductors in indefinitely incrensed. Thomasun's repleni-jier, which in an importunt part of the , uadrant electrometer in ith perfected form, it pertopes the siopilent and must compact of thene machines In it, a turbing vertienl atiaft of elonite bespr, at the ends of a horiznontal prowarimece of elwonite, twometal pieces calleal rarriem (or in the Tingram, which reprementa a horizontat mection). These curriers rotate in the region between two insulates tratal inductors $\{a$, b) in the form of cylindrical segmente. When the carriere are in position AB, Iluy cume inta moseentary contakt with slelanate springer ritached to the neaghbenting indictors ; and when they ate in freition CD, shey
 emonsotel loy a matilie ate whish is quite insulatiol

frow the inductong Supperse a to lo at in higglier petential chay A, aned consater what takes place as pe rotatea enanter elockrise, as shown by the arrows in the Gigure In the pasi$t \operatorname{tim} \mathrm{AB}$, the calriers are well sorronnaled by the metal elizelds. and will prott witl nearly all the chutrge That may elance to be 4 pris them. Just
into contact with the serings in position CD, the two carriers ate at siflerent potentinls. Hence nt the marment of contrect with the cobnecting springs, a taasaference tof chatge will take plawe from the earrier near of ta the earcier near 6 . The former will thas ropptire a megative charie. ami
will move on till it comen within the indactor b, to which it will give up nearly all ita negative charge; while the latter will simultanenusly give up nearly all ith ponitive charge to a. Than every complete revolution each carrier becomes once megatively charged and onee ponitively elanged, giving up its negative charge to the one inductor, and ite positive charge to the other. The isductors therefore steadily incrase in poxitive and negative charges. or in other words, their difference of potentiai atealily grows, If the carriens are rotaved clockwise, the opposite effect will take place, a acyuiring no much negative charge every revolution, and b so much positive charge. In the electrometer, a is in connection with the charged boely, which is sunpendesl inside the quadranta. A very elegant contrivance enabler the operator at oner ta tell if thin body in charged to ita riomial eosdition. If it in undercharged, a few turna of the repteniaher in the proper dirpetion will loring the potential up to ith proper magnitude: if it in overchargel, a few turnn in the reverne tirection will bring the potentind down to ita required value.

The name primcipler of induction and convection are male use of in the mos-called influence machines, which is recent vears lave quite eclipeed the older frictional machine. Theae are generally known by the 日ame of their inventars, suel an Topler. Holtz, Rertach, Vons, asi Wimangurat Of thene,
thes Wimashant in the laurat, and apparently the thes Winishanat in the latart, and apparently the
mont satinfactory. It consints of two eqrealar glann plates, moanted on a cominan apindle, and eapable of rotation in opposite directions with equal speede. Each plate carrise twelve of mixtees atrips of thin pheet-metal, fixed radially at rejular intervals apart. Thens atripe lis on the outaide of the cloeely opponed glam plates. At the extremities of thin horizontal diameter of the plates the main conductors are placed, insulated on gians or valeanite pillan, Horizonlal srma with the unual combe projeet inwardin, embracing bath platen nn far as 6xod a diagomal conductor, called as neutralising rod ${ }^{\prime}$ and a aimilar rod in tixed behind at right
angles to the one in front. There neutralising angles to the ons in front. These neutralising
rois terminate at both enda in a small metal bruals, Which wuchen the metal stripe or carriers as they pasa. By this eontact of liruahos and atripa, every atrip on sither plato is, very somes after it has paned under the collocting combn, brought into busullios enmeetiou for is phoment wish the atrip dianetricully opjuita it us the same plate.

Fiy 15
Suppose the prineipal ronatnctors ta lee at different porentials, then-exactly as in Thonson's re-plenisher-the carticrs is they lenve she lirushen of the nentralining row whit acquire a elarge, negative or positive, according as they are nearer the positively or negstively chsrged main conductor. But, evidently, euch carrier on the one plate will act an inductor to the earriers on the other plate ; and a moment's considerstion will show that this inductive raction will everywhere accentuate the inductive action of the main conductors. Thus the positive conductor is being fed by the positive charges brought by the stripe on the apper half of the one plate and on the lower half of the other ; while the negative conductor is being fed by the negative charges brought by the stripa on the lower balf of the one plate and the upper half of the other. The main conductors ate
provided with armis, which reach out towarda each other, and between whose terminal knobe discharge takes place, Spariks, 3 to 5 inches in length, can easily be olitained with this machine.

So far we lave confined our attention almont entirely to electroatatic phenomena-i.e. to phenomens connected with the existence of a stesdy electrie strain in dielectrice. When compelled to deal with the transference of no-called charge from conductor to condcetor, we had regard rather to the initinl aufd final equilibriam conditions than to the interniediate condition of change. This condition of change, however, has elearly very important energy relations. In all casen of electrical discharge there is in the language of Farsday, a concentration of the lines of force in a certais region of the dielectric, until that lecomes. as it werf, overstrained, and yielda with a niore or len evident appearance of part of the energy of strain in the form of light, wound, and heat. The particular manner of transformation into these commoner forms of energy depends on a variety of eireumstatucet, such os the prewore and lemperstare of the Jielectric, the form and relative size of the candoctars, and no on. Even if there be no such raetgy transformations spparent to our mennex, it ena be shown that noy equallation of potentia! without increane of thial charge neces. asily resulus in a lone of electrie energy to the syatem.

Thus, let there be two insulsted condactors of capecition C and C, originally at different potentiala If they are brought to the mamb potential V by leting connseted by a thin wire of comperstively insignificant capscity, the origiaal chargoe on the conducters will leocume rediatrib. atel, asd the fianl charges will be CV and CV. Whaliver clasge the goe eondactor han loat, the other has grinsd. Hence we may write the original chargen in $C Y+q, C Y=g$, where g is the charge which has been transferred from C to C^{C}, Now the cartgy of any eharged condactor in meanured by half the charge into the potential of half the wquare of the charge divided by the eapacity. Thus the fiasl serergy, afier equalisetion of potentials, is 1

$$
3 C^{2}+i C^{2}
$$

while the initial energy wa

$$
\begin{aligned}
\frac{(C V+q)^{2}}{C}+\frac{\left(C^{\prime} V-q P^{3}\right.}{C^{2}} & =j C V^{3}+i C^{2} V^{2} \\
& +i p^{2}\left(\frac{1}{C^{2}}+\frac{1}{C^{2}}\right)
\end{aligned}
$$

Hence, since $h^{2}\left(\frac{1}{c}+\frac{1}{C}\right)$ is slways poajtive, we see that the initial energy is necensarily groster than the final enerky. The loes of energy is reproseated by a quantity which is propertional to the *quare of the charge that has bees transferred. If we look inare closely into the significsnce of this quantity, we see that it representa the electrical energy of the kyatem of two conductom of capacitier C and C when they are charged each with q unita of either panitive or negative electricity : or, mpre particularly, it representa the work which must bedone in carrying q units from the one to the other. This is an example of the general frinciple that the wrork done by the electric field in compelling a trinaference or flow of electricity from one region to another is exactly oqual to the work which mast be done agsinst the electrical foreen in earrying an equal quantity of electricity beck again.

It is convenient, eapecially when the flow of electricity is tho subject of connideration, to une the term Electromotive Force inatend of Difference of Poteatial. We may suppoee it meeaured by means of the quadrant electrometer. Thus if the regions \mathbf{A} and B are connected aeverally to the electrodes of the electromeler, the deflection will measurs the slectromotive force acting along asy conducting channel which may be auppoped to bring A snd B into communicstion. The flow of electricity which this electronnotive force connpels will tend to bring A and B to the same polential; and in the altimave vanishing of the deflection on the electrometer we have the evidence of such a How having taken place. But we may suppoee that, by some meank, notwithstending the conducting channel between A and B, their difference of potential is sustained, so that the slectromotive foree seting along the channel is kept oonatant. Then the elsetrometer will ahow a sueady deflection ; while at the sume time a stesdy fow of elec.
tricity will take place along the channel. Thin flow, whose existence is indicated only indirectly by the electrometer, miat be measured by some one of ite direct effecta,
These effecta are conveniently grouped into physiological, thermal, chemical, and magnetic.
The electric 'ahock,' experienced when the experimenter unea himself as a diacharging conductor, is a familiar example of the phyaiological offect of an electric current. The electric dis. charge caunes a muscular contraction. In 1790 Galvani observed that the limb of a frog, when tomebed simaltaneously by two difforent metals in contset, was convulsed exactly ar if subjected to an electric shoek; and Volta, following up this obeervation, discovered in 1800 a new soarce of slectromotive force which conld suatain an electric corrent through a condaetbr for a lengthaned period of time. From thi dtes the development of Galvanic or Voltaic electricity, or, an it hav now more comanoaly called, current electricity.. The electric shock, however, dopends upon sariations in the amount of flow : a atendy current produese no ahock, except when it is beginning or onding.
In the slectric spark there sre of coarse thermal effecta; and generally, nince, an we havo neen, a tranaference of clasge or flow of elenetricity meens a lose of electrie energy, an evolution of heat is a дegonatry cosenequence.
Towarla the cloes of last onntury the decompoaition of water by an electric diseharge was oleerved by Vas Troontwijk and Doiman: while with Volta's electrical dingoverien a now ors in chemistry as well an in electricity was inauguratod,
None of thene effocta, however, give a ready method for mesesuring a stendy electric carrentie. the sesount of electricity which is transferred ncrues any section of the conductor in a neoond, ur in any other choeen unit of tirne. For this we must go to the fourth groap-vis the magnetio effecta of earrenta. This brasch of the subject, which includee electro-magnetiam, and an a conap. quence mach of electro-dynaniics, dates from 1890 , when Oersted of Copenhagen disoovered the action of a current upon a magnet sumpended neser it. As a matter of hiatory, the dincovery wha made hy meann of voltaic electricity; but that thare wan nome clome relation betwoen magnotions and electricity had long boen reeognined by ozporimentalists. Lightning had been kpown to dentroy and even reverse the polarity of efijpe' companses. Steel and iron had been magnetieed by diacharg: ing electricity through themi; but the effocta of buch sudden diachargon were extromely capriciona, and quite laftted all attempta to oo-onlinate them. We may, however, by diacharging a Leyden jar through a carefully instulated wire nuitably oolfod round a magnet, show that at the inatant of diacharge the mayriet is displaced.
The liruad fact entablinleed by Oersted was that every electric eurrent tends to mako a magnot oot itwolf perpendicular to the direction of the eurrent. To make the effeet npecislly apparebt, the wire conveying the current nhoald bo coiled again and again rouind the region in which the mingnet is placod. The same current in thus brought akaln and again inte the vicinity of the magret, and han s proportionately greater effect. An instrument consinting in this way of a coil of wiro surrounding a mingnet, free 6 rotate in some plane panaing through the exin of the coil, it celfed a galvanometer. The soiled wire must be oovered with gutia-percha, silk, or cotton thread, no that the contiguous coils may be insulated from esch other and, for ordinary purpones, the plane of the oold should eontain the magnet when no curront is flowing. We may muppoee the magnot to be anspended horizontally under the influence of the earth's magnetic field; then the plane of the coil should contain the magnetic meridian (see Maa. kictian). The ende of the coiled wire are called the terminale of the galvanometer. When they are comenected to conductors at different potential. a current will flow roand the ooil of wire, and will indicate ite prenence by compelling the magnet to move ont of ite nortnal position of equilibriam. The tendency of the eurrent in the coil is to make the magnet turn itmelf at right anglee to the plane of the coil-i.e to eet itnelf along the axis of the coil, magretic esst and went. But thlo it resisted by the steady action of the earth's meg. petic field. The resalt in a compromise, and the magnet is deflected from ite normal position in the magoetic meridian through an angle which do-
the earth's magnetic force. Since the Istter in practically conatant, the angle of deflection will depend on the valles of the current, being greater for the greater current. It is not our purpone under this heading to enter inte the pragnetic relations of currenta. For that we refer to MAG. neTism. It is atificient at present to know that in the galvanometer we have an insinument which can measure current, exactly fs in the electrometer wo have an instrument which can measure difference of potentisl or electromotive foree.

In sliscusaing the equalisation of potential in electrostatics, we parposely conflined our attentino to one metal only. The resaon was simply becauso, in general, two different metals, or in fact any two different conductors, can never when is direct contact be at the anme potential. The diseovery of thin fact we owe to Volta. Take, for inskanee, any four conductorn BAXB, pat them in series at in tho higure. and connect the terminal members, which are of the same material, to the elecfrometer. Acearding to the characker of the comductors AXB, there may be, or there may not be, a deflection on the electro. meter.
(1) If there is no deflection, the twn By are at the nasue potential: and yet, according to Volta's diseovery, the threm dilfarent antatasicen are at diffarsent protentisha This nisy be shown at once by breaking the chain at any of the neparating aigrfaces. when is deflection on the eleetrometer will lot observes. During thio acs of separation. the meparating aurfaces, one of which mutet af enome be kept insulated, net like a sundenser with a sonstant clarger, the slifference of potential changing beeatue the capacity is changing; The reason why the B'a are at the nsme potential in that, whatever be the differencen of potentia! between is and A and batween A and X, the difference of pratential between X sud B is slwaya such as us reitore B 20 It originat value. Thus if the merparntion of B and A gives a deflections of 20 to the righte on the eloctrometer, bind the apparation of X and X givee a deflection of $\&$ to the left, the meparation of X and 13 in foand 80 give is deftection of 12 to the left,
(2) If, lowever, Liere in a ilellection prealaced on the efectrometer, then we know that the Gwo B's must be at different potentisin, wo that. if we enn. neet them by wirea to the terminals of tho gal. Fanometer, is eurrent will he olserved to flow. Such is combination of misterials, in which two ednductont of the abme materiat uro kept at dulferent potentiala by being linket tugether ly at leant two other and different maberisin, is ealled a voltaic of galvanic sell. If we join she two terminaln either direetly or by meana of any other simple eandactor, a enrrent will neceanarily llow roumb the circuit. But thin carreat nueans a transpference of charge from one conductor to another at in lower potential -i.e. a loen of electrical energy which is proportional to the ejuare of the quantity tranaferred. Hence. if, in is practiesily the vase, the elecsers mative force or tilference of potentisl remaina fairly stealy, it mast be locostane electrical energy is noppliod as fast in it is heing lont. Consequently there must be in the circuit nomewhere an original source of energy. In fact it in found that a permanent electromntive force of the kind junt demeribed in always samacinted with a tendency
to chemical action between twos at leant of the to chemical action between two at leait of the mensers of the chain; and that, when the circait in complete and the current in flowing. chemical changen are going on within the oell. In this cane,
sloo, we may, by separating the chain arite veriona surfacen, show that at every surface there is an electromotive force of conthet austaining a difference of potential. But whereas, in the former case, the algebraic sum of all the differeneen of potential between the strccuuive pains of materials as we pass along the chain from B to B vanishee iventicilly, in the present case it has a finite value, which is the total electronnotive force of the conablination as mensured on the electrometer. A comnbination of two or moge voluaic cells is commonly called a voltaic or galvanic hattery.
There are innumerable forms of voltaic cells, built up in different ways of different materials Copper and zine dipping into dilute sulphuric acid is one of the simpleat forms. When the cell is
closed-i.e. when the copper and zine are joined
externally by a wire, n current will be obtained flowing in the wire from the oopper to the sinc. At the name tine the zine will be dissolved in the seid and it is from the energy set free by this chemical setion that the electrical enengy is derived. Such a single fluid cell is not, bowever, very stesdy in ita sction. We shall therefore take as a type of a good cell one of the clan known an twa-tuid cells; and of thove we shall choose the Dasniell cell. In its best form, the Daniell cell consista of copper and aine plate dippiog into saturnted sofution of solphate of copper and senni-naturated molution of sulpliste of zinc respectively-the Jipuids being also in enntacs bet prevented from mixing by s poroat meptam. Connect the copper and sine plates, or poles an they sre technically eallind, th the electrometer, A deflection will be produced which will menaure the clectromotive force of a Daniell eell when it is not leing uned for the production of eurrentm-i.e, when it in open. We shall take this, provivionally, mon on unit eleetsonotive force, and We uny suppose the eleetrometer scade gradusted so the to show init deflection whra the polen of a Daniell cell are connceted to the electrudes of tho electromeler. The dellection is nuch es to indicats that the electrode connected to the copper is at the lingher potential. Heboe the copper is ajoken of no the prasitive polle, and the zine as the segative pole. Take now a mocond Deniell rell, connect ite rinc to the cupper of the first one, snd connect the free pesler to tlie electrobseter. The electromentive fore of the two rells so joined will be doulle that of one -i.e equal th 2 And greberally, when as number of cello are arrangel in series if.e with the aipe of the lint foinell to the rupper of the spoasd, the sine of the necond to the copper of the third, and so an), the eloctmnnative force of this battery, is troms of the +lectronnotive force of one cell, ie just then sumblen of cells comporing it. Theoretically there in no limit to the electrosuotive force obtainable loy truass of eelin / practically the ditticulty constate it kerping a large sumier of cells in good condition. With starge eonagh batiery we cas obtain eflerta in every why snalogous La the effects produced with frictional electricity. The eleetrie ught in ite corliest form was obtained between earisen terminato juined to the joles of a Large lattery of celle fesprally speakiog. Iowiever, the differencer of patential in ilretrontatic experimente ser intich greater thas the elnctromotive forbe comenisaly gmod in et perimenta with electrie carrenta. Thas, the electromotive force of a Dasiell cell is very innch maller than the electroatatie anit of potential ie himesored on Thumeoa's absolate electrotueter is the manner previoualy deweribed. It woold rejuires hastery of shout 278 Deniell oells et is series before the electrontatic anit of potential onald be oltained : and it worald require the uep of about 10,400 pells is seriee to cospel a sperk to pas directly between two peraliel of as censimetry frose each other. With such conparstively small elsctromiotive foroes many suthancet eas be tand on insulators in current elecsticity which are fairly goot condartare in electroatatios.

If, it the ame time shat thit proles of a cerll are connectel to the electrometrec, they are connectel by vtoul staurs wing to the terminals of the ghal vanotneiet, the galvanmoter needle will le de flected. white the electrometer dellectioni will be mpehsmged, or at the moot dinrinislied slightaly. If thin long wires are sabstitated for thar thick ahort rotnertions, a very zreatidimiqutina will be alserved in the galvannmeter rewting, and perlispe a *ery alight increase is the electwaneter realing, the spparent electromotive forve of the olosed cell sppraximationg more elosely to the electromotive force of the open cell. Thus, we may alter the surreht at will by endploying flifferent lengt hes nd different thicknessea of wires for tranmaitting the current $:$ avd yet the elecimanntive force between the proles of the cell is los slightly if at all atfected. In other woris, the comrent. no measured on a patranameter, fiepenit not only om the electromentive firce acting along the channel, but upon antue property of the cliannel itacll-aome propierty independent aloogether of electrasuative force.

This property we tuay indieate by either of two wurls-viz Conductivity or Resistance. These weris itenote contrarios. Tluat, a hody of small conductivity luts a grest resiotance ; and a body of bow resiatance lias a ligh conductivity, Quanti. tatively, the one is the reciprocsl of the other; and they are measured in terms of current and electro-
motive force by what is known as Ohmin Law, We now know (see The Elertrical Researches of the Hon. Heary Carendish, ellitel by Maxwell, 1879) that Cavemish had in 1781 established this law, and comprared the resistances of iron wire and varjous saline solutinas to electric discharge through them. He acted as his own galvanometer, and compared slischarges by their 'ahocks. As regards The histarica! development of the science, however, it is to Olim that we owe the full statement of the Law (1827). Since his day it lias been nubjected to the severest experimental tests that the acientific mind could imagine, sand hos stomest then all. It is reatly the lusis of our whole system of rectrical mesourements: and in to electric currenta what the law of gravitation is to planetary motione. Ohm's Law sunerts that the remistance of n ermductor is mesarred by the ratio of the electromotive force between its two endis th the current flowing through it. Tluss, if E is the electromotive force as measured on the electrometer, and I the carrent in mesamped on the galvanometer, and if K , If inemare llse condactivity and resistance renpectively, Ohm'r Law given un thene relations

$$
\mathrm{EK}=\mathrm{I}, \mathrm{E}=\mathrm{IK} .
$$

The law is parcly emplirical. Arauming ita trath, we slabll here desluce from it eertain relations, whieli experiment scenrately vprifien.

The pecaliar value of Olim'a Law lien in the fact that the projerty designated resintance, though mensured in terna of electronsotive force and Eurrent, is almalutely indepemilent of them. Hence mo long as the plysical condition, and Hierefore the resinlancer, of pach condactor remaina ubaltered, the carrenth in any my-iem of canductars are proportionsl to the efectromotive forcen ; atendy currenta imply eteady electromotive forcen ; ateady electm. maotive forces inply neculy currentas. And thut, if the potential at one peitit in recolly, the potentiala at all other pointa will loe nteady i and thin meann that whatever quantity of electricity flown ints a point munt flow out ngair-for otherwise there wonld be a gain or lons of chstge at that point, and therefore a change of potential, which in not contemplated. In the partieular eane of a single circuit, it follown that the current is the asme at flowing throught the Daniell sell from the sine to the copper, in well at threught the rent of the circuit from the capper to the zinc.

If a stendy curtent is flowing along a condactor of one kind of material, nay sopper wirs, the potential will fall of cootinuausly on wo pann along in the direction of the current. Let AB be the ware, sad sup-
puee the current to bo flawing from A to B. Join IS to of the electroof the electro-
meter i snd let a wire from the ather electrole tre led to any
 joint P on the wire Then fin the point of contact P in moved up towneds A, the electrometer deflection will increane continumaly. Even throgh AB in not all of one matering, the same ntemly growth of the electrometer deflection will lre Rhown an the point P in made to travel from B to A. Thun suppoee AC to Le zinc, and CB to be copper, and no current to the flowing; then according to Volta's diecovery the Fotential, otherwise constant, will undergo anabrupt change at the surface of meparntion at C. But, an we have seen, the lraks quadranta of the electroreeter will sat on this account be at different potentialn, even though P lies in AC. Hence, if nay difference of potential show tisel/ on the clectro holer, it must le lecause a current is flowing along Alt Thus we may extend Uhm's Law to beterogenenus circuita

The mensuretnent or, more atrictly, comparinon of resistances is one of the most important operations in the modern science of electricity. For this purpose we firmt choose a certain standard, asy a particular length of a particular piece of wire at a certain temperature. It is obviously convenient to have an atariard which can be exnetly reproduced
should the firat atandaril be lowt or in any way danaged. Hence acientific taen of all nationk have ngreed ta use su the unit of renintance the resiatance of a colunin of pure mercury 108 millimetrea long.

I square millimetre in cronamection, at the temperatare of melting ice. Thin in esllided the legal ohm. which in defined in terma of what are called the electro-magnetic units of evrrent and electromotive force. See Macinetims.
Sueh a mereury atandard, though fulfilling the very necemakry condition of aceurate reproduction, is not ennvenient for practical use. For this parprose copies of the olim muxt he made in moliil wiree of monse metal or alloy. Gierman ailver has long been a favourite mulmance for nasking auch prac tieal standarla: and of late a moniewhat similar alloy called platineid has eome into use. Ohm's Law at once sukgesta a method for sopying the gtandard mercury ohm. Firat, let the mereary column be incluited in a eirenit with a piven battery and galvannmeter, and the deflection on the galvanometer noted. Second, let the mercory column be replaced by a wire, and the length of the wire adjuntel till the galvanameter ahows the name current. Then, provided that the eloctromotive force of the lattery is the samn in the two cases, the resistance of tho mndatitatest length of wire in 1 obm . We may obvioualy conatruet as indefinite nomber of anch copied atandards.
If we put any number of these single ohma aed to end in series, we nhall get a whole resistance equal to as many ohine as there are conductors. This is an immediate enasequence of Ohmin Law. For nince it in the same current that is tlowing through all the single ohms, the fall of potential a We pass from beginaing to end of any one in the same for all; hence, the fall of potential as we pasm slong, say, three in three times the fall as we pass Along one; hence, the current being the same fot the three an for the one, the remiatance of the three must he 3 shme. A npecial eane of thin in that the reaintance of a wire, otherwine cobalant in ith phynical relationn, is direetly in the length The completely general ataterient is that the reaist. ance of any single contiauons chishnel in the num of the resistancer of ite parts.
Suppose, however, that the single nhms are no arranged that they all begin at one point, A, in the
 at ant, and em! B. Then it is clear that they frust all be traversed not by the eame curront. tente. Hence. there will tow
into A and out of B a ciarrent equal to the num of all those equal currenta. Thua, if there are, may thiree single ohms connecting \mathbf{A} and B , the total current flowing into A and out if B rouat be three timen the current llowing in any one of the branches. But for conatant electromotive foree the eurrent in directly os the conductivity, or inversely as the reniatnice. Hence, the conductivity of the threofold conductor betweeh A and A in three timen the conductivity of any one of its consponenta: or, otherwise, the reaigance between A and B in one third of an ohm. Here, agnain, wo a
appcial cans, we find that the renistance of is wire, otherwine conalant in its physical relationa, is inversely as the area of ita crosa section. The completely general atatement is that the comluetivity of a multiplo channel whoee brsmehes all begin at one point and end at another, is the oum of the conductivitien of the lirancher. Thene moltiple-are arrangements, as they are technically called, are of peculiar value in anl slectrical investigations and applications. Cavendish, who atates the law of the doublo-branch circuit with partieular acetumey, what the firat oxperimenter who used the arraigement By diacharging a Leyden jar through a branch circuit consiating of an iron wire and hiv own booly to obtained a certain sennation, which he cumpared With the aonnation prodnced when a column of aslt Water was subatitaled for the iron wire. By midjunting the length of the salt-water columin until the cwo athocke felt equally intense, he had data from which a comparinon of the rexiatancess of iron and xalt water could be made. This comparison Cavendish gave in a paper published in 1778, without, however, giving his method of experiment, which lay hiddea in the unpublished manuseripte for fully a oentury. His remult was that iron conducte 355,355 times better than asturnited nolution of salt, a galvanometer measurementa. In comparing renist-
anom of matriarls, we must find the resuatancee of portions which have the sange length and the same croes-section. The resalus kiven alove, ponnecting the mesuural roxistance of a condactor with its dimensions, enable us to effret thin comparivon تithout difficulty. Thus, if r is the revistance of a wire of length , and cross section x_{s}, the quantity ra/l evidently roeseares the resistanco of a wirt of anit leagth and sait cromssection. If the unit length is a opentimetre, and the wait aros a aquere centimetre, the quantity which measuree this reeint. ance is called the grefice resitance of the material. The subatance whieh has the smallos specitic renistance is the beat conductor of electricity. The bext cooductor is silvec; but copper is nearly us good. The specific naistance of Iron ia pearly wis tines that of copper, and that of mereary mearly sixty timen.
In Cavendiat's experiment juet slescrited, the fron wire acted an an numt in the circoit of jur nat body; for the resiatance of the imon wite wat much lesa than the feristance of the body. Hever, the discharge through the ware whe jropartianstely greater than the diwerarge through she looily. In a doable birsnels circait the enrrent dividen itmelf ioker two parta, which by Ohmi, Law must be directly as the conductivitien of the hranches. If we puit the galvanometer in oue of the linaschms, we may, by adjuasting the resistance in the other bramin, vary the carrent in the gatvanosucter through a very large rasge, while the tatal correat sapplied by the liastery remains cunstant. Let All le a wire of bait riniatance, forming jart of a ciretic and let the pointe AB le cominectel to the terminale of the gslvas: ometer, whowe remiatance we sliafl sappomen to bevery great compared to the reimiance of the wire AB,
-ay, Hico nhms
 If is is the current me meswied on
 actiog along At ; and thie rasitighlimd ly the come ductivity of the shabbe branch jartion lying be I ween A and H will give the fortal eyirent entering at A and leaving at B. Tlie condectivition are I and she repectively, en that 1881 is the comaluc. tivity of the wlonte; and, hence, S601, is the tetal current supplient ly the bettery. Suppuser, now, that innteal of onnsecting the solvanometer terminal with 11 , we connect it with II, where BH repreactita another ohm of rasistance. 'Then if s^{\prime} is the elirrent in the galvationveter, te b have $\$ 000 \mathrm{i}^{\circ}$ an
the electronnotive force leiveren A and is. The onsdactivity of the shomble limaneh pertion is now it thot, i.e APAB: hemee, the eurrent supplied by the hattery of 2501 is. Thut is almoet all canes of importaner-ekcept when extremely accurnte reauto are wanted the fourlis significant bgure in sny numiret is neghigilife fonfeel, very few galvanometers ean le troated to meseure currenta to mach sn extreme of ancunwy. Hepoe, the nowist. anve of the whole circuit is practically the matase no far er the jumible miessorement of curcent is coll
 oqual; nond, bence, tas the degree at agjernimation
 rexixtance uned in the way juat descrilact, in which the main carrent is ahumteal throdgh a cotipuina. tively amall rexistance, really meswures the electm. motive force between the ends of the shant. For tasany purponor wr mas tien sueh a high resistance gavianometer inateal if the electrometer
From what bas just teen said rezarding the sccurncy to which a galvanomeler deflection may he reat, it is evident that if the comparison of remiatancer depeaded on the mearurement of current, it would be imposible te compare resistances to any very great degree of socurscy. The comparison of rexistances miny, however, be effected by the method known an the Wheatntons bridgw, without so much an a aingle mennuretnent of either electrounotive force or eurreal.
Coosjder the aase repromented in fig. 23, in which the carrent from a leviery is made to fiom slong twa distibet channela from A to B. Along asch the potentisal falls from ite value a at A to ite falne b at R. Hence, for sny point P in the one branch there muat be a corresponding point Q in
the other which has the name
 potential, $\mathrm{c}_{\mathrm{i}} \mathrm{my}_{\mathrm{P}}$ and Q be joined to the terminals of the galvanometer,
G. Becanse of the equality of the and Q, no current
will fow through the galvanometer, the carrenta many be in APB and AQB. Thum, in in current flows between P and Q, the current in AP nust be the same an the current in PB, and the current in AQ mant he the nams on the current in QB. Hence, by Ohrn's Law, the resistancen of AP And P1S must be proportional to the electromotive forcen acting slong them-i.e. in the ratio $(a-v) /(b-b)$ Sinif. layly the same ratio exprement the ratio of the reeistances of $A Q$ and $Q B$. Thun the exintence of no carrent in the galvanometer circuit-a condition which odmita of the monet delionte of tenta-implies that the resintancee of the four lirnneles AP, AQ. PB, QB form s simple proportion, any one forming the fourth proportional to the other three properly taken. Two equal lengthe rut off from a fairly nniform wire may lee mutumes to have approxi. mntely equal resistancen. Let them be the brancher AP, AQ. Let PB be the standard ohm. Then, by adjunting the length QB of a given wire sill no carrent flawn through the galvanometer, we obtain a copy of the ohth, ncourate if the resistances AP and AQ are really equal wo ench other, Soppone, however, thal they ure not quite equal, bot that $A P / A Q$ in equal to $1+v_{1}$ where os in mosully is small quantity, and that therefore $A Q / A P=1 /(1+u)$. Let l be the lengeth of wire required is QB when the ntandard ohn is in PB, no se to setialy the condition of no current in PQ: eod let t be the length of the nane wire required is PB when the mandand ohm in in QB, so as to fulfil the name condition. The lengtha l nad I^{\prime} will differ mo slightly that we may asnume them to be eserastely propertional to their reeistancen. If L is the leagth of wire whone renintance is nccurately 1 adim, then evidently

$$
t=\mathbf{L}(1+a)^{-3}, t=\mathbf{L}(1+\omega) ;
$$

sad henee, multiplying we find

$$
W^{\prime}=\mathbf{L}_{i}
$$

or the lewgth of wire whone resintance is 1 ohm is the goometric mean between the length whose reaistancen balanced the ntandard ohm in the two cosee deseribed. Thin discamion is an illustration bow, from a firnt approsimation, s mocond aud mneh closer approzimation can be olinained.

To facilitate operstionn in the mensurement of resinlance, it is expedient to conntruct a nerien of graded renistanoen, which are multiples and anca. sionally submultiples of the chowen tinit of rexiat. soee. We may obtain, in the manner junt deacritud, any number of copiee of the ohm. Then, Wy patling two in nerion in the one arm of the wire having a resistance of 2 ohmn; and an on, ntep by elep, we can meantire off lengths of suitable wiren Whoee nalalances will be any imaginabie number
of obma. Agrin, by patting in the arms AP. AU of obme Again, by patting in the arms AP. AQ
very differsait reditances, nay 10 ohma and 1 ohm, ve can construet remistances of fractions of an olim e_{K} if PB in 1 olim, QB will be the tenth of nn when Fior such feactional resintancen thick wires or many strands of thom wires in multiple are must be umed. For the higher revistances thin wircs are convenient. Suppooe we have, in this way, corsstructed reeistancer having the valuen $1,2,3,4,10$, $20,30,40,100,200,3000,400,1000,2000,3000$, $4000,10,000,20,000,30,0000,40,000$; then we may by proper combination express any integral number of abises from 1 up to 100,000 . Tliar, the resistance 7956 is buils up of $4000,3000,400,300,200,40,10$, 4.2. There nre nevernl way μ in which thene twenty
resintancen can he arrangeed mo as to aulmit of rapid resistancer can le arranged mop as to aulmit of rapid arrangement is called a box of resistance coils, or mamply a revintatice box. It is an indispetisable part of the apparatus of a playkical lalxuratory.
We have alrealy seen thist the puange of an Whectric curcent muans a lans of electric energy. What frecomes of this energy-ie. into what other
form is it tranmformed-is a qutestion which requirea
to be answered. The answer was fully given by Joule of Manchestez in a magniticent series of experiments on the heating effectrs of electric currents. It was parly recognixent that the electric curreat and electric discharge lasi a beating elfect on the conductor along which the enarent flowed or the discharge took place. As carly as lsol, very moon after the dimenvery of voltaic electricity Wollanton exhibited luefore the koyal Society the glowing of a thin wire joining tlie polto of a cell To doule, loswever, we uwe the complete statement of the irrevenible beating effecth of earrents. In 1840 he publialied the important result thas 'when a current of voltaic electricity is propagated along a metallic cumiluctor, the lieat evolved in a given time in proportional to the resistance of the conductor multiplied by the aquare of the electric intenaity,' The heat so evolved fully aceounta for the electric energy loost. Suppose we have an electromotive force E Ariving a current I thrnugh a resistance \mathbf{R}, \mathbf{E} is the messure of the work done in tranaferring unit of electricity along the channel. Now 1 is the amount of electricity tranaferred in s aecond of time. Hence the product EI meaures the work done per second by the electronuotive foree in driving the current I: But by Ohm's Law

EI $=$ RI 2;

and this is the very funatity which Jonle showed appeared es hent in the wire. Here evidently we have is thershal muthod for comparing resiatancen Set the various conductors in serien, so that they are traverned by the aane current. Then the resiatancen are proportional to the heste developed in them. To meaaure the heate so avnlved wo manat know the rise of temperatore and the thermal capacity of esch candocter.
If a very thin wire formana part of a circuit, it ia there that we shall bent abserve the effect of the heating. For the heat evolved per unit length of any condactor in directly as the resistance-i.e. invernely as the croes-section. But, with the circait all of one msterial, the rise of temperature is directly an the beat evolved sad inveruely as the mase heated, and the maan per unit length is directly is the crom-aection. Thun the riae of temperature in invernely at the nquare of the eroen-eection-Le. invernely an the fourth power of the diameter.
Thin in the principle of conatruction of the in candencent electric lamp, now no common a source of Ulamination (nee Etverute Liont). A thin Glament of carbon in made to glow by the panage of a powerful current along it. To provent the 'burning' awny of the arpbon in sir, it is inclosed in a hermotically sealed glane venell quuite empty of oxygon.
As an example of the magnitude of the Joale afloot in a conductor of given rasiatance traversed obms, slong which the electromotive force is equal ts thet of one Daniell cell, then the heat evolved in an hoor will be aboat 100 grammedegree unita of beat-Le, an amoant of hest capable of raising the tetiaperatare of 100 grammes of water by I' eentigrade.
Bo long an we are dealing with metala or aimple eonductors like carlon, the eirrenta terived from the Daniell cella in the cireuit do not sppreciably change in value from the first inatant onwardn for aeveral hours. If the cibrents are powerful enough, thert will be slight diminution during the first few minuted, dae to the heating of the conductore; for the reeistance of nearly all metale increanen with rine of temperstare, But this effect will not in general be appreciable.
A very different net of phenomena confronta un when we introcluce into the circuit s sonductor like a molution of nulphiric acha, or of any sialphate, or indeed any ordinary chemical compound, either in solution or in astate of fusion. Such eonduetors can transmit currenta only at the expense of their onnatitution ; or, in the worls of Faraday, in them the power of tranamitting the electricity across the subetance is dependent apon their capability of suffering decomponition." Such aubatances-the whole terminology of the subject was introduced in 1834 by Faraday-are called electrolytes; the condactors by which the current enters and leaves the electrolyto, the electrodee; and the whole process by which chemical compounds are decomposed by meana of electric currents is named electrovyms.
Take, for oxample, a dilute solation of sulphuric scid nearly filling a glass vessel. Dip into this electrolyte two platinum strips, some little diatance
spert and not touching. These are the electrodes;
and it is imporiant in auch an experiment to choose an electroden materialn for which the electrolyte has no chemical sifinity. In this respect platinum fa, over all, by far the mont satisfactory. Now
 connect the one platinum strip to one pole of a Daviell cell, and the other to one of the The other terminal of the gal. vanometer and the other pole of the cell may be connected
at will, so ma to eamplete the circuit. When in this way the circait is completed, is current will be observed flow.
ing through the galvanometer; bat thia current will very soon become extremely feeble, and, evest though it may nit altogether vaniah, will produce no continuuus decomporsition of the fluid. Lot now a seowad Dasiell cell be added as ahown in fig. 24, where B is the battery of two Daniall eells, G is the gaivanometer, and C is the electrolyte. Then the galvanometer will indieate the exintence of a pronounced current, which duping the fret few moments will fall considerably below ita original intensity, bat will altimatoly reach a atesaly valae. At the same time amall babblen of gan trill sppesar at the aurfacep of both electrodes, and will form steady ancending atroans is the electrolyte. Thane prodaris, of ions an Faradsy aalled them, may be colleeted in separsto vensals, as shown in fg .27 . where the groes accamulate at the top of test-tahon inverted over the oleciroden, gradually pushing ost the tigald which at frnt fified theee tubes. It will be notiond that the volame of gas given off from the ase aloctrode Is twiee that givec off from the other; so that if the tent-tubes ars exsetly the same size. the other ix only hall-enuptiol. The kreater volunien of gan mocursulates over the electrole by wlijeh the eurrent leaves the eleetrolyte. Whrn tested, the gias which cume off in greater griantity will be loand to le brulrogen, anal the other asigen. In fact we lanve here separated from one ariether the constituenta of wster $-\mathrm{H}_{8} \mathrm{O}$) We may therefore any that, whatever the immernicliates stages of the procese niny les, the lisal roonlt of jumisg a current throggh shlute mitplorice aciol is to deconprose water.
The eharmetcriatic juinte to fer moticent liere ne that one Dhuiell cell canmen dermipuse water: that when twin ur mare are Inod, the corrent tasthedly falle off in intenaity disring the firof frw tombinente: and thet, whes ther rurrent hav laeroses sutiatant. ntealy streaks of Indhble of gns mocend threugh the linaid from the murfaces of the electrades, and from them only. These are anme of the characteriation peculfar to electrolytic evonductina ; and, When present, any obe of them is enfficient to dintinguish an electralyte from is simple eanductor. We aliall aliscuss them maire fully in onder.
(1) Exactly ar one Daniell cell carnot decompone nine electrolytic cell of dilese acid, no two Daniell tells cannot decompoaet two electrulytic cells. Take. for example, 5 truagh filled with dilate scid, snd forming with its platinum electrodes phe long electrolytic rell, C, which is
travented by a current fram
two Danjell celle, E A distinetdeflection will be olserved on the galvanometer, \mathbf{G}, and the ions will be given off at
the electrodes. Now. let t the electrodes, Now, let a
pistinum plate, P (shmwn dotted in fig. 25), of exactly the brealth of the truagh be inserted somewhere be
 tween the electrodes, and pashed down till is ronato into close contact with the bottom of the cell. Very soon the current will die away, or moly a very feeble one will remsin, which Von Helmholta has shown to be due to the presence of free gnaco dissolved in the electrolyte. There will, however, be no continuous prortuction of Tons at the electrodes, even in cases in which this feeble current has not leen eliminsted. The reason is simply that by eo partitioning an electrolytic cell we really mske it into twa. To obtain distinet decomposition in these two cells we must use four Danielf cells in series; and then we should obwerve the ions given off not only at the terminal platinum plates, but on both sidea of the partition plate. Thus it appears that the process
not merely a question of current, but also a quextion of elec(2) To study more closely the second point indicated, take two platioum strips p, q,
thoroughly clesned by heating in a fiame to bright rednees, dip them into the electrolyte, and connect them to the electrometer. The tlectrodes being both clean, platinum will have the anme contact electromotive force with the electrolyte, no that they will be at whe same potential. Hence the electrometer will show sero deflection. Now put the electrolytic cell in circuit with the galvanometer and a hattery of two or more Daniell cells; and suppase the current to flow froms p to q through the electrolyte. Then it may be olserved that, as the current through the galvanometer falla off during the first stagen, the difference of potential between μ and q as measured on the electroneter increaser, If we apply Ohim's Law to the purtion lietween p and q, we see at once that the ratin E / I has consilerntly increaned. This ratio, which for nimple conductors mensures the retintanee, we aliall speak of as mensuring the Impenlance, Impodanee in fact is a nore genersi term, Bynonymunan with reaistance for standy currenta though metals and simple condactorn, but inclailing other quite distinguin wahle propertion when electrolyten are the condnctorn, or when the current is variable. It alould be mentioned that during these early clangor in current and distrilha. tion of potencial the seriperiture of the circuit has not appreciably altered, no that we are precluded from explaining the effeet as due to increase of resiftance in virtue of rine of temperature.

After the enrrent haw lieconse ateady, let the circuif fre broken. The galvanometer needle will nwing lanck th zero 1 but the electrometer needle will awing back unly a certain dintance, and then costinue slowly and more slowly back towarily zera. Thas, after the curcent from the liattery has consed to How, the electronden in the electrolytic cell remain at different potentials, and will remain no for an indetinite period. Thia phenomenon is called the Polariation of the Electrodes. From being in a ntate of electrical identity these electrodes luave lieen lorought, simply through the agency of a carrent, into a condition of elisctrical disuibilarity. In other Words, the eleotrolytic cell hus virtually become a voltaic cell; the eleotrodes have become poles at different potentials,

Let now the polarined cell be foined up in cirenit with the galvanometer-i.e. let a wire be bet in where the battery at first was. Tlie electrode p being at a higher potential than the electrode q, is current will tlow fram p to q through the galvanometer, and fron q to p through the cell-ie in in Airection confraty to the direction of the current which fint circulated in the circuit. As this current flowa, the deflection on the electronmeter will rapidly fall off, until very moon the potentials of p sad q will be practically eqtialised, and the current will disappear. Thasalthough, hecusse of the polarisation of the electrodes, the electrolytic celf han at firat all the virtue of a voltaic cell, this virtue is rapidly lost wheti it is used as a source of current, for there is nothing tos sustain it.

Iti this polarisution of the electrodes we have one explanation of the increased insperlance of the cell. As soon as the current from an external source begins to pass through, decomposition begins in the electrolyte. The iuns accumalate on the platinum electrodes, which liecome coated with oxygen and hydrogen guses. They are no longer platinuni, platinum, dipping in an electrolyte; but oxygenised platinum, hydrogenised platinum, dipping in the saine. Of these the latter is eminently oxidisable, just as the zine is in, say, it simple platinum zinc voltaic cell. Hence the hydrogenised platinum, which in that by which the original current deft the electrolyte (q in fig. 26), behaves like the zinc in. an ordinary cell, but behaves like the zinc only so lang as it is hydragenised. When, then, the polarised electrolytic cell is included in a circuit otherwise free of electromotive force, a short-lived current
will llow at the expense of the electramotive force of polarisation, its energy being derived from the reunion with their appropriate asaociates in the water molecule of the oxygen and liydrigen elimging to the platinnon electrodes. We macy exprent the reault very aiuply in symboln, thas; Let \mathbb{E} be the electromotive force acting round the cirenit, r the renistance of the electrolytic cell when there is no polarisation, $*$ the resiniance of the nent of the circuit (galvanopacter, battery, and connections). Then if I be the imitial vnlue of the current before polarisution seta in, we have, by Olim is lisw.

$$
\mathrm{I}(r+x)=\mathrm{E}_{x}
$$

But ut opce polarisation berina, and the reversed clectromotive furce the to it mure ur lona quickly ntaine ita maximom valuef c. If of is the limal value of the current, we lase, by Ulam's Law,

$$
J(r+s)=E
$$

in which E and rate mipposed to be the matie as lefore Evisently J is lese than I. Again, if we write the quantity e in the form $J K$, where A mevoirm nomethimg of the nature of rvistasese, We masy at once tranuform the equation thon

$J(S+r+\lambda)=\mathbf{F}_{\text {r }}$

The quantity $(k+r)$ mienntren Die iniperlanent.
The Buavonshat pe pralactions of this reversed electromotive force she to the jolarination of the electroilen be π grest lindrasice in the way of measaring the trie reapeanee of electrolytes. If wo pit an electrolytic cell into one aras of a Whestatione bridige, and operate an we do in the ciue of simple condyctorc, we shonald mivensure the impedance, not the resiftance. Suppose, lawever, thut we have is nepus thomaphily nutisfortury
 might bee beet defined by Jentlens L.aw in ternas of the brating eifert of a gitro cirrent in a portion sf the verctralyte fior removed from the eleotrinles, pven then we whonld loe in dooht os to the trie mignificance of the reat of tho so called impedance. We see that the electronotive loree of polarimbtion explains is part ; hat dner it expfain all! Ita exfintente depende on the necumalation ot the fons at the electromen, ant it is quite coneriv. able that the exintence of such sceumalntions masy mean as extra reaistance in the bros arase of the word.
(3) We pran now to the onnaideration of the man themselves. An we bave neen, the electrulyein of dilate autpharic achil reanlia in the appearance st the electrodes of axygen and liydrogen. The oxygen is given off where the carrent enters the eteotrolyte, and the hydrogets is given off where she current leaven the electrolyter A vary pimple experiment will show that the amount of water decomponed in a given time in propertionad to the corrent an mecuatred ou the galvanometer. Suppoen, for instance, that with swo Daniell celle in the circuit, the teat tube over the nagative electende in the electrolyte fille with hydrogen in 90 minuten. Then, if foar Daniell cella are gut is eireait, asd the external resigtances alightly adjusted en an ta make the galvanometer indicate donhlile the former curtent, the tent tube will be filled with hydragen in 10 mimates. With rix cells, and three time the original carrent, the tube will lee filled in $6]$ minates, and on on. Thim we may compare currente by the quantition of a given electroly te which they decompoue in as given time. Farnday's voltameter. on shows in fig. $2 \overline{\text { a }}$, is intended for this purpose. As onnpared with a galvanumeter. the voltameter line the obvious disulvantage that it cannot measare a current at once, bas only after the current has lieen Howing for mome time. Hence it meranares only the avernge current during this time; 80 that unlesa we know the current to be very constant we camnot draw sure conclusiona from the indication of the voltameter. Then, again, them are ofher sources of error which mast be guarded againat if anything like accurste resulu are denired. Thus, in Faraday's voltameter, the gasea, as they collect in the leat-tubras, sre at somewhat dinmashed pressure in the sarly stake. tionutely with their masses. Brat agreatur snurce of ervor lies in the fact that all the gas given off sloce nont eallect in the tuhes. Some remame diesolved in the thid, and this is specially true of the oxygen, whels, besidec, comes off partly in the

Fg 27.
eqnal currentolecabymine

 enrent, that varnot leas a defirine aliediene talas The nilimesicil meswhe of it silf deferal of abse

 ypabsie of matter decosapooch. Tooldaus deulise

 onlv kitle mencupronent of mas

 alothuest atylate of onyer wits oyper plosombes.

 the raslym, ant may ter esilevicd, while silier will
 copper will be deposited on the segativa elestreble, while the peaitive electrole will gradoally dimolve away. After the current has flowed for somee tirne, meseare the smounts of groee collected, and the smonnta of silver and copper deponited. The Inat two are esaily messures by einiply weighing the alsetroim befare and aftet the process-the acted at the negative elnelrover and oupper which opper saits rempectively giving st ance the smeunth depesives in them. Siopjose, for examples, that 2 mitligranemen of ligdrogen and 16 milligramanes of ssygen have collected in the voltameter: then it will I found that fors milligranumes of chlorise have collected over and on the carlen, 216 milligramme of silver have leen deposited on the nilver, and 63 milligmmmes of copper on the copper electrode Now these numbers meknuire vhat are called the chemical syuivalenta of these sthetance-they are perpertional to the quaptities which enter into ammbir combinationk. Thus, in hydrochlorie sich, for everş 2 grammes of hydrogen there are $70-8$ gnammes of chlorime; in caprie chloride, for every 70 g grammes af chlorime there are fal grammes of copper ; and so an, ripht throagh all the related compounils of these sulstancre. See Atosuc Theory.

Maxwell hes thrown Farmalay's fundamental laws of electrolysis into a saggostive form by first defining the electro-chemical equivalent of a substance an that quantity " which fis electrolywed by a unit of current passing through the sultatance for a unit of time, or, in other words, by the passage of a unit of electrieity. Then the law of electrolysis is that "the number of electro-clemical eqnivalents of
an electrolgte which are ilecomposed by the perasge of an electric current during a given time ie equal to the number of units of electricity which are trans. ferred by the carrent in the Name time. ${ }^{\text {a }}$ Now daring electrolynis the proilucts of decomporition appear oaly at the electrodes, and nowhere else. The electralyle consints in fact of two gronaps of compmnents, chemically bound together every where throughont the liquid. Bat the steady appearance of the ions at the elocirodes shows that the two gronjes of components must be steadily travelling in opposite directions through the electrolyte, Hence it follows that although these molecular groupes are chetuically bound together every where throughoat the liquid, the individaal component groupa are constantly changing their nanociates. For example, in the cine of the electrolysis of fused silver chloride any individual pilver molecule is handed on, to to speak, fromi chlorine molecule to chlorine molecule till it reaches the negative electrode and in deposited there. At the same time, esch individual chlorine molecule passen in the other direction from union with one silver molecule to uninis with the nexi, untal tinnily it renches the positive elsetrode and becomes free -i.e. there is constant dissocintion and recombination poing on in the sulvitance of the electroIyte Clausius (1857) supposen that thin procese is going un in the liquid at sil timest but that, when an elestromotive iorce actur upon it, a direction of motion is given to the component molecules in their momentarily free eondition, no that they drift, the oneset of compouente with the electric current, the other met agrinat if. The feehleat electramative force in wafficient to compel a curtain drift of inns, which we many poppose to be ennveying the current of eleptricity by a kind of convection Llorough the liquid. When the ions reach the electronten, they no louger find imn of the opposite kind to combine with, and legin is nerumafate on the electrodes. But for His n finite electromative force in necenary; for with the nccianialation of ions on the electroden is reverned electromotive force- the m-called electro. smotive force of polsrisation-beginh to show itwelf, This krowe with the accumulation of the inns op 10 a certain point; and if the external electromotive force in not greater than the electromotive froce of polariation so produckd, the current wIl cense to flow, or at leant be no enfeeblad an to be proctionlly unelens in cassing elactrolysin.
The ioos, in they appene at the efectroden, may not be the real componente of the electrolyto Which sre beipg argel in oppoeite directions through the liguid. Is the csoc of funed ailver chloride, the fran sies nos doubt these very componente ; bat, in the coae of dilule nulphurie acid, we have no right to regard hydragen and oxygen an the raal original produche of electrvlynis. Indood, we know by ex. jerimeat that the purer the ivater the greater ita resistance; to that we have every reason to believe that almolutely pare waler is a aon-contuctor and eanonot loe electrolyned. Protiably the aecondary actions which in the enve of dilute acid trannform the real origanal ions imto oxygen and hydrogen may be somewhat similar to what in certainly part of the action when a solution of anlphate of mada is electrolysed. The composenta of the tmolecule $\mathrm{Na}, \mathrm{SO}_{4}$, are Na_{2} and SO -i.n. modiabs and what is called unlplions The sadium unilecales drift with the eurront, the sulphim molecules syainst it. But the suljum, when it appears at the negative eloctrude, at ance mets chemically on the water, forming sula, Nos O, and Diberating liydrogen, H_{y} Again at tise prositive electrode, the sulphion not being able to exiat in the free rtate, lreaks up into SO_{3} and $U_{\text {: }}$ sud then the sulphuric ecid is diasolved up in the whler, and oxygen is given off. Thus, again, clie conititumenta of water, $\mathrm{H}_{3} \mathrm{O}$. Bppiear as the imns, exantly fat in the case of the dilute acid. Here, however, the molecule of the electrolyte in not really $\mathrm{Na}_{2} \mathrm{SO}_{4}$, but hui manch water united with it. Thue there masy le- ch direct decomposition of water, as well res of thesolplinte of soda. Whatover the real process of electrolysin, it is certain then in many canes secosedary chemical actions quito mank it. Theae secondary actione do not, however, allect the socuracy of the law of electrolysin. Whatater be the apparent products of decomposition, these, if they can be caught and measured, will appear in quantaties proportional to their chemical equivalenta. It is further evident that if one electro-ehemical equivalent of an electrolyte is decomposed, it must be decomposed inta componenta
chemically equivalent to ane another and to it.

Hence it is enough to measure carefully the electro. Find $\mathbf{E}=114 \times 10^{*}$ electro-magneticic. \mathbf{C}. B.) unite
chemical equivalent of one of the ions or producta of electromotive forve-i.e. 1.16 volte, acconding to chemical equivalent of one of the ions or producta of decomposition. By meana of a table of cheinical
oquivalenua we shall then be able to calculate the electro-chemical equivaienth of given electrolyica. which tend to disturb the perfect socumulation of the fons on or over the electrodes, that the accurste experimental determination of the electro-chemical equivalent is a matter of great diffienlty. Large copper electrodes in copper sulphate yield fairly good resulta; but the only eompletely sastiafsctory combinstion is a particular solution of nitrate of silver with pare silver electrodes. The electrolysia
of this eleotrolyte by means of a current, whoee atrength ahould be adjuated to the aize of the eleetrodes, so as to give a particular amount of current per unit ares, is aceompanied by an accurate transference of so mach ailver from one electrode to the other. In other words, the one elecfrode loees as much as the other grins, a dagree of perfection which is hardly ever attained is other casen. Recent Independent determinations by Kohlrausch and Rayleigh agree to the fourth aignificant figure; so
that we may aafely eay that the unit of current known as the ampere will reduce out of a maldtion of aitrate of ailver 1118 milligrammon of nilver per second. This therofore in the efeetro-chernieal equiv. aleat of silver. Now in chemical combinationa 216 grammen of silver correapond to 18 yrammen of water and to 65 grammen of zinc. Rence a simple calenlation givee 0932 milligrammen an the slectro-chamical equivalent of water, and 338 milliigrammen ata the electro-chemical equivalent of zipc.

The unit of earrent which hat jout been mensjoued, the ampere namely, fa one-tenth of the electro-magretic unit of current, Which may be defined in seversl ways (seo MAONETise). For our present parpose, bowover, It will be saffieleat to the ampers in. If an ampere is panaing along a conductor of I ohm rexistance-ay, a colamin of
mercury 100 contimetree long and i aquare millimetre croas-nection-the electrometive force alang the conductor-i.e. the difference of potential of ite onda-will be the quantity known an 1 volt; and the volt in such that the flectronsotive force of a Daniell cell is about 10β volta. In connection with electric lighting, thene unith- the velt, the anpere, and the ohm-are in univernal une.
Intimately connected with slectrolyais is the theory of action of the ordinary galvanic or veltaie sell. For, whenever such cells sre being ueed for the production of slectric earrents, there is going on within them chemieal actions ensentially electro-
lytic, Taks, for example, the Daniell cell wish ite oopper and zinc platea dipping reapectively in solutiona of copper and zinc malphates. Whan the cell is cloeed, the current flown externally from the copper to the zinc, shal internally from the xine tbrough the zinc and copper sulphaten to the copperThe electrolysis of these electrolyten in a necenaity, with the result that the zinc is gradually dineolved awsy, and copper deposited on the copper olectrode. The net chernical reault is the remaval of cupper from the sulphate sad the substitution of an equiv slent of zinc. But thin chemical reaction is socompanied by the evolution of heat-i.e. the liberstion of mo mach energy availsble for trannformations. It in this energy which is the nource of the electric energy when the replacement of copper by zine in the sulphate is effected in the partictalar arrangement known on the Daniell cell. Now, tecording to Thommon's determinations of heata of combinstion, the consumption of 1 gramme of zine in a Dasieli cell meane the evolution of 8053 gramue-degrees, that is, an amount of heat that would raise 8005 grammes of water $1^{2} \mathrm{C}$. in temperature. Hence the consumption of an electro-chemical equivslent of zinc-i.e. 336 milligrammes-means the evolation of 2706 gramme-degrees of heat. Thla then is the energy which is aseociated with the production of one unit of electricity, To reduce it $42 \times 10^{\%}$, which is the number of unite of energy equivalent to the heat required to raise the temperature of 1 gramme of water $1^{\prime \prime}$ C. Thus we
find $1 \cdot 14 \times 10^{4}$ as the energy which a Daniell cell liberates per second when it produces a current of 1 ampere. If \mathbf{E} is the electromotive force associsted with this unit current, then E measures the work done per second by the current; and asaum-
ing that this is the energy libersted in the cell, we
of electromotive force-i, The is volte, sccording to the real value of the electromotive force of a Deniell cell, bat it is close enoogh to warrant the conclusion, first enunciated by Sir Williatn Thomson (1851), that the electromstive force of any electrochemical apparatus is, in shoolute saesure, equal to the dynamical equivalent of the chemical action that takes place during the pasage of anit current for unit time. There are misny caoce of galvanic comhinations for which thin prineiple fails to a to errors of experiment. Some other principles, either chemical or plywical, miost be involved, There is no question, however, as to the general apptiention of the law eausciated by Thomson, ec
We are now sble to see why it is that one Daniell
sell eannot effect an electrolysia in whleh the constitcents of water appear an the lons. It is oimply because the hest developed in the formstion of an equivalent of water by direct union of ite conatituenta is about half as grest again on the heat evolved in the combastion of as equivalent of xine in a Daniell cell. Hence to decompoee an electro. than is aupplied by the combuation of an electrochemical equivalent of rine is the cell.

The general principle here indicated may be stated than: A eurreat i flowing through s given electrolyte decomposen i electro-chersical eguiv. slenta in anit time. But this requires a definite amount of work done, which we may write ue, where of mosare the wurk which mant le done to decampoee ane electro-eheraieal enaivalent. Hence the energy of the currest mant be at finat
$\mathrm{X}_{\text {, }}$ or in other words, F menanien in atmoliste memare the nmalleat electromotive force with Which diatinct electrolyais can be effected.

All the phenomena which necompnay simple electrolynis spe encoantered in the setlear of jat. vanic oelle. The poles, like the elertrodes, becomen, or tend to become, polarised. Thin is enjescially the case in single tloid celle, in which the apparent electromotive foroo very markedly diminikhen dur ing then first few tompenta of action, due to the reverned electrumotive force uf polariastion produped by the accionulation of the jisas on the polien. In the mo-called conatant elements, wach an the Dasiell,
the Buneen, or the Girove, ail of which are double flaid cells, the foo in either of the mane nature an the pale as wbich it sppesis, we is disoolved in the fluid sa as not to nceuntulate. By such meani the electmmotive force is kept fairly conntant so long a the atrongtha or charactern of the solutions do not greatly alver. The chief conditione to be fut. filled by cells which are to yield strong stendy currente are (1) smasl polarisation, (2) a plentiful apply of electrolyte, (3) a small reniatance. Thin last condition is sbtaimel by uning large sarfaces for the electreden, which are oppoest to each other no eloely sa the arrangeraente of the cell will permit.

The difficaltion of memuyring the troe resistance of electrmlyter, and therefore of golvanic cells, have already been touchel ugon. We must here conKine ourselven to the chiel rexults which experiment han entablished. As comparod witb metalicic conductors, the specific resintance of electrolytes in very great. Then, again, rime of tempersture dimin. ithen the resistance of electrolyten, whereas, except for seleniam, phoaphnres, and carbon, it increases the reniatance of simple condactors. Finally, in the case of solations in water of mich eumpoutuds an sulpharie achid, nitrie ncid, sulphates, chforides, nitraten, and so on, there is in general a definite aolation which conducte better than any other solution of the same subntance-ie s definite percentage composition which is sasocisted with a minimum specific renintatice. In all cases a condition of infipite rovistance is approximated to he the eolution is taken weaker apil weaker; sn i in some instances (sulphurie acid, for exsmple) the same condition of intinite resistance is hinted at for infinitely atrong solations-i.e. for the pure nomhydrated sabstance. Kohlrauseh, who has prob-
ably worked mont exteosively at this subject, apecalates upon the necesaity of solution of of mixtare of stable chemical compounds before conduction can take place. In other words, such compounds, if abeofately pure, would be non-conductors.
We cannot hope to understand the true nature
of resistance till we know what an electric current really is. The fact that electrolyten obey Ohm's Lave as accurately as simple conductors suggests same in both, notwithstanding the many differences that exist in the aocompanying phenomena. The view that an electric current is intermittent-i.e.
is a succession of distinct discharges at extrensely short intervals of time, is one which seems to be involved in all the bent theories of electrolysic that have been elahorated. Maxwell has shown that a rapid intermittent charging and dincharging can give rise to all the effects of a true resintance. Suppose we have a condenser of capacity (:, whone plates are, by means of a tuning-fork intermpter, alternately brought into contact with the poles of
a battery and with each other, no that the eona battery and with each other, so that the con
denser in elangeal and discharged n timen a secomil. If R is the electromotive force of the liattery, EC is the electricity which passen at each dincharge. Hence in one keoond ECn units of electricity pass; and this is the current 1. Thuth

$$
1=\mathrm{EC} n_{1}
$$

no that Cn menanren the conductivity. The greater is in, the greater the conductivity, Hue lews the resistance Hesce, if the electric current is of the nature of intermolecular discharge, we see that greater closeness of the molecule⿻, being in all probebility esenciatecl with more rapil charging and diarharging, will give rian to less rexistance, This woald mo far explain the mach greater rmist ance of electrolytes as compared with metallie com ductors. For a very complete ntatentent of this view, conmalt Profermor A. J. Thomson's Apstici fions of Dymumice to Jhywicr send Chemistry (ISBE).

The hypotherin just given of the intermittent charscter of electric conubuction obvionsly fugicentr that the mode by which electrie tranoferince takea place in simple conduction, eleetrolyter, and dielectrics is fundanentally the same. In toany dielectrics the phenomunan of 'leakage'- the name given to the gradual lows in charge of a conductor in contact with the dielectrie-premente charas teristion very similar ta true shmie condnotiot. Thes dry klasa, alloough a very gonal frosulator at orlinary tebuperaturen, Peosmen distinctly eonduct. ing at temperaturee aboye 900° (‥-a fact firht noticosl by Cayendish. Later experiments indicate that the condaction of hot glius is electrolytio, the electrokles becoming polarised. In the case of ghues, electrical discharge meemb wwayn to be of an intermittent clasacter, A serthin electromotive force, deponding on the abape and sixe of the electredee, on their diatance apart, and on the density, tenoperature, and natura of the gas, in necesnary before diacharge tnkes place. Fof maniler electio. motive farces, the gaw, if free from convection eurrents, asems to insulate perfectly. The insulating prower of the gas onder given conditions is meanared by ith dielretric strength, whiels varies as the aiquare of the electric force. The dielectric atrength increases markedly for very small distancea be ween the electrodes, a very remarkable fact which may prosibly be due to in greater density of gha clone to the surfacen of the electrodes. For amaller and solaller distancen auch condensed layers would of course play a more pronouncel sole. This explanation agrese with the fret that the dielectric otrength of gases diminishes na the density is diminishied. This, however, doee not igo on indefinitely, lnot it reaches a minimum for a certaito low denaity, which bas a different value for each gas, and which is alno a function of the diancter of the tule in which the rarefied gas is contained. A pressare of 2 or 3 millimetres of mercury given the dennity for which the dielectric atrength of air reaches it4 minimum. Further rarefaction beyond the point of minimam dielectric strength is accompanied by a rapid increase of inmalating power, until at length it is impossible to make a dincharge pase through the extremely attenuated gas. It than appeark that electricity cannot pass from electmale to eleo. trode in a perfect vacuam-i,e. a region void of ordinsry matter. Whether this is due to an

[^5]the firat great maker of them (the glass-blower and their many oarious propertien we cannat here enter. The polarisation of the electrodes turing elec trolyais has within the last ten years sequired a sreat practios importance in connection with the
oonstruction of mecondary batteries or aceaniu-
lators. An accumulator in simply a polarised
 ooarse, all poleriasd electrolytic cella are nccumalators; but uanally the currenth thoy pupply are
short-lived and feable. It wis not till Iboo thas Planth constructed an mecumalator which could oupply a really vflicient curridnc. The Plante dilute acid with lead electrodes. With antficiently atrong currente, the reanlt of the electrolymis is
that the positive electrode becomes covered with peroxida of lead $\left(\mathrm{PbO}_{n}\right)$, while lead accumalstea In a apongy form on the negative electrode. When the polarination has been carried on to a sufficient
extent, the cell in aaid to be charged, and it will ertent, the cell is aaid to be charged, and it will
bo found co have all the propertica of a true gal vanic cell of low resistance and fairly high elec tromotive force (sbont 2 volte). On being clowed, is will supply is current sufficient to keep a thin wire glowing for esveral hoars. At the mame time, the peroxide of lead will become roduced to a lower oxide, and the apongy lenal will bet oxidised, while the sulphuric seid prenent gives rise to other resctiona. During the greater part of she difcharge of the call. the elnctronotive forve reimaina very constant, and anly legins to diminiad os the
dopolarination approachen completion. When the charged cell hae thus, through nae, loet nearly all Its aceumalated electrical energy, it is put into eirenit with a primary nowrce of carrent energy and re-charged. The modifieations of construction inser duced by Fasre in 1881 gave a great impalae to the development of ascumulatora in a practical source of electrica! energy. Inalesul of aaing meroly lead shaete as elentroden, Faiare covern therm first with a loyer of ininitim or red lead. With thene as electroden the ulectrolymas of dilate oulphuric seid is effreted, the rese, the formation of peroxide of lead at the ponitive electrode and apongy lead at the negative olectrode. What chemical reactione take place os the mecumblator dischargom itaelf are not fully underatood. The final reentit, however, seerses to bo the formation of sulphate of lead on both electroulon. Re-charging from a prime souroe rentores the peroxide of lear and the apoogy lead an in the first chargingt, An part of the recent developmest in oleatric lighting, the efficiency of nccumalatorn largely alsed an the direet tource of powen They mast, of coarne, be charged and ro-charged st intervala depending upon tha particular rate at energy. A battery of Bunsen or other celle may be tued for oharging purpoese ; but if the wastefal voltajo oell had been our only prime nourse of have ansumed, the practical importance it ham. It in boonano we can generste slectric energy that we find a uns for the ncenmalator, which in simply an arrugeraent for the storage of eo much olectrical energy in a form convenient for fotare Of all the Joule Effect in the moet ponspicuous snd liy far the moat important. But there are other thermal effecta which are eueociated with the transference of electricity, and which are rendily distinguisluel from the Joule effect by what in known as thest reversible character. Thuta the Joule effect alwaye mesns a rise of temperature in the condactor whatever the direction of the current throngh it ; Whereas these ao-called reversible effecte mean a rise of temperature when the current pasaes ip the If at any part of a circuit, in which in eurnent ts flowing, a fall of temperature is aliservel, we are probably safe in regording this cosling effect as one of these revernible effects. We may test this directly by reversing the carrent; but ocrasionslly the conditions of the experiment may prevent the application of this test. Thus, in some enses, a galvanic cell, in circuit with a large external reaist
ance, is found to cool. Since the earrent due to a
given galvanic combinafion thmat always flow in
the esme direction through the cell, it is immonible of counet to apply the test of reversal. Other gal vanic cells, again, when similarly poined op with a bigh external resistance, are frand to rive in temperstare under pondisions in whirh the true Joule effect is inapprecialle. Surls therimal eifectar seent to be true revernible effecta; and upon theni Von Helmhaltz laum lin raplanation of the eyjpremt failare, in many instances, of Thopmon's dymamiral theary of the electromotive force of a hutuery isee above). It most cisees, foo rectmonotive foree is amsller thas what the chemieal reactiras imply; but in some it is greater. In the formet there is intriasic hesting in the cell; is the latter tbere in cooling-exuctly the relstions which the princhples of energy require. For, as is the latter chac, if the electrical ebergy geoershed is greater than the chemical energy mupplied, it mont lontow heat from the narrounding abbinncts te biake up ite surplan energy. The further fact that thone cells, which either heas or cool of thembelves, bave electro motive foren which vary with temperatare, peints to there being tmly revernible shernial eflerth An electromotive force which grows with tempuerature is associntel with a cooling effect in the cell ss the current is flowing while an electrometise force which diminiahes with pise of temperature in associ Ated with a heating effect. Thie munt loe noz for
in all enos of tranaformationss of energy, the fionl effects reset se is to revint the elosages chat lead to them, In the preant case, if a beating effect coexisted winds an electromative firce which ineleaned with tenuperature, thin liesting effect would raive the temperature still farther, inereane the electry. mative force silli more, and caile a strobiger current to flow, whiph in its turs wonld enner is farther rise of lemperatiare, and to on indelmitely -an abvions cuntraliction of all exjerience. We shall fins same simple spilications of the mase dynamic yrinefple of reaction in the other res erable thermal effecta of slectric curiests. Tluen are istimately connected with che whale rulyect of thermo-efeetrinity, which we slesll now diseumen

Thermo-flectricity date- from tegl, when Kipelfert dineovered that a ciarteat was goperatesl in a circuir compened of eopper snol antimasy, whea hue fasic tions were at differnt betuperalures. With a anflieiently delieste galysnanurter, the same phenbmenos may be ghown nast voly with say two different metals," but slan with the mane metat in two different cosditions. Thus, a strelehed, twriated, or (If powaille) magnetised wire wili give themo-electric earrent with a piece of the impurition cause ansuovt enangen in thersum electrie properties indeed, thermadelectric carrenta may often the obtained in s cirexit of two wires, which no other physical teat eas differentiale. The fundamental fact of thermo electricity is that. is a cireuit built of twis or sure stiffereht conductorn, is curreat is is gearest generated wlaen sne fanction at leant differn in temperstare from the others. For the sake of ilefinitenisn, cotionler a circuit of the two melaly iron and copler, with
their fanctions at 4 and 15, and with s delicate galvan. orneter inclanded for the rucavirerumst of evireni. If A and 8 are at different temperatores, acarrest will in general be set up in the carcrits atod for modeTate comjeratures理 50 230 C, of 29 . flow irom copper to
fron through the warmer junction, and from iron to eopper thruagh the colder junction, Now Gis
eurrent if mist derive itw enrriey, ei, from watur Aosiret; and the only waspee that exists is the heat which is susilable in virtue of the uasqual divaritur tion of remperntare. In virtue of thermal cumbe tivn and ropliation, the teodency is towards an equalibetion of temperatare, the warmer junction lo-ing Luest, and perlinps the colder junction gaining feat Ble if this heat is also being partly equaliation of tempersture will he hastened be
cause of this transformabion into electrie energy. Hence, we should expect, the thermo electric carrent
to be memorinted with, at anyrate, a cooling effect to be mesorinted with, at anyrate, a cooling effect at the warimer junction. That such an effect
really does exist was entablished experimentully in 1834 by P'eltier-lience the mame Peltier Effect. He showed that tuat is alsorbed of evolved at the juriction of \ddagger wo different metals, across which any current is made to pass; and that if the direction of this earrent is the same as that of the thermoelectric carrent that would be produced by lumeting the junction, the effect in alsorption of heat-i.e. conling ; and rice porsth. Thas, in a copper-imon circcit at moderate temperatures, the thermo clectric carrent is manociated with a cooling effect at the warmer junction, and a heating effect at the coldet junction. Icilius proved by experiment (1k83) that the Peltier effect is proportional to the atrength of the current. It is atso known to vary with the temperntare, swmetimes inerenaing with Tieo of temperature, sometimes diminishing, aceord ing to the particular kinds of netals gaed.
The Peftier offect is defined as the hent stosorbed by the passage of anit of electricity in the proper divection across the junction; or atherwino, the heat shasorlest per second by the panagge of unit carrent. Let ple the Peltjer effert at the warnier jancting of a thermo-aleotric eirenit, and p^{\prime} ita value at the other junction. Ansuming that the Joule and Peltier effects are the muly thermal iceompani ments of a thermo-eleotric ourrent fic we find for the whole amoint of heat abmorhed the quantity pir, and for the whole amonnt of heat evolverl $p^{\prime \prime}+\Gamma^{2}$ Where r bs the resistamce of the circuit, ami where the heata wre entimnted in dymanic units. If we sappone these to le the only trinuformationi of energy involved, we have at once

In the latter equation, the difference of the Peltier effects appeare as the electromotive force nasociated with the carreat i. From thin paint of view the Peltier effeot in to be regarded man abrupt change of patential at the janction of the two metals, It mont not le confuaed, however, with the electro motive force of contact dincoveral by Yotta, comparal with which is is extregely panall, and irequently of oppanite eign

Thus we anay suppase therma-electric currenta to Ine explained in terns of the Heltier elfecta, regarded an plectronadive farcers at the junctions Bnt the atrikimit plannmesum of thernmelectric javersion. dianoverol lyg 'umbing; in 1N23, neremeitates the anypasitan ad uther than Peltier effecta for a matio. Gartary explanation of thermo electric currento. Tabe, for example, the engper-ivon circuit, keep the one jonctima if at a stendy temperatare of, eny, $10{ }^{\circ} C_{+}$and raise the temperisture of the other jonetion A stealily and imiefinitely from $10^{\circ} \mathrm{C}$ to abostat a dull red heat. As the temperature of A rises, the enrrent setting from copper to iron throagh A will increnge to it maximum, then derrease to ajros, and finally hecome revarsed. The temperature at wlich this maximum current in ohtained is a deflnite temperatare for a given pair of metalk, being quite independent of the tompera tare of the ather junctions. It is called the Nental Foint- If the temiveratare of the one junction in ou mori ahove the newtral temperature as the umeperatare of the suther junction is helow it, there is un current ; and the mean of thene two temperatures is the neatral tempersture. For copper-iron the neetral point is about $275^{\circ} \mathrm{C}_{\text {c }}$; for xinc-iron alineut $210^{\circ} \mathrm{C}$; for calmium-iron, alont $160^{\circ} \mathrm{C}$. and so on. In the majority of cases, the neutral $1^{\text {rinint, }}$ veceirring vither above or below ordinary ranges of temperature, cannot be eduily observed directly ; but its popition is ustally ibdicated by the tunnner in which the electromotive force it found to vary with temperature Now suppoue that the one junction A in the copper-iron circuit is kept at the nentral temperature (275° nay) then whatever be the 1 emperature of the ather junction, whether it is higher or lower than 275°, the direction of the current will alwayg be the *ame-viz. from copper to iron through the junction A. Consinler the two cases : (1) B at tenplerature $270 ;(2) \mathrm{B}$ at temperature 280°. In the first case, if the only reversible thermal effects existing are the Peltier elfects at the junctions, then there must be aboorption of heat at A (copper to iron), and (if anything) evolntion of heat at B (iron to copper)

But in the secomil ease, the same assumap. tion requires that there must be aboorption of heat at B (irun to eopper), and (if anything) evolatios of hest at A (copper ta iron). Now thene two statemente are incompatihle uniess there be aevither alsarption nor evolation of heat at A-ie. unless the Peltier effect vaniah at the nentral print. But this leing ow, it in at once evillent that in the fint case there is 00 ahsorption of heat at all. Heat ix evolved at B, wht heat is evolvel becase of the Juile effect; but there is not evilence of any alsorption of heat to sccount fot the energy of the current. Hence the original asumption muas be wrong-i, e. there must be other reversible effeets in the cireuit bewides the Peltier effectes at the junctions. There munt be a cooling effect either in the cupper wire, or in the iron vire, or possibly in both. This Cheoretionl conclusion was first obtaiaus by Sir Willian Themben (1851), who proceeded at onee to test it by ko appeal to experi. puent. It wat found that both of these predioted eifecta take place. A current pasing from cold to hot in coppor in anuovilted with as absurption of hesst while heat is svolved it the corrent passed from bot to cold, On the other hamh, for irob, thinge are just roversed, cooling in aseaciated with the current that llowa fram loot to cohd, sod heat. ing with the enyrent hat flown from cold to hot. Thin reversible thernal effeet which wecompanics the panaage of a current in an anequally heated conductor ia ealled the Thomuon gifect. It is satal to be poiltive in oopper, and is therefore negative in tron. Cadimian, zine, sifver, goly, nieket between the termperatures of $250^{\circ} \mathrm{C}$, and $310^{\circ} \mathrm{C}$., and fron alowe a dall reil hast, have, according to Profeasor Tait's uxperimenta, thisi Thmaume effecta also positive. Platinum, pallatinum potasioni, sodiun, coball, nickel below $20 \mathrm{I}^{\prime}$ and Above 3200^{\prime}, and probinhly isun again alowe a bright red heat. are examptes of metals hating negrative Thomso elfeota. The Thimmion effeet has been measared direetly in a very fow casea; bus it may be calcu. lated froun therno electric constants if Tait's lyyp. thesis be true fand reoent diyect expreciments go far to verify it) that the Thwotasen effivet is for mool metals directly as the mean abonlote temperatione The extraordinary claage of aign in the Thomson effect, which Tait discovered to exiat both, in niekel and iron at certain temponatares, to an extremely interesting phenomenon, and neemin to be pornected with other propertien peenliar to these magnetic metala-such the their loss of magnetic auscepti; bility and the manner in which sheir eiectrical resintaness change with temperature.
In comparisoll with the electromative forces of voltaic cells, the electromotive forces that can be obtained with therme-electric cireuita are usually very sraill. Thus capperiron with ene function at $275^{\circ} \mathrm{C}$., and the other at $5^{\circ} \mathrm{C}$., has an electromotive force of only 0022 volts. The electronotive force of an iron-nickel pair with junctions at temperatures of C. and $200^{\circ} \mathrm{C}$, is 008 s volts ; and the electromotive force of a hismath-antimony pair with a difference of temperature of $50^{\circ} \mathrm{C}$, is about (005 volth. Biamuth and antimugy are, berause of their high mutual thermo electrometive force, ordinarily employed in the construction of the thermopile, a valuable instrument for indicating and measaring small variations of tetapensture,

Fige 30 . It consisty of aitermate atripe of bismath and
entimtoniy foerming a continuota zigeser chain, as indicated in fog 50. They are
日rranged in eorn. paet form so thast the successive junctions alter-
nate, now on this side, now on that give, forming two plane faces koking opposite ways. If is mource
of heat is limnught opposite to the one face, the jonctions eading there are heated by radiation, while the alternating junctions on the other face rentain at the temperatare of the air. Each pair of junetions five rise to a therno-electromotive force c, and therefore the n pains to $n c$. If s is the reaiatance of each pair of strips, and r the resistance of the falvanometer and connecting wires, the current is given by the equation

$4(r+m s)=m$

Thas r is always greater the greater n is; and if, an is usually the case, the reaistance of the thermopile (ns) in small compared with the retistance of the galvanometer, the current due to the n pairs is very ucatly A simes the current that one puir would give. Thus a thermopile of thirty-six pairs of junctions will give as electromotive of nearly une-tenth of a voli for a difference of temperature between the faces of $25^{\circ} \mathrm{C}$
The Peltier effect between biamuth and antisoony at the ordinary temoperature of the air is about 3.14×10 per aupire per second, calinisted in dynamic unit-ie. whont to75 in grammedegree units of hest. Hence is one minute, a current of one ampere passing from antimony to bismuth will evelve a quantity of heat sufficient to raise a gramme of water nearly half a degree centigrade in tetoperatore. For other ordinary jairn of ruetals. the Peltier effoct is consifderably smailler than that jest given. Thus for iron-copper at the ordinary temperature of the air, the Peltier offect is about oneseventh of its value for bismuth and antimony.
The Thomson effeow are exiremely difficult to measure directly. We may, however, get at idea of their tnapritudes by calcolating thems according to Tait's theory from the themmo-electric constanta. Sappone, for exaraple, that a current of tes amperes is flowiag slong an iroo or copper wire, whose ends are at $0^{\prime} \mathrm{C}$. and $100^{\circ} \mathrm{C}$. Theo the amocents of heat in grammie-degrees evolved or abmarled per minute sre, in iron 224, is copper 044. These bumbere are ealeulated on the sumimption that the Thonoman effect io lewt is nil, an smumiption basod on the direct experiments of Le Koux.

Electric Light. The eleetrie light, like lipht
 buely to a teaprenatary on hugh that some of the mallations it thrown out liare a wave-lenytb shert enonigh to wfec ther retion i slighaty heated boly pive moliutions of hetat wave-lemath onty: they teay be decrectel, no noy raliationo may, by their lieating efloct when they fall un aa nlominent surfaces ind the eye is ont senditire to these. Whion thee latr is made liotter the whole enerngy of the nuliativis fincromeos, lait the sluort waver increave is freater purdention than the long waves, and whets aie sengentane is suffiently ratost the booly legiove bo gre not light so lung ho the souren is juyt hot enengigh ton le lasinnons the litht is nearly all rells as the temperatare rios there ate athel wore sutel inore of the other colours, of sherter wave.jengels, tasands the viplet end of the ppectrum. Ia the llane of a candle or of a gas jet particle if solul carlom foum the laminuss nomee their tempreratire, which is iletemained ly the condition thast they radiate ebergr an fant as woik is done apon thein by the jriecon of comblaxtion, is no low we to make the rol and yellow cunsitasents of the light jacpuasiente A lugher teapermataie lins the toulde ascrastage of piring whiter hight, and of giving it acomapariel foy a swaller propat: than of non fuminous infra red rays, and therefore with leor expestitives of enorgy in proportion to the amount in listuc prolucel.
One way of lieating a boxly to a hingh temperature is liy furcing a strung current of elec thicity to 1 me throngli it. The enengy expended dejends on the xtreng th of the current and on the electromotive fore which iv reynisal to make it pacs, atht this encogr taher the fiuat of beat. By selecting a cuntuictor which uffer, consideralle reistance to the powage of the eurrent, it is
 prace that the lempenture reached ix anly limited In the heltios in rolatibang of the hated hody.
 secund, hecanse of its conivive powict. 'xartion is in fiet the lmmiases lmoly in neeally all sontues of artifictal liyht.
Akr Ligitiag. - The earlioct romens of ppylyintr
asar dincowerei im 1810 hay Nir Homplary Dawy whe fonm that when the puints of two carhum roik, to which the terminals of at powerfal hattery were oannectel, were lefonglit into comact and then drawn a lithe way mpart, the current comtimned to pases menise the eral, forming whit in kuown as the eleetric are. The electric are (Fige 1) is brilliantly luminoms The puints of the carthom
rods leenme lighly incaudescent, and in addition the syace letwcet them is filled by a sort of flame, or einad of particles of white hot corbon. As the temperature of the are is mueh higher than that of thy oslinary flatue, ite ellicieney us a suarce of light is excepfumutly great, and it is ofrecially rich in bighly nefraterible
(or shont wave
length) bayn, The carluth-puints being expuesel to the aif gradually burn away, ami in nddi. tion te thia there is a trintor of cirrikn purtinlen actvos the are fisme the puritive La the brgative Jail, which lime the ctfoct of sumkime the jasi. tive vasl vitute alasat Iwice as fayd an the вecative row. Tho eat of the negnative
 what polintesl, mod a chiter-lile liotlow fierats unf the exul of The jseitive romb. As the jreinta whate

 fremenilly lisiak atal

 cus las ze-v=tablinhasi hy loriagione the bosin agosin
 Apert. Are lanjper ine devices for bobling the

 or at कlant infervish, on prevent the alinsative betwoen the puints irons gremítis lak laby

It was put unis the deqelerjotmont of the Dymamo. electic Мanlaine (q.5.) as at liveain of jromincino the

 fral lees slevised for fantontationlly atrikhor the aso
女a- patental ly W, K. Sisite, in wheli the cirluni-
 ofie lecing liehi lisiol, while the lawos roil was ferl ujowarls liy She infermittent metion of slawkwonk. which ensus ibta pear whenever the enfient servas the ase lacsume rev/aced belowe a cerluin limit of tichagh thomgh the lompheminz of she distatice

 iealiy suseessfol are lanip, waw Serin's, pratentel in
 tian its 3ain fentares iegmalsacy in muny later

 govad the way for the slenedopatemt of electite

 service in accintuning the pulice to the new illuminant, and the invention of simple and effective arc larups by Brush and others, brought about its wide adoption in 1878-79 for lighting large rooms, streets, sind spaces out of doors, In the following year the futnire of domestic electric lighting was secured by the introdaction of the incandescent lamp.

In modern are lamps, of which there are so many forms that it would be impossible even to classify
them in the space at our dispossl, the are is constant potential. fenerally struek by the action of the current in an electro-magnet or solenoid, which is con- a simgle brike-wheel has been bsed, tarned by a the carrent passes the armature of this magnet in checked by apper carbon holder, and stopped or the prouthet of the current and the electromotive attracted, and its motion is caused to separave the or vithirawn fromi it circunference ly the con-terminal differenoe of potentin between the carbons. This sets the lamp in action, and then, trolling electro-magnet. Some very succeasful comame from thiree to four watts per candle of as the carbon-points are consumed, the resistance modern lanaps, such as those of Brushand Thom- light, and thet for some 1500 hours. One may to the passage of the current gradually increases. son-Hooston, use a still simpler device. The force them to a higher efficiency by incrensing If the sonce of electricity is soch as to maintain a upper carbon-holder sliden through a loose collar the electromutive force, so that the temperature conatant, or nearly constant, difference of potential or ring, which can be tilted by the controlling of the filament is farther raised, and the light in between the terninals of the lamp, the effeet will magnet, so that it clntehes the holder. Wheb much increased with the expenditure of but little be that the current will gradually become reduced. the current falls or the potential rises this clutch sulditional power. But this shortens the life of On the other hand, if the nource is such as to collar is untilted, n o that she holder slips through the lapypk and temis also to make a deponit of maintain a constant or nearly constant current it and shortens the are. A dowh pot is employed carbon particles form on the inside of the glass. through the lamp, the effect will be that the to prevent the fall of the holder frota being too difference of potential will increase. Either of rapid.
these effects may be marle use of to regulate the Whien a nuniber of are larupr are to be used length of the aric, Gienerally the carbons (which together they are generally consected in series, are round rods formed by making powidered coke a constant current in sent throagh the group, and
into a paute and laking it) stand in a vertical the control of the carbona in effected by abont line, and the upper one is fixed in is heavy holder, which tends to slide down untit the points touch, But its motion downwards is cheeked by is elnteh or brake of some kind. Which allowa it to deacend little by listle, and only are bas becnme anduly great. Fig 2 is a skoleton diagrans showing the tnechanism of Serrin's are tamp, which wan one of
the earliest suceesaful forms. Here the upper carlon-holder, Λ, hua raek teeth on it. whieh gear into the firt of a train of toothed wheels, BC, mo that the train mont revalve as the earhon dencents, The latat wheel in the tmin, C (which movea much for a very nnall movement of the holder), is a star-wheel, whoee projecting limis, lit or mind a detent. E, the popition of whieh is enntrolled by at electro. magoet, G, pulling againat Aspring, F. When the are locked, no that the upper carliot-boller is axpod.
As the are lengthens, the current in the controlling electromagnet becomea weakened, and thin goen on until the detent risea far ensogh ha release the star-wheel, The holder, A, then segcendis nntil the current is again atrong enough to make the electromagnet draw the detent down and lock the wheel. Here the control depends no variations in the atrength of the current ponsigg aerusa the are, and the controlling electro-magnet in in series with the carbons (being in fact the magnet which alno strikes the arc); if, however, the lainp were to be used with a constant current, the contral could easily be effected hy variations in the difference of potential between the carbone. The controlling magnet must then form a shunt to the are itself, and be set oo that when the shant current in it is weak the starwheel is locked, and when the shunt current exceeds a certain limit the detent is raised and the star-wheel is released. The lamp shown in fig, 2 has this peculiarity, that the descent of the upper carbon-holder makes the lower holder rise, Hirough loalf the distance, by means of the
pulley D, and chain H. The effeei is to keep the are burning always at one and the same place, the lower carbon lieing the negative one, which consumes half as fast as the other. Lamps with
this feature are called 'focussing' Lamps, and are useful in lanterna where the luminous centre must be maintained in the focus of a lens. For ordinary uses the focussing arrangement is not necessary, and is omitted.
In many moderri lamps the controlling electromagnet is double, consisting of a series and a shant portion, conbined in such a way that the holder is relessed, and the carbons are caused to spproach by either a weakening of the current or an in-
crease of the potential, or thotl. Such lamps may crease of the potential, or hoth. Such lamps may

High as therature of the filarment is in no case so highting is the electric are: hence incandencent the proportion of light to power, and the calour of the light is mare yellow. Rut in point of steudi. ness and pleasantness, facility for distributing light, and cooveniense in placing and managotuent, ineandescent lampo have many chines to be preferced for indoor ase.

An interesting part of the manufacture of lampa is the prosess of 'flashing' invented by Mesers Sawyer and Matin, which means the electric heating of the filaneent for a short time in a hydroearbere atmoppliere. The ligh temperature of the blament cataen the dirsociation of the gat in contact with it, and the carbon of the divarelated gas is deposited on the filament. This formh a convenient means of odjuating it thicknobis and resintance; it alno tende to make the flament more naiform, for the process of dissociation and deponit goes on mont actively at thoes placen which are thinnent to begin with, and therefore hottant, Incsndeecent lampe work well with either continu. ous or alternating currente. They are now made of all sizes, from the mininture laniph of one candle power or lews which are moployed in aurgery, up to two or three thosnanal candle power. When a number of them are aned together they are almoat alwaye grouped in parallel. In the electric lighting of at house, for instance, poritive and negative main conductors, conininting of insulated copper wire, are led from the dynumo, and to them the poeitive and negative branchea are renpectively commected, whme rimifications extend to every soom. Wherever a lanip if to lie placed a positive and a negzative lesding wire must come, and cach larop forms in it were a bridge hetween the positive and the negative sude of the nystem. The difrerence of potential is nearly the same for all; it in a little lean in the case of the more distant lamps, becanae a certain fall in the difference of potential in ineurred through the resistance which the leading wires thenselves offer to the pavonge of the earrent, This loss has to be kevt within reasonable limits by making the sectionnl aren of the leading wires great enough, and no serious difficulty is experi enood in doing: this when the lamps all lie within a few hundred feet of the source. But the difficalty beoomes setious when distribution is attempted on a large scale. Not only is the lons of energy in the conductors then a large part of the whole enerzy supplied, but it may give rite to wider verimtions in the potenitial than can be tolerated. If the mumber of faups in use in any divtrict were menrly eanstant, su that a nearly constant eurent would tlow through the maine leading to that distriet, it wonld be easy to allow for the fall of potential in those mains. But this fall is itaelf a variable quantity, depending on amount of the local slemand; mail to keep the potential sufficiently comatant requires maing of large size, the cost of which becomes prohilitury when the srea of distribution is much extended.

In such caves it is necessary to revort to other methods of distribntion than by a simple system of parallel mains and lerauches. A mufficient number of sub-centres may he taken over the area to be lightel, and euch of Cliese made the Atarting-point of asystem of parallel condactors, the sulb-centres themselvek being fed from the central source, through independent mains, with currents which s are regulated to produce the necessary potential at each sub-centre. Even then, however, if the subcentres are widely distant from the source the loss of energy in the mains will be serious. In dis. Lribution wer a large area there is an obvious sulvantage in very ligh potential, for the same amount of electrieal energy is then conveyed by a
smaller volume of current, snd consequently with the primsry and secondary coils in consequence of ukun, the current required is supplied by Dynamo: less loss in the conductors. This advantage may be the resistance they offer to the conduction of the electric Machines (q.v.). When the impression
centres in the form of small carrents at in high potential, and convert it there into low-potential currenta suitable for domestic use. Two plans of doing this have been put in practice-one, by means of storage batteries, is suitable for continu. ous eurvents ; the other, by mensis of transformers, is suitable for alternating currente.

Storage Batteries are cells consisting of lange sheets or grids of lesd, superficislly sonted with oxide, which are immersed in dilute sulphurie acid, and are polarised by the passage of the curreat Peroxide of lead is formed on the poaitive plates, and apongy metallic leal on the negative. After baing charged by the paanage of the enrrent the cells will act for a time as electric generators, giving a current in the apposite direction until the again charged. The electric energy given oot when the cells are discharging is somewhat lees, but need not, if the cells are slowly charged, be very
them. Each cell has an electrometive force of about two volts, and its internas reniatance it platen in parallel within a single cell pain of

Fig. 31 of the dynamo, uni for etoring electricity for ase during intervalu when the dynamo to not ranning. Small stornge hattertes have been sadesas. fully employed it is treati of providing portahle electric lanps for base in hotises, corriages, and especially in mines. The miner's lamp is a small atorage battery weiphing a few pounds, and is incloned in a watertight ciase tho ligger than an
ordinary lantem, int thie front of which is fisted a amall incandescent lamp protected by a stout glana cover. Primary batteries have isloo been used, in place of storage batteries, to supply electricity to pgrtable lampe.

Transformert are induction coils, entristing of a core of soft iron on which two coils of insmlated copper-wire are wound. When alternating currente are made to pass through one of chese, callerl the primary coil, they produce corresponding periodic alternations of magnetism in the irm, and induce slternating currents of corresponding period in the other or secondary coil. The effect of the iron is to increase the coefficient of mutual induction between the two coils. When the number of windinge in the necondary coil is anuall compared with the number of windings in the primary coil, the electromotive force induesed in it is correspondingly smaller than the electromotive force impressed
apon the primary; sud this is taken advantage of in practice in the conversion of a high-potential into a low-potential rupply for electric lighting. In onder that the iron core should have as much magnetic suaceptibility as posaible, it is made in the shape of a ring or some other closed (poleless) magnetic circuit, and to prevent waste of energy by the induction of eurrents in the substance of the
iron, the core is laminated by heing boilt up of thin platea or of wire. Even then, however, there is some waste of energy in the core on account of What is called magnetic hysteresis in the periodic
changes of magnetism it undergoes, and some further waste occurs through the heating of both currenta. Notwithstanding these sources of loss and the copper plate are dipped into as strong soln. favoarable conditions io very high, as much as + electroden. The copper of the solution begins to 90 and even 95 per eent. of the energy expended in depoeit itnelf on the jupreasion, first at the blackthe prirosry ooil being given off in the converted lopded surface in the vicinity of the connecting wire,
cornenta from the secondary. In practice the then it gradually creepe over the whole conducting direction of the current is reversed sbout 150 or 900 times per second.
Distribution of electricity for the purpose of lighting by mean of traniformers, high potential being used in the conveysnce of the currents from the diatant source, with convension ta low potential in many places, especially is America, where the ayntem has later taken practical shape in the handa of Mr Weatinghouse, In Landon the same method has been succesafully employed for some yearm over
a pretty wide area by the Grosvenor Gallery Company, and now [1809) preparations are fa advanced for its being spplied un a hitherto unprecedented scale by the Eloctric Supply Cor poration, from whose central atation at Deptford Alternating currenta are to be conveyed to all parts of London as a petential of 10,000 volts, to be reduced to 100 volts or 30 by two succestive con-
vernions in translormers before they resch the versions of the sonawners:
Amrng the minar adjuncte in electric lighting, an important part in guarding against possible ria, of fire is played by the 'cut-outs,' whose functiou is to interrupt the current in ady main or branch cooduetor should ic ever exceed a safe strengthas might happen in the event of an accidental eranconnnection or ahort-circuit beiog formed a anfety fuse, consisting of a short piece of foil or wire made of lead or of some fasible alloy which any dangerous exces of current will melt, and so Interrupt the current, in that portion of the system which in guarded by the cut-out, belore any damage Is done. Cut-outh are generally put at the junetion
of branch with main wires, as well so in the spaina themselves. Where the amount of current ta be pasaed is large, as electro-magrotic cal-out in often preferied to s fase
Numeross forms of neter have been devined for measuring and recording the quantity of electricity appplied to consuraers, some suited for contiountus currenta only, and others for alternating an well as continuous currenta Spsce dacs not admit of any
description of the ingenious meter invented liy Ferranti, Aron, sud others. In Rdison's meter fot
continumas currents, which has done good tervice sontinupus currents, which has done good servioe
in central station lighting on the parallel system is Now York, the amosnt of electricity which pasees in measared by the depanit of roetal in an electio. in measured by the deponit of roetal to an electro. Electroplatiog.-Thes in the ari of coatinge thi
lytic oell. In Forbests meter, which nets equally baser metals with silver th the galvanic eurtent well with eontinuess or alternating currents, the It is one thepretiually of great simplicity, but ire current heste a small ocil of wire so thet a stream quires in the succesphal application of it very con of warm sir rises froas it; this is made to trim eiderable experience wai wkill Articles that are a litule windaill, whoee number of revolutions is electroplated are generally made of brses, bronze. regiatered, and is foand to be a good index of the copper; or ninkel nilver. The leest electroplated amoant of carrent which has puased.
Electro-metallurgy is the art of depositing, electro-chemically, as coating of metal on a surfice propared to receive it. It may be dirided into two great divisions-electrotype snd electroplating. gild-
ing. \&c., tlie former including all cases where the coating of metal has to be removed from the surface on which it is tlepusitel, and the latter all ceses where the conting remains permanently fixed Gold, platioun, sifver, copper, xinc, thin, lead, sobalt, sickel, can be ilepreited electrolytieally.
Electrotype is 'the art of eopying printing type woodcuts, seals, tnelals, engraved plates, anai. metal, more especially empper. Suppose we with to copy a seal in copper, an impression of it is first taken in gutta-percha, sealing-wax, fusible heated, shap impresaion. While the inapreasion -sky, io gutta-perchs-is still soft, we insert a wire into the side of it As gutia-perches is not a conductor nif electricity, it is necessary to make the side on which the impression is taken conducting; this is done by brashing it over with plumbsgo by s camel-hair brash. The wire is next Daniell's cell, and a copper plate is attached by a

after in few hours when ther magneto-electric is uned

 -the impression is taken out f and the copper deposited on it, which has now formed a tolerably atrong plate, can loe eanily removed by iuserting the point of a knife between the impression and the edge of the plate. On the side of this plate, next The matrix, we have a perfect copy of the original seal. If a mestal of coin is to lue takeo, we may proceed in the sanue way, or we maty take the mestal itself, and lay the copper on it. In the latier case, the first cast, soy tu preak, that we takeof each face is pega. tive, slowing depres. hionn where the zuedal slows relief: but this is baken es the matrix or in secand empy, nemblen the original. The alliesion between the two is slight, sal they can be easily
 a battery is ant neesled
oexcite the siarrent, A galvanic pair can loe male out of the miject tu be conted find a piece of dins,
The figure slinwn law thim nay lie done. B La i glase vesael contaising sulplute of copper: A in another, Bupmonted un 18 by a wire frome, and oonaining a weak molutioti of noppouric acid. The Las ressel A is without a inttom, but is olomed below by a blatider. A pioce of zins, Z. is puit in the apphuricumid, Hud is wirc, D, conted with innulatirys varnishls, esthblishok a connection between it and the impreasion, (0 , which is linit below the hilader. Electrotype is of the greatent importance in the arta; by racatis of it diphicites in coppor uf pracep of type are obtained, as in dane with this Encyclo. prodia; engraved copper plate may be toulifilied indefinitely, wo that proof itopreanionis neel lo no arity ; woodeuts can be sonverted thto copper: gronzes ean be copied ; and similar like applica ions are inade of it too numeruan to mention. By oonnecting a copper plate remily for corrobion with the + pole, and masking is B + electrode, it ean bo etched with more certainty than with the simple reid, and without the seill fomer goonds are of aickel silver. When Britannia metal,
inn, zine, or lead are electroplated, they muat bu lirst electm-coppered, as silver iloes not adhere to the bare surface of thethe metale (ireat core is taken in cleaning the articlen previons to electroplating, for any kurface impurity would spoil the mecess of the operation. They are first boiled in mustic potakis to remove any alhering gronse they are then imauersed in dilute nitric acid to diu. solve any nast or oxide that may be formed on the arface; and they are lastly somared with fine eand. Before being put into the silvering both, they are washed with nitsate of nercury, which leaves a thin Fitin of mercury on them, and this acts as a cement between the article and the silver. The buth where the electroplating takes place is a lange trough of earthenware or other non-conducting sulstance, It sontaink a weak solution of cyanide of silver in cyanide of potassiuma (water, 100 purta ; cysoide of potassium, 10 parte; cyanide of silver, 1 pert), A pate of ailver forms the + electrode; and the articlen 0 be plated, bung by piecen of wire ta a metal rod g acros the trough, constitute the - electrod When the plate is connected with the copper or t pole of a one or more celled galvenic battery, accord-
ing to the strength required, or mbjected to the magneto-electric current, and the rod is joined with the zinc or - pole, chemical decomposition immerliately ensifea in the bath, the silver of the
cyanide begins to deposit ibself on the auspended objects，and the cysnogen，libersted at the plate， dissolves it，re－forming the cyanide of silver． According，then，as the solution is weakened by the lons of the metal going to form the electro－ coating，it is strengthened by the cysnide of ailver formed at the plate．The thickness of the plate depends on the time of its immersion．The electric eurrent thus acts as the earrier of the metal of the plate to the objecta immersed．In thia wsy，silver becomes perfectly plaatio in our hands．We can by this meanh，without mechanical exertion or the craft of the workman，convert a piece of silver of any ahape，however irregular，into a uniform plate， which covers，but in no way defaces，objects of the most complicated and delicate forms，When the plated objects are taken from the bath，they appear dull and white；the dallness lis first removed by a small circalar brash of brasa wire driven by a latbe， and the final polish is given by burniahing．The process of electro－gilding is almost identical with that of electroplating．Eucceas in either is attained by proper attention to the strength of the battery， the stringth of the solution，the temperstare，and the size of the＋electrode．

Electroph＇orus，an instrument for obtaining electricity by means of induction．It generally consista of a tion mould，A，which in practice is kept in connection
with the ground， with the ground，
filled with shell） filled with shell， lac or resin，B，
and a movable metal cover．C ， with a glasi dhown in the fig． The shell－Ise is
poured is when poured in when meited，and is
mixed with some other sulatance to make it lean brittle．When the upparatus is saed，the surface
of the resta or the rivell－lace is amartly beaton with eata＇fur．
This electrifie
the reain negatively．When the cover in brought near the lower part of the apparatus，it in charged pouitively on ita under nurfice，negatively on ita upper．If then it is touched，the negative eacapeos， and the cover in charged with＋elsetricity ；and if removed and applied to any conductor，it will give a poaitive charge to it．The process may be repeated for a great number of times with naly a small diminution of B＇a charge，except by conmee tion or dampneas．It is usual to have the earth connection made by a metallic pin paasing through \mathbf{B} to \mathbf{A} ，or by a piece of tinfoil，ε ，pasted extending slightly over B，and connected with A．
Electroplating，Electrotype．Soe EvEc－ TRO－METALLURGY，
Electrum（amber；Gri dlektron）is a term alao applied to native gold as it is netocisted with ailver．
Electuary，a form of medicinal preparation in which the remedy is enveloped or suapended in
honey or syrup，so as to make a thick，semi－fluid honey or
mixture．

Plements，Chemical the simpleat known constituents of all compound subatances．Chemista regard as elementary substances or alementa only those subatancea which have not been proved to be compound．It is not inconceivable that some of the subutancen at present desig口ated elementa（for list of known elementa，see ATomic Thsory）may hereafter be proved to consist of more than one simple kind of matter，but in the meantime they are correctly called elemente，wo that term in Hpplied above．The elements are sonewhat arli－
trarily divided into non－日netals and metals，the trarity divided into non－日netals and metals，the
latter forming by far the larger class，There is no sharp line of demarcation between the two chesses，meveral elensents occupying positions on the barder line．The elements commonly classed ax non－metals are thirteen in number，and are as fullows：Hydrogen，elatorine，loromiae，iodine，Iluor－ tie，oxygen，sulphar，meleniam，boron，nitrugen，
phasplornox，carion，nilicon．Hydrouren，bowerex， in its elyemical relations lelakes lithe at metal． Speculation at present is on the wluole rather favourable to the view that all the elements are composed of one fumbisicatal elementary sials－ stance（see also Chembistry，and Mistals）The tine－hononred＇Foar Elements＇of the Gireeks－ air，fire，water，earth－are Iticussed at EMPE－ Docless．The＇Sluva－kingr a Chinese work apler than Solntnon，has five elefsents－water，fire， wonol，metal，earth．The Incliva Inatitutes af Many have alsa five－sabtle ether，air，fire，water， and earth．

EIIxir（Arsh el itair，＇the plaloapherle stone；＂ see ALcBemy），a term in pharnacy which has conse down from the dayn of Alcheniy（ q, v, ）．By the alcliensista the term wha applied to varioun solntions employed In the sttempt to transtante metals．But the mast motable elixir，sought after by many，was the climir witie，＇the elibir of life，＂that sulalime，potent，perfect，iavalualile preparation which，if discovered，would confer inamortality or it least extreme length of life on lim who drank it．The name has recently been sppropriated to a clast of American pliarasceatical prepara． tions，These are very differeat from the old－ fashioned elixirs，which correapondet in the main to our modern tinctures，for in the American elixirs the first object sought is to prevent the medicine under an alreeable form，oven if fregnently with a lose of potency．Tliese newer elixim are often hiphly alcobolic，sal ard sweetened and flavoured with great skill Is Britioly pharusacy，Elizir of Vitriel is almost the only ropresentative of the old cluss，and is prepared lyy mixing topother sulphuric acid，almalsol，Lineture of ginger，and spirit of ciana min．This prejuaration，aho knows as arotantic sulpharie scid，is ungfol for quenching thirst， sharpening the appetite，ehecking protase perppins： tion，and often reduciag the action of the polse． The done may range from ten to forty dropes， aslminiatered in symip or water．
Sime＇s－Pire，St，is the poptaf neme of an sloctric appearance sometimes seen，especially is soutluern climates duriog thunder istormas，of a bruah
or star of light at the tops of masts，spiren，or other pointed objecta．It ta also obeerved at the tepe of trees，on the manes of horses，and occacionslly whout buman heads．It is similar in kind to the luminouk
glow seen at the point when a lightning－rod is work． ing imperfectly，or when there in asy very rapid production of alectricity（see El－scripucity）In fire were regorded at the Ben Novis observatory． The phenomenon，as seen at sea，was woven by the Greeks inte the myth of Castor and Polluxi and Wha regarded as of friendly omen．The name of Elimo io by many thought to be a corruption of that of Helens，the sister of Castor and Pullux．Others take it to be a corraption of St Ernamus，a Syrian binhop and martyr of the 31 century（Italianised， Ermo，Efme）．The phenomenon his also boen called the fre of St Elias，of St Clarn，of St Nicolas， and of Helens，as well as componife，composant or corposant（i．e．oorplas banction）．

Elatriation is the lerm applied to the process

 of separsting，by means of water，the finer partielen of earlhs and pigments from the lieavier portionic The apparatus generally used is a large vat，in which grindiag wheels revolve，and the substance to be reduced to powder being placed in the vat Along with water，the wheels in revolring not，onls pulverise the material，but from their motion being communicated to the water the latter is ensbled to retain in meehasieal suspension the fiser particles of the clay，Se．By allowing a streans of water to flow in snd out of the vat，the finer particles cas he constantly floated sway，and the liquid beingt ran into settling vate，the Eine powder setties to the bottom，when the water can be run off from the murface．This process is monch employed in the in the prepsration of pigmente．Fimbalming（so nsencil from the balun or hslesm often employed），the art of preserving the body sfter death，invented Iwy the Egyptians，whose prepared bodies are known by the name of mum－ mies，and are called in the hioroglyphs anhwi and by St Angustine gabbarce．This art seems to have derived its origin from the ileat that the preverva－
tion of the louly was necessary for the reutrn of the soal to the human form after it hal completed its cycle of existence of tluee or ten thomanil yeara， SRnitary reasons may alss have piflacneed the ancient Egyptians；and the legend of Osiris，whose tody，destroyed by Typhon，wiss found by Eisa， and embalmed by his mon Anuthis，gave a relicions sanotion to the rite．The sit apperan as ofd as 4000 R．C．at least，for the bodies of Cheops， Mycurions，and others of the suge of the ith dynasty，were equbilasel．（hace of the enstits？

Egyptian Mummy，

embalmmenste recorded in literatare in that of the patriareh Jacal；and the hokly of Joseph whe than prepareal，and teatiaported ontof Egypt．The procens has heen doscribed ly Herodatas and Diodornit Init their sconants are only partially confrned by an examination of the mammies A serihe marked with a reed－pen a line on the left side bemeath thet ribh，slawn whech line the perrasohistes，of ripper of the districh（an athieer of taw elast），made a deep incinion with a ride knife of stone；lhe was then pelted with stones，and parsued witl entnos．The taricheutes，or nalter，next procuerleal to remove the entraile nod lung，with the exception of the heart and kidncys，while a colleagne extracted the lirsin through the nows．Tlie body wius rendy for Uhe salts and ppices necenary for lis preseryition． the quality of which depended upon the num to bo expender．When Hervdotus visited Eysypt，thres methods prevailed the first，neceanible only to the wealthy，eonsinted in prasims peculiar drage throngh the sumbrita inkar the cavities of the skaf， rinsing the belly in palru－wine，and filling it with mysth，casaia，and other anbistances，and Bhitching up the incision in the left tlink．The mummy was then pickled in matron for neventy daya，hal then washed and elaborntely banalaged up in milla of linen，cernented by gams，and set，upright is A wooden confin Agninit tho Falle of she hoswo or tomh．This proceses oont a silver talent，perlings equal to 8725 of our mioney．A cheajer procees，ly means of an injection of cedsr－pil，onas a mami， relatively worth about $\mathrm{C243}$ ．The poover classen wahled the corpae in myrrh，and kalted it for meventy dayn．When thas prepared，and covered with a plotorial representation of the deocesed， attared is a labourer is the world to oome，and dnly Inbelled as a＇justified Oniris，the mammiy whe placed in a contly coffin（eee SAncopricuras） realy for hepultare，but whs frequently kept nome time liefore being baried－aften at home and aven prodseed at fentive entertainmenita，to recall to the gocste the trinsient lot of Immanity．All clases were em－ balsued，even mulefactors：bat various methada were employed besides thuew meationed hy Hero－ dotas．Some manmaies are found merely dried in the sand salterf by matron，or roaked it bitamen（Jew＇s piteli）with or with－ ont the tlank incision，having the brainn removed through the eyes or base of the cranium，with the visceva retarned into the body， placed upon it，or deposited in jars in shapes of the genii of the dead，the ekin partially gilder，the tlank incision covered with a tir plate，the fingens casod in vilver， the eyes removed and replaced， Bo effectual were some of these processea that after 2000 or 30001 yesms the soles of the feet are still elastac and soft to the touch．The sacred aninats were also mummied．

but by simpler procesoes than mien. It has loeen computed that since the practive heynt in $\$ 000$ o.c. down to $700 \mathrm{~A}-\mathrm{n}$, when it practi cally ceased. probuhly as many as $730,000,000$ Incilies were entbalined in Egypt ; of which many millions are yet concersled. Tuportant finds are made from time tio time, as in 1881, when upwards sof thirty munhuies of potentates, inclading that of Rabicsen II., weve discovered together at Deiv-el-Bahari, Munimies, it may be sbaerved in passing, were need in the 15th and 16 th centuries of the Choristian ers for drugs and other nuedical purposes, oun as mustrums against diaesses, and is peculiar luwwn eolour, uses as the buchgrosnd of pictures, was obtainel from the bituraen.
Other less snocensful means of umbalming were used by notions of antiguity. The Penians eft. ploged vins: the Asinvians, honey; the Jews, alopes and spices; Alexiander the Grent wis pre berved in wax and honey, and soate Rutuan bonlien have been fobsut thas embalmed. Gubriches, of ancient inhabitante of the Canary Isles, unel an elalorate procesor Bke the Egyptian: and dexiceated Jonlies, preaerved by atannpheric ar othor circonatanens for centaries, have leern found in Eraicy, Sicily, Fugland, and Amerien, especially in Central Amerion and Pera. In Burioa the bodies of prients are otuffed with upices and looney and coated with wax unl gold leaf. The art of embalming was pmbahly never wholly loat in Eunape ; De 15Is, Swammenlism, Clatieris, Coosels, Belt, and others attainm zreat success in the art; and a morle of embalming by incision all over the budy is ifetasled by Penichur, Ruysch, and after hina Willian Hunter, injected ensential oils thpough the principal arteries into the body. Bondet emhalmed the loodien with camphor, balsam of Peru, Jewh pitch, tan, sad nalt. The diseavery of Cbausier of the preservative power of corrosive nulhimate, by grayish, introducel a new mean of enibalming by Beelard and Larrey; bat owing to the destceation, the features do not retain their shape. The dia; covery of the preservative power of a mixtare of oqual parts of acetate and chloride of alumina, or of mifplute of alamina, by Giannal in 1834, and of (hus of uravie log Traselital and of pyroxilie
 antiongtie natime ul chlorisle of sinc, lave leal th the applasimon of these aisto in the etababming on beparation of tunfies regained to be proncerved tor a

Binbryology in that deporthent of holeng whish revis the teveloppernt of the indivislus
 anil phasingog which, whes resh inth raty, give Dlie lifitiry of the arganisat fons ite malivet iwhli-

 isw forms 1 a tescription if the strneture of nue-
 ther sitad grocered acon iatiol witl each step fophai-
 complete which toos that link the exerving develon. ment of indrethrate with the hiscmicit evolation off this rue.

Mistory. - Although the development of the click, Hot much stadiest in embaryobogieal lahoratories 10 (lay, was watclowi 2000 year- agn in (freece, it was only in the scisitific remaiswanee of the 17 th cen. sury that oleservation hegan to grow strong enongh to wreatle with conjeetans. Hioves. whor towered as a rtrong genims alove his ontempmaries, and saw much farther, nutight in |65il to estahlishe I wo main propositions: (1) that every animial was
 commute wanibus "eminectilise: and (2) that the organs arose by hew formation (epopraesin), not from the mere expunsion of sume invixible preformation. These valuable generativations were not, however, areeptent, an! even ohservations like thuse of Malpighis seernesl for the time to tell against Harvey \boldsymbol{x} previsinn. The time was past
for ibbolutely fancinl theories, and yet the domimant iloctrine which perainterl even into the 1 inh

 of the talolt. "trefotneal it all trauspanemes, the

 within it- balt thor flowal of atitlo of tho futhere ma

 it imehalonl all foforw gerarcationc. That germ las witlin 207m. in evor shaller mininture, aftot ther
 comblary of the thenry of jovformation anal mofided.
 whetlier ovina or oleind wac the nowe inipertant. The rwiots guarted the rlainins of the swwin, whirl

 rucrely fot it- prelimibary batrinewt.
All this was virtondly alatterol hy Wulf (1750) whas rowopsted llarver x vgigenmin, asoul slurwenl that the zerin cumbited of alenel atrurtarelowh
 a wrolinal moranistion. Vet Woltt's work lad but the wficet of entively slemeli-hing preforsisitionins
 (rush in them flaif the aermon Are indeal jutentid.
 Wnilf teartel fon far agoinat the sunction in lio enuplasio un the simplifits of the gerne, ney that a sorveline was nccemary when the ceflolar cturac ter of the remosloctive elewant- woe realiand aleant a homermi swat later. The nhestratan uf afras thrat progreor wion slow is gaining selficanfileme for it wae rett till is1\% that Thosler took uy, Wivitrwork virtinilly wheve le left it. Ife was inmere Hiately minfored and seant lofe Inctrind loy Viem Bacr. whome realin laid a Irm foundation for molere vaplayologer. Nisce the establishanest if
 masuciated moearho wlich shownal that the
 amb that alevelapment cow-joik in slue slisinioun of the fertilisel ovnin ant Ilitierentiation of thr walts, jouggrea liter lewn ineth wore nasi saquil The neme inselem sletumatration of the tact uf evelution bar affonied a firali impuise by it. interpertation of the prement as the litetal chithl of the paust.

 rarely Textin till this feciate element is suputes.
 ex-celle ate fiberated unite of the parent-atzaniam. lont in must cares they ofasal in mushed contract In the groat rongerien of celts which farm the Thaly. All the rosapmaent asits of the organisan are insiesl linest slessmalante uf a fertilised womm. bit the "lasiy cell= becone grestly clsenged fuiv mosele, taerke, sheleton, and the like, while ther retomalnetite sells retain will miore or less intarlneo thet chararter- of the origimal parent perm It i- thie fact whils makes the reprosluction of like by like poosthe
The unierllitar asimale of Proteroa, havites blowiously nes 'lenly." are directly empiparable th tle sux-cells of bigher animata. The 'tinds' in the abhition whirh nukes the differemene In it few I'minosi, linwever, the results of the rivispua of a muit remain asseciatesl together, and a limse eolony of cells arises. Stuch a Protoumen Teluavrs like an ovnni on like a rimitive rable-cell in sas of the higlier animats The foose colony mayy the very unstable, and may soon resolve itself into itr
compenent units, exactly or the prinitive male cell, Which has divided into a clump of sperma toons, Jreaks np and sets these active rnite free But the colony may be noore stable anal retain its continuity (like a segmented bvam), thus bridging the gulf between unicellular and multicellular otganisms. In such cases certain cells are set apart an reproductive, and eventually set adrift to start a iresh colnny. This is the beginning of the alifferentistion of special reproductive cells. A first these were prohahly all alike and ahle to develop of thenselves, linit in a manner which loes not concern tas here (see SEX) they lecame differen tiated as male and female elements, funtually dependent arti complementary.
The ovam homs all the essential chanacters of an
of Protoplasm ($\%$.v.) fund of material ascenalime to or descending frout that climax. As in other cases, the cell-sulistance tuay le traversed by a network, one of the intricacies which modern microscopic teclimique lus revealed. Like other cells, the ovun imeludes a central differentiation or nuclens, technically called the germinal vesicle. This exbibits the esmential muclear elements in the form of rads, hamis, or network, and other minute features descrilied in the article CELL. The mucleus plays a most itmportant part in the history of the ovam, and is believed to be the liearer of the hereditary charncteristics,

As to the precine arigin of the ova, it is enough here to state that in sponges they are vimply well-fed cells in the zeneral sulastance (middle atratum) of the sponge? that in Cocemterates they may originate from suter of from inmer layer: while in other mamals they are almost alway associated with the midillo layer of the body, and as we ascemi are more and more restricted (4) A distinct regish or to a definite organ-the ancry.
The very young ovinu is often at least like an Amueba (ifv.), and in Hydra (q.v.) this character persinta. The fist elutpter in its listory ir orie of untrition and growth. This often occurs at the expense of reighboar cells, and the ovani may be the sucressful sarvivar of a clump. It other cases Lhe natriment, for impsediate or future use, may lee derived from the vascular Iluid of the animal, or frosu special glands, whieh are mpme. times simply degenerate jorthan of on originally larger ovary. The capital of notriment than derived in aliotingainhed ar the yolk. It varien greatly in quantity und dinpowition, und lian great mfluenet in determining: the proeise form which the fatare divisios of the ovum will sake. It mas lee suall in quantity and uniformly diffused thwongh the cell, as in mammalian ova, there may be a barker quantity; which sinks to the tower part, as in frog agawn; there mas be a very lage amount, which quite slwara the geanime living matter, as in birds egos ; to there may be a ventral accunt ulation, an in cristaceans and imnecta. The egg is very generally sufnunded with nome membrane, sbeath, or uliell, made by itself, or contributerl by nurroundins celis. of the prodrict of apecinl glands In with envelopes there is often a iperial aperture (micropyle) thratith which alone the spernatowoon can enter. Hiard ahellen like dowe of birdn astry mast woviounly loe formed after fersilimation las taken place.
The Male-cell or Spermatosoon--In the unicel. lalar organisas, atoong which we find the key to ail beginsing8, two cells, unable epparently to live independently, wite, and than make a fresh atart. In such crse the two units are unually similar in appearnace, though douhtless different is chemical state, Sometimes, however, a small active cell naites with a larger and more pasaive neighbour, and here we find the first hint of the jornfound difference between the rexem-a difierence af which the contrant betweet sifermatozoun and ovun is literally n eoncentrated expircamion.

The sperastozoon ts a thee cell, thongh the nuclear prortion aften puredonninates over the cell. suletance. It is vare of the smullest animal cella,

Fta 1. - Organianя :

 ated czercoll.
on the ovinm is one of the larisert ; it is highly active, while the ovsum is pectiliarly paraive ; it rarely bears any nutritive material, while the
owam is very generally weightea with yolk. In owam is very, renerally wejphteal with yolk. In persistent vitality; the sperm-cell resembles a Hagel late Monad manong Protozon, while the ovan is strictly coniparable to an Amusha or to one of the yet more passuve or encysted formis. In bost animals the spermatowoon exhilits tliree diptinct parts (a) the "heud, or essential portion, consisting
almost whaity of nuclens; (b) the mobile 'tail' of contractile protoplasm which drives the "heal' along ; and (c) a small middle portion connecting the head and tail.
In its origin the male cell resembles the ovum, and the two cells are of course the physiological complements of one another. In history, however, the ovinn is strictly consparable not to the spern, but to the cell which divilled to give riae to the sperms. The primitive-miale-cell, or mother,apermcell, is the homalogue of the ovnm, Jnst as the latter divides in segraentation, so the mother. sperm-cell divider, and the divisions exbibited in What is technically called spermatogenesis are clouely parallel to the various modes of segmen. tation exlibited by ova. The mother-sperna cell segruents, but the results have no colserence ; they go asunder as spernatozou. Thus, though all cells may be asid tof rank as equals, the aperas-cell has a longer history behind it than the ovma. The differencen both in form and history expoisen the great differences in chemical constitution which are summed up in the wonls mule and female

Maturation of the Ovwow- The egg-cell huving attained its definite kize or linit of growth, usually exbibita a roperwhat enfigmatical plienomenom known as the extrusion of polar globales. In the great majarity of cases it buds off two tiny cells. hy a true procesh of eell.livision. in which the nucleis plays its nenal opderly part. This extrusing is prohatily universil, hut liak not yet been oheerined
in bird or reptile egak. The fular cells come in in bird or reptile egak. The jular cells come tr
nothing, thougls they may linge for a while in tlie prediticts of the oynm. Their expulsion usoally takes place hefore fortiliaation loas wven begus, but nometimos is mulsequent to the entrance of the spermatozion into the ovnns. The resale of the twofold bulding in that the nimas of the nqelest elements is reduced by three fonirths, though their number appeare to remain ponitant. In inaby parilaenogenetic ova, which develop without fer tilisation, Weismann has recently unown that only me polar glabule in formed, and than be believoh to le constant, and essentially asociated with parthenogenesis.

The import of the procest is macle disputed.
Cella do indeerl usually divide as she limit
of growth (see Csth) but the division here ts pecaliarly anequal sm far in cell-mubstance in concerned. The marked inequatity suggests the theory proposed by Minot. Baflonr, and Van Beneden, that the polar glolniles ave male extrusions front the predoininantly femisle egs-cell. Thw retention of one in parthenogenetic ova is suppored to be what makes independent developmaent possible. The retained polar globatle replaces the otherwise necessay sperm. Blitachli lnoks at the matter rather himtorically than physiologically, and interprete this premature division of the ovime as the sarvival of an ancient liabit which she mother-sperm-cell atill retains. The polar gelle are thos rudimentary of ahortive female jeerms. This, how. ever, hardly explains why they whuild an constantly occur. Weismann sapposes the iwo polar plobules to be very different frum une another, the first extrudes a nuclear sulistance whith was only aseful Whale the efg was a making; the second geta rid of half of the essential germplasma, the bearer of
hereditary characteristios, alf to order to make roemn

Fise 3,- Ih.velopherat of sipermas; miturntiun and fertilixatimu of Uva J Jliagrommatio):

for the addition of a corresponding quantity by the apermatozoon. Parthenogenetic ovs only give off they are as sble to start in development as fer-
of first giving half of their gerna-plasms sway and then getting a similar quantity back from another source. There is no proof that the iwe extruaions are different in clasrseter, and Weismann's theory seens to invest ova with a prevision of the benefite of tertilisation. The simplest view is that the ovum divides at the limit of knowth, that the inequality of division expresses an opposition between what is extruled and what is retained, and that this means the getting rid of some waste or male elementa. In the differentintion of the male elemants both asuong plants and animals, a parallel biat reverse sutithesis is often demonStrable.
Fertiliantion,-The 'ovists' thought that the ovum wes all-important, and only required the sperm's wakening couch to unfold ite preformad model. The "snimalculists" were equally certain that the aperastazens was sllimportiont, and only requined to be fed hy the ovum. Even siter the matas! dependence af the sex -elemente had been recognised, the opinion prevailed that contact of the swo was unessential, and that by an awera seminalir fertiliontion was posaible. In I677 Hamm and Leeawenhoek find distinctly saw npermatozoa: in 1790 Spallamzani shoged by artificial fertilination that the eprs meat came into contact with the seminal Huid; in 1843 Martin Bary olserved the Apermatozoon is union with the ovum of the rabbit: is 1846 Kalliker proved the cellular origin and mucleated character of the Bisle elginente ; awil in 1872-75 Butechli and A aertanch olerved two nuelei in fertilised egge. The dates of these reprenentativen discoveries abow how gradaally the resiat has beea reached that the esacnce of fortilisation is the intimate union of a male and female coll.

It is peedlew to cite the numerous inventigatorn who have misile the following atatementa posidble : (1) Only ane male element really miten with the efg'celt. Hy a suaden clisnge after, the entrance of one aperm the ovem ususify crases to be recep. tive. The entrance of more than one ocossionalls occurs, hat the reasit is pathological. (2) Thit union is very intiniate, the nuslei are at leant an important is the protoplam, and accurding to most sutborities much more so. (3) The two noclei are aftracted of drawn to one snotber, and fane intimately to form a aingle nucleus of double origin. (4) Sntimate as the anion is, ite orderlines in mut lem cunspiecous ! half of the result is still traceable to the male and half to the female.

While these are the demorntrable stractural facte, what she asion means is another nuatter. Some compare the action of the sperm to a ferment, others to stimslating wiste podects, while Weismann virtually denion sex differencen slteprether, and maintains that the tinion is a mere quantitative addition of the amiount of germ-pleiran liset is extrualing the secmud pelar globale. That the apermatezoon furnishes hall of the architectural puelear sulatance and therely balf of the hereilitary claracturistirs is certain, that it also affords a chemiesi stimalus to division it is difficult to doabt. In single celled animals ferfilisation is essential to the continued ritality of the specion ; in all caser the intimate mingling of sex-elesuents, difierent in constitution and pant experience, secares both all svenge constancy and minor variations.

Segmentafion, Soon after the envential act of fertilisation hes been socomplished in the intimate union of the nuclel, the egg begins to divide What physical and chentical sttractions and repalsions operate in this proces we do not know. It is certain that the nuelear elements, which play a very huportant part throughent, have what we cannot bot call a strong individeslity of behaviour. It in certain too that the cell-sobatance plays an important jart, and that it is not merely paonive naterial with which the mucleus opersite. Recent obeervers, led by Van Bencieh, lisve elocidated something of the niarvellota inveraction between nuclei and cell-rubstance. It would seetn that there is an intraceilplar muscular system, that from certain centres in the protoplasta strands radiate which moor themselves in the mucleser elements and move them ahout. It has been further established that the double uuclens of the fertilised ovam is accurstely somposed half of female and half of male elements. When the egg divides into two, the nueleus of each daugliter-cell is again half male and half ferable, and it is probnble that this exact duajion jersists yet firther.
The different ways in which ovs divide depend mainly upon the quantity and disposition of the
passive yelk-material. (1) When there is very the whtritice capital, and that uniformly diftused, the whole ovam divides, vertically and horixontally, till a sphere of ajquoximately eqpal cells is formed. This total regmetitation occins for instance in the oxa of sponge, startindi. Iancelet, anil matmanal. (2) In the ova of the frog, where the actasl proceros of divisiuti may be most conveniently watched, there is more yolk, which has chiefly stank to the lower liemispliere of the egg. Division is still total, bat after a few seghientationk it will he seen that the upper hemispliere cells are dividing more rapidly anil are becoming markenlly knaller than those in the lower part. The segmentation in total bat unequal. (3) In the ova of biris and reptilea and many lislies there is a large quantity of rolk, and the formative sulstance lies like a drop on the upper surface of the nutrient muses. Division is

Helatiun of Yalk to diva Mie. if of
Sielation of Yalk en alivsion of Ovans \{shagrainmatie) : A, मethe und saime yuik
 B, Nuisel yall

 if, jettial titionti.
sempicted we the formiative protopilasin, and than the rerrmontation is complicaously paitial. (4) In the wre inf crustacenns, imeots, anil their allies, ther sulk swaally mocumatates in the centre of the ovim as a mose passive, nutritive core, nuprounded by the active formative protoplasm. The latter dividen and forms a aphere or ellipmid of cells around the lesw markedly divideal yalk. In Peripathsthe survivor of ancentral insecta-the wbole oymu segurente, but the cells are not for a while defined off fram one another, mi that the resalt lanks like a giant Protazonn with pusacras nuclei. Hints of thin are seen in other chass.

Morinhe and Grastrala, - The repult of segmenta tion iv a hall of cella, thffering mcoording to the above sleseribed modes of division. When a wide cavity luas been left, between the cells futhey multiplied, a hollow sphere is formed, technically called a blastexphere; if no such conspict: nits 'Begmentation cavity' has been left the result is an almost solit malberiy-like ball of cells -a morula, When the division in partial, mainly confined to an area of fornative protoplam lying upon π ratritive mase, the result is a slise of cells which by and by sprends round the yolk. Such a segmented area is gener ally known as the blastaterin. (See I), fig, 3.)

The next decisive chapter is one of infolling, or the formation of a gustrithe. In the simplent cases one liemispliere of a bollow ball of celle is dimpled or invaginsted into the other. More accurately, the one hentisphere sinks
 into and becomes surrounded by the other. The sphere becomes a twolayered sack or gastrula, with an opening techatically called the blasto-
pore. In many other cases-e, fore. In many other cases-e.g, the yolk, complete invagination is Figs not possible. An infolding still Gautrula: ooents, but it is no longer conSherimp teto spicmoan, and the gastrula-stage is urrou, entixted thas disguisest. It must also be vndudernt.
blactorere, noted that the two-layeted condition

คaxity may arise by arrangement of the cells, without there being any process that can be called invagination. Thus, in the ovat ciliated emlaryo or planala of most Hydrozoa, the two layers liave leen fregnently olserved to arise by a process of internal differentiation, known as delominntion.
The Gierminerl Laticis.-Even in a simple colony of cells like a Volvox all the units sto not remain
ahike, Inside cells are in different conditions from too are always aided by the midille layer. ontside cells, and diviajon of labour with conserpuent ditference of structure is bound to occur. So again, in che ball of eells into which the ovum divides, the ase hemisplyere with heavier nuterial is usually different from the upper liemispluere, which is specifically lighter and less encumbered with reserve patevial. Even in the shorula or blastosphere differentiation has liegan.
But we have juist seen that by the folding of one hemispliere into the other, or in other way x, a gistusla often more of less modified arises. The embryo thereby attaino definitely differentiated layers-outer anul inner. The greformationists spoke of developtnent os an unfolding: we naw insist of thi infolling. The lavered character of the embrye was early recognized by Wolff, and yet misere clearly by Frander and Yon Baer, lot its fumlamental jomort can liarilly lue said to have been realised till Fuxloy in 1849 compared the outer and inner cell-4ayers of Cefenterates (bydroids, jellyfishl, see) to the suter and inner layers which embry ologista had begun to demonstrate in develop. ment. Soein afterwardh Allmas gave to the onter and Inner layers of Catenterntes the names ecto. derpm and oidederm, wlich are now univernally used for the onter and inner layers of every embryo. The reaules renched by Haxley and Haeckel, Kovalovsky and Ray Lankester, and many others, lave make it certain that the formation of these two germinal Jayers is constant in animals, that they are exwolly comparahler thoughous the series, and that with few excoptious they give rise to precisely the siane aduls itractures.
In rpongen and Colenterates only two genuine tayer of cella ire developed. A middile mtratum, seen in faist nutheation in she common Hydra, tany Indeed appetsr lentween outer and inner layers, and ming lie of the prisatent inpportance is the structure of the animb., that embryologists are not inclined to bllove this midile stration-the so-called menngliea - 10 rank as a disinet layer beade the other twis.
In higher itnimalis, however, there to a definite muldele layet ur unsodorm hetween the other two Ita hispory involven wach greater diffienlty than that of the ecsenterm hat endodernt; it seems at if is mighat whine in motne half-dozen different wayn. One conmuon tionde of ortgis lias beetr emphasised by the brotheny Hertwig in what they call the 'Catome: theory. The tonot layer ariues by an infolding of che outer, and a primitive gut-cavity (archenteron) than renult. Now begips an out-folding. Froen the gut-cuvily two napks (cudoue-puchets) grow out, one on nither sith, insinualing themselves betwees Whe flrut twa layer The cavities of the sacka form the futiore honly eavity of the satmal ; the outer and inner walls form the corresponding two divisions of the mestidermi. However this midille lnver arises, it fually exhiliti an inner and ant outer division, so that the Hertwige speak of four germinal layers. The moter (parietal or sonatic) portion of the mesolern clongs to the external body-wall, forming murcles and the like; the inner ivisceral or uplanchnic) portion deaves to the internal organs.
Origin of Organs-With fow expeptions, the mane orgoth mat atructures arise from the same layers-e.g; the servans syatem frow the ectoderti, the lining of the taidigat from the endoderm, (a) The ediulyrue or subiblast gives origin to unter skin ot epilernis, external skeleton, stiperfictal glands, sense-organs, nervour kystem, the infoldinge at both ends of the gat, and probably to the primilive excretory (segmental) dict. (b) The diulodemu to hypoblust forms the lining of the midgilt. and necessarily, too, of outgrowthy from it, theh as the lunge and various glands. In verte-
brates it alse gives rise to that important skeletal axis the notachord-which always precedes the Txackione (0) The macsoidern or meapblast gives rise to all the reat. That is so say, the under-gkin. the muscles, the connective tissse, the internal skeleton, the liming of the body-cavity, the heart and the Iflood, and the like are all mesodermic. The reproductive organs, though to some extent structures by themselves, also arise, in the great majority of cases, in conmection with the nesoderm. It must be notod, further, that while the main pirt of a structure is referable to nte of the three layers, the entire stracture is very aften eomposite. 'Thas, the eye of versebrates mainly arises as an ont growth frnu the linsin, lats some of the teat essential parts ore farnishlyd by the mesolerm. The outgrowtins fron the mil-git are the origin evilexiermie, but they

Physiolagicet Embiryology. - The inamence proiress of embryology within recent y'ears has lueen almost wholly morjusolegical. Of the physiological conditions of development we kinow relatively little. The laver stages of embryonic life in higher animals lave been studied by Preyer and others with mach success, but this is hat the threaheld of investiga. tion. A few luminous resalts as to the arehitectural conditions are due to the conrage of His and Fauber, who lrave foltowed the earlier sugarestions of Pander and Lntze. The tark, which is involved in stupenuloss difficaltico, has lieen continued in the experimental inveatigations of 0. Hertwig, Fol, Punger, Born, Roax, Solniltze, (ierlach, atul others Ohowrvations as to the actual dynamies of cell division, suclo, for instatuce, to thoae of Van Bepeden and Boveri, are legisning to appear; while the title of a recent work ly, Bertholil-Protoplasmic Meokunici-sluows how the luinlogist persiatently seeks the aill of the stadent of physies in order to explain the architecture of the living organism. Te think that heredity will betild organic beings witherst mechanical niessis "is, secording to His, 'a piese of anscientific mysticisal:' while Piluger insiats on the conception of development as 'an organic crystallibustion.'. The laws of growth, which express how exch fertilived egt-cell mast divide, and how the resulting naite most arrange themselven first in layers and thereafter intes organi, must be expreseed in terms of pleysical and chemi cal conditions. Bat this is the task of the future.
Generalinations.- (1) The Oenem-thearg-In all cases of onlinary sexual reproduction mmong plants or animals the offspring develope from a fertilised egs-cell. This is the ovam-theory prophesied by Harvey in 1651, spain slmpopt realised by Wolf in 1759, bat only deruopivtrated about a lyundred years later whes the arganism wan at lengils Aninlysed into ita canponent cells (see Cell). The faet that every plant of aninas begins at the leginning aysio, at the level of the Protozon or single-cpiled organisms, A gassiz sloen not heritate te call ane of the greatest discoveries in the natural apieners in modern tives.
(2) The Gatrim-theory. - The simplest animals are single cellot these occasionally' form loose colonins or lalls of cells; mext come napk-like two. layered orgauisnos, such is the simplest aponges. These are the finat tharee grades Among living animals, but ther also cocterjond to the first three

Fig. 6
The First Stage in Developonent (not drawn to scale): c. prtilised oram; \& hall of celles 8 , the seroe still more divided, of io sective: t, the gaviule (except fo $Y_{1}, ~ A$ sponpes, encal, marthworne, or stantith; B, cisyth, tir other
 tualicate, se: K, frog, ne ouber amphitas; If, rabiti, of ation unmal; AC, segmentatom cavily is. Esurula invogincelke int rimolens, गghter are ectodering, duts are solk celks are
ehapters in the life history of each organistm. The single cell (the ovim), the ball of cells (the morula or blastaephere), the sack of cells in two layers (the gastrula), we have scen to be the first three stages in development. As this gastrula-stage always occurs, though sometimes disguised by the yolk, in the life-history of animaln, Haeckel justly emphasised it as the individual's recapitulation of an ancestral state. The simplest, stable, many-celled animal he believed to be like a gastrula (see fig. 5), and tie called this hypothetical sncestor of all higher animals a gastrath. A few living animals are still almost at this level : all animals pass through it in their gratrula-stage. The gastrula is a recapitulation of the ancestral gostrata. Rival conceptions of what the first stahle, many-cellel animal was like luave been since proposed, but the gastrea-theory still holds the field.
(3) The Fact of Recapitatation.-The gastrientheory is only a special case of a more general pro-position-that the individual recapitulntes the his tory of its kind. That the pant lives in the present, or that we individnally retread, for instance in our intellectaal development, the pathos mude by our ancestors, is a faniliar idea which it is oue of the charms of embryology to realise in the tife-history of each organium, At an early date Von Baer expressed this in his law, that structural progress or differentiation in development was from a general to a special type, 'In its carliest stage,' he maid, 'every organion has the grentent number of char ncters in common with alf other orgasinnas in their onrlient atages; at each succensive stage the class of enthryos which is resemblen is narrowed. ${ }^{\prime}$ In the life-linetery of a mamanal it in possible to trace how the germ at fint lipgers as it were tinong the Protninas: how it divides and passer quickly through the tramsitional thall of cella stage f how the embryo modergoes its fint great differentiation,
like all other mafticellular animaln, in becoming a swo-layered gastruls, taking its place beside the ancentral Metaroa; how it by-and-by ncquires nome of the charncters of a young worm, and then of n very simple backboned animal, like a primitive fish; how with increasing oomplexity it ranks with reptilian embryos ; and lastly how the fostue soguiren mammalian features, vagie and gencral at the outset, lut gradually becoming like those of searly related forms. Von Baer liniself confessed, as avery embryologist wonld do, that with three embryon of higher Vertebrates at the same atage before him, lie could not, without close exaninationt, tell one from the other. The sccompanying

Fig. 7.-Enibryos of fowl (a), dog (b), and man (of (After Baeckel.)
figure of the embryos of a bird, a mammal, and the buman species elearly illustrates this close resem blance in early life.

Spencer expressed the progress from simple to complex, from general to special, as a differentiation from homogoncous to heterngeneous, in which the individual history rune parallel to that of the race. The most luminous reating of the fundamental fact is that of Haeckel. The imdividual development is a recapitulation of the historic avolution of the race. A curve symboliaing the tarns and twists in the life-hivtory of one of the higher Vertebrates, for instance, in seen to be a reflection of the great bends and branches of the genealogical tree which expresses the historic lineage. The development of the individual nicrocosm is a suinmsty-often a shorthand zummary -of the evolntion of the macroensm of the race. Most pithily, though most technically, he sams up his ' fandamental biogenetic law' in the words "Ontogeny recapitulates playtogeny." The fact is very vividly illustrated in many of the more patent life-bistories, guch as those of crustaceans, insects, and umphibians, where the hatched young follow the rails laid down by their respective ancestors (see AMPHIBIA, CATER-

PILLAR, CRUSTACEA). Parker happily eomppase watching development-in which he is one of the the majerficial script there are slder and ruder characters, and below these more primitive still Two cautions must be panphasised. The development is often shortened in its path; circuitous twiste, in what we believe to hotve lusen the historic course, are skipped by the indivilnal; the mothentous steps, howeyer, are always pacalleled in the two hiscories. The individual development hay be suid to follow the main line of protress, but does not go off into side-lines. Thus the resemblance is between embryos. The emliryo bind is landty like a reptile, boat it is always in its developosent like an embryo reptile. Nor most it be inagemed that this fact of recapitalation exaetly explains itself. That the present ia child of the past doen imbenal shed groat light on the implividual's recapitulation of Ancestral stagoy, but the metaphors are spt to buggest that the leveloping organian has somelow a feeling for history, of that the hand of the past is ieterally uppon it cos it grows. It is necemary to get beyond mere metaphars of anconcious menory and the like, and to realise flat the mame internal emmlitions which in the long post lod to certain motamants changes are still really present dobig the parne for the iedividual. The Inidamental problem is to eluctate the chemical and physich eunditions whioh rapesent the living ham of the gase upon the dervelopasent of the proselic, or in wolerstabd how the Jiving mattes of the embrvo in at each skese looth the material am! Wee arehiseet of its ughathim.
(4) Cunfineity of Gitronine\% Proluplesm.-In flowering planta thete is is sanagteousa puntrast batween the reproductive oyntem anal the goveral
 mach light ajan tha problowos of developoment aoml lumplity. In the simplent atitinats is portion of slie
 an thin is virtuatly cousinunat wish she jugent thet reprislurtion of like by like is nataral und necen.
 Incuane, ficusols, 80), when ther svom liaa multi plied to a himited extent, hy the gesal fivecer of diviedon, certaih if its desoenslanta, as yec very like the (irigimel ovith, aie net agail to forn the rrpre-

 comtinupes with the purentid ovom: they retain sume of the living equital intact, continte the pro toplanuse tradition nanliered, and when thermeclven Iiletatert will maturibly do what she opisinal germcelle did. Thus ther rapoulnetion of like by like liecomes more intellusifile, and we reuch the comefption of as contimusus reeklace-like chaip of tmonortal germ-celta (from whiels the mortal liedies of anccessty conception has heen more or lea elently suggrested by numerous natiralints-Owen, Haeckel, Jogeer, Frooks, (ialtoh, Nusharm, amd others, leat has lemp olniwrated by weianialis in him theory of the continaity of the 'berm-plasma.' A eontinuons clinin of germ.celts if only demonatrable in a few coses; oftes they laseome slistinct only at a relatively late stage in the development of the off. spring. Therefore Weismans unsisfs not on is continaity of cerm-cells from those of the pirent to thone of the offepring, thit only ous a contimuity of "term-phosmas." 'In ehch slevelopment a pertion of the Hjecific "germ-plasma" which the jarenta! ovan containg is unt tusel ap in the fornation of the offypring. lout is reserved anchanged for the formation of the germicelle of the following igeneration.' The germb-plasma which keepe up the can timuity has its seat in the nuclens, is a substance of definite chemical and special molectlar conatitution, has an extreme power of pernistence aud enor mous powers of jrowth. The general ivlea is simple enough-un offepring etarts with a capital of living matter which is vistually the samet te that frosin which its parents starteil. Therefore the resulto are in a general way the same, and the constancy of the species is sustained. Hlow this is moslified by variations is not bare relevant.

Emerald (Spani esancratdor, Fr. Emernads; Ger. smaragd, (ir. smancagdos), it mineral generaily regarded hy minemboctists as merely another variety of the same species with the Berril (q.v.), with whieh it essentially agrees in composition, crystalliastion.
\&c., differing in scarcely anything hat colour. The enterald, whiclt, at i gem, is very loghly esteemer, pace its valne chatily Lo its extremely beautiful veivety green colour. It is exsuposed of shout
67 -6s per cent. of silica, $15-18$ of alumina, $12-14$ of gincina, sal minnte proportions of sesquiuxide of chrmaium, magnesia, and carbosiate of lime. Is eolomer is sseribed chiefly to the oxide of chromiunt which it contains. Its puecific gravity is 270-2-76. In harinesa is is rather inferior to toptz. The localities in which the ermeralil is found are very fow. The finest lave long been brought froun Colounlis (\cap, v.). where thry are obtained frou veins traversing clayalate, horoblende slate, and pranite : anal calunhle stonec alson cosne from the Upper Orinoen; in Veneruela. Stobes of inferin quatity are found In Europe, inhenhlil in micaschist, in the Henlach Valley, in Kalzlonrg. They also ocerur in the Urals; and some old ninines in Upier Esifpt fave leen ioumd ta yield tben. Thes gens, known frows very early tiuses, was highly uriaed by the ancients. Pling statec that when buenllast landel at Alexandria, Finlemy offered hius an emeradil set is gald, with hio purf trait emgraven onf it. Many orrogidit emmedala have lecen found is the ruing of Theler. Nem. when wan near saishtel. Karkel at the conulatis of swacare ore glasmes of etuetald antu tin linve lieen varticalarly micemed ampont the ancienta As is precinto stone, the cuserald is cayply without flaw, ifs value alon ilepernis mond in ith eulowe. A very perfect emernhl of wis earals has lecen sold for cto00 it appears mot liopswlable that eomerahihave leen foumt in the Eant, in forahities sutt at fresurt known, Inat the wame Esperalit or O)rienial Dinctahl is uften jiceat to a very mae. leanatifnl. snu! precianes areen variety of sisphire (9.v.).

Esekleazil Curese is a beanifal ivit kery rave pmeradi-grees ery-lalitied mineral, also calleal Dioptase, funat firit ans chindy in jumestone in the lill of AlyaTTate (Altai Nountaino), asal aloo obtained lir the Urah and the South Aprerican
 $\$ 0$ protoxile of coppor, and II water.

Emeties usedicines given for the purpone of producing Vomiting (q.v.). They are given when it is desiralle to relieve the stomsch of some noxi. ous or indigestible salatance, such os a surcutio potsont, or exces of fool, ur sume special article of biet which lias disogreed. Euretics are alon adminis. tered in cases of fever, wiere the cambions sbcretion they produce froms slie glasile of the stomach and intestines is suppoed to have a slinectly carative ellect, soded, perlusje, by the nelative action of emetios oper the circulation and nervons systens. There is a conisiberalite aspount of eridenee to shout that enuetic have the power of cutting ehort typlus and ather fevers in the earlient stace, and after. trants of making the aftack if the diveave lena severe. In disesass of the resjoratary organs. enveties are given as the quickrat appl anfest biethod of removing acctumulased anuens from the aif punerges: and in Cronty (\%, \%.) theit acliun is especially favoarable, being often fullowed ly expectoration and a rapid improvement in the suifocative symptoms. Emetios are to le given with great coution, however, in all very depressed states of the aysten, as their primary nction is to produce nansen, whoh is attemiel always with tone or less climinetion of the vital power, and often with grest depression of the heart'e action, smosinting to gyocope or fainting Eruetics may probhec vomiting either ty thair local action on the thront, gullet, and sternsels, of ley thrir action through the blood on the nervons mechaninan regulating the movements of the sfomach. They ase thus divided into two grabia, Isend and gruerel enucties ; and the depressing effect of the fonmer is mach leas than that of the latter. Some sulentances will prodnce vrowiting in either way $;$ fo that the distinetion letween the two classes is not very definite. Amoog the chici ervetics in use are mustarl (twe tablespoonfuls) common salt (a tablespoonfol or more), slum (a teappoonful), in a tumblerfinl of water, repeated after a quarter of an hour if mecesaty. There, with sulphate of copper or zinc, are maninly local in their action; ipect. cuanha and emetin, squills, senega, tartar enetic and other soluble salts of antimony. Apomorphis, are mainly general in their action. The produc-
tion of veniting is aided, whatever emetic is used, by copious draughte of warm water. Tickling the
theroat with a finger or feather is of en an effective mechanical means to produce voniting.

Emetin is the alkaloid which forms the active principle of ipecamasilan-root. It may he ohtained by drying Lic powdered ront-hark with milk of lime, and thet exlausting with boiling chlonoform. It is a white powder, lrecoming lorown on exposure to light, slightly aoluble in water, bat readily in alcolas. When taken interailly, it exhibits violent emetic propertios, foth of a grain sufficing to cause vomiting. The wooll of the root eontaina no emetin, so that the virtue of ipecacuanha-root entirely resides in the bark.

Emuisin. or Sysaptask, is a peenliar ferment present in the bitter and sweet ahnond, which Worms it eonstituent of all alinond enulsinns. When litter almonds are liruivel, and water tudded, the emulsin rets nst it ferment on the amygilalin, and alecomposes the latter juto volatile oil of bitter almonds, prassic ardi, grepee sugar, and water (see Almonds, Volatnavoili. The vegctable albumen of simonds is almast entirely compesed of emulsin, which, when neparated, is a white sulintance, woluble in witer, and is di-tingaishod liy ins remarkahle power of cauking the fermentation of auygdalin. It comints of carbun, byilagen, nitrogen, and axyzen.

Emulsion is slie term applied to those preparations in phannacy in which olenginous yubstazices ant suyjended in water liy ameans of gum, surnt, carrogerp, yotk of egis, \&c. The proaluction of these cumblsiuns in cfien not ati easy matter, mid requires julkment and whil. In renehal it will Ler fosmal thot the bulk of the enoulafier miant first let taken, whale the wil shasid only be auhlest little by little, valhbiag logerther in 4 murthe, and takiug care that it is canigletely abourlard or embinified lefore further ablitions, Slumpld time numel lien athlerl, the eflect in to flirom ont minat of what has plready laeen incamporateal, and it in then almast inuassille to senuely the ercor. The emishion of cos liver oil in pablidily known to all, but there are bany emabsins in which molid nulnctances have to le stapemaled, anai to them the directionh above given are nut always applicable.

Enamel (Fr. Cimul, originally esmail, from the sabue revat as ware(t), tlie name given ta vitrified sulntances apphiad clicifly to the marface of smetals. Bnatnelling is practised (1) for purques of bitility, as in moking the dial platen of watches nod clochs rontuse the insules of culinary vesseln.
 traits, atal for notianemtal jurjuses qenernlly: The lavis of all coannela is an easily fasiblu colemarlem plasu, to which the slesirel colsme and macity are inpurted by mixttirer of metallice nxiles. Tlie wans, sfice lwing fusel toscther and cunled, is reilared to a lime jowder satil washed, and the raw binterind thes uhtained is variously appliest in the snriacen th lie ewvered aconling to the dasa nf enisusel locimg masle. Thes whole in then expoment in a furbace (firof, as it is called) till the enishuel is melted, when it indheres liminly to thie metal, The nietal most commonly useal as a zwound for enansel is copper; liat for the finest kinds of enaruel-work grold and silver ure also thed.
Artister or Ursermentel Eluconelling. - Thes art is of sTeat antiguity; it wนe to a limited extent Practised by the Greeks; but enamels were more Aomin enj itoyed by the Komants, ander whose Enamelling lios also been practised fron a remote periorl in the Einat, Persia, Inclia, China, and Japan, under a merarate and distinct developmetat; but there is notling fron which it can lie inferred that the various muthods were in use enulier than in Europe As a decoration enamelling wha more prpalar and Attaitied to greater perfection in the midulle egges thin in classic timen. the ath antil the I1th century, and afterwards in Italy, in the Rhenish provinces, and at Limoges
in the south of France. The Byzantine end other early styles of enamel-work, down to the 14 th century, were generally employed in ormamenting Ebjects connected with the service of the church. Enamel was also greatly osed in ornamenting jewelry, and vessels made for use or display in
the mansions of the rich, such as salt-cellars the mansions of the rich, such as salt-cellars,
coffers, ewers, candlenticks, \&e.; but these
objects were principally made in the painted enamels introduced in France towards the end of the 15 th century.

Vistinguished with reference to the manner of execation, ensmel-work may be divided into four kinds: () Cloisonke, or inclosed, the methol in the Byzantine school, in which the design is formed in a kind of metal case, generally gold or copper, and the several coloara are separated by very delicate filigree gold bands, to prevent sheat running into one another. Of this style the grandest example extant is the famons Paide d'oro in Se Marks Chureh, Venice, some portions of which are Byzintine of the $10 t h$ centary. (2) Chownpleof, practisel by the Rhenish and early Limuges sohools. In thia procese the ornamentil flesjon, or the figures which were to be fifleal in with colouv, were cut in the metal (generally copper) to sume depth; and wherever two colours met, 3 thin partition of the metal was left to prevens the cokours running into each other by fusion wlum fired, (3) Tranalacent enamel, which lasi ita arigin and was broaght to great perfeotionis in Italy, was eomposed of thanaparent enamel of every variety of colour, laid in thin enatinge over she design, which was incised on the metal, gener. ally ailver, the \bar{f} aire or figurea being slightly raised in low relief, and marked with the graver, no at to allow the drawing of the contoars to he seem through the ground, instrad of being formed by the coarse lines of the copper, as in the early Limoges enauols. (4) Surface-paintell enamels, which may bo divided into twa stagea. The first stage, which is krown an the late Limoges atyle, sprang up about 1475, and flowrished till I630, In this the practice win to cover slie metal plate with is coating of dark enamel for shodows, and to paint on thin with white, sometimes having the hands and other parth of tha figures conapletely coloured. The denigns of the middle ant liest period were generally taken from well knawa paintinge or enaraving of the perion, and twere strongly infuences by the Ttallan art of the time. This style soon degenerated, and gave place to the latent or miniafiore style, which wau invented before the niddle of the 16th exntiry by Jean Tontin, a goldamith at Chateasdun, ind carried to' the higheat parrfection by Jean Petitnt, a miniatnre-painter, who wat bors at Geneva, 1007, and resided long in England, and then in Paria On his methot the plate is covered with is white opaque enamel, and the colotie are lail tar Min with a hair-pencil, and fixed hy liriag: The pathts sre propared by grinding ap coloured enamela wish oil of spike, and when fased by the heat, they hee come fienrparated with the enamel of the zimunal. The earlier enamellers of thin sehool occupien them nelves with miniastures, maif-boxed, watel-coses, and other trinkets, till the period of the Itevolntion, when the grt fell into distse in France. In England, however, it was carried on with much sticcext ; and copies of portraits wnil phefures an a much larger scale than the Preneh ministitms weve exectuted by Henry Rane (1753-18:24) anil the German, Kasl Mons (blien 1824) Worthe of thde description posseas the ulevioss advantapte of slans. bility; but thoae varions gualities of cextrure, fond the delicacy of enlour for whielt good works in ofl or water-colour are prized, cannot he attained in enamel copies. The greater part of the artistic enamel-work of the present day is of Jaqumese fabrication, and consists of elviansae warh an a expper bsuin. Both in Paris and itt Bimaingham chamel work of thix class has been attemptell with success ; butt designs can he exceuted in Japan at pricer which defy the eompetition of western tradera. In Chini both elyiwoneé and painted enamels are made in characteristic Chinese dexizme. At Jeypore in India a limited quantity of enamelwark on gold is execnted in translucent colours which prosess incomprablile brilliancy. Enamel incristations of various kinds are very largely used in the jewelry, folifsmith. and silversmith trades of Europe. See Garnier, Historre de la Verrerie ed de I'Emaillerie (1846); Bowes, Jppanese Enamels (J885) ; and for cuanelled cartlienware, see the article Potteiry.

Enamelled Iron--Since the beginning of the 19th century many attempts bave been made to cover iron with a vitreous surface, asd several patents have leen taken for such methods of enamelling. The chief difficulty in applying enamels to iron arises from the tendency of the metal to oxi-
dise before it reaches the temperature at which
the enamel fuses, and to lecrme britule from the axide combining with the sitica of the enamel. This action being superficial, the nischief is the Hreater in froportion to the thimesso of the iron. Therefore it is misch easier to enamel thick castiron vesaels thun thin vesoels nuade of shect-iron. A glass may le made by combining either silicic acil or boracic reid with a lase ; the latter fuses at a lower tetupenture than the former, but the ghass is mnch dearer and not so dursble as the siliea glase. The enamels osed for conting iron consist of a misture of silica and borax, with varises lusic satsitances, wach is soda, oxide of tin, alomina, oxisle of lead. Ae Lead is noty or ought mot to he, tured in the enamel for coating exinary veatels.
A mreat variety of articles, many of them besuti. filly feconted in colours, sach as grate-fronts, clock-lials, panels of different kinds, sign-boards, tablets, and name-plates, are now executed in enamefled iron at a moderate coost. It is also appilied to onrrugated roofing. The effeet of heat on enamelles fron especially is to expand the metal more thas the enamel, and cauge the latter t) guel off. Acidn find their way through minute invaible pores, which exist in the bot enamel; and when once they reach the Iron, thoy mpidly spread between it and the enamel, and undernine and mirip it off. This kind of action is curiounly shown by fiting an ensmelled vensel with a solation of aulpliate of copper. The acid sttacks the ront whervever popen exist, and little besds of metallic onpger are alepoifted at all such spots; thear lieale go un growing until they are large enonghls to lee very plainly neen. This is the eevereit test for trying thie continuity of enamelled surface: to which they cin le subjected, ns ralphate of copper will penetrate the glace and body of ordinary earthenware

Epiderints ((in. rph, 'ujwas,' and derina, "tho Hkin \% scarl-skin or estiele, forming at externsal coverige of a pautective natare for the true skin br corium. Ita analer of astached narface is neraeately moulded ujoss the true shin, and when the two ere sepasisted the caticle preserite impresionis which exactly corresponal to the elevations and ilepresaions in the onrisin. The thicknem of the epulermin varies fromi, jly to th of an inch, acoording to the amomiat of protection which the delicate ansi swhaitive corimb requires in different localitios.

Pervendicular Section of the skia of the Lezz of a Nrigro (tiagnified 250) diaseters).
n, a, partho it the cotion \& derpest lo ten wety colormel hocs of perpech ondurty
 trowy liger. oarinm heing elrongatel in form, placed next the those nopt
saperficial arc flat and scalc-like. On this apcount it is usual in dencrilie the epidermis ins consistfing of tan atrata-an outer or superficial horny striatum, and a deeper or vincous stratom (or rete Malpighiti). The horiny sfratum conkists of cella, many of which have last their nuclei and austumed the form of hard flattened neales of pulyzonal outhine. The deepest layer of this stratem consists of closely packed cells with indistinct outlines and a clear, almost homogeneous, appearance, which has given them the name of the sfration lsisiduon. The superticial cells of the

Inorny layer are vegularly cast off by desquaniation, asnd replaced by thase beneath them. In reptiles and amphibians this layer is periodically cast off in a more or less entive state, a new one being previously formed beneath it ; und in man des. quanation in large patclies oceura after certain fisenses, especially scarlet fever.

The mucous stratum lies next the corium. It consists of nucleated cells of varinus shapes. Those next the coriam are elongated and placed perpendicularly to its surface. Above these are cells pore rounded or polyhedral in mutline, and possessing many spinen or prickle-like processes, by the points of which the celle adlucre to each other, and phus leave fine lymph channels through which the nustient plasins is transmitted to the cells. The bolouring matter of the epidermis is found in the cells of the nucoun stratom. A more or less dark pigment is often deposited in the face, noek, anl lenada of the fair races of men during exposure to the sun, forming isolated colour-spota called freckles; thit in the dark races the pigmenttranules are distributed througliout the cellin of the mucous atratum, the deepest or perpendicular cells being the darkest. Instances of white negroes are on record, net as a consequence of change of climate, but as an abnomaal condition of the egidermis. Fine nerve-fibrila penetrate between the cells of the mucoun atratum, and undergo a certain amount of ramification, but do not form a network. In some reptilei, and in the Edentata among manimale, the cpidernis forma large plates or ncales, white epidermal appendagen assume variouk forna-e.g. hair, nail, spines, bristlem, feathers, clawn, hoof, horns, \&e.

In plants the epidermin in formed of flattened cells, usually only one layer deep, frequently benring hairs and etomati. The exposed call-walla upon the outer burface are frequently thickened as the cuticle.

Eplthelium is the term applied in anatomy to the cell-tissue which, in layers of various thicknows, invents not only the outer surface of the borly, and the macous memhrnaes connected with it-ins, for example, thone of the nowe, Inner, intertinal canal, Eve.-lus also the cloned cavities of the boty, yuch

 from the veins.
s the great nerous niembranea, the ventriclen of the liring, the aynovial membranes of jointe, the interior of the hesrt and of the blood-veseels proceeding to and from it, the ducte of glands, \&c. The thickness of this tissue varien extremely with the pasition in which it occurs. In some parts it consints of bumerous strita of cello, collectively forming a layer of more than a line in thiekness; in other parts it is cormposed of only a Jew strata, or often of only a single stratuan of cells, and can only be detected by the micrascope. The cells of which the epithelinm is composed are ustally soff nucleated cells; they may be rounded, poly. gotal, fuxiform, cylindrical, or conieal in shape, and sometimes they posesss vilratile cilia No blood-veskels exist in epithelial tissues, although minute cliannels may be found between the cells, by means of which the plasma derived from subjacent hlood-vessels may pass for the nutrition of the cells. In many cases nerve fibrils are abondant.

Fig. 3.
Espithelima of the istestinal villi of the ralibit. Mng. Sol diantis

Epithelia may be classified (a) according to the embayonic layer fron which they are developed; (b) according to their funetion: (c) acerorting to their shape and arrangement. Following the latter nethorl, we have (a) simiple spithelivm, consisting of it single layer of cells which may Le: (1) Parcment, consisting of jolygonal plates or seales joined together by their edges. They eonstitute the variety kroxen as pavement or tessel-

䗑

Fig. 4.
Cliateit with form, the nierer breerhind tullers Mny Sto diem ated equithelum, and occurring ar an investment of the serous membranes, of most synovial raembques, of the lining memberse of the heart ind of the veins, of the canals of glands, kc. (2) Colmmader or cylinder rpithrliam, an in the inteatine from the stomach to the termination of the alimentary cunnl, in the exeretory ducte of all the plamils opering inte the intevtine, ke. Illestrations of this eylinder epitheliam are given in the article Drakstion. (31 Spkeroidal or glandelar critheSium is chiefly eharnuteristic of the terminal feceasen of secret. ing glamise (4) Chrwhed syi. chetimb consints of celly which bear on their free ensty spontatioe Buthly moving fitmornth catleil Glice (gvi) (b) Strali,Ned ept if collo armaned in imisy layens. amil the inds vistant celte pre of rhap per Ae it celle are tal-

Fie s

 Eminst, and thas flattened and scalelike, bot overlappinte one an other ist thetr margimis. It oceune on the aaterior murface of the cornes of the eye, in the month. pharynx, "osophagum, \&ce, hut ith moet extensive distribution is in the Epidermis (q, v.). (c) Tramaptional epithelion is internediate between the furne dtreidy described, and may be gronoped ander the three terms columnis, difiated, and sealy transitional, according to the kimd of cell which is most Buperficial. In the case of the columnar and cifinatd varietien there are mmaller colle irragularly dieposed between the fixed enily of the large onee, and this conntituter the only difference between these and the eolumnar and cifiated eells already deseribed.

Scaly tranaitional epithellum fornd lining the minary Bladder (g.v.) and uretern, The nuperficial colly are flattened acales when the bladder in dis tended, but cubical when empty. Moreover, the free aurface of the cella is amooth, but on the deep aspect they are moulded over the rounded ende of the pear-shaped cella beneath. Irregular celle fill up the intervala between the tapering ends of the pyriform cella.

Fig: G

 mollic
bells.

In all the varieties of epitheliam the Inyer of external cells is being constantly dixintegrated and replaced by the layer immediately beneath. The polygonal or pavernent epithelium mainly acts like the epidermis, as a protecting medium to the soft parts beneath. The cylindrical epithelium additionally takes an active part in the process of seeretion. Ilustrations of the function of the cells forming this variety of epithelinm are gives in the articles Celi, Cilia, Drgestron; and the subject will be further noticed under the bead Secietion.

Eprouvette is a machine for proving or teating the strength of gunpowider. The jum eprouvette sloes this lay menssing the amonat of recoil proslaced on a knall gun swung like a pendulum; the moertar eprouvette by mestaring the distance to which a lall is projected. A third puttern is slupred like a sinall pistol, wish as extremely short barrel, closed by a thas plate manected with is strupg sping On fring, the plite is driven back to a distance indexed aecording to the strength of the jurwiter.

Epsom Salc, or Selpsiate of Magxesta, $\mathrm{MgSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$, was originally nbitained by evaporating the waters of the springs at Epmom. It was noon foand that aes-brine alno contained large quantities, snd the manaficture at Bppont was therefore given op- At present it is foand sative in varions parts of America. and large quantition are mannfactured near Cienoa, by at Ehemical pros cess. frosi a rock oontaioing magrenia and sulpfonle of iron. In England, as wref as in America; varioties of macrenian limentope are exfenively sreated with eulphurie scid for ite prosuction, with the result that the saarket is well supplied with this usefal remsty.

Epsom mall frirms small needle-like crystals which have a bitterialine taste and neatral renction It is a well known usefal purgative uedicine, actfig an a refrigerant, and sometimes as a diuretic It dinagreenliे? litter taste may be relieved by the addition of a litile mulpheric acid (as in Ilenry'k solutioss) or syrup of lemos. (t in given in done of I oz to I oe of mare, but is every cune it is of im. portance thas plenty of water be drunk aloog with it (ane or nonte tambiferfale). toe Manosesictr

Ergot, a diveased condition of the ovary of frapses snd sedires, due to the presence of species of Clavienpe, a I'yre. nopyceto fangus (ree FuNigh, of whiels the Glaneatoas iny celiant of the anuald ramifies Hhroigh the thatiae of the Rower, eawaing the mitposining of nogary nap, and bearing at multifale of spores, the avary meantime lieennimg Jeformed and en Ingrel. In this state the musibl was for ${ }^{-}$ merly deacribed an a distinet apecies This now withers on the surface, liat the deeper isteceliant within the oraty be: come denser and hanier, forming the so-called selercinati, and lies dormant
 and lies dormant

Engot al Hyen, sown in early spring, when it bass globular beads which contain depressions or perithecia, containing the ascoapures, which argain recominience the evcle. The medicinal "ergot of rye" it that forined ly Clerviceps purpurect. Producing rapid onntraction of the uterus, if is often emplayed in midwifery 4 but ita use in unskilled or uaserupulous hands in attended by the mont serinus riake It has also been assi in itrsentery, epilepsy, whooping tough, and iss a styptie. The enntinued eating of bread inade of ensotivell rve prodincta a specific disease called Engotion. This is a terrible form of poisoning, in which not only convulvionsa appear, bat often alsu grangrene of the extresition, resulting in nutilation or desth, even recovery from less serinus sloses being slow anal difficult. Msny Itreadfal equilernica is rye-consuming countries (ss
in Lorranne and Bargandy in 18163, the cunses of which were nut understarod, are now supposed to have licen due to ergotism. See also Raphania.

Essence (Lat. essention, from esse, 'to be '), as a philosophical term, the equivalent of the Greek ausio, was originally uwed in the sane sense as Sulastance Lif,v, $)$ Later, maliatance canie to lee ased for the undetermines substratum of a thing, essence for the qualities expressed in the definition of a thing 3 or, as lacke pat it.. 'Essence may lee taken for the very being of is thing, whereby it is what it in. -In Chemistry, and if pupular parlanes, essencss are sonlations of the essential mis in aloolool, nod may lee prepmed (1) loy adding reeti fied spirit to the olonifermbs piorts of plants, or to the essential oils, and dietilling; of (2) simply by adding the essential oil to the rectified spirit, nif agitating till a uniform mixtare is abtuined. Thoms the essence of lemonn is merely a solation of the volatile oil of lemons in rectified spipit. The term has, however, received a wider signifirance, and is applied to any lignid possensing the properties of the malistance of which it professes to be the fesannce, Thus novences of ooffee, beef, and rambet contain in a concentrated form the virtuen if coffee, heef, and renuet, and in some circumstances may lee seletitated for them

Ether. $\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{Y}_{\mathrm{O}} \mathrm{O}\right.$, otherwiee calleil Etwriato
 prepared from ateatial hy the action of sulphatic acid at an elevated tewgeralures. Alcoknt in jutaced in a petert of nilil, and about an equal volume of sulphoric sent is afiled. Iteat in at obece dovet oped by the misitig of the liquils, and nat rain ing tim Lempreinture ather NGiour prasus over atong with a proportion of fiforlat, At the sume Lime K sorean of aloptiol is shlowed to pava inte the ttill, soil the beat is so segrilated thint in sonntant temperntere of about 206° (11\% C.) it maintaineil. When five volumes of alcohel in afl have been ahled, the tempentare is allowed to fise to 246° (1415 C.), at which peint impuritien commence to preal ever. The ether mo mhained enntaine aleohol, sulphurous acid, and waker, and thesm may be removed by treatuaent. with molation of chlonide of cslcium, Nes, and sulseguent rediatillation.

The chemiend renctions which unke place in than proces are of igreat interest, and may be divided into two stagre. (1) The sulphuric acid wots on aloohol, forming ethyi-pulphuric acid and whter.

$\mathrm{H}_{8} \mathrm{SO}_{2}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}-\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{HSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(2) This acid ajain in acted on by ulonhol, with the re-formation of sulphuric acid and the production of ether.
 $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{HSO}_{4}+\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{OH}=\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)_{3} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4}$ From this it will Le plain that the sulphuric ucid is restored again, sail is ready tas athack aloohoh arew, no an to froms mure ether. This procese worlil ap on indefinitely, were it not that the water liberated in the first reaction dilnten the sulphuric acid, and bitimately renders it tom woak for further wetion.

Ether ill as colouriesu, cransparent, volatile liguid of great molility and high refractive power, aud possewing a fragrant odour and a fiery, pawaing to a cooling, taste. It has at pecelfic gravity of 720 at 60^{\prime} ($\left.15.5^{\circ} \mathrm{C}.\right)$, and lvills at $96^{\circ}\left(330^{\circ} 6^{\circ} \mathrm{C}\right)$, furnung it vapour more than twa and a linif tiones as dease as air. When reduced to a temperntare of -24 ? $1-31^{\circ} \mathrm{C}, \mathrm{h}$, ether freezes. It volatiliees apontanemasly when placel in an moconfined position, as in the palm of the hand, and vaporises so quickly iss to produce intense cold. Indeed, when water is covered with ether, and the Intter astisted in itsevaparation by being blown upon, it escapes *o resdily at to relace the temperature of the water to the freceing-point. It is very inflatmmable. barning with a yellow-white liame; and mixed with air or axygen, it givea rise to a dangernas explosive inixture, and hence great care requires to be taken in ita distillation to keep all lighta and fires out of the room where the vipponss are condensing. When other is added to its own balk of water, loriskly mgitated, and allowed to Hetule, the two liquids appest to sepparate again - but it is found that the ether has zaken up onc-eighth of its volume of the water, whilst the latter has dissolved the same quantity of ether. It is readily miscible with alcalool in all propurtions. Ether is one of the best solvents for the oils tual fats, and hence is
employed in analysis for the solution and separation of the oils from other organie matters, as in the analysis of oil-cakes, \&ce. It in alao a good salvent of ic line, sulphur, phosphorus, and of strychmine and other alkaloints, ha well sa of corrusive sublimate rund other salts.

Ether enters into combination with many acids foiming compound ethera possessing igreat frit grancy, such as

Pelargonie Athef... $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{7}$. Esaphce of Quises.
OEnanthic ether, on which the flavour and smell of wines, lurandy, \&c, so mueh depend, originally supponed to be a distinet ether, has been proved to be a mixture of various ethyl ethers, ehiefly ethyl caprote
Ether is useful in the preparstion of freesing mixtures, the mixture of ether and rolid carbonir acid giving rise to a vary low temperature indeed. When inhaled by man and the lower animals, ther firat produces stimulating and intoxicating effecte, but afterward it gives rise to drowxigeser, acconspanied by complete invensthity, which entitles ether to be regarded ou an important anwesthetic agent; asd, inileed, for nome time it was the only agent aned for proslucing Anasthesin (q, K.) in operationn, but in many placen it lus been entirely superneded by the emplogment uf ehlaroforns.

Rthlops, ar Atrumps (Gr, aitho, 'I burn,' and ops 'sountenance' $\%$, is a term spplied by the ancient ehemiata to certain axides and salpboides of the mutala which ponasaed as dall, dingy, or black sppearance. Thus, Ethiopy Mcirtintis was the mixtare of protoside and perixide of iron knowe in the black oxide.

Bthyl $\left(\mathrm{C}_{8}\right)_{2}$, ${ }^{2}$ a coloarlens, inillammable gas, obtuined by the action of jodide of etliyl, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{I}$, on Eranulated xine. It poesenses an agreseble odour, is inaoluble in water, but nalubje in alcohol. It ia not, lowever, on its own account thst ethyl is of importance, but because it is the ntartiog-point of an important serien of organic eonapasnda kaywn as the ethyl series. In all of thive the grucp
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$ or $\mathrm{C}_{3} \mathrm{H}_{3}$ in present, and acta an if it werin min atom of some elemontiory mubutaice - tig. potan вiumi. Thin we have
Potaisalain.
A palecula of jeata
Eotasiam lowlade,
Fotassinim Oxide,
Catistic Ibtash,

In these we ser that the griup of siones, $\mathrm{C}_{2} \mathrm{H}_{3}$ Alvaya enters inio crablimating as if it were isall virille, and it is nimal to call ther group ethyl, and to reserve the tenas dethyl tor the conspmand $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ deacribed above. Ethyl, $\mathrm{C}_{1} \mathrm{II}_{2}$ in ohly liypothetical, and does not exiat in shim free mbate, while diethyl, ($\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)^{2}$, in an metual gas Gee Abromot, Bask, Bnd ETHEIt.

Ethylamine, $\mathrm{NH}_{3} \mathrm{C}_{3} \mathrm{H}_{3}$, is is aubatance resens bline ordinary smimonia in ita oxlous and many of its properties. It is found in chal-tar, in the wil obtained during the deatructivedintillation al beswe, in the graes bvolved during phitrefoction, 0 end thay be protueed by ecropiliestom ehenient proeerseat Etliylamiue has heen called an artilucial alkaloind (нee ALKatojis) becaure it is regacoled from is clienical point of view na smoinnis, in which one atotn of hydrogen is replaced loy the gromp Ethyl (n. 4.i.)

Euchlorine is a very explosive green-coloured gat, pessusing bleaching jrsperties, and is preprated by the action of stroug hydrochloric acil on ehfotate of potasi). It is duagerously explosive loy heat, and its compmasition is still a niatier of dinchssion. It is variantrly sabumsed to contain chlofie and chlorons neids, as well na free chlotine tind oxygent

Euphorbia, On of, or Oti. of Caper Speras, an extremely acrid fixed oil, ohtainal lyy expression, of by the aid of alenlonl ar ether, fram the seeds of the Caper Spurge (Euphorbia tathyris), a plant common in many parta of Europe, and in some places in Americs and Britain (see SPURGE). Oil of ouphorbia has much resemblance to crotoroil in its properties, although leas powerfial, and is sometimes used as a subetitute for it, in dowes of from three to ten drops. It is good for use only when recently extracted.

Euthana'sia (tir, , an eajy death, or s pasioless method in putsing to desth. The une of narouties or ather mease for shortening life in disesue lats never hecome a subject of discuseion in modert eivitined countries, bat it is often a very practiral question lew kat \rightarrow ael seram sere admintible for sonthing the last lumen nf tifo, when the spproach of sleach slans sut itself dull He como ionesiea asu! the seasildily as gain. If raust herdeciled arruasiing to all the vurveranting: elreamifinces, melforl ant ntherwine, in each individaal ove: As to the medical treatmont to he ecruployed for diminithlap the saiferimpt of the Jying.

Everlasitag Flower, the popalint name of cerchin plants. He flowers of which suffer litsle clasge of appearaive is drying and may be Kept for yeare wjethout mprct dinimetion of bosasty. Thers are planie cloiffly uf the onder (Nonqabilts, havifed
 Eivelucte, the nolea af which revemble the petalis of a conenlis, hat are itgel, tiembramotis alid comitain Fittle misistare. Somer op-ctie of Cudweed (n, Y.) Z Cinapha tium) Are aften nollal cerer fasting Bowers, and Gie oflier plang whirl bat tle sawe helong to mearly ellied groers. luet fuarimalariy lo Hesichegsum, Kímilanilhe, and Aem clinhmar whichs sen mamb ammile and matise of Afrma atsi Auetralla lletiohrymus कr*terrium Io Impliont on ifr, saboly soil- in many plarls af Eurome and the ceional latt, twien of A-is. It E- colenel with is tray polvel down, aud luas yollow flowers wideto. when sublunt, exit a faiot atrumatic foloner. 11 is iffrn worn on the embtumen of Entupe as an arnament is the hat, particsalarly by wagwers. H. ang catotomm and H. Klachess surathy specing
natives of the santli of

Explaive Fawer
(M/whegersi boprowtion).

Burmpe-lave larges vellow fowens Sonse of the puecis lowe at powerfal and pleasalit anowatie minn Serveral Sinite of overfaiting flowere are frepuently to be sean in mar axplane otliets, streli as Phenomims and A plecis nalives of the Cajpe of Coond Hoye, are of shrubly labil, anil clroicet and herntiful greenhmae plants. As an instancet of everlasting fiowers in other orders than Coupesiture may the mentioned the gentis Statioe; the coloured calyx in nearly inl the muntenotzs species of which it fo composed is dry, monltratious, anal vecy per sistent. The Frencli call everlastinge Immertolies, and often weave then intes eircular wreathes, viach are placed beside recent graves, as emblems of immortality or of loving memury- A very exteneive trale is now carrini on by Frabce, Germany, and Italy in growing and proserving everlatting flowere for exporting to Britais and Ameries

Expectorants (Lat. os, 'out of, and pectus, "the breast 7 m medicines pivent to curty off the expectorations-the miocos and atber seeretions of the sir-tabies. The princinal expeetncants are antinunpy, amtnnuia, syuill, ipechcnania senega,

Indsan of tolis, lolelia, yum ammprituc, Bsafotiels, galbanum, exc. The examination of the expectoration is of great value it the diagnosis of diseases of the chest \see Buonchitis, Pabumonia, Consumprion). The wond texpectoration' has come by an shase to loe regarded as a mere elegant synonym for spitsing. See Saliva.

Extractive Matter is the term applied to the solalule portious of any drotg. The substances extracted form the same strig may vary according as the solvent is water, sleohol, ether, \&c, ; but, so long as the originully insoluble portions are not feodered solable by the chemical metion of the solvent, the teria extractive matter is applicable to thess.

Extracts, in a technieal sense, are mealicinal preparations of wogetalile prineiples, got either by extracting these Ifon the plants by meane of a solyent or twenstauam, and then evaporating the liguid flows to about the consistency of honey, or by expressing the joice of the planis and evapornting; thie last is prujerly inspisaated javice. Extracte, therefore, conlait only those vegetable princjples that are eicher held jut molution in the juices of the planta thembelves, ine are malable in the liguid easployed in extructing then, and at the came the are not no volatile as to be lost Aluring evaporation. Now, tu many extcuctive mattern mo more of leses volutile, it makes a great differetice whether The operation is comincted at a low or at a high tappend are, Besides the lasi of volatile constita. enta by pralomged or excensive heating, extracts becorac more of lens ohatiged and inert owing to the readiness with which vegetable principles aro destroyed when exposed io heat and air. On this acootint it fir usal to avoid ayayoration an mach as possible, sud, where this in impacticable, evaporaLios in pucse is resorted to. Extrusta are calles esatery or alcohofic peconding as the menntraum employed is water ur aicohof. ELher in also used in extractiog. Different planta, of conree, afford Sifferent extrachs, sone being of the nature of hiluera, others leing tuod is pigmonta, tannin, dec
Liywid exfracts ise those which are not evaporated so far an to form a paste, and it in manal to make them of etach astrengeth that oue Ifind ounce containit the sotive ingredlenta of one munce by weight of the drug:
Extiact of Meat in obfained by acting npon chopped meat by cold wuter, and gradually heating, when pbrat ane-eighth of the weight of the mest diamives out, leaving an alriont tastelent insoluthe fliria. The extrict of meat containe the salta and sucvoury constitaentis of the meat, aud is a light and stimalating article of food (see BEEFTEA, and Brotii). It may be concentrated into email boik, abd, when desired, may be ifterwaris treatel with water; being lieated, it forms an Agreeable light soup, though rather BLimulating
than nutritious, of this nature is fles well-known than nutritious, Of this natore is the well known
Eiebif's Extract, In onier to impart to extract of ments asutritive as well as stimulant value, the filris is nometimes alried and powdered, and, when then focorporated with the extract itself, is product is obtained which represients thes original meat in a readily digested form.

Eye. In this article we shall consider : (1) The stractare of the humsus eyebail, and of certain accessory parta or appendages which serve to protect that organ, and ree eanential to the due performance of its fanetione (2) The most striking modifications which this organ presents in some of the lower nnimale (3) The eye considered as an optical instrument. (4) The action of the retins. (5)
The morements of the eyeballs, and binocular vision,
(1) The glole of the eye is placed in the anterior part of the cavity of the orbit, in which it is held in paxition by its coanection with the optic nerve pasteniorly, by the muscles which surround it, and by the eyelids in front. It in farther suipporied behind and on the sidea by a gitantity of loose fat, which fills up all the interatices of the orbit, and facilitates Use varions movements of which the eve is capable.
The form of the eyclaall is nearly splerical ; but on viewing the angan in profile we see that it is composed of segments of two spheres of dilferent diameters. Of these, the anterior, formed by the irnnsparent cornea, is more carved, and therefore more prominent. The horivontal transverse diameter

Fig. L. - View of lower half af right Human Eye, divided horizontally
d, cornes; b, selenotic ; s, sheath of optle neqve pasaing inle

 A. pasterist chamber of squeas bumbor 1 s, eryatalline lena
 simsaut.
is almost exactly an inch ; the antero-posterior and vertienl each abont to leas. The radias of the posterior or selerotic negment is aboat half, and that of the anterior segment about three-tenitha of an inch.
When the cyea are in a stale of reguses, their antara-posterior isxet are parallel ; blat opicie nerves, on the gther labid, diverze conaiderably from their combnisatre within the cavity of the alsall to the paint where they enter the globe; ownseriaently their direction daen not cometide with thit of the eve. Enth nerye entans the bark af Eles ghole as it ilintance of aloqut ane ejighth of an inch in the inger sifle of the sotorm justeribp axis of the eye.

That eyelall to cumpused of three cancentrie membranes, anst of certain ttansparent strurimpes, which are incloned withis them, and which, sogether with the cornea, transmic amd refract the rity of light which enter the eye.

The ouser (iftroun or proteclive) memhinane dan bists of the acleratic ind corners; the milalle / vascalur or sutrient) of the choroth and irts ; the inner (nervous or peroipient) of the retims. The tran日parent contents ife (from lefore biskwards)
 humntr We whall consider these atructures in order.
The selecrutio (from sklermat, 'hund'), or 'white of the eye, is a atrong. denne, fibrous atracture, covering about fivesixtes of the eyelall, and continuous, antefiorly, with the cornea. Posteriorly, it is perforated by the of ic nurve, and it is there continugus with the als ath which that parve derivee from the dura mate, the filirums investment of the brain and apinal cord. Near the entrance of the nerve, its thickness is about shth of an inch:
 it again bocomes thicker, from the teadinous inseftions of the strajght musclea which blend with it.
The cornea (so called from its horny appearance) is a transparent structure, continuous with the aclerotic, from which it differs more is appearance than in texture, and completing the filmous tanie of the eye anteriorly. Its eiresuference is overlaid by the free erjge of the sclerotic, as "A watch-glass by the edge of the groove into which it is received. Its thickness is from , ${ }^{2}$ th to $\frac{1}{2}$ th of an inch. It is covered in front by a layer of conjumetival epithelium, which is exquisitely sensitive.
The cornea, in consequence of its greater convexity, projects beyond the line of the sclerotic; the dogree of convexity, however, vatiea slightly in different persons, and at different periods of lifeIt is so strong as to be able to resist a force capable of rupturing the sclerotic. The fibrous coat, by its great strength and comparatively unyielding atructure, maintains the inclosed parts in theit proper form, and serves to protect them from exteraal injuries.
The choroid cout is a dark-coloured vascular membrane, which is brought into view on the removal of the selerotic. Its outer surface, which
is mearly black, is loosely connected with the scleratie by connective thano, in which are con. tained certain nerves and vesosls-termed the ciliary nerves and vesiels-sonne of which go forwand to the iriz. Its inmer aurface is sanooth and dark-coloured. In front, is termibates in the ciltary processes (figx 1 and 3), which consiet of about sixty or sevealy radiating folds ar thickenings of the membrabe, each of them terminuted by a small free intering extremity, and lodged in a corresponding fold in the suspensory ligament of the lens. In other parts, it is covered by the

 the elcralie:

heragonal pigonent cells of the relina. The chroreid is composed of mitate rabifirationan of venielneapecially of veins, which, from their whira like arrabigenient, are termel rear rorfinush- of connective tiswe, and of /arge linatrelamg jigumentcolls. thetween the setorricie ansl elomunt at its anteriog pant lice a monll lus impertant siractares the cilfary muselc, wharli srimp froin the innive aurface of the nolerotic arar the conwes, ambl poobs buckwanda to bos inserted isin tho clocoud ophnsite the ciliary proceters.
The try may be repanled as a proces of
 there are differsuces of stowisure in the two mom brames It is a thin fat
 cuttain, lasag iog suearly vertically in the mqueoti= Framont in fresis of the lens, and per. forated lyy the jupil for the Transmission of ligits Its antervar sar faceis rarimus. ly euloured, and onveren lyy fine irreg. ularly-mallias. ing projeci tions: its pos. terior suriace is mpagoth, spil aweted by a atiform layer of daris jaiproiont, contumpons with the pigment-cells of the retina The poaterior sarface mear the papil is in contant with the Anterior eapoutle of the lene. It dividies the equace betwren the cornea and the lens intes an suterior (the larger) and a poaterior < the nowaller / ehamber. these two chamilers freely ommmanirating through the papil (suse fitg 1) The outer and largor leviler is attached all manal near the litie uf function of the scleratic and carnea, to the cornes, Chnnosl, and ciliary masele, while the inner edpe fortios the boumary of the pugal, which is nearly ciremlar, lies a lictle to the sple of the conitie af the ini, sad varies in sine areonding to the action of flse tnuseular fibres of the irise 30 as to anhwit mone or leas light inte the interior of the eyeloall; ito
diameter vargitig, under these cireumalatere, from about 14 to shth of an incls. It is masembia in ite structare, one si-t of tilores heing arkitnped ciremiarly ronal the peynit, and, when necesary, vflicting its contraction, while anosther set lie in th rafiatimp: direetion from wjuin sutwayds, and by theif tection dilate the pupti. Thesse fihes are of ithe mastripusi or involnataly variety. The nerves whicle ate concerned in these shormments witl be premently sotices. The iris in richly sidpulied with homit. vessels; and pignient-rells bike thuse of the clarobl afe ncattered through its sulatance.
The varielies of colour in the eycs of ditherent individuals, aud of ditierent kinds of sumula, maisty slepend upen the colone and anoont of the prigroent in these cells. in hue eyex, thas pigment ie seanty of alment, and the caloue is slue tar the dark pigment of the postertur surface partly sect thripugh the vaserular membrame; in brown ata black eyes, it is shamant, and is the canse of ther colaur. In allouns, this pigneat is alsemb frotn iris, retink, and chasoin, and hence their oyen have a pink apprearance, which is due to the unconceatest bloon in the eapillaries of the ehoroid and iris,

Within the chareisl is the retina, which, althaugh contiontinn with the optic nerve-of which it in aswally regarded as a euplike exparosion-dillers very suatarially fross it in structurt. Bofors sutcing the efabonate eonipesition of this part of the ese, which las only heen revealed loy tamenssugical inveptigation, we dhatl liriefly nemtion thuse grunta regrandion it which cen be establhalued loy ondiasry examimation. It ill a delieale nemi

Lranisjarent slient of nery. ois matier, Iyfun thatat diately lwhind the sifrenus harmant, and Fskendiag from the aplie aryve
nowarly in far an nearly ins far an examining the cosicave inner surflace of Llet retisa at the back of the
 we nbserve. direotly in a line with the a, ons olpe at notrolis it if diment axis of the

1/6 4.- Itwientor half ef tole toye from shem frmit?
glolie, a cirenlar yellow spot (buculer (wtert), of about soth of an inch in dismeter, called, after Iter discoverer, the yellome siat of Summering, with 4. deprestion in its centre, the foose centralis About |th of an inch intermat to thin in tha entrance of the optic nerve, called the optix dien of papuildor, from which the central arkary and vein of the retion say los sucen hranchiog as they pans to their distribution.

The sfaveture of the telina, the revenled ly the mictresonge, in in the higheat degree re. markaile (ree fig. 5). Althongsh its greatest thicknesy fat the ontrance of the ajtic berve) is only about disth of an inch, and as it exteuls anteriarly, it noes dimintslees to pheth of an incli, the following layers from vithond inwards can be dintinguinhest its most parts of it (a) The 10ヶmentary layer, consisting of a singto laym of that hexagganat eefls, regularly arraaged; itconter karface clogel connectad with thr choroid, tis inner in contact with the ex

Fig. 5-Miagrambatic Mection
treraities of the rods and cones. Though ita development shows that it really belongs to the retina, its mechanieal connection with the choroid is firmer; and to this it alberes when the retins is stripped off. (b) The layer of rods and cones, frequently termed, from its discoverer, the mem outer molecular; (e) inner gramular; (f) inner molecular: (g) layer of nervecells; (h) layer of nerve-filires, in which the blood-veasels lie.
The layer of rods and eones, the portion of the eye which receives the impressions of light, deserver special attention. The rods are thinner but longer
than the couses, and in noot parte of the retina far than the coues, and it the yellow spot, however, only cones are found. Each rod or cone consints of a thicker inner portion, connected with the oater
granular fayer, and altimately with the optie nerve granalar tayer, and ultimately with the optic nerve
by a fine fibril ; and an outer thinmer part, directel towards and conneeted with the pigmentary layer. The percipient elementa are thus directed away
from, not towards the light. In fank, we do not from, not towards the light, In faek, we do not
look outwards at the netonl object, hat we aee the object as reflected from the base of our own eye. Of the cones there are severil, of the rods many millions in each baman eye, and they are closely packed together over the whole extent of the retina.
It now remains ior us to describe the trunspereat media which occupy the interfine of the glotio, and through which the rayn of light must pase befory they can reach the retina, and form on isthe imagen of external objects. We shall cornailer them is the order in which the rays of light asfike them.

Immediately behioif the hramsparent comea is the aqueoses kumour, which ithe ap the anteriar and posterior chambens whioh lie betwean the corney and the lems. As its name japlies, it is very nesrly pare water, with is mere trace of albungn and chloride of notiam. It is believed to : in wecreted ly the choroid and to peas forward frum it through minute lymphatic channele.
The crystaldius lens lien opruaite to and belind the papil, in contact with the inove piar of the iris, and lits powkerine sutface in perevid into a correspoadiag depression on tho lorepart of the vitreous buromer (see fig. 1). In form, is is a stnuble canvex lens, with aurfaces of unequel curvaLure, the poiterfor being the most convex. it is inctosed in is transparent capsole. of whield the part covering the anterior surfiace is nosurly four tomes thicker than that at the proaterior aspect. The mieroscopic exsmination of the anhatance or body of the leps revanala a stractare of wonderful heabuy. Ith whole masa is corsponed of extremely ningie elanguted ribian like strmotnres, comamonly called the fibres of the lens. These fibres are arrsaged side by side in lamella, of which many hundred exist in every lens, and which are so pliced as in give to the interior and posteriar surfaces the appenrince of a central ntar, with maritian lines The lens gradually incrusses in ilenaily, and at the same time in refracting power, towarris the centre; by this means, the refracting power is made greater than it would be even if the lens had throughont the same index of refraction as the nuelens. (According to the latest roeasurements, the index of refraction of the outer layor is 1.393; of the nucleus, 1.431 , the total refractive power corresponds to thict of a homogenenas body nt the same size and slape with index 1-48.) This arrangement besides corrects to a certain extemt the spherical aberration of the eye. According to Derzelins, the lens contains 58 per cent. of water, 36 of albunen, with minute quantition of salts, membrane, ke. In consequence of the albimen, it becomes hard and oprque on boiling, as we familiarly see in tho case of the eyes of boited fish. In the aduth, its diameter transversely is aboat fd , and its thickness antero-posteriorly about t th of ais inch; and it weighs three or four grains. The lens is held in position by the anapensory ligament of the lens and zontule of Zinn, a fine triasparent fibrous structure, attivehed outwardly to the choroid between the eiliary processes, and passing inwards to blend with the anterior and
posterior capale of the lena near ite margin (soe posterio
The vitreous humour lien in the concsvity of the
retina, snd cocuples about four-fifths of the eye posteriorly. Its form is shown in fig. I. It is incloned, except in front, in the hyaloid membraine. which blends anteriorly with the zonule of Zins; and its anterior surface is in contact with the posterior capsule of the lenis. It is quite transparent, and of a soft gelatinous consistence. Its outer part at least is luvinated, like the onata of an omion. Bat the exact arrangement of the framework which gives it ita consistence has not been determined. Betweep the anterior border of the retins and the border of the lenk, we have a series of raliating folds or plaiting lermed the ciliary proceases of the vitrewus body, into which the clajary proceases of the thoroid dovetnil. The vitreons fumoar contains, wocording to Berzelimh, 884 per cent. of water with A trace of allumen and salts, and hence, th might be expected, its refractive index is alinome identical with that of water.
The appendage of the eye now claim our notioe. The mont important of these appendager are the musclea inithin the urbat, the ryelide, the lachrymat appuratus, and the conjunction, to which (although lesn important! we may add the equbroner.

The nuacles by which the cye is moved are four straight (or recti) moseles, and two obligue (then sapepior ant inferiorl. The former arise from chin margis of the optic foramen at the apex of the arlit, nad ate linserted inte the selerotic nesa the cornea, iblowe, below, and on sitber side. The naperior oblique arixes with the straight maseles, hat afier runining to the upper edge of the orbit, han ite

 ohiel las afien luen evt on whow the internel phetas mlancie.

 N. polity? S tarsal eaytinige
direetion changed by a pulley, and proceodr back. wards, outwards, and downwande (eee fig, 6). The inferior oblique nriver from the lower part of the orbit, and paener lackwands, outwards, and ypwerds. The action of the straight muecles is suffeiently sbvinus from their direction : wheth scting collec. tively, they fix and retract the cyv; and when arting singly, they turn it townds ibeir renpective sideas The obligse muscles antaguaise the reeti, and draw the eye forwarls; the saperior, seting sbove, difects the front of the eye downwards and ootwards, and the inferior apwads and inwards. By the duly ausocisted action of these muncles, the eye in enabled to toove (within definite limita) in every direction.
The eyelich are two thin movable folds placed in front of the cye, to shield it from too strong light, and to protect its anterior sarface. They are componed of (1) akin, with a hayer of mosele (part of the orbicularit, see below) clowely sdiberent to it: (2) of a thin plate of Gbro-cartilago, termed the lursal oartilage, the inner surface of which is grooved by thirty or forty paraliel vertical lines, in which the Meibomian glards are jinbedded ; and (3) of a layer of mucous membrane (conjunstiva), continuous, as we shall presently see, with that which lines the nootrils, and joining the skin at the margin of the lids, in which the eyelashes (cilia) are arranged in two or more rows. The upper lid is rasch the largers. Nend to the peaterior border of its cartilage is apecial minsele is attachei, termed the lesotor pulpeliru superionis, whose object is to elevste the lid, and thus open the eye: while there is another muscle, the arbicadaris palpebrarnim, which surrounds the orbit and eyeFins, and by its comptraction closes the eye. The Meibomian glands secrete a eebnonoun matter, the free motion of

Fig 2
The Appendagen of the Eye:
1, the eartilage of the spyeer eyelid; I, its lower border, shuwing the ojnes. Ings of the M+ibomian glunds 3 , the martilage of the lawer cyrliol, alae
 of the steikumlan slateda; i, 3 , the
 rymalio, operutige into the laclaryma canals 16,16 , the supervor anit in fervit lichiryisial ganist is the lach rymbl kae: 13, the tasal durt, tor minationg st 14 in that lewer insatus of Fthe noar.
pasis from the ung into the nose. phlong body, ulout the size of The gland is an byimp bady, thout the size of a small almond, lyimg in a depression is the apper and outer part of the orluit. The fluad socretted by it resuches the nurlace of the eye by twelve or fourteen ducts, which spen on the confunctivi at its upper and maser pist. The constant motion of the apper eye. lid inducen a contimbous zentle eurrent of teare over the nurfice, which carry away any foreign particle that miy have boen deposited on if. The fluid then pinats through two smanll openinge, terined the punctar tachrymalia (see 9 in fig. 7), into the canuls; whence ite forther couse into the Jower portion of the nose is nuflelently obvious from the figure. The monjunctifa (or micous cont) which covere the front of the eyeball, and lines the inner surface of the lide, pasmet down and libes the canalis, sach_{3} and duct, and to thus neen to be continnosth with the nissis mueous membrane, of which it masy be regarded ou isn offahoot or digital pro. longation. See Mucous MEMsRANEs,

We shall oosclude this sketch of the anatamy of the haman eye by es brief notice of the nerved going to thut ongan and ith appendeges. Inta each orbit there enlers a nerve of aquecial anan-viz, the optic oerve : E nerve of orvinary senacation-viz the oph. thalmis branch of the fifth nerve; aind certain serves of motion going to the muscular tinases, and regalnting the movemente of the various parts -vis. the third, fourth, and sixth nervee.

As the optic tracte from which the optic nerves origiante are notiosd in the mrticle BRAIN, we shall mercly trioe these nervis from their chasma of combinisare forwarile. ThiA eommisare resilus from the junction of the optic tracts of the two sides ; and it is eepecially remarkable for the fact that is presents a partial decuspation of the nervous fibres; the ceniral fibres of esch truct pasaing into the norve of the oppoitte side, sud crossing the corronpunding fibres of the other truct, while the gulermoet fibres, which are much fewer in number than the contral ones, pase ta the optic nerve of the sames side. In front of the commisume, the nerves enter the opile forsmen at the apex of the orbits recrive a sliesth or investment from the diora mater, soquire increased firmness, and finally terminate in the retina. The peculiar mode of termination of the optic nerves in the cuplike exparsion of the retins, the impairment or loss of vision which follows sny marbid affection of them, and the constanb relation in size which if observed in com. parative anntoms between them and the organs of viaion, sffond sufficient evidence that they are the proper oonductors of vismal impressions to the sensoriunt.

The fint or ophthilmic division of the fifth or trifacial nerve sends branches to the eyeball (ciliary nerven), to the akin of the eyelids, and to the conjunctive. That it is the nerve of ordinary sensntion of the eye is sufficiently obvious from the following facts: (1) That in disense of this nerve in the human subject, it is not uncommon to find the eurface of the eyeball totally insensible to every kind of stimnias (particleas of dust, pungent vapotars, \&c.) ; and (2) that if the nerve pungent vhpours, \&ce.) ; and (2) that if the nerve
be divided in the cranium (in one of the lower snimats, simimiar inemasibily y reataa

The most important of the nerves of motion of
the eye is the thind nerve, or motor oculd. It supplies with motor power the elevator of the upper eyelid, and all the muscles of the globe, except the superior oblique and the external straight muscele, snd, in addition to this, it sends filaments to the iris and ciliary muscle within the cye. The application of an irritant (in vivisection experiments) to its trunk induces convulaive contraction of the principal muscles of the ball and of the iris; while paralysis or division of the trunk occasions an external squint, with pulsy of the upper eyelid and fixed dilatation of the pupil. The squint is caused by the retion of the external straight and the superior oblique muscles, while the other muscles sre puralysed by the operation. The normal motor action of the nerve upon the iris, in cansing eontraction of the pupil, is exclied through the optic nerve, and affords a good illustration of Refies Action $(\eta, v$,$) ; the atimulus of light falling upon$ the retina, and, through it, exciting that portion of the brain from which the third nerve takee ita origin. This nerve clearly exerts a double influence in relation to vision. (1) it mainly controls the movements of the eyeball and the upper eyelid; and (2) from ite connection with the muscular
structures in the interior, it regulates the amount of light that can enter the popil, and the adjuat ment of the eye to various distancen. The fourth nerve supplies the nuperion oblique aidsele with motor power, while the sixth nerve Einilarly regulates the movements of the exteraal straight muscle-the unly two muncter in the orbit which are not mipplied by the third pair. Atthough not entitied to le termed a nerve of the orhit, the facial nerve denervea mention as nending a motor branel
in the orbicutaris muscle, by which the eyelids are In the orbicutaris masele, by which the eyelids are closed.
(2) Compuratiee Anatomy of the Eye,-In niammoli, the atructure of the eye in usuilly almont
identical with that of inas. The orgas fs, how. identical with that of mat. The organ is, how-
ever, occasionally moflifind, oo an to meet the peculiar wanta of the animal. Thus, in the Cetaces, and in aome amphitioun Carnivors that
catch their proy in the water, the ahape of the lana is nearly apherical, wh in fiahen, and shere in a similar thickening of the poacerior part of the aclerotic, son as to thrust the ratina anifficiently forward to receive the image formed by ench a jena. (See the sulseyuunt remarky on the eyen of
fiyhes) Again, inntend of the dark brown or black pigment which lines the haman choraid, is pigmant of a brilliant metallic lastre is secreted in nuany of the mammalia, forning, the io-called tapedum fuce.
dum at the bottom of the eyeball, which semma (ac. dum at the bottom of the eyebill, which seems (aecording to Bowman) to noct as a condave reflector, causing the rays of light to traverse the retins is becond time, and thus probably increaning the vinuad power, particularly where only a feeble light is admatted to the rye. The pupil, moreaver, varien in forim being tranaveranty ohlong in the Kurbinanti and many other Herbivora, and vertically phlong in the pinaller genera of Cata. These nhapes are apparently connected with the positians
in which the different animala look lor their food in which the different animala look lor their fool. Lautly, in nome mammals fe.g. the honcel shere in a rulimentary third oyelid correaponding to the
membranet nictitans of birds. membranat nictitans of birds.
In birvts, the eye, though presenting the same general composition sa in man, differs from the mammalian fye in meveral important pointa. From
our kmowledge of the habita of birds (especially our kmowledge of the habita of birds (especially
birds of prey), we mhonld naturally expect that in their rapid movements they would be able rendily to alter the focus between the extremes of long and short sightet vision, and the modifications we shall now proceed to notice clearly have this object in view:
In reference to fig. 8, which representa a nection

Fig. 8.-Eya of Biru. of the eye of the owl, we see (1) that
the ghape of the organ is not spherical, as in mammalis. nor flattened an-
teriorly, sa in fishes and aquatic reptiles, but that the
cornes is very
prominent, and the antero-posterior diameter lengthquence of this
to allow room fir a large quanticy of aqueots homour, and to increase the tistance between the lens and the posterior port of the retina, and thns to produce a greater convergeace of the rays of light, by which the animal is enahled to dincern ness objecta. Is ander to retain this elongated form, we find is sprim of bosty plater forming a browl zone, extending bsckwards from the anargin of the cornex, and lying irmbedided in the sclerotic. The edges of the pieces forming this bony zone overlap each other, and are slightly movable, shul hence, when they are conmireswed by the action of the mascles of the lall, there is protrusion of the aqueous humour and of the cornes, adapting the eye for near vision; while relaxntion of the niusclea indaces a carresponding recesainn of the humour and flattering of the corars, and fita the eye for diatant vision. The focal distance is further regulated loy a lightly vavenlar ofgan called the marmiptam, or pecten, which is lodged in the poaterior part of the vitroous humaur (fg . 8, a). It is attached to the optic nerve at the paint where it expande into the retins, sud elems to be endowed with a power of dilstation and contraction ; as it enlarges, from distension of ite blood-vassels, it causes the vitreaus humpur to push the lens
forwards, while, as it collapmes, the lens falle bsckWarda agais towards the retion.

In addition to an upper and lower eyelid, birds have an elastie fold of conjunctiva. which, is a state of repose, liea in the fraier angle of the eys, but is movable by twa distiact muscles, which draw it over the corraca. It in terosed the mentrana nictitans; it is to a certain degree tramuparent, for (accordinge to Cavier) hinds sansetimen look through it, as, for exaruple, the eagle when hooking st the atan. The lachrymal gisland ie nitusted as in mam. mais, but thern bs here a second gland, the glandala Harderi, which yipils as lubriesting secretion.
There are no very apecial peruliaritios in the eyen of mpitilas. and we therefore proceed to notico the niont remarkable prista preented by the sye in fihes. Fromi the eorsparativriy grent denaity of bght pasa belore they inapinge upea the tranapar: ent atructurv of the rye of the fish, it fo nivioes that this organ mass set as a very power-
ful refractive spparatise The main pecalinrity in the eye of the fiah is the size,
 extreme dens.
ity, and apherical shape of the lens, which give it anch an extraordinary magailying power that is bos heen employed in s simple micruecope. See Brewster' Treathat on the Microwcopt, P. 31 . But its focns being shortened in proportios es ite pewer bo incroasod, it is necessary that the retina sbould be bruught rear ite posterior nurfice. For this parpose the eyehall is flattened by diminishing Form is traintained by the existence of two cartilag. inous platen in the tisnese of the nclerotic, which in soms of the latger fishes is a-tually canverted into a bony cup. The aqueons humoer, as the cormes has here hardly any refractive power and is also flattened, is barely, wulficient to allow the free suspension of the iris. The pupil is very large, no
as to take in sa much light as possible, but is as to take in as much light as possible, but is
generally motionlese. Their eyes being constantly washed by the water in which they live, bo lachrymal apparstus is necenary, nor doen any exist; and the sane remark applies to the cefacea amongst the mammala. We thum wee that throughout the sub-kingdom of the tertebrata the eye is construtied according to one general scheme, with modifications to suit the mode of life of individual classes.
There is another organ present in most vertebrate saimals which seems, from recent invertigations, to represent an eye, though it is very donbtfal whether it has the power of sight in say living
snimal. This is represented in mammals sod birds animal. This is represented in mammals sod birds
by the pineal pland (see BRAIN) ; but in some
lizands in placed upon the top of the head, and has the appearance of a rudimentary eye, similar in structure to that of nome of the Invertebrata In the Invertelorata there is an immense variety in the stracture of the eye where such an organ is present. There are two main types simple and componind eyes. In pimple eyes (of which the hrman eyeicelf is the most highly organised form), every degree of complexity is present, from a mere pigmented spot, with or without a rudimentary The to an organ nearly as complicated as that of with a cornea, iris, lens, and retins all well developed. In these eyes, however, almost without exception, the nerve expands behind the retina, and the percipient elements are directed towards the light; while in the vertebrate eye the opposite srangement obtaink.

Some of these organa are so radimentary that they can have no function beyond mere perception of light ; but in cases where they are sulficiently developed to adinit of the perception of objects. they ase, roughly speaking, tos our eyes do-that is Le nay, a more or less necurnte pictire of external objecter is thrown on the expanrion of nerve-ending correspanding to the retina, and its direction in reversed (see below).
Is the compoend eyes the whale prineiple of the otructure and perception is different. They are best developed is Insects (q.V.), and in the higher Cruslaceans; but occur in is rodimentury condition in some mollancs. The surface of such an eye in divided inte if number of liexagonal facets, the cuticle of each generally forming is minute lens Beneath euch faret is A trangparent rod, surroundial and separated from those aljacent ia it by pigment, and leading inwarde to the retinula, a grony of oflls in coanection with the teramal filisify of the optic neeve In most famitiar imeecta they form (wn laposingherieal thanps on the niblos of the hemal In mame ants there are only fifty facete in each os A ; in the hoamefly alooat 4000; in norue bectles as many ai 25,000 If in probable that in these use only the rays of thelt which tall upan f particalar facet exactly, of very nearly, in the ilimention of the tran-parent robl bencath it can seach the ournspmand ing nerve-flares and thai, other rovs are ahmmbed loy the pigment sfosind the mod. Khel percipient elemzent therefare receiven light only framin a very mashl portion of the held of vision, and the pioture is a mosaic, eaclr olement of which is furnithled by a different facet of che eye. The picture then abvi ounly the same poition the the object it repreaents, iantead of being inverted av in a nimple cyn. Moat insects have sitiple as well as cospunsul eyea fout tho latter have tay far the unset juefleet vintin.
(3) We may cuw proceed to the conisiteration nf the nses of the various paria of the eye Assuming a general knowledge of the ardinaty laws of peometrical optios ssee OrTies, LiviNS; sec), we shinll trace the coupse of the raya of light procesoling from any luminous buly through the different media on which they impinger. If a lumin. ous object, 8 , for example, a lightual randle, the placed in front af the ese, sume of ife rays fall tuon The cornes and are in part rellected, giving to the norface of the eve ita beaulifst histening appear ance ; in frart refracteal or converged hy it, In enter the aquems humonr, which exerts net perceptille effect on their direetion. Thome which fall on and pass thirnagh the orter or circumferential part of the cornea are stopped by the jris, and are cither scattered or alsoorleed by it: while those which fall upon its mare central part pass through the pupil, and are concerned in vision. In consequence of its sefractive power, the rayo passing thremgh a somewhat larger surface of the cornea than the pupil are converged so as to pass through it and inpinge ajon the lent, which, as ita refractive inclex is mitich grester than that of the squeous und vitreons humours, by the convexity of both its surfaces very much incressess the convergence of the rays passing through it. They then traverse the vitreons humour, whose principal ase appears to be to afford support 20 the expended retina, sull are brought to a focus upan that tunic, forming there, if the eye be edjusted for the distance from which the rays proceed, an exhet but inverted image of the object.
This invernion of the image may be easily exhibited in the eye of a white rabbit or other albino animal, after removing the muscles, \&c. from the back part of the globe. The flame of a candle $(A, B, C$, fig, 10$)$ held before the cornea may be
seen inverted at the back of the eye (c, b, c),
increasing in size as the candle is brought near, diminishing es it retires, and alwsys noving in a direction opposite to that of the flame.

$\mathrm{Fig}, 10$.
The adjustment of the eye for distinet vision at different distances, or accomtnodation, must next be considered. The normal eye in the position of rest is adjusted to nee objects it a slistance (practi. cally all objecta at 20 feet or more are seen with equal clearness) , to see a near object (at 10 inches, say) a dintinct effort is required, and when the effort ceasea the object at once appeara blurred. Careful observations and measurements by means of a suitable instrunient (Ophthalmometer) of imagoe reflected from the three principal refracting surfaces of the eye (cornes, anterior and posterier surfaces of erystalline lena) have shown that doring

Fig. 1L,-Aotion of Cilary Maede and Iria in sceommodation ?
 object B, (len or night) half; syn foessid for a nas object.
 lens: p.ifis.
accommodation for a near object (I) the pooition and curvature of the cornea remains nnchanged; (2) the anterior surface of the crystalline lens spproaches the cornes and becomeit nasch more convex: (3) the poeterior eurface does not change ita position, but becomes very slightly more coscave. Accommodation, then, depends upon change of shape of the cryntalline lens. The true explanstion of the mechanism by which this in effected wan firat given by Helmholtz. The ciliary muscle, in airendy stated, has its fixel attachment all round within the selerotic close to the rargin of the cornea ; and passes outwards and backwarde to the anterior part of the shorods, cloee to the ciliary procesacs. When it contracta, therefore, it drawy these structures inward; and with them the outer attachment of the suspensory ligament of the lens. The tension of this membrane is thres relaxed, and the elastic lens, whose form as well as poaition is controlled by it, is allowed to nasame a more spherical shape. When the ciliary muscle ceaves to contract, the converse takes place, and the lens is again flattened os the auspensory ligament and Iens capaule become more tense. With the contraction of the cilisry muaclo is alwaym associated a contraction of the circular fibres of the iris, dimisishing the size of the pupil ; and when the ciliary muscle relaxes, the pupil enlargea again. This change, though of much leas impertance than the change in shape of the lens, is mach more easy to observe.
Change of adjustment reguires it hhort but measurable time; that from diatant to near vision requires a little longer time than the converse; the former from a littlo over one to two seconds, the latter about one second.
As age advances, the power of accommodation steadily and quickly diminishes, not because the cihary muscle gets weaker, but because the lens becomes less elastic. This change begins duriag youth, but is not commonly noticed before middle life. At ten years of age an object can be seen distinctly at less than 3 inches; at twenty, not nearer than 4 inches ; at about forty-five, not nearer than 10 inches; at sixty, not nearer than 3 feet. After seventy-five, the lens is so unyielding that accommodation is altogether lost. When the shortest
distance at which tistinct vision is possible ap-
prosches that at which reasling or work is msually attenipted, the failure of ascommodation begins to attract attentinn, and syectacler have to be resonted to to compensate for it. This condition has received the name of procobvoping or old sight, but must be clearly underationd to te perfectly natural after the agy of forls, love and in an way to imply defect or wraknent of the eyes.

The eye, regariled as an optical instrument, has numerois imperfections: the move inuportant of these mast be mentioned.

Spherionl abernufion I see Lexss) is in part syoided by the Tris, which, acting ans is diaphragm, cute off all hut the central pencil of mys; in part by the fartas of the sefracting surfaces, which are not sruly spherical, bat ellipouital or hyperholical -i.e more enrved at the centre than efsewhere in part by the osisalitution of the liens (mec atwre), What renuains is, like obromafic aberrention, for which no correction weems to exist, too slight to be perceptible,
Regular Asignatiou la, vo) is present in almost all eyes, but is lgenerally so small is amount ms to lie of no improttance.

Pesprofol Trusup-weary of Media-The ntellate arrangearent of che lamelle of the lens is the caase of the rayed ior, as we say, ntar-hhapall appearance of a poiat of light. Sfacor nolitiontes, the clear threave or stringt of beadn often seen in tooking at a bright warface fisting shout when the eye is movel, are due to the shadowe of the minute fibies and corpuscles matorally picesent is the vitreous hiaraour.
(i) We must pow cousider how the image formed in the lock of the eye by the dioptrie medis give rise to vision Is is the retiga, and unly that part Fig. 5), whach ivaliresily afferled loy light,

Let two marks he made on s sheet of paper ahout \& inches aymert hortmontally \{a crow and a mound mark to the right of it). Clome the left eye, and walling the paper shout soot from the face, look stesulify at the cross: the sircle is also vinible. Now briag the japer gradually pearer, keeping the right eye fixed aposs the cross. The eirele soon tinappear: f het lincopars vivilila again when the praper is lisought esill neszer the eye. The Wind apot in which the cirele lomonaes invisilhe in the ensrance of the aptie nerve; luesice we know that the nerveifibres Ifemmelves are not sebsitive to light. Further promil at this is given by Purkingels fogire, which is essily perceived os followe: : Take a candle in a roonn othernviee dark, and holding it a short distance in frons and on the outer sifle of one eye, move it from side to pdic, looking straight forward. A ret of branching dark lines, the nhadows of tho retinal binod-vesuels, will be seen (me fig. 4). These could not ber perceived unless the senndtive partion of the rerion lay beldind the blowd-veasels, which the nerve-filar layer of the retina dees not.

Stimulation of the retina, lowswer is triay be caused, giver rise to the amsasion of tight. Thus, alight prewure on ane sile of the eyeball canses an sppearance of flahes of light towarls the opposite nide. A sudden blow on the eye, or the indirect shock to it of in fall on the head, makes one 'sce stars. Electric currents phased throwgh the eye similariy cause a sensation of bright fight. But true vision is anly eatued by rays of light falling upoo the retins.
In what way bight affeets the isyer of rods and cones we do not know, Prebably it prodacen aome chenical change, which leals to stimulation of the nervous elemente. A smindance called virnal purple or rhodopirn has been found in the outer segmenta of the rods of some manumals, wbich in bleached on exposure to light, and restared in darknesa Pliotographic pictures of lerigha objects have aven been obtained in eyes of rabbits, se by means of is. Bet as it is sheent in the mont sensitive portion of the humaan retion, it cabonot he the chief factor in the production of viston.

The fooma oentrulin (see fig. 1) is the part of the retina where vision it mont acute as cones only are present here, it is clear that they sre more delicately adjusted for their function than the rouls, which greatly preponderate at other parts of the retins. When the eye looks straight at an object (or in technical language fros it) ite image falls upon this part of the retina. In direet vision, is this is called, two black marks on a white ground are distinguished as separate when the interval between them subtends az angle of about one
minute at the eye. It is found by calculation that this angle, prolonged to the back of the eye, pretty nearly corresponds to the distance between two adjucent cones at the fovea centralis. The vision at other parts of the retins (indirect vision) is very much less acute, and lens capable of accurate messurement. We have only to fix steadily one letter in a page of ordinary print to satinfy ourselves in how small an ares we can see sufficiently distinctly to make out words without moving the eyes. The field of vision, or whole apace within which sbjects are perceived by an eye while it is fixed npon one point, is very much wider, extending in each eye to more than 90 degrees from the fixation point or centre to the outer side, and rather less in other directione. Colour vision is also most distinct at the centre of the field; and it is found that it diminislies more rapidly towards the outer portions than light-vision, no that near the limits of the field colours cannot be recogrised.

There wuint be a certain amount of light for the purpose of vision. Every one knows that very faint light; and, on the ather hand, that on nuddenly entering a lurilliantly lighted room from the dark, everything appears confused for one or
two soconds. There is, however, a gradual sdaptation of the retins to different amourts of light. Persons long immaured in dark dungoons acquire the power of distinetly meeing marrounding objecta; while those who siddenly encounter a strong light are unable to mee dintinedy until the shock which the retias has experienced has subsided, and the iris has duly contracted. In protecting the retina from the andden effects of too strong a light, the iris in assinted by the cyelids, the orbicular muncle, and $t_{0} \mathrm{~s}$ certain extent by the eyabrows. Moreover, the dark pigment of the choroid cost actes an a permanent guard to the retinn, and where it is deficient, as in albinos, an oxdinsry light becomen painfal, and the protective appendagen, enpecially the eyelidn, sre in constant use.
The pernintenoe daring a certain time of impres, sionv made on the retina facilitates the oxereise of pight. Such pernistent Impressions are called afterimagrs. A momentiry impression of moderate intensity contibuen for a fraction of a necond: but if the inipressian be made for a conaiderable time, or lue very intense, it endures for a lotuger period after the removal of the objeet. Thus, is burning stiek, sooved rapilly in a circle bofore the syen, fivee the appearance of a continuous ribbon of fight, becanue the imprespion made by it at any one point of tite course remains on the retinn until it gegin reaches that point. It is owing to thia property that the rapid and involuntary act of winking does not interiere with the continuous vision of surrounding objects ; mad, to give another illustration of its use, if we did not porsess it, the act of readiag would be a for more difficult performance than it now is, for we should repuire to keep the eye tixed on each word for a longer period, othervise the mind would fail folly to perceive it. However great may be the velocity of a luminous body, it can alwaya be veen; but if an opague hody move with snch rapidity on to pasi through a space equal to its own diameter in a lena time than that of the duration of the retinal impression, it is altogether invixible ; and hence it is, for example, that we cannot see bullets, \&c. in the rapid part of their flight. In these cases the after-image is of similar brightness asd eolour to the original impression, and is known as a pasitive after-image. When the stimulation of the retina is very strong, or the retina itself in a very sensitive condition -
 twilight, a regatine after-image appears, in which the bright parta of the original impresaion appear dark and wice versa. An image of this kind may perist for some seconds or minutes or oven longer. This plysiological phenomenon has probsbly given origin to many storien of ghosta and vieiona Thus, if a person has unconsciously fixed his eyes, especially in the dusk, on a dark port or stamp of a tree, he may, on looking towards Lhe gray sky, see projected there a gigantic white image of the object, which may readily be mistaken for a supernatural appearance. The phenomenon is easily seen on looking away from a bright window after directing the eyes to it for soone time, when the bara appear as bright lines on a dark ground. Negative after-images are slways of the complementary colour to that of the
olject. Thus, the image left by a red spot is
green; by a violet spot, yellow; sad by a blue xpot, orange
(5) Each eye can be moved fromi its ordinary position, looking straight forward, through an angle of nearly 60 degrees downwards, and of
35 to 45 degress in other directions. But one eye never moves without the other. Two seriea of associated movements have to be distinguished movementy of both eyes in the same direction, and movements which converge the eyes, or hring the cornese of both eyes towards each other.
When a near object is looked at, the moveinent of accommodation is asmociated with a proportionate contraction of the internal recti of other words the fovea centralis, of each towards the nbject.
If we suppose the retine uf the two eyes to be placel in contact, so that the fovere centrales and the vertical meridians correspond, then all pointa
which lie together in the two retinie are ealled corresponding points, the have the property that simultaneoua stamalation of both gives rise only to a single impresion. An object whose image falls upon eorresponding points thus appearn single
otherwise it appears double apald up two ungers in line in front of the face. When the nearer one is looked at, it is seen singlo, bat the farther appeara double and somewhat out of focus; when the farther is looked at, it appears single. and the nearer is similarly doubled and blurred. Generally speaking, imarys of the great majority of the objects in the feifs of vinjen of toth eyes phat fatl on non-correspanding pointa of the two retinas; but is the attenting is generally directeal to the magen of the object for which the eyes are mecommodated, and an thene, falling apon the foves centrales, are mouch the minst diatinct, the double vipion of other objects is meldom noticed.
In the caee of near objects, however, somesling more is needed to explain single vision. For eyes, looking from different points of view, receive quite different images : the right eye sees more of the right nide, the left eye more of the left It is maponible that the imagee of eacly puint of the object can fall upon accurately correaponding pointa
of the two retinae. Yet the appearnince presented of the two retinae Vet the appearince presented
in that of as aingle object clearly defined. In this in that of a single object clearly defined. In this
cinte then there masa be in the brain-centres a power of combining in a aingle pieture images which do not aceuravely conrespond.
Vasioun topies which the reader might perhape have expected to find noticed, such, for inetance os the appreciation of malif forma by the semae of virion, "corredt vision with an inverted image on the retina, Ke., which belong fully an mueh to metaphysice as to physiology, are discusped it the article on VIsion. We may also refer thoee whe desire information on these peints to Professor Bain'r treatise on The Senses and the Fntellect.
For the anatonyy of the aye, see Quain or ocher standard work. Lubbock in The Sendes of Animats given a concise nocount of the chief types of eyes in the Invertebrath. Helmheltz'n Physiologicat Optios is the clannical work on the optical aspects of the eye. The larger works on human physiology-e.g. sulterl.
Diskases and Inauriks of the Eve, as might be expected from the delicate and complicated structure of the organ, are very numeroun. But an the pouition of the eye and the framuparency of
its dioptric media give exceptional facilitien for their detection and study, they are more thoroughly underatood than those of any other organ. Only the most common and important can be referred to here.
Diseased of Conjunctiva are mainly different forms of inflamimation, or conjunctivitio:
(a) Simple or Catarrhal Comjunctivitis may be acute or chronic. In the former case, it is commonly called 'cold in the eye.' The white of the eye is more or less reddened, and there is an increased discharge of gummy subatance, caasing the lids to cohere during sleep; a sensation is
experienced as of esand or duat in the eyes, and experienced as of sand or dost in the eyes, and
there is a little increfised sensitiveness to light. The acute form generally sabesides in a few days without leaving any ill effects, unless improperly treated; the chronic forns is often obstinate. The
common popular treatment-viz. tying wet clotha or poultices over the eye, cannot be too strongly
condemned; it msy produte temyorary relief of irritation, bur aggratrates the inflammation, and is very apt to lear to ulceration of the cornea. A mild astringent lotion should be used thrice or alum 3 grains, to the ounce of water); and a little sirople eintment or fresh butter applied to the lids at beltime to prevent their becoming glued together The chronic form of ter requires stronger remedies, bat they should not be psel except under medical advice.
(b) Purulent Conginartieitis resembles the lnst, but is very much more severe, anil bighly dangerons, In its most characteristic forms it is known as gonarrionel opithalmin, sud ophthalmia nepuatarsm (eye inflammation of new-bera children). To the latter variety aboat one-third of the blind persons in Earope owe their has of sight. It is produced by inoculation of the eye with certain irritating diseharges; and the discharge from an affected eye will infect any other eye with which it conves in contact. The conjanetivy becomes intensely red and swallen, and the lido pariake in the swelling so that they cannot be opened; there is hevere harning pain, and after two days or mare a prufuse diachargo of matter. The danger to sight is due te the faet that the cornes is extremely apt to be destroyed, whally or is part, before the isflammation mabsides, In in.
flants the diveare usually begins on the thind day alter birth, and is, as as rule, lese nevere thas in the adult, but unfortunately is offen overlooked, or regariled as of no importance till irreparable mischief has been done Scrupulous cleansing of the syes inmediatoly after birch, preferably with corronive sablimate lotion (1 grain to 5 ounces) in the loot preventive Whes the dinessen has comarenced, very frejgent remonal of diucharge and hoarly wathing with baracio ut porneive sulb. limate lotion shonid be revorted to. But all aiael sased Ahould at once le pat under the charge of a miedical nian.
(c) Pustalar or Phifyctenular Conjunctirition in a forte of inflammation vecy frequent in ehildree, puuch les so in adulte lo is an indication of a lowered state of the geapral health, and its treat. ment mast influde freah air and Jight, giood lood, and coilliver ail or mame ether streng theoing nediefine. The inflamastion does not extend an over the white of the eye, bat in localiwd in one or mire sections of it, snd is most intense near the margin of the cornea, where one or mane stmall rounded blets or piniples nay be seen. It is often accompanied in chaldren by extrome tendemees to light; but the tendency to this is sugrarated by a bandage of darknesa The losal treatment nobould
be bationg wish baracic acid or soase other mild antrugent fotion; lint, unles the ease toe very mild, a meelical man should be consulted.
(d) Grurndar Cavjumoteritio, of trachansa, is an exceedingly chronic and intractalle divene. It is soustinus called Kgyptinn opbothalmia, having been extienely Jrevalent in the French army in Egypt in 1794. In Eetope it is bost cumanon among the Jewr and flue Irsh, lat is ofteo truableautre in indmatrial shools and similar inatitativas, It is encournged ly overcrowding, lad venfilation. and other anfavolatable bygience comditions, and is undoubterly somewhat contagions. It is characterized by nomerous distinet semi-transparent elovations on the conjunetiva of the lides, cliefly the apper. If often lasta for muanthy or years, and is chielly dangerous an account of the shrinking of the canjunetiva produced log it which leuls to trichiaus, Wetropion (4.v.) and opacity of the corner. It ahould always be treated by a shilled medical man.
(e) In Diphtheritic Cumpinctinitis there is a 'falme membrime 'formet on the conjunetiva, is tar Diph. theria (q.5.) in other sitnations. It is liappily raro in Britain.

Ditecases of the Cornead. - The most common and important are inflemmations sesociated with ulcer-stion-ie destruction of some of the cornesl sub. stance. This is replacel when hraling talies pilace by imperfectly trisisparent tiesue, and reoults, very frequently in great fupairment of visios (irregalar Astiguatism, q.v.), even where ao obvious mark remaina. The appearatices, cy aptoms, and sppro
priate treatment of different forms and stagea of corueal ulceration are extremely various, and cannot profitably be discused heres Skilled medical aivice should always be obtaineI, It must aulice to say that the eyes should be rested, shavied frua
lighty, and bathed, getierally with horacic or conrosive sublinate lotion. Poulticing of tying up a doctor's orders, as it is usially still note mis. chievous than in conjunctivitio.
In one form of intlammation of the corsem, called interstitial, there is an appearance all over it of great haziness or even oomplete opacity, bar with. out breach of surface. It wecurs usually in boyhood or girlhookl, and though alanming in appearance and tedions, generaily results it complete recovery. 3fr Jonathun Hutchison first pointed out that it is usually a manifestation of congenital syphilis,
The sclerotic is compuratively seldon affectel by diselse, proleably on ucoount of itsslight vascularity and conpuratively low vitality.
The iris is liable 10 inflammation (íritis), chamas: terised by severe deeps-seated pain, relnees of the white of the eye, contracted pupil, and- pueli dimness of sight The intlammation, if unchecked, produces adlusion between the posterior surface of the ifis and the anterior capsale of the lens, which may permanently interfere with vinion, or evers lead ultimately io complete loss of sight. Local treatment at the carly stage by Atropia (g v.) dilates the pupil and preventa Ure formation usually
 these is of prime iojportance for its cure. Medi. cal aid should be sought at onces for atrophit, which ts anst beneficial in iritis, is disnatrous in glancuran, a disease which nometimes resembles it in many of its symptoms
The chiel discase of the lems is opacity, or Cataract ($9 . \mathrm{N}_{\mathrm{N}}$) it it may ahos be displaced of dis. located, either fromi an anomaly in its dovelopment, or as the result of injury.
Diseaser of the deoper structurea of the eye (ehoroid, vitrecus bonour, retina and optic nerve) asandy require for their recomition the niee of the Ophthaloracope $\langle q, \%$. Generally npeaking, they are asuocinted with little of no puin, and attract the fationt's ationtion io consequeace of the diminess of vimion they jumure. They are rouch lens anem: alie to treatment ia sumb casce than affections of the suore apperfecial parta.
Intlammation and atroply of the chorodd oecur is several formas the moat diatinet are thone occorring in syphilit, in old aye, and in combection with bigh degrees of thort-sightedneas (progressive дауорia, see below).
The sitrens Aumoner rarely if ever becomes diapared, exerpet in consequence of elanges in the ciliary lruly or choroid. The alinormal cendition gencrally matrifesta iteelf in more or lese opaque threals ar lilouc, whith bave with the movementa of the eye natl appear to the patient as clouids or dark lines intorfering with vision, much more large and dietinct than the 'masce volitantes' 'present in the nerminl eye.
The rition many be the seat of hearorhage or of inflammation in many forms of disense The most comonen and charactoristic retinitis is that associated with Bright'l disease ($\mathrm{I} . \mathrm{v}$.), which is almist nlwhy of very serious import. Ith soain urtery may lecome blucked by a plat
carried inlo it from the heart or elsewhere (E.ntol
 which cenues sudden nud usnally alroust complete lose of sight. Not mifrequently, too, the retina becomes detached from the choroid, either as the result of disease or injury, and Hoata in the vitreous chatubet in front of its nornial position, a condition greatly interfering with sight, and most difficalt to improve.
The optie nerre may beconue inflamed (optic severitis), most cotmmonly in consequence of an inflamenation or tumour of the brain or its memaftes inflammation or modependently of it. In the latter rase, however, to well as the former, there as in the zreat majority of instances sone disease of other parts of the netxons system (brain or npinal cord).
There are two diseases chielly affecting the deeper parts of the eye which it is desirable to describe at sonse length, as their conarse is oftem insidions, and their results when not recognised early, most disastrons, while timely interference is often sipmally successful in preserving the vight. These sie glaucoma and sympathetic ophehalmia.

Glancoma ocems nost commonly daring of after
hyperntetropic (see below). It may corne on with such suddenress and internity that vision is lost in a few hours, or its course may extend over years. Always, however, if unehecked, it tends to progress till sight is ilestroyed. Both vyes are pasally affected, hut often one long before the other. In many cases there are premonitory symptoms, conaisting in temporary attacks of eloudiness of vision, during which the patient, when looking at a light (e.gn a gias or candle flame), sees it surrounded by coloured rings or halos. During this 'premonitory stage,' the vinion is perfectly normal between the attacks; but they become more frequent and prolonged, till it is permanently impaired. Variability of the symptous is usually a characteristic feature in all stages of the diverse. Often in the later phases, and always in acute and severe caser, much pain is experienced in and around the eve affected. The pupil is large and immobile; the ria and tens farther forward than normal; she cornea more of lesh bazy s and sane of the bloodveasels of the white of tho eye larger and mote visible than they should he. The ninst important sign of the disense, and the feature on which muny of ita characterintics depend, is increased hardness of the eyeball, awing to increase of its cuntente. The exact canse of this increased hariness is not fully understood, nor the way in which some of the nymptons olserved depend upon it; lost it varins with the symptoms, being always anore masked when the pain and dimness are at their worst. Chronic insidious enses are often mintaken for cataract, though the ure of the ophthalinoscope readily distinguishes hetween the swo conditions : in the moset aciate cases, the headache, sickness, and general sinturhance of the aysten is nometimes 43 nevera that the condition of the eyes is oyerlooked, and the diseare is looked upon as as 'bilions attack' till the vision is hopelessly deatroyed.
The lisease was regarded as aheolutely hopeless till Von Graefe, in 1857, proved that the removal by operation of a portion of the iris of a glaseomatous eye might sirest the process. This proceeding (iridectomy), though by no meanis tiniformly nuccessful, soes gond in the majority of casen, and has been of enormoin henefit. Bnt if too long delayed, it in of no avail for the restoration of vinion.
It in of great importance that atropin or bella. donna should not be applied to an eye with any tendency to glaucoma, at they aggravato the disease, and sometimen even produce is. Eserin, the active principle of the Calabar bean, has an action on the eye antagonistic to atrepin, and ean often keep glancoma in check, though it rarely curea it. Pifocarpin, the active principle of Jaborandi, has a similar action.
Symputarne ophchatonat is the name given to st form of inflammation, chiefly of the iris ard ciliary buly, occurring in an oye previously healthy in consequence of disease of finjury of the other. Almost, if not quite, invariably the eye first affected has had its coata (cornea or selerntic) perforated; ant the procesa in the second uge may begin at any time, from a fortnight to many years after this occurrence. It is an extremely insidious diswase, sometimes quite prinless ; but also extremely dangerous, for it often leads to total loss of sight. The early synjptoms are watering. temierness to light, and dimness of sight, enpecially of near objects, When it begins, there is almost invariably irritability and tendernese to toueh in the eye which is the origits of the disease. It can be aliwolutely prevented by early removal of the eye first affected ; lut if this lie delayed till the inflammation has begun in the second eye, it may be inseless. An eye which has received a perforat. ing wound, particularly in the sciliary region'i.e. just outaide the comen-may therefore at any smbequent period beconie a source of danger to the other eye; and if ifs vision is deatroyed there can lue to doukt that it should be removed. Even If nome useful sight is retained, this masy someLimes be desirahle; but at all events, every one who has suffiered from such an injury to one eye should know that the slightead symptoms of irritation or failure of sight in the other should at once lead him to seck skilled advice. Hecent researches have rendered it probable that this form of inflata. mation is cansed by micro-organisnss, though this is not gुuite definitely establishied.

Errors of refraction are those defects in the dioptric medis of the eye which, withont diminish-
tion of a retinal image in the nortoal way. Astigmatiam (q.v.) Jass already been noticed; presbyopis is the failure of acoommondation natural to sige (see above). It remains to describe mypopia,
or short-sightelnesa, and Aypermetropan, or longsightednex In most cases the condition of bothi eyes is alike, of nearly so; bot exceptionally there is a considerable difference between them

The knowledge of this branch of the subject was first syatema.
tised and placed on a satiafactory basis by Donders (1818-89), a distinguished Dutch physiciaa snd physio. Physiology at Utrecht, in his work np Anoma and Refraction of the Eye (Eng. Irans. pab. by Sy
18665
The narral eye in the position of ruat in adjusted for parallel rays-i.e. for a dibtant oljject, and by means of the accommodation. can be focused fne a near object. The shout sighted eye at rest is Mjuated for divergent rays-ie. far a bear

Fig. 12
 abject: aetoramoda
tion enables it to focun for a still nearer objeot. but it ean miake no change enabling it to see elearly beyond its 'far point'-i.e. that for which it it adjusted at zest. The long-sighted eye at reat is adjasted for convergent rayx, which do not nocur is nature: Accomuoplation enables it to focus paraltet rays (frour distant abjects), or divergent rayn (from near objects), but not to see so near an a normal eye of the naine age.
These defects generally depread the an abuortoality in the length of the astero-posterior dismeter of the eyeball $;$ in sloirt-nightel eyes it is igeater, in lring. aighted les than the norinal (see 6g, 12). They can be enrrected by the use of maitalie chases ; in short-sighted eyes coneave lenwes are used, which resuler the rays of light falling spon them inare dirergent; in lungsighted oyes cravex lenses, which realer the sayn few alivergent or convergent
Lasanf acconmondation mocats with the jrougress ef years in atich eyes, jout as is furmal ones, though the eifeeta are somevhas differnil. The shortaighted neve continues fol lo able to net near at loand without ipectacles; bett, contrary to the popular beliof, has no other Alvatage over the normal eye as age mivances, for vision of slistant olyectstons ant improve. The long-xighted eye in time loaes then juwer of secing even diatant oljecto with. out spectailes ; and the higher the degree of ling. aightedness the earliet the age at whiel this ocrum

An shommal shape of the eye, on which these terrors of refraction wawally slepeni. is frequently hereditary, and is inearable: it watally remains atationary after early affalt life, lut in some coses of myopia, whare it is anociated with diseake of the chrroid, tenula to lncome worse (jerogrestive of matignant tnyopia). Tlm object of treatrient nust be ta rnunteract, so far as prasible, the inennvenience resulting; and this can geacrally he dose hy the nae of spectacles ne eyeglases. No general cules con he laid down an to their nase, as marli tiepends ant anly on the slegree of the sbonemality, but on the age and ocespation of the inderidual If glasses conduce to comfort and to the preservation of the sight, nu mere regard for appear. ance shuald prevent their being sorn.

Dismass bf the Eychids.-A Alipe is practically a minute Boil (q.v.) fornied in the cyelid, and alis. charging at its maggin. It haould he fomented frequently with hot water till it burats. Constitutional Ireatment is aften ilesirable, as styes often occur, like loils, in groups or series.
Small roundel swellings (tararl rgests) oftien form under thic skin of the livit, oving to olsstruction of the duet of a Meibomisn gland. They are asaally painleas, but require for their cure the evacuation of their contents tirough in puncture on the inner surface of the lin.

A form of Eczema ($\%$. V. I often aceurs at the margin of the lids, ealled bephoritis, most eommonty in
delicute children. It ean nsually le readily curent if attended to in time; but if nuglected, as it too often is, leads to desiruction (blear eyes) ur tus. direction (trichiasis) of the eyelashes, and much sulsequent trouble. It is characterised by redness and uleerntion of the edges of the lids, usually masked hy crusts adhering to the lashes. Frequent removal of these, with the daily application of a stimulant ointment $(e .6$. yellow oxide of mercury, 8 grains to the ounce of simple ointment), and the use of tonies igenerally effect a cure Inversion (Entropion, q, w,) and eversion (Eetropion, g,v.) of the margins of the lids, and misdirection of the eye Iasbes (trichiasis), so that they rub against and irritate the comea, are troubtesome affections, usually requiring operation for their removal.

Discmers of the Eschergmel Apporntus,- A 'watury eye '(epiphoria), when mo irribating affeetion of the eve itself is jresent, usually proceeds from ntricture of the nasal sluct, or nome other cause, which prevents the teary from dischargings by their nuturn channel into the nose. The coridition can le remedied in most cieien by slitsing up the canalic. ulus (see Gg. 7h, nod passing graduated proben through the duet to reatore las pateney, If unattended to, it genmalls leads rooner or later ta shacess of the lachryfual sac, with mach swelling and pain,

Injuriss-In nos juat of the lumly is there no often great Alisproportion hetwern the severity of an in. jury and the amount of puin and imitation it oece. kions. A penetrating wotial sonnetimen chatues leps dincosufort than a mere particle of mand beneath the eyelid. Any wound or blow affecting the eye, therefore, pirticularly if it interfore at all with the wight, shoald ler neen by a doctor as speedily an possithle. Sulsthnces thrown Mganin the eye thay injore it. Quicklime in rapidly dentructive to the oye, slaked line and unortar lern bo. W ien one of these, of any other alkaline cambic, has got inke the oye, diluted vineger should ist ofice loe used to neutralise is. If it in sil af vitrinl (sulyhurie acid) or snother acill that has laeen the canse of the injurg, a weak sulution of mola thay lue theed in the first plape io neutinaline the acil. After this, nweet oit is the luest thing to introsluce, unitil the birgeop amives. In guapowder explosions bent the eye, benides the burn, the particleg are triven intu sile surface of il. and will catige pernument hluishotains over the white of the eve, untes they are carefully rempoved at the time. When cbipe of glass, stone, * are driven into the interior of the cye, there is litsle hope of its luegig wared frums destrnetive in: flammation, thrught fragosents of irmin and stuel are sometiones removes ly suean of a strong electromagnet, with a macemsful reablt. In thene and all other penetrationg wounde-i.e. thone where the curbea or scherotie is broken through, the pasoiloility of enberguent bympathetic ophithainia in the other eye must be borne in mind. When only partially suink inte the cornest, to is oftell the ciset with pparks of cinder of iron, ©e., or ' biven,' as choy are called, the nubling of the projecting part on the eyelid causes grent 1 win, and the surgeon has not mesh difficulty in rennoving them. Most cusmmonly these, or ather ' forciga borlien, as particles of dhint, sand, seeds, Dies, \&c., when not speedily wahed away by the fears, therely get intor the syace bet ween the eyeball and the lids, alninst always conccaled tunder the upper, as it is the larger, and sweep the eye. They cause great pain, frym the sensitiveness of the papillary smiffoce of the lid, fond of the cornea over which they are rubied ly ita movements, shon excite inflammation, and their presence, as the cause, is apt to loe overlooked. The lid must lie furned rowind to find theria. To do thim puil the front or sulge of the lid forward by the eyelashes, held with the finget and thumb, and at the same time press down the back part of the lid with a small pencil or key, directing the patient to look downwards. The fid will realily tarn round, when the hoody may be seen about ite middle, and may be removed with the corner of a liandkerchied. Another plan, which tire person himuelf may try, is to puil forward the upper lid hy the eyelashes, and push the lashies of the Iower lif up behind it, when the foreign boly may lie lirushed out. After the bodies are removed, a feeling as if they were still there may remain for some time. See BLIND, Coloth blifidness.

Abtificial. Eyes are worn for the sake of appearance in cases where, ats the result of disease
or injury，an eve has either been totally lost，or rendered unsightly．They are，moreover，distinetly advantageots in cases where a gaping socket is liable to irritation hy ifast，cold winds，$\$ \mathrm{cc}$ ．They cannat be used unless the size and pmoninence of the eyelall is at least notnewhat timinished．Few surgeons in Britain recommend them to be worn inless the eyeball is either entirely removed （enacleation），of lias the front part removed （abscission），or all the content extracted（exis－ ceration）；for the artificial eye is apt to eanse irritation of the sensitive anterior portion of the glohe，and nayy leal to the developinent of synpathetic ophthalmia（ see p． 515 ）．Eniucleation is the most ceitain means of preventing this；bot the pther ylieraliom namesh ahove allow of better movement，and give a more natural apposarace to the eye，

In artificial eye comsists of a thio shell，usually of enamelled glans，entoured to prosest is nearly as prosible the sarae apperance to the visible part of the normal rye．coite receatle Cellalobl（th 5．） Les heen stsed insteas of glasm，anol is saidl to last luctter，as ifs surface is mut alfected by the seere． times；while it hos the adsantages that it is not brittle，and ean earily be parbal in Iit tha soneket aecorately．To obtain a nitisfactery resplt，is in necensiry eather to tase the ese sperially made of to be able to seleet from is very large stoeks as coloir of iris，size of juijif，tinge of seleronje，os well is curyatare if aurfare isnd form of margin， mast he molipteit to the particalar sioses．Thers are therefore to bo giot to most alvantage in largo cities，sith act Lomthas or I＇ariz

The eve thuet het low ware veutipmosaly，but
 It is shignent is uritur the lide whish teoht it in pusition．Even whem she glolme las Inern entively renoved，she man＇lens，leg cheir attavliment to the timsuen remainatg in ther inhit，towally vollert move mesth in then samm ilforemh．thomh ment of tlat

 smecet th，what the ifiterewes luetween the bwo in due A siozle ghase ove ran rarwlv he wrem bime than a yoar witheot being pulshed，for the obsfise
 ＂mil irritates the fils fos they strle uver in．The wearing of a glasu eve thotrefore meane an expomel twre of at least one or twe phasolo is yeur．ated
 whon it weish metherwoel to ath wivantates

Fats we batual nils，solth at the uribuars tengurarme，which ofoor in plants and ammal－
 It ethore formeal hy replavine tiot remoral atoms of levidocsoif is the triatomic shoolod glyevoin．

 Pahuiton，Stearion，ket oletm

In addition to these we have in bilk，better，do Small quantities of the nentrai fat－of Brovic， Caproic，Caprylic，Gapric anot Myrintic Hodds． They are oily bocties；some solin，ather－Hasd，at the ordinary temperatnre．They are insulnble in water ranl it solll aleohol，soluble in twot Alenhol，in ether，chlorotomat， Sc ，Coder the aution of canatie alknlies or superheated steam
they are decomponed into their fatty acnl anal glycevin．The fat of diflerent amimal－differ in its characters acconding in the Jelative pro－ portion of these varmme fats which it contains Thos，the fat of the deng，which contaire a large progention of oleif，burlit at a mongaratively lowe temperature，white the fat of the slame on the other lanil，which is pationtarly tioh in stearin， hak a mueh higher melting point：
Whatever le the mature of the fat，it occurn in the animal londy inside the tving thits or cells in the form of small globules，fats appear to le on nlmost invariable ronstituent of af living protn－
plasm ；but in certain tisanes thes apcompinlate in
very large amounta．This ie enccially the case in The velly of loose filyuas tivase，where the deposition of lal is frequeatls，so neat as 10 form regular masies or lutuile I＇siler the skin，in the alolntuen， in the orinits，ronnt the laesit，and in various of lier places these nowsoe are well morked．

The quantity of fat in the Inwas bouly sarie－ coumiterahly at difterent perionls of life．In the earlier stages of fortal existence we find scarcely any fat z in new larn chiblen there is maually a considernble q⿴囗十anity of this sulstance depositel wailer the skin．and the organism cominuss rich in fat till the age of pulerty，when a warhed diminn－ tion of the solostance ocems．It regain increases shont mashlle life，and then oceasinnally oceats in great externt for exabuple，thiree or faser inchice of Fat ure tion imfrequently formal sader the 2 km of the alalouict in corjulent per－ions．
The inik of the baty are delived not aniy irom the fats if the fors！，bet alon frosi beth cribo－ lyilrater anul jewtrink If lav roos levin slruily slenke that an aninal latis ut and horeses in its thenly any fas whirh way lee atroinistered in the fornl，ant that it may thon－fur the time leing have the chenical natme of is．fal matisty altered Niter a time，however，tle livwag paotopdusat at
 Iat no stuted into the jicoper fat of the animal．
15y feedingt doge on a dlel，dich，and rarefolly
 slown that the theli inf the fowel in an asarre of
 ＊ifan ami starch ase alst sabice of Eat in a
 elearly tremenekratent that the beliwh is ciorect． Hy fectiog y wouy grawiog＇juipe on a sliet of known compesition，anil afterwatits kilting thesn and analy）ing theit lanlies，it uss shewn that the
 Joen tlecivet only frent tlee carlallogleates of the finel
The plosamogiral valoe of ther fat－iv dom partly in their phyefeal abil partly to theor clemmeal phararipes：The neet of the fat slejowited beneath the shin inv，first，fo protect the loog from external shoch $=\operatorname{ly}$ a wiifores nithision of prosesire thirough
 the lient of the lonts：by materially checking， through it－kers alible cusolyctine powere，the lose of froe luas in ratation．Thim nat of the fat is buct veratly sen in wune of the fowet animals （Hiw upal，whale．Ans），whorl are exposed te very lows fennperators．Arathoz plosical iuse of fat in In jownuto the modelity of carinss oprans Heace． in eawes of extrume efmaciation，it aftuass retalina in the parta where suotion is mosel，posential，in the benrt and the nolpit of the ece．

Ther chief cliepizal whe of fat is is a strue of potentiat erownes for the body．
On arearust of tire large anowant of rarlont and the small ahomant of oky fer containeal is the sunlecuile，it is peroliarly valuable in this repreet
 We tinl that I yramiar uf fat yielhs وNa3 gomine degrees of lwat 1 gramone if proteids vields 4308 ． I gramme of carlailuyifrates yields 3912 Cbfor－ sanately the process of digeation and aesimilation ot 6at is dibisult，and for this reasoll，as well as no acroant of its relatively lrigh price，only a moderate umount can be dwily consumeds．

Fatty Acids．See Outs

Fencing may le gonerally deacrited se the scientific lasedling of a worand in layouel in attack or defence，thonghis the terin is testually liniteal to the tase of the rapier．It is talight in every gympsaion， and in the tritisle army every officer on joining if put thimutgh \＆courve of gyminastics of which it formis a jurt，Nias commi－aumed alficers orp tagght at the Aldershot Cymmasioni，atol then appointed instructars in the varions garrinut where gym－ nasimme exist，and to all cavalry regiments，the trompers of whifly are also trained by ifhem．

FESCING WITH THE RAPIER OR FOnL is almitted to bee the liest exercise that tan lie taken．Exery musele of the boly is lrought into play br it，amd hand and eye ate trainel to act in injoon．No description can［rotensl to teach it．Efen an in． struetor whe is not theroughly eapahle doas toore harm than good in attenuptiag to teach fencing， as bal habits are acquired wlacis it is most diff－ cult to unlearn：and，unless every movement is acemrately and properily masle，there is no science
and very little interest in its practice．
The foil in practice used as a sulstitute for the raprier should have a lutpering hlade about 32 ibches long，and square in apetion，with a futta． perclaa intion on the puint，and a weightid fommel to the hilt，so as to balance it properly．Masks of wire netting are alsolutely essential to protect the face，and leather gloves，jackets，and aprons should also be worn，
Except in Spain，where one straight eut at the bead is allowed，the only attack with the tapier or foil is by thriut and longe（ow fouge）－i．e． straightening the ellow so as io luing the fword and arm into line，and then striding forward nbout 18 inches with the right foot．The defence is by slight movenuents of the sword lami，which rause the forble（upper half）of the mesailant＇s blade to plide along the forte（lower half）of the defender＇s foil，aih autside its，so as to pase elear of his tooly，while lits point is alswas kept corwards the front，realy to sypart｜benine ufter parrying）wichout an insinnt＇s delay：The proper posations and mencements when of givird，cugkeged， Congeing，parvziug，adranciag，and retreationg tonnt he mont carefally learned fram an instructor，and Assiduomely practised，as well as the varions aflachis． A reproduction（the，1）of the diagran given liy Captain Chaptnan in lon－excellent little book，Foil Pructiot，shows the four lines of attaok and the nine parries asoally tanjht．It will bee sufficiont to mention that th rodetcer parry desarihes a circle

Fig． 1.
ander or aver thie aulroreaty＇s fril hwliar Hhrowing it ofl，and ter astd the fullomine explatastion of tertor nsed in fencing．Whets the raikdue metermast the sword hamb on said to lee in stocirectom，when under． in pruandises．The thrints，like the jarites are called joarte（or cartc），tierce，Ke．Tlit Necriconerde is an aftack maule lac the u＊uilant hending lis hode romal the aslversary＇s ant lofteing ai his body ntraler his armi．Azt attark masy lie a contrithation of ans of the following bursements precerling a lonite：
 oue line of attaek to another loy paxsing unser the advenary swond ， cut weer，the name whange by whipping over his sevord；ane，tron，h hisuble tis． engagesumti，dhwhle，both Hatles limioontal，and cercling round perallel to noe annther；and bent，a sade－bfow of one hade on the other．If a second thrist is made after longeing，nul without spring． ing up to gatad again，it is culled a ripmist；arif， If made to take advantage of a wide parry tot fol bowed by a rijoat，a remise．Tian thrnato，fike cross． comuters in boxing，parry a thrust liy a thrust．
The system of fespingt compiled by Mr Archibald Maclaren，of the Osfond Gymnasium，is that ased in the Britislo rrmy，ant differs from others in teach－ ing onty four purries－viz，quarte，tierce，reconde， and semicircle．All are fornech in the nsual manner， except the last，which，ly raixing the hanil slightly and elerating the blade as high as the faec，puarios looth the upper and lower openings on the inner or left xide，cintying the adrelsary＇s blade over the
right shoulder, and leaving hin completely expmed to the retarn thrust, In Spain and Italy the Irfi land is nsed as an auxiliary in parryinge, ant in Italy is aided by a dagger, or a cloak.
The Broad-sword Exercise differ from feneing with the foil, in that the weapon enijdoyed is intended to cut as well as thrnst. For practice a stont, stinight stick is wserl, called a 'single stick.' having it buftalo-hide or basket handle to protect the knuckles.

The position and moveraent* of the combatant are very similar to those for feneing with the foil.
There are seven euts, with seven correaponding guiards, and three thrusts, du shown on the accompanying diagram, which pepresents a target placed opposite a papil, with its centre in a line with the centre of hia breast.

Fing 2
The cuth crons the whole efrele thtough the center along the thick lines. Nom, 1, 3, and 5 are inside cute, and may be directed mgainat any part of the left ride, and insile of clie right leg: 2, 4, and 6 are outuide cits, attackinit the right sides, and risht log on the outainte. No. 7 is a vertical cos, aimed at the bead. The dutued lines show the neversl guards. The points or thrusts are shown by the Elack dots. Thae 'parry' oonsists in bringing the what nearly to the right shonhter; whence, at ountre, a dircalar nweep of the swont in made from lefo $t o$ right.

Cavabin Swose Exgmerse diffen from the foregoing, which is not satitable for borsemen. It has four cuts on each site, two at a mounted, and two at a diamounted aikumary. Each cut luan seorre. puanding potnt and ruand.
THE Bayonet Exbrectse faught in the British army lis been assimilated to Maplarea's system of fencing. The guasis are formes in as mearly as possible the same maumer, escopt that, of contse, the rifte to held in buth liands, wee at the grip, and one in front of the lack-sight. The latter remains aluost atationary, while the morenients of the otler form the pirries, A new and most effeetive thrunt, called the throw, bas Ineen introdsedt. When making it, the forwar! hand quita the rifle, which in thrown forward to the fall extent of the other arm.

As to the relative values of the sword, papier, and layonet, the lirst, reguirims for each cat two motions, one op ami the other down, cannot but Dee moch slower in ity action thas either of the nther two; while the last, from its weight, is exhansting and clunss: The second, on the other hand, has mone of these objections, and th skilled hamd's is by far the moat, leadly wenpon.

Fermentation (Lat. ferering 'ba boil'\% a clange brought about in organie liquids by the agency of a ferment. Ferments are of twa clawes, soluble and magenised. (1) Sobuble fermento, or zymoses.- Thifs class is of less fupportance than the other. When isolated, the fermenta are white anumphous aubetances, freely sohsble in water and inglycerine, tanl antully insolathe in alcoshol. They bre found in grain which las getminated (malt), in salish, gostrie juices, Sic, anil also iasially ocens uloug with arganisol ferments. like jeast. The conmuonest soblle ferment is Diantase i q. v. . , oceur fing in mall others of considerable importance are ptyalin, fonmel in salixa; pepsin, in gastric Juice; symuptase, in bitter almonds ; myrosin, in mustaril, Ne. These all resemble she atrother very clanely it properficis, and all have the power in cause sulatances like starch and cane-sugar to com-

Ahtie with water, forming ghtucose and analogous unerystallisable nugars, thus:

Diastake converts the starrly contained in harley fint into slextrine, then into ghocose or grape-bugay, thus;

The same eflectr can le prodncel loy boiling thene tralies with dilute acids. Soluble fernuents act inost rapidly at a teniperature of $75^{\circ} \mathrm{C},\left(163^{\circ} F^{\circ},\right)$. and are destroyen lyy loiling. Their action is inlieded or entirely xtupped by many kulatances supl as horax, ritric sull turtaric arials, anel some antisuptios; , wh the other hand, prusic acid, merearia! saltor, aleridnh, chlornform, ether, and exsential sile have little effect on valolice forments.
(2) Urymmsed Feronenis-The eliewicnl changes inalaced by these always thejerol on the lifepmocios

 exerete the problict of the fermentation. Vermentation wearly glansy conpiots of a procest of lareaking down of conplicated arganic anhetancer like nupor inte simpter opes tike alouhal and carlowio aeid. Econsusically, felcuholic fermentation is of far greater iniportance thas any other. It in cansed by the so-called yeant-plant (Sacharomiyete ecreviatie) in solutions osntaining uncryptallisable augar (glucose). Tie sugar may be orycinally in various forms. In malt extract for leer it existe as efucose or dextrine; in zrape juice for wine manafiactiore, chiefly as plucose : in potatioes for making potatospirit or "mare," as stareh; or, finally, an cane кogar itanlt. The latter twa, when ferompalen, are fiont converted by the solulite fermeat which accomjasies yeaat into glacose, and that in then tranalonaed by the yount itwelf tato alcoleol, carbonic seid gov, and stiall qitantitiee of glycerine, suocinic acid. and other subatanese.
Brewers' yeat contains as coonnous number of one-celled organiams (Sivcharumyoct noredizier), on which its sctivity entirely depends. vnder the mistoncope these are seen to be colourless nearly transparral, ruophly apherical bodies of a diamater of abme ofrougs inch When the cumblitions are favnurable-ie nowrislament plentifisl, and testperatare alonit $80^{*} F_{\text {. }}$, the yeat cetle mulliply very rapilly by budding. Whon food ts deficient they may muttiply loy the formation of spores. Fers mentation of grape-juice to form wine depends on organiams of the pease Saceharonyyees, of which there are zany precien not yet very sharply definel. The visions apecies are fimind io different kinds of wine mist, nf even in different ponicions in the same fermenting rat.

Putrefaction and rotting are very much akin to fermentatian, snd all depend on the presense and growth of mimste organisms

The following are some of the varieties of fereventation which posses considersble importance or interest:
Aettous Fermentetion- It lins loog been knwwn that wine ondet certain circumstances alwarlad okygen from the air and turned into viregar. This ts nuw known to be due to the converking of the alcolnel into acetic acid lyy an arganistis, the Myom derina acoth. The orine is allewred to trickle alowly through larrels filled with leech-slinvings, slirough which freel vingger lins giret ionsly been pouredl in order to impregrate the shatings vith the " mother of vinegar, which contains the Styoolemma. Vmder the mieruscope the Δ. encti appeans as very minute elongatesl rods (diameter about $0-00008$ inch) unitesi inte chains,
Lertic fermentation is the canse of the warring of milk. It is caused by a alelimite redilike organisu or bacilhss, which reaches the milk frotn the ainThe lifferonditionse of this ferment are alnost the same ma those of the yeast ferment, lost there are certain suletances attackel ly the one atul not by the other, and wire rorat- During lactu: fermentation the sogar of witk is converted into lactio acil, which nitimately canses the curdling of the mill.
Bulyric Fermutatione-Tlis is one of a large number of processes oi fermeutntion usually roughily clasoel as patrefaction, na account of the foul smell prosiuced during the action. It is caused by as organism (Fermenfors butgririma) which has the Iriver of breaking down such splistances as sugars, starelies, tartaric anal citric acids, and nilntinennid
sulotatuces, jroducing butyric ncill and carloonic acid.
Ammanitevy Fcranentation is also one of the pricemes which form part of phtrefaction. Most organic sulsotapees condaituing nitrogen viehl amanonia as one of the proilucts of purtrefaction. This preeest is of grent importanee in nature, as by it nitrogenobic animal matter, contained in manure, is converted into salts of anmonits, which can lec nhsorked by earth. They are then acted on by the nitrifying organlimin which is found in all fertile soils, and by it slow ly oxidised into nitrates, which can then be alson bed by the rooth of plants.
Condtions of Formendution.-As all fermentation. exeept that producest ly soluble fernients, is camed by living organisum, the optionem conditions of fermentation ase 117 suftigeney of pourialmont and moistare : (2) temperature alout bloni heat (96 F.); (3) athence of Joisonsas sulntances. Deficiency of nobrisloment or water may kill a fer? ment, or way coase if to form spourg, which then rebist strying, atad may even exhilot vitality after boriling, which in inktomtly fatal to all astive ferments A low temperatare ientern fermenta inactive, a tenperature much almone tof 5 , in fatal to their lifo. All antiveptic of sliminfectiont subsfancen (see AsTISEFTICs), Buch in cincomisembili. mate, chlorine, fane- of burning onlplito, sucalyp-tus-bil, aet by impenting or dextroying the life of the ferments. Many of ther products of firtientation ere themeelves anti-cjetien, as in the que of atcolial, en that alcolonlic fermentation always armestriteolf when the spirit han rewchal of certain scrypurth. Some feracnie coanat live in prosancy of aif, ut liesta reguire if ; while others again are malifternt to it. For furtier information, nee F'oimintatoun, lis N-liutzenlierger (Inter. So, Serho), and the miele
 Chemintry.
Febsagstap Laytomes ary alooholie homeragen made by fermentation of sacelurime lluide and fuices; the principat lacios the diflemmt kindu of ale or beer, tuade by ferneptation of at infurion of mait-chiefly of luarley, hat alsa sometinies of other kinds of grain-atnit viver busle ly feraenta. thot of graque-juiee Cinfer is masle ly fermentation of the juice nf applear preros, of that of pears : pulanwine, by fermentation of the sap of dillerent hinde of palm. Fermenteal lighors, cumbunly catleri wines, tre also malet from the jufce of varimus Kiniv of frnit, acerrant witie frimo that of the rem com-
 wine from that of the pravenity, Sr The sap uf the
 mentel tigas ratloil Priqueg, imuch ineal in Moxima A wine is thate frum thum sep, of the hirelis tunt that of somate athor trese is uwal for a similior pmomes Meal ir a formentel liguor inule from loney. From every fistument liguar a kind of spirit may lec obtained by diatilhation.

Ferratex men combination of forric meid, HFeO a weak unvtable courporind of tron and nsygen, with lases, See Jows,

Ferridcyanogen, it Ferpicy A Nogen, acompound rultuet supposed by cliemisto to exint in ferricyanic arial atal the ferrieyaniles. It camost exist in the free state. The mast imporiant of the ferricyanides in clast of polasoinm, alsis calles red prussiate of pufash. it is prepareal ly pasesing a atream of chlurine gas intor at polntion of pothssium ferrocyaaide till the liquid taros dark red; on evaprotation the salt is obtained in erysfele, The reaction io ma follows:

The chief nase of jonassion ferricyanide in for the Thanfactare of Turnbull's hhe, an inpartant dye. This snlstance is formed whell a solntion of a ferricyunile is mixed with that of a ferrmus walt (igreen vitcial, fot instance) ; it consinte of ferrons ferriçanide, $\mathrm{Fe}_{2} \mathrm{~K}_{2}(\mathrm{CN})_{4}$ Ferric sulto yield no precipitate with ferricyanisles, Strong heids acparate ferricyanic seid, $\mathrm{H}_{8} \mathrm{Fe}_{2}(\mathrm{CN})_{\text {as }}$

Ferrocyanogen, a compones ralical supposed by clamists to exint in ferrocyanic achl athd flie ferrocyanides. It counot exist in the free state. The most important of the fersucyanides is the potassiunt salt; it is prepured in the following
anatiner. A thixtare of potisimm earlonato, iron
filings, and animal matter, such an dried bhod, lumen clipuilye. Ne, is lieated to redness in ima pote. Potaseinn cyande is thas formech. The bass is extracted with water, the cyanile comblines with iron, furnipy ferrocyminte, which dissolves. tand may be puritiod by recisotallisation. The ehinet use of potasium fermerynifle i- for the prequaratian of Prossian blue-ferrie ferrieyanide fsee Dresmo and Calico-PHixtiva)-which is forined on the ustdition of a feerie salt to soplation of the term cyanide. A ferruta salt prombtues a white or hight bhtue precipitate of fertoas fermocyanike Hy the action of lilate sulphatric acid on potassina ferr. cyanide, prussic acid in pronlicesl - if ntrong only hawic weit the used, the ferrocyaride is completely secom-

 acid canses the separation of ferrocypaic acial, H_{f} fec CN be in omath white erystals inothalde in loydrochloriw sueil. Mnst to ithe tuetallic femo eyanides are insulathe, and many lave elapacteristife solours. lum eannit he detecteid of eitler feem- or fertieganaten bes any of the enamum reactiom. Potaerivin ferrocyamite is met ןuisopous Thie chernintry of those cumpunants is ant set thumbehly anderitoonl

Ferrotype, or Enebolatyes, it phetographic process, fint mule pmbles by Robert Hunt in 1844 in which the negative was ileveloped hy E satorated sutution of protasatyhate of knte, wifh mescilage of gamambic, and fixent by moaking in nater to which a Rmall quantily of annesiata of bspos nulphite of noids hail heen addeai
 the blood arter it io alont, and hy ith apmwaraner gives rime to thee prowes of colembation of chather Frodty pedqued ntwin is a itribg, vatic, whate

 nsyzen. 21:8 - 100\%. If given the varime reac tinn of tho prateot sathtatres (pee T'kotkins). It. ie inouln ble in wider, unt only slowhy molahle in salatineu of the neitial salts it in preipitaterl

 tn the glotation grompoif protedis
 as it in bloel with a Imafle of iwiges, whetr after a tivie lamone sunvomited ly masers iof the tibrous clastic threabk of hibeth. Theee may then he mashed to free them from the varinas emustitumbs of the blowi, The forble of neptenheres tayy lee woll

 pently warling the cover gham to which the elot Atheron with a atreute of watek. If will be aten to connist of a ciellerte retienham of fibrile mith grammarlookine matoes at many of the nodal pointe. The fifvils appear to hase chot out from diese granglat maseses.
The enure of lifinin is An sutter upms which our knowleclge is at preath imprefiect. The most recont invertigat pols teni to slow that a solstance belonging to the gtolnolin Itroup of proteits, and knowh as filsimgen, whift cerns in the blondplama belore conanolatho, heceme preefpitated as filmin when the bitumb is ahei! What to the canse if this jnecipitation we dy not hnope: Formerly it was sigpinseat that the white corpose les broke down
 element if the Whond -the hloul piatelet-with the

 musser alrepuly tieseribed are chminsues of these plateless. Mthouph the wat bifiut derivel srow
 at average only $0 \cdot 2$ pry tent.
Fibrous substances. Surlh of stere as ate thest in tlu arls ate ether in aninal wr regetable prigin, with the exceptane of Ashestons/q. 5), which is mineral. Filues whieh can be span anal moreli, or male into clath out paper by af felting procoss. lace some peenlianty of Atruchine which ths thani
 either resentbles it sery thin tlexilte mol with

into a feiten substance they will not hold together. Ilome-hair lased singly is mavie ints eloth becanse it iv exeeptiomally strung. Bat nearly all filves sultulfer for woweh mir feltest falrics, such ns wool, silh, culteh, at llas, have on their surface serrations ${ }^{40}$ poryectivas of anos kitpl, or they hase a promeheos Lo twist and cull, either of shich claracters caoser them to interlich. so that when thev are symu into jarn they so not untwist acain. These tithe prourasences of projections are only seen when che filne is lighty maznified.

In abldition in maitalide atructare, the value of a fibre fior imbustriat pargorac depenuls ujom its stirenth ame elasticity, and upur its capalifity of Leting loherichel auni dyel. Leterth and 6inenesi ane alou corbiterel. an wed as abomiauce of sapply.
The viol of the sheep and the shawl goat Es deserilieil under Wool, anl Cisinmeire Gont. Siee their reypective hecul- for alpaci, molnair, fur, and wilk There fre a few other animal fibres of sume intenct of importance, auch an eamel's hair, from whirh se excellent eloth is maile, anal cowlasir, whidh in meal in comsidenalle quantity for inferiar kimst- nt woollen monde. A fibre of a silky malore is nhitainat from the bysaus of a large Merlitermanan hivalve shell-fivh ($P_{\text {innoa }}$ nobilis), Whish is acale inter sloumbla anat gioves
Different parts of plants yield Hilues. Only dieotyloletemb plants lase a trae lark, and from Heat conse the hant iniportant textile fileres of vegretable arigin. These penerally consist of strong,
fine, tlexilo lows filmes finni the losk sheath of fine, Hexilte luas filme from the bark sheath, of whieh hiv, henep, rhea, and jute are examples (xey BNSTL. The mest vilualde of all, however viz callon, conasts of lairs which surmand the wrive of the thant in manocolyledorour plants, whielh abon stulal many eerviosble fiteres. these wre cammanis "hasiont from the finnus pertions of lenve ant nf haistailo Merre rarely they uceur us lair lihe filire whaidi forra appmalases to leaves or suroband ilieir lave. Coir flime is from the husk of the nat of the croma-nat palin.
Veyntalde files omoid esentially of Cellulone (4) N. a anlutance which is not easitr acteil ryan by eltminal veagente sueli as affect aflied beslies funcort in plunt This is an impurtant pmperty in cusarectans wiel sonve of the mianofacturing pro conesthruugh whide thes rejuire to pase
Cottob, flas, hamp, jute abil enir are descrithed trider their reprective hewlos Hien or China-itrass undes lawiakgia: and New Zealand flax (Fherminm tomis) usiler Flak. The wegctable filmen noticel in what fullows, thwush tones known Lian thoo usod in aur principal textile induxtries, are mearty alt of xome impmitance commercially. Iffil - thow there are quite a number of plants giedding filtes known to have valualde pupperties whiels fave noe, exaget in the momstries is which ibry gruw, receivel any industrial applicstion
 amiant (Silk Wead). The keeds if this plant are cowered with a tilky down thich ts used for a neriety of parywoct subl As the stafting of toth aum folt. The seceies iv a aative of Syria. Init is aboo foment is Nurth atal Noutl/ Ametica, anid is cultivatest tus seme parts if Euruym.
Abormiontar grumblifurn is anantber juant yielding a leary or silly filire frose the semis. This is ems. -iterel to be one of the lees and strongest of ther ceel/hairs called 'vrgetable silk.
Erowspoulior jotygrifrrn (Pajer Malleerry h - A liur white cloth ealleol tapa is ntade in a mititier of the Pacific Islantb ley leating the lark of tide tree. The louk of this and another species of Browsonetia is wafl used far making paper in-Sapan. Quite revertly the bilenme juertian of the bark of the young shimels of white unflierry (Morws a/bei has heen ruti ns a testile material in Italy (see MrL Hente?.

Crotolarier jowcen (Sunn Heap).-Indigenous to Nomeliern Asta and the tropical purtion of Austral: acia : caltivated all over India. The filire is very sritable for orrlage, consiblerabie gquantities being exported from lablid for Ulís sansufacture
 The fible of the lark of ecch of thece Indian plants is ased in the naanufactnre of paper and mpes.
 Erass, Cotten grass) - This plant is very ecaumon in many jiarts of thelia. The down at the lase of the sedts is largely wet in Itvins Fur making paper, nupes, and corlage.
(libishss conurnhims (Hemp-leaved bibiscus,

Decan hempl-In the North-west Provinces, it well as in other parts of India, this small herlaceeots dornls is largely coltirated for its filne, which is sometimes used to alulterate jute It is inferiur to the latuer in quality, beigg rather enarse and hands, thoushestrongi In Itidia it in umide int. rapes and nets anil lakzely into joper
 asefal fillere is obtainel, which is tatraed th foconnt fur unking cloth in Sweden. In Fingland it lias Leen male into millimaral.

Piwas sylvestris (Pine-wool)-- In jecent years fitre whitaimed from the leaf-needles of the Scotch Gir laar, oft the continent of Earopee, been made inta a blanket staff for lowaritals, Hanaels, mal lasoiers: It is nswally mixed with cottom of wool. The material is helieved to have medicinal prys perties.
Thlier curopara (Common Lime-tiees),-The hast fibres of this tree are extensively used in Itussia fol bats, repes, und other purposes.

Fibres pras Esponakinoys Phasts,-Ageme aniericuser (Sjunish alue).-An excellent fibre is ohtained from this phant, which brows in great almibilatice in all prato uf tropical America, If has alan been sarcerofully intrulnced into mane coun. tries of the ©Hil Wurlal. The filbe is made intes copes, ivine, un! redtiog, as we!l as intor matting nuil bevitation lativelath.

Aghev ancsionan, - A plant dibtinet from the last, thenghe sften confonmeil with it. The fibres of looth are skeil for the siome pirpase, Yaper was sumle by the anejent Mrxicaas (roan A, meziecmit in the same way an the Egyptians made it from the papyris.
Agare sineloner 〈Sival heang).-The filbe of this -facien, Whicly grows in Vtwatht, Meкico, find Central America, is mopresiatly valuable for solyp cables, an it hat lremis fowad to resobt the action st ven-water hetter thin what other maiariats nseal for cheir manufiactiore **al liemp is nent in con siderable gratitition to the Linitel Nwaten, bat sume

 mate. The strong thevex lisesi emormail the zownt leaves. These are known in comborce as phinway flare, of at lequt one kind if it, which is lyevl in Enrape chiedty for limaboaking Abotlser kini of
 Srazilans jaim.
 If sume places, nisely an the Dalanom and frisia, that plasi in enilivatest for iss fonit, lout in Dtatiuse, Java, (Thina, nat knowe other eauterin phace chiefly for its sibre, sovorid quecios of bomelia siofil ifat:
 the fine thireal from which thes enotly than cloth of
 tral Amerfica the piff, anl in Moxien the intro, alow produces ati excellent bitios
Carturfowior fulseath I Sananut ncrew pines.The unexpanded lenves yieht the straw of which Pansma hats, sin mach valume for floeir durability, are onde.
Cargela mrens (Kittoni)-Frum she Inaves of this Inilian palm the kittool filore, wuw largely stred to mix with tenste in liruslumaking, is obtained. Strong repres are male of it in India:

Copervaria cerifert (ifithumba or C'araabuba the number of In that conntry the filure of its leaves fon it for roper, mato, lowimes, Ne.

Coryphit casstralis (Ausiralian cabbage-palm)The filire olstained by splitting the leaves is made into clothing, betting, and hats

Macrochlont (cwecesstina (Expartograss). - Es. parto filure is mow manufactured into Paper (q-a.) on a great seale. Yur this purporse it is extremely well suitel, being line and nttong, with a tendency to curl. Until emplaratively iecenally much of the esparto-grass of emanneice wan nupposed to be the Lygeasis saxertan, an atlied plant.

Afeme trosticis (Manilhn hemp). - The chief nse of this filse is in ropsuaking, lut matting is also anade from it in a consiblerable seule in Dundee. It is prepared from the leai-stalks of a wihd plantain growing in the Plotijprine Islandx.

FLuRe Yhum as Actotesvots I'LaNt, Cibotinm barometz (Pulai filbres. The filure so called sur rounds the stalks of the fronds (leatyes) of the plant, which is a fent howing in the Sandwich pland, which is a ferit howing This fibue, like smone of thome cicconting is

THE SURVIVOR VOI. 2
hairs on sceds, is called 'vegetablexilk.' It is used in the United States and Australia for stulting in

Fighting-fish (Betta pinguax), a small Freshwater fish, especially at home in sum, where it is
reared on necount of its eurious pugnacity. It lolongs to the family Jabyrinthici, which includes other interesting fishes, such as the Climbing I'erch (Anubas) the henutiful Paradise-fish, the well-flacoured Gourami. When two fighting-fish aie brought zogether they often rash imniedi. ately to combat; or it is even enorgh to introdice a looking-glass into the water, when the
H.ly hatcios to attack ita own image. Fish-fighta ifo it tavuurite montrement of the Sianmese; the License tu extibit them yieldes a considersble annusl weventie; and an extraordinary amoant of gambling takes place is ennnection with them-not mierely momey anl poperty, but children and liberty being sanctimes staked. When the fisly is guiet its eolours are dull; bit when it is excited they glow whin metallic nplestoor, and the projected gill, membrane, waving like a black frifl arsund the throat, fuldif nomething of grotespueness so the general appearances.
Filter, When yolid matter is suspended in a liquid in which it in insoluble, it may be separated by varions means (see Ctafigication), one of sists in passing the liquid throagh nome ponsus subatance, the interstices of which are tuo small to admit of the passmge of the solisl purticles, the principle of the netion lopisg the anase on that of a Hieve One of the simpleat furma of filter is that commonly anod in chemical lahoratories for aeparating precipitates, \&c. A aquare or circular piece of bloting-paper is folded in foin, the corner where the four folda ment in placed downwarda in a funnel, and one side in partly apened, so that the paper forms at lining to the fonnel. The liguid passion Lhrough she peren of the popper, asil the nolid mather reata upon it. The chief alvantagen
of thia fitter are ita diamlicity end the eiase with which the solint matter may be remaved and examineel.

A simple water-filter for domiestio parpones is bometimes male by statting a piece of sponge in the bottonf of a funnel or the hole of a fower-pot, and then placing above this in layer of pebbles, then a layer of coarse aand, and aloove this a layer of pounded eharcoal thrue or forar inclies in depth. Ansbber layer of pebbles should be placed aliove the charcoal, to provent it from being stirred up when the watar in poured in. It in obvious that
soch a filter will require occasional cleanings and renewal of the charcoal By a- saall alhlitips for this a cottage-fiter may be made which, fon practical use, is quite equal to the most exprensive hilters of correqponding size. It consiste of s wn
Hower pots, one above the other, the lower ene is fitted with the sponge and filtering layera alove described, and the spier nio with is sponge only. The upper pot should be the larger, atal, if thie lower one is strong, the apper one may ntamil in it. The two pots thes arranjed are placed upon a three-legged steol with a loble in it, through which the projecting part of the lower aponge pasees, and the water drope ints a jug placel below, The upper pot seives as a rearervoif, its spange atope the coarser inputvities, and thus the filtering layers of the lower one may be used for it long period without being renewed, if the upper sponge be
occasionally cleaned. Care must be taken to wedge the upper sponge Lightly enough, to prevent the water passing from the upper pot more rapidly than it can filter throngh the lower one.

A great variety of filters are made on a similar principle to the ahove, but constructed of ornamental earthenware or porcelain vestels of sutitable
shape. In purchasing a filter, the layer must not be satisfied with merely seeing that the water which has passed throngh it is rendered perfectly transparent-this is so eagily done by a new and clemn filter-bit he should see that the filter is so constructed as to admit of being readily cloansed for the residual matter must lodge someshere, and must be somehow removed. When large quantitites of water lave to be filtered this hecomes a serious
difficulty, and wany ingenious modes of overcoming most of these water is made to ascend through the filter-

 bost ative of thind or fil bering coutpartisent: ol the wat Eltering atume of Af t, the plos to remoye
Nor Eleaniag ons antosi
compartment compartnotnt; f, a loose apougt at estrance
counaunieating tabe, covered with anoth ather plate of porouss stone. The inurth complartment, intmediately mbove the third, receives the filtered water, which has been forced through the lower atone, the charenal, and the upper stone. A tap is affixeil to this, to drow off thie iftered water, and a plag to the secand or lywest conpartaient, to remove thie sediment.

A large number of other sacending filters have been patented. Siflum fitiers sre cylindrical pewter venacls, containing the filteriog media, to Which is attaclied a toog coil of Aexible pipe. When ased, the eylinder is imasened in the water. buth or cistern, the pipe smoniled, bent over the odje of the ciatern, and haoghtat dows considerably below the level of the water. It is then etarted hy applyisg tho month to the lower end, and sncking it tili the water begins 10 flow, sfter which it euntipues co do so, and keepa up a large supply of clesr water. This, of courae, is as ascending filter, and the upward prewure is pro partiosste to the difference between the levight of the water in the cistern and that of the lower end of the exit talue (sen Sirmosi). Fiteriay on a large sald is effected by uilog, severad tanks or reservoins, in the first of which in coarse material noch as griavel, the waler jossing (romen this to a necond, and from there thiongly a finer bilter to the main reveptacle, where the fittered water is stored and drawn off for mee.

A common water butt or cittern many be made to filter the water it recoive by the following means : Divisle the cistern of burt into (w6 compartments, an upper anit a lawer, by means of a whtertight partition or talse kotsom; then take a wooden box of anall barrel, and pertorate it closely with holes. fit a tube into it, feschiog in aloust the middle of the insile, and projectimg sitsite a lime divtance; fill the box or herrel with porvdetel clarcubl, tightly ranumed, and cover it with a bag of felt; then of the projecting part of the tube fnta the taidile of the falae bottom.

Various messes of compressing earbon into solid porans thasse lave been patented, and filtere are made in which the water pawes through blonks of thin compressed earhon. Most of these are well sdspted for the pargooes, lout their asserted superigrity over filters cotopased of layers of sand and charcoal is doahtial. A very elegant and con. venient portahle fiteer for soldiurs, tavellers, and others who misy require fo drink from turlid jonds and rivers is conntructel of Fassome's filteriagstone, and is also made of the connpressed carbon: A mmall cylinder of the stome or carfon ts counceted with a flexible india-rubber tube in such a manaer that the cylinder may be immersed is a river, the monath applied to a manthpiece at the other enal of the tabe, enil the water drawn through the filteringcylinder.
It his been questioned whetber nelable matter, such its cotntonn salt, is in asy degree removed from water by filcration. Theoretically it was esaumed that this is impossible, since the filter nnly acts mechanically in stopping surpended particles; but the resulte of experimentis show that from 5 to 15 per cent., of the soluble saltas Wrac separsted by sand-fitters such as above described. Another niost important matter is to abscortain: to what extent solable orgaric matter may be decomposed by filtration, especially by charcoat filters, and to ascertain how long charcoal and other porous matter retains its property of acting on organic matter in watery solution (see Charconl). This is of the highest importance, as it sometimes happens thas Water of brillisnt transparency, snd most pleasant to drink, on account of the carbonic acid it con-
tains, is charged with such an amount of poisonous organic matter as to render its use as a daily lieverage very dangerous. A filter of animal charcoal will reader London porter colourless. Loam and clay have similar properties. The neparation from drinking-waler of pathogenic micrabes (microscopic sources of pestilence) and their germs is very
difficult, on account of their extreme smallness; but it has been effected by using porous unglazed earthenware as the filtering medium. It is, how. ever, rather troublesome in practice, as pressure is demanded, and the very fine pores are soon clogged. They may be cleansed by raising the filter material to a red hest. A duplicate is therefore required.

When a liquid contains mucilaginons or other matter having viscons properties, there is consilernble difficulty in filtering it, as the pores of the modions become filled ap and maile watertight. special filters me therefore vequired for syrups, nils, de. Such liquide nis ale, leeer, Ne, wonld be ex coedingly ditticult to filter, armi therefore they are elarified by be admixture of albumen, gelatin, of sume sulasumce witl clarifying properties, Oil is usuafly poseed flornugh boge male of horse-hair or twilleal eotoos cloth (Canton fannel). Syrupm are filsered on a small neale by confectioners, Se, by fassing them through eunical flannel hags, and on a larte acale in creaned braf filters, made by enelos. ing a lorge loaf within a smallec one. Thick syraps lave to lee itilated or clarified with white of eggto collect she sodiment into masees, dad then they may be fiftered through a compae cloth strainor, Fegetable juicon generally require to be treated in thin manher. See BKKu, WinE, SvGash, 太e, ; and for filtering on the lagge scale, nee WATkB sveppay

Tlie simple dabortsiny titter liat to be modified when atronif acid or alkaline solutioni, or substances which are decomposed by organie matter, require Aitracion: Pare nilicerus rand, a jlug of Asbestos, juabied glass, or clean charcond are aned for thin jurjune, Sons recommend gun-cottom as a filter for such purpesser
Air Fithers. The extrandinary pnwers of char. conal in insinfeoting the gesesous prisulucta evolved (rom decomposing aisual and vegetable matter bare boen made available in con-tricting an appara. tus for partifying ab that is manle to puss through i. A tariciable cajeg, omtatining charcoal in small fragtoents, is fitted to the ojening from which the deleterionh gives instae, and in found to render them perfectly inolowms, and probably innocuous. Mechanical imparitier suspended is air may be filcered out by foreing the air through a plug of entian wool, he in fireinen's respirators.

Firearms. The generic term 'firearm' ineluden Cannon, Bifles, Guns, Revalvers (q.v.), and other weapons in which an explosive is used an an ageut for the propelsion of projectilus. The history of the iavention of Gunpowder (q.v.) is an appropriate prelude to that of fircarmis, the existence of the latter bering wlolly dependent, upon the discovery of a corlain recondite quality is the former.

Inflatumable material has been employed in warfare from remotest antiquity s sulphor and resinouis gams were the ingredients of some, and naphatha and bitaminonte subitances with nitre of atber, of the mixtures known to the anciente on 'Greek fire,' 'wild-fire,' or 'Medea's oil ;' but the *essel in which these inflanmable compounda were deflagnated cannot properly be termed firearmit

A weapoti of the pyroteconical speciee was developed by nome of the eastera nationa, and is said to have been used extensively until the 15th centrury for the Jrightening of horaes and cattle on pillaging expeditions and in warfare. The weapon wha in construction similar to a 'Roman eandle of the pyrotechnista, the inflammsble flling of Grecian wax and metal filings being tow mixed with sulphur ; the weapon was lighted at the mazzle, and an the 'filling' bumed down, the balls were shot out by the gunpowder immediately bencath thern.

The knowledge of gunpowder and firearma may be preaumed to have extended in a westerly direction through the Arabs, who used them in the 8th centary under the name of 'manjaniks," and introduced them into Spain in the 13th century. Seville was defended in 1247 by cannon throwing stones; Niebla in 1259 ; and in 1273 Abu Yusuf emploved cannon firing stone bulls at the siege of

Sidi-Moussh, near Algiers, Ghent possessed a small cannon in 1313, and Florence ordered cannon and iron balls about 1325. In Germany, Amberg possessed a camnon in 1301, and in 1327 the English employed some Hainaulters, who used cannon for King Edwird III. againat the Scotch Cannon were used in 1339 at Cambrai, in 1340 at Mirepoix, in 1345 at Monségur, in 1346 at Crécy. Is 1350 some North German knights armed themselves with iron guns, and in 1385 Einbeck was very effectually
Different countries had different natpes for these early firearms-in Italy thombardo, in France 'quenon,' in Germany 'buchsen,' in the Netherlands 'vogheleer,' in England 'crackeys' or 'engymes'. of war; but it was not until the 15th century that firearms were classifiesl and named accordingly. Bombards were ahort, eapacions vesseli, from which atone balla were ahot with small chargea to a short distance and at considerable eleration ; they were essentially the pasenth of the present bombs or mortars. The camnen (canna, 's reed'), on the other hand, were, for pome time at least. of extremely small bore, scatcely larger than muskets of the 18th centary; they divefurged leaden bullets, and would have probably been nsed as hand-weapons but for theis cumbrous and hesvy workmansbip, which mecessitated stuall carriages Ams of this tescription ate doubtless those referred to an having been lroughe by Richard II. to the niege of St Malo, to the nomber of 400 piecen, where they are naid to have kept op an incesaant fire day and night oa the town witheat виссевs.

All these carly firearmin were bsually louded in the muzale, and fired at an extreme angle. Charles $V_{\text {, }}$, clessed mortarif heparately, mobested eannon upon carriagen, idded trumbions, and effected other improvements in his artiflery, which effected other maprovementa in his artitery, whach
connisted of cannon ; great, bastari, asal aniall culverins; falcons and falconets. The clasaificalion of firearms led to the development of varions typee to bo ased for specifie purposes, and an tovestion which effected a great improvement to onie type was useless or inapplicable to another. Cannor of 120 tons and pooket-pistols of 1 nances, nlthuugh they have a commant origit, bave not a comanon hiutory. Cannon were of wrought iron, beils up by the bandicruft of the smith, of rods and ings, and were used as they left his forge. Canmon of is copper and tin alloy were cast at Augshorg in 1378 they have since been muite of hollowed blocko of stone; or cylindrical holes, loored in the solid elufls, have lieen hasd to fire projectiles, as at Alexamaria, Constantinople, and (sibratar; they have been made of wopal, of rope, of Jeather, and nit papriermaché, as well as of allugat every pure nal alloyed metal it is posaible to cast or forge. The early cannon were chiefly used at sieges, as their weight and the buinesy of the roails, audued to the inelficiency of the weapons themselves, precluded their udrantageons use as lieht-pheoset and if utilised in a pitchest battle they were fired bot once. But on the one hand the development of cannon into small portable weapons produecd hani firearms, and on the other the increase of size and weight led to the large weapons so inportant for the defence of fortifications, of this type the ' Mons Meg' of Edinburgh Castle is an early specimen: it weighs neariy 4 tons, and fired as stone shot of
over 300 Th . The poncier-chamber is of a less diamever than the bare of the cannon, in this partioular resemhling the mortar, and exhibiting the reverse of the principle of enlarged powderchamber now employed. Sach camon were made at Givent in the 154 l sentury.

The eqiverin, a laseful sive of rannon, was employeal geaterally in England until after the Cummonvealth. Gulverins fired stoee shot, iron

 of the 1ith seatery.
verins and prepeetile were made by Such eall verins and Porfeend. Birminghant, in the 17 th centiry, and were asol at the lattle of Worcepter.
Field-pieces rere not greatly developed satil the 1wth ceatury, when thie improved fisish of the fnterior allowed of long and oniform rasges, and a certain definite accuracy leing shbainel.. The breech-loaling field artillery are now of a high degree of excellence? but whether firing thot or shell the limit of jenver will be found in reeoil, ar is the limit of noesracy in the correctanes of the 4 im.

For defenaive parpasos, is well an Ior certafn aftpasive ojetations, special arnis were requirnd arit convtrueted of these the loggrluserulled wall. piever for defencer: the 'petscit' 'suit mumfurs fining firs oblong sui symarn lobliets, for baking is breaph; expleave slumis and grenables for cleiring is trench: grapue and clviais shot for suowing down compact spoares of infontry or destroying the ripsiog af tattle-shiges, ste the best known. Frars the 'amgue de (monhardes' another type of carly firearm, the paick-krigg. many, burrelled marhise ghno bave liens dovelopel. The carlime form of this waspon is the 'rihaudequin. of ftafian oricin, which consivted of a nasobey of amall eantion sud pilos arranget sipn a portsble carriage ; it wa fired lut once daring an enangement, and wan primanily intended as a defence Agrinat a cavalry charge. The 'orgme de boms-
 otsly i and feper pikes suocreaied the ribauilequia.

Further derelopment- suntivi info the era of pertrimints fireathe.
With the eqution and foilk. Firumg machine gurs, the improverterts Lave Jupuenlel lesy ppon the ingrenity of ioventurs slas us the hcherements of tilechanical लpience to spoinjultsh accarite workniandijp. and wowh great masers of thatotind is skilled workenen can hatuille >imalles pietecs The improvemests in explozites, in the cuality of the mosel, and in the machitiery scaitalite, linve rendered presilile the jocoluction of sarls imuense weapors, that the litnit of stiet wriuld stprear is loe onther in the ons of mawnfartare and the enortanten expenditape riskell opront the sim, than in the imabifity of mumbers mecteanicians to profthee still lariger apd tance powerfol meaponsa

The derelopment of she hand fireatio. on the contrars, eallell for the ingeradity of the hazudicrafteman, asit at first this ingenaity woes exereised in the combifatiotr of a. Firearcin ponconled with some ofther oteampa, sor tisat its firims unespectedly

Fig A- ITistol Batle-axe.
shonld prolace a criosternation ; and for the same reavon requeatiog and domide-harrellel weajwhs were producet. Finearms were ineorpurated with dageers, swords, 1 gkos clahs, suaces, axes, and shields; and it was the use of there slevices by eunning warrius that divgisted the knights and led to their toss of prestige and liastened the decay of feadal. ism. The hand firearms owsel tlueir micces yuite ost much to the consternation eansed by their unexpected disclarge at to the execution shone by their projectilen : hence Montaigne wrote in 15B5, when the masket- in and were autich siluerior to the eaplier e oulserins, that their effect, apart front the shock causel lis the rejort, wat wo insmisnifieant that be hopeed the use of thent womld be diveron. timbel. It was tit a alprive weapan thay Nea poditan largabils nied Frenely gostillions were arned with whips, the handles of which were cunningly levived and well-biditen pixaple
The reslverin or luand cannen was a suall malo of
 fiper of wood or wethled to an jom lianalle. At the cloes of she 1 bth centary they weqe extemed ely umel. In 1471 calveriness were in thmarsmy nf Elwant IV, after bis laming at Itavenopirs. Yorkshires and
 ts 1521 . The smallent hanal calterins - mboat 4 feet is length and welghing 15 th.- u ere ased on honee. hack: hoavier weapions isfito 60 I6, weight were ured hy the fort-andiers, The calveriner was ateneted by a 'varlet "to nal in firing the piece, which wian Alwaye mupuried ugus s forked reeh. The ariuebur

Pish 0 -Harly Hand culverin.
was a manaller and itionoved culverim, requiring but one than. Gruse writes of the equapment of the culveriner : He had, in mddition to the unwiehly weapats iteelf, his coarne powder, for lowding, in a flask; his fine powiler, for priming, in a touch, box: hes bullete in is leacherin bag, with stringa to draw to jget at theru f whilet in hif hand were fis masket. reat ard his burning match.'

The toseli-bole of the eulverin was in tate phttern placed in the side, instead of on the top as with eannoy, it flathpan was added, and early in the 16th centary the serpentin or lever to hold the buraing masch was invented, and the matehJock quiekly followed. In the best matchlocks the thash pan whs novered with a linged lisl, and the norpentin whe forcibly thrown upon the touch powder in the flash-pan by a apring; but in the urdinary types the barning hlow mateh was made tosiescend by pulling the lower etid of the serpentin towards the stock. Fram the thatchluck aryuebus came the haylow, hackbott, hackenbose, and the masket, wluch was origimally a heavier weapon, thd earried a double trillet. These carly firearmis were londed with difticulty f at Kissingen in 1636 , and at Wittenmergen in 1638, the musketeers fired seven shots in eight hours, which is accounted for by the fact thut musketeets were harasyoll by the opposing cavalry

and archers, and that the loading had to be effected whilet the forked-rest wes attached to the wrist by a short thong, and the soldier 'in skirmish doth clarge his musquet afrewh, and train his forke or staffe after him.' The matches of slow burning ftuse, even when carried in the hat, or in a per-
forated metisi case at the girdle, gave mach trouble, especially in wet and foggy weather, and at the battle of Dunbar (1650) the Engliah musketeern were unable to retain their fire on sccount of the weather. The wheel-lock originsted from s gan in which pieces of pyrices were placed near the flashpan, and the igniting spark was produced by the
iriction of a file rubbed against them. In the wheeI. lock the flist is held in the flash-pan by a spring pressing against the npposite extremity of the lever to the one is which the fint is fixed is in the fashpan is a grooved wheel with serrated edges, which is rapidly rotated by a chain and flat or V spring, or as is the dran of a watch. The wheel was wound up as in a watch, with a movable key, and was released upon the trigger being pulled; its rapid rotation sgainst the fint firmly pressing upon it proitaced a stream of sparks instantly, and muida igrition more eerlain. The wheel-lock was produced in Germany early in the latter half of the 16 th century, Bnal with its introduction the use of frearmi for sporting purpoeses becane more geneal.

The fredock or fintlock, more eommon than the expensive wheel-lock, wan prosluced in Sjain about 1625 , is a cheup anbatitute for the wheel-lock. In the fintloek the kermmer or cover-plate to the flaab-pan is knocked baekwards by the blow of the fliut screved in the jaws of the cock, and, uscovering the priming in the thalspan, expones the touch Ggainst the stee) face of the hammer. The early tlintlock wis elhmsy, simple, and inefficient; it is said to have bean produced by marnaders, to whoni the burning mateh of the eryitebes was dangerous is betraying their prenence ; and, roughly made, it did not answer in in fillibary weapen ao

well at the mateblock. Improvementa in the latter lialf of the 17 th century caused it more general adoption. It was common in the Netherlands, and wha introduced into the English arny in the reigh of Willimin 111., and remuined is use until 1840 ; the lant firelocks supplied to the British goveroment were for uno abroad, and were made in 1842. The frelock or tifntlock mosket is stili an arlicle of commeree, as it ein be ased wherever there is a supply of powder and lead The flint look in its highest degree of perfection was mams factured in London as a donble sporting weapon at the beginting of the 19th centary.
Pistols were developed from the small hand canton termed 'poitrinal,' and were made in 1540 by Camillio Vettelli at Pistois. They were used nis concouled weaporss, the German Ritters being the first to sulopt them for military purposes. At the hattle of Renty in 1554 the Ritters defented the French through a manowure termed 'caracole, 'in
which the pistols playel the most important role. The pistols, from hasing stingt barrels and heavy, clumsy butts, improved into saccessful cavalry arms when furnished with wheel-locks, and they were renernlly atlopted as an auxiliary weapon.
Double and forr-barrelled pistols were common in the 18 h h century, And the revolving pistol, termed the 'pepper-box, preceded the introduction of the modern revolver by Colunel Colt (see Revolver).
As a triumph of handicraft and exact workmanship the duelling pistol is without a fival,
and the twenty-pace pistols firing a large ballet with a small charise of powder, as made in Paris at the present time, are not to be equalled as weapons of precision by any firedrm extant. The
revolver has superseded the pistal entirely for
military and pouce purpoees in eivalised countries, but the revelver will in its turn has
for s magsine or repeating piatol.
Many of the early cannon hand-forged from rings and bars were breech-londing, the system secured in position during the discharge by hammer driven wredges; or a through pin uniting the block with the breech frame of the canaon. Such Weapons date from the 14th century, and aimilar weapons formed part of the equipment of the Mary Rove, which foundered about 1545 , Small-सrnus intended for the ane of illustrious persons were occasionally made breech.londiog. In the Tower collection is a masket which clonely resembles the modern Saider in its breech mechanism, and this remarkable specimen of an efficient breech-lasder is said to have belonged to Henry VIII- whilst several other varietien of arms having a movalule Lreecla-block were made prior to his regh. Small armas and cannon with detachable brerch plagn-
in which the charge was placed and fired-vere made in the 16 ch century and before ite close breech-loaders with hinged barrels had been intcoinced. The hinger sha nually at the joint, as In the wenpon illustrsted (fig. 7), and not a couple of inches forward of it, as in the Lefaucheux and other modern devalopments of the sporting gan. The 17 th and 18 th centaries were partienlarly prollfie in the production of lireech-loading mechanions, lat, owing to the sbocnce of a cattridge containing its own Ignition, zome were suer. cesaful until revived after the introduction of the percuasion cap.
Ampignt the early manufacturen of armas whe aided the development by their handieraft or inveation the Italian and Spaniah sunitlis deserve mention; the accurately forged harrels of Nicolan Bis, and the fine workmanahp on the pistels of the Comminnzzo fannily, cannot be surpueed. Kolluet of Vienna, and Kotter of Nuremberg, prodnced rifling; snd Lazsring, Dax, and Nereiter improvel the appearance and handiness, and mulded to the utility of firearnis by roinor inventione. The wheel. lockn wore neither manafactared nor used evtensively ont of Germany and Italy, but Hee Sason collection in the Dresten Maseum findicaten the fimportasee with which the invention was sonce regarded. The mget curions arms were manufacthred in Paria, Amsterdam, Hasover, Liegec, and Liskon, and later at she Mowcow aremal.
That necesaity is tho mother of invention lase never been mare truilhfully demonstrated than by the development of fireartas. The wars is Flanders and Germany during the middle aype quiskeved the geniss of their inventors and improved the skill of their armoniern: just as the teasien in midl. Europe since the war of 1870-71 lase given to Prance and Germany the finest repreating ritlen and best
artillery; Whilas the leinure and tate of the artillery; whilat the leisure and Late of the Ergapons. The incalled for the frimest pporting weapons. The invention of niling int Cermany in
the Jsh century Jed to the developorent of weapons of precision, the highest degree of mocuracy leitip attained lyy a heavy muzzle-londing small bore rifle with a high trajectory. The repnirenuents of the military firearm-Bightness, ense and quirkness of manipulation, extreme range and great velucify. have led to the sacrifice of precieine for the alvasitages poosessed by light breoch-foating arnes (see Brescif-loadise, and RtFles)
Of the inventions which have been appulicable tas all firearms the moat important has to do with the ignition of the elasge of explosive. Felminating or detonating powders were made by the French chemiste of the $18 t h$ eentary t and about 1800 an Englishman, benefiting by their experiments, po daced is highly sensitive explosive, composed of fulmitate of mercury and salipetre, whiel prosessed all the requiaite qualities of a priming powder for the fintlock firearms. In 1007 Alexasuler J. Forsyth, a Scottioh clergyman, patented the application of the detonsting principle for exploating gunpowder in firearms. Many inventors claimed the copper percusaion-cap whirh followed and was first made in England in 1818 , its istroduction leading to the sbsadomment of the firelock. The expansive bullet, invented by Greener and itaproverl by Minie, increased the range and securncy of rittes, and nuade an mocernate hreech-loading rifle possible. The cartridge tase contaiming its own meanz of ignition, or the percussion cap, is a French inventinn improved by Lefauclientx, Latncaster. Needlyan, Pottet, and others, and to it is alue the
success of moderim lereech-loudiag tmall-arms, this eartridge-chse of solid drawn hrass being used for
all guick-firitug jofothine tund and some of the sanaller cantiont. The expansisn of the case at the moment of diseluage cunses if thact as un obturator and block all esespie of gas into the lorecel-loading mechanism, whilst its contraction after firing admits of its being withlrawn with eass
Sporting lirearms consint of the shot gut and the rifle for lorge gnome shooting, The use nf hail-shot hechme general in Germany in the 16th centufy, and witht the intruluetion of the wheri-lack the use of the arquebus for syouting parpases became more common. The earfiest domlite lazrelled gons were made for military purpuses, hat sporting ghan with two barrels side lay side were mude in Italy in the 171le century, and the tort of ahosting on the wing was first pracelined ahont 1580 . The inirodue ijon of better iorged liarrels in the latter half af the 16th centary made a Light domble lavrelled fonvliag piece a possibility, and since then shot-
 streagth and lightaess. Oha horsenhoe nails ant scraje of iten absl stem were made ints slont-kun barrelas; has after 1850 nem metal wis employed and is now preferred. An the fowling-biece with humd-welded harcels mate of twinted roin liepame
 nuakere ower the Euptiols wist lasected, and eatily In the presebl remitns the improvenent made by Mantum, Nick, Cimok, Eses, atid others placed Raglish grons alecas of all cumpacitars The Freash inveatios uf coappmaite catridse case sand lorneoltabaling was sumasi to practiend acenunt by the Ehydish, who lase taveanisily momved apon the ragginal blea. In ashlition in ther breech lonsling miechanision, the slont gian lass been ion proved tio range loy the use of chado hority - 4.5 , the constriction of the lestrel at the makeles in safely, by thet solanowding look. whith again las hown
 ment of the flimg mecthanim witlin the head of the fron; and in nelf ejecting mechanimn.
The pporting sibe is a type of frearm evolved fros the wheel lock hanting weigans of Germany. Is production is pront of the alaptahility of fire armis to sperial needs; the desidernta of a weipon for tage game louting inclinde the guick firing of a mecond shot, and a jaralswing effoet frim the penetration of the batlet, The rejpating vitle cins:
 bength of rimge with a light ammanition and conTmonte quirk foring are pointa menglt in a military weapons I'recision in clependent ippon the weight of the projectile befing mafficient to manintain the direction imperied to it duriug its pasange thmmgh the borrel. The laslet is luslper tos to this hy the riting giving the projectile a sotary metion, whicle equalises irregolaraties in the bullet, and Irswens ith tendency to ileflect. The greater the velocity, the leas quickly mast the rifling tartif but wish improved sulid ballete, covered कith nickel or fikel, it iv [osssible to get the tratiet to krip Lie rifing tal is velocity of 2000 fees per necond, and a complete cum is made in ton inches, in which atae the mallet hay it domblo rutary motion and takes a eorksetes Itight. The sundom sporting or expresh rifle, as it is termed, fires a hollow ex pansive bullet at at high velocity for a few hundresl yardy, meotracy and range being sacrificed to force at impact. The average muzale velocity of the military rifle is $\$ 500$ feet per second, of the expreas 2000 feet peer recond; and although with Eew ammanition and faproved explosives the latest military rifle attains this imitial velocity, the force of the imblet an impact does not approach that of the oporting rifle projectile. The amallest *porting rille fires a bullet of about 120 grains, and the largest a butlet of 1600 grains (see Riviles). Firearms se aloy uscol for a sariety of secombary purposes : for the firing of signal shells at ses in lien of rackets |, shooting oil -filled vessels from ships to prevent the breaking of the waves in wtorny weather, for firing harpoons with a line attached, has assed in whale and \#arwhal fishing, We-

In the manuifacture of early firearms the smith was the first and lest workman. The Italians were amongest the first to ornument firearms, and finiah them ly chiselling, chasing, and engraving, as the Spaniards were amongst the first to supplement the work of the smith ly filing and smoothing the exterior of the weagrons, and polialing the interior of the barrels. For the last three centaries the
mont akilled handicraftamen of Europe have been employed in the making or beautifying of firearns, and at the present day the manufacture of aporting guns remains essentially a handieraft, the mechanical proceeses having but lightened the labour of the workman, not superseded him. Some 20,000 work. men are now employed in Europe in the manufactare of sporting guns, the chief sentres being Birmingham, Liége, and Prague, whilst the machine factories of Europe, togather with the government arsenals engaged in making stmall-armis, employ a much larger number. In addition to the places mentioned, at Suhl, 8 Et Eitienne, Steyr, and Tuls, and at Springfield, Hartford, and elsewhere in the United States, large numbers of firearins are made yearly. The ides of making army musketa with interchangeable parts originsted with the French about a century ago, but the only succeasful reanlt wen the 'drop forging' or stamping oat of the varioun lismbes, aud About 1797 Whitney made some 10,000 muskets in America from atampingas and used improved machinery in finishing the parts.
The perfecting of the machinery for the manufactare of interchangeable arms in the work of Hall, of Harper's Ferry, U.8., whoae system was mopted in governtuent workshoper in 1818 t and of Blanchord, whose improved lathen prodneed interohangeable stocks. The syatem of making firearnas by machinory was introdaced into England in 1856, aince which date many futile attermpta have been made in varions countries to produce fine aporting armis wholly by machinery.
The improvemente immediately sought in firearms are such us will tend to simplify or istrengthen the breveh-loading mechasilm (see Breger-LOADiNG), and to atruagthen and at the sams time IIghten the barrel; the discovery of a materia! atronger than steel; and such inventiona as will increase the range of preciaion of the weapon or lessen ite recoih, For the eapabititiea of varipun weapons, aee Casyon, Iuyles, Revolvins, Be
The beat military small-arm-rilles-are avail. able to a range of 2000 yards, and the best expreas to 300 yarda A mateh rifle will fire with a mean deviation of 1785 feet or lewa at 1000 yards range, and a shat-gun will put upwards of two thirds of ita charge of shot into a circle thirty incluse in dianocter at 40 yardes range, and the list ahot of the eharge will not he amore than tee feet bebind the tirat one that reachee the target at that dintance. The killing range of the average shot-gon to sbout 45 yardi, of widi-fowling guns with awan shot 140 yarda. Afer the puilling of the trigger, watil the charget of bhot reaches the inuzzle, 007 of a aecond clapues, and 13 before the shot, baving paseed the Duzzle, ntrikes the target 120 feet sintant.

Fireball to the popular name of projectilen, other than rocketa, which are used for incendiary or Illuminating purpones, They are more properly called curcasses, or ground and parachute light-balls. The carcasa is a thick shell tilled with fiercely bursing conipoaition, and liaving large holes, or vente, out of whiels thin atreams. The ground Fight-ball in filled with brightly lisening compooition, and burna on the groumd. The pasachute shell in fired from a mortar, nad fuzed no as to open in the air and support, by mesna of is parachote packed inaide it, a pars of brightly burning composition. The electric light liss superseifed these lat swo, and the rocket the first,
Fireclay in the variety of clay which is used for the manufacture of firebricks, gas-retarta, erucibles, gleas pots, chimney pipes, anil other articles, most of which require to rexiss the action of high and long-continced heat. Ordinary fireelay is chiefly foond in beds not nsmally much exceeding two feet in thickness, in the coalmeasures, interstratified with peams of coal and other rocks. In the British Islande it is moat largely worked about Glasgow, Newcastle-on-Tyne, and Stourbricke in Worcestershire, at which last place it is sald to have been discovered about 1555 by some wandering glansmakers from Lorraine.
But it occurs, more or less, in most places where mose mose in most places where
true can! in fonnd. It is mined in Germany, Rel. gism, France, the Unitel Stales, andit other countries Stoorloidge fireclay, owing to its excellent quality, is largely exported to foreign conntries, as well as liricks and other objects made of it. Refractory clays are found, though more racely, in uther formai finus hesides the coal measures. For example, soare of Tertiary age found in Dorsetshire and Deven-
shire are made into firebricks. The following table shavas the principal constituents of fireclay

	Saz	Ne: 2	Sins	Nal 4	$\mathrm{N}=$ -
yilica	65-10	51.10	Se-6	Esest	5175
Alancina	2 2 良	31-35	\%s-75	8368	$85 \cdot 60$
Putash	18			trace	trace
Leme	16	1-4	trace	56	trace
Nagnesia.	15	134		4	01
Oaile of 1rian	128	(83	$1{ }^{1}$	sd	01
Watar.	92	15	110	11/34	1396
Orgarie Matter.	6-	10 C			15

No. 1, Stourlorilge; Na. 2, Neweastle-an-Tyne Na. 3, Gartsherrie, Seatland - No. 4, Poole, Dorset shire ; No. 5, Morgantown, West Virginia, United Stater See Clary

Fireclays from the same locality often differ onnsiderably in slieir componition and quality. Soune of the Newcastle clays, for example, contain from 70 to 80 per cent, of silica with from 9 to 18 per cent. of alumina A light percentage of siliea sind alumina together (their relative propartions being comparatively immaterial) and small quastities of alkaline sulutances and osite of iron ponstitute a refractory fireclay. If not small in amonnt, alka line bodies in the clas tend to make it evaily fasible, ao that laricks formed of it are apt to noften and yieht in a furnaire. Fireclays are generally yellow is colour after being fired in the kiln. No very sharp line of distinction can be drawa between liard infusible clays and nofter marly clays used for terrib-cotes, encrden waser, and nomer kinds of hount brieks. In districts where freclay is abundant composition bricks Ior ordinary buifling parposes are partly maly of it. For furnace-building materials which resist the action of a. very intense legat, such as dinas and basite luricke, see BitickMAKIVG. Powiterel fint, as well as chrome iron ore, in likewise ased for faraace brieks.

Firedamp is the miners' term applied to light carburetied hydrogen or coal-ghs when it iestues from erevices in coal mines (see Gas). These crevice are named "blowers" by the miners, and are evideatly the outlete of gras that exists in a copupressed state in jeres and eavities in the con! The isaue of the gas is in some cases sudibte, and on applying is light it learbn is a jet of flame When mixel with air in pruportioss between if te tre of its volamen the rabiare is explosive predocing disanters that are too well koowa. The reasches of Mr Gallowny and others heve shown that the gas is sonly one of the factors producing the worst catastrophes. A conopratively smal axplofion of gas stini up ant comblat that may be lying on ledges, or on the floor of roads and workings, esel particle of dist is fired, and the combined resalt is like the lling of grairan of gan powder.

Flax (Linum), she sypical geume of Linacere, a nub-order of Cieraniacter, eohiritiont of about 160 species of anusal and peresnial berlescous plante. with a few sanall shrula, all ishabitasts of tem perate elimatey must absindant in Enrope and northern Afries. Sopie are aifinatel is ahowy

 white the allied Rartiola millegrase (Aliseed) is the smsilest of wur phaneroganaic weods I_{2} couth. artacum, as annesl weed, is the Porging Plax. long is etandant rearirce of domestic miedocite But atl essential interests cenitr monal thee Caminom Lint of Flax. bell fatmed Ioy Limmelle I. profortax
suncam, since in its importance for civilised man it rivals the staple food jolants Ticre are two muin varieties or sub-species-ru/gore and crepitorns, the latter distinguisbed lyy its sharter and more branched strom and rather lacigey leaves, lout more eatily by Its laseder capotbles, which bunst owen when sijue with at charaeteristic smmol, no swatuering the need. Thaugh shorter, this yiehts the finer, softer, ani whiter filbre. In buth the llower is a lorop consin) of beantifai boe flowers, I, westriachay is also caltivated it branca, I., warilinatm in ranthem Earape, and L. Lecisi in Nurth Amevica, lat att yiedet a coarser fiture. The tlax of prehistomic thater formal in the Swiss pile-dwelliuge, gat in the remains of the *tone age in northerim laty. was slerived from I. angrostifoliuw, as not only tho mambactured prowluet hut the actual remains of the stems, frat, nod seosds clearly show. The comminol lint of the Aryan peoples was, however, 1 . withutissianaar, and the occonence of the naane lint with litte modilimation ion ali Furapnan bagonges is usbally interpestert an indication that its He dates frotir the renote antiguiby of their connmon lanme. Thu sabue coluare is shown hy ath exauimation of the
 and the noweres is almo recogroizably stelificated upon she walle of the fornlss.
Sur as acensenc of the monde of poepraration of its hast an a iestile lilare, net helow: for procesomon of mannfacture, sed Lisks s fent fior it dowerifition of the uscfal applientichy of ith seed, tee LasissFy, OLSEAKK, OHL

Fs.ax mercsing. Growian ntemm of flax awe mut ent by eythe or ewnping-mashines, but pilled 8 y by the rvoles 'Ther leat thate fur doiphe than is when the stalka loejin to turn sullow at the Inees, san the seeds begin to clange form freen to a pale Lrown, A lieavier crop is ohfained when the plant is riper, late the iquality of the filue is injured. It in of itipentance that the eterin of equat leagth should be repiarntel, anifurnity in this sempeet simplifyide the diessime procestor.

Kipplang, the process of rebuaving the needs. follown the larventing. The ripgle, of rymblag: comb, contists of a row of woand lion teeth met in a wooden frame whieh is fixed to a plark. In lenget the treth are ahoni is inchen, and os the jointed tojes they are shomi half an tuch ajnet, The sippler, taking up a bundle of thax, xpreade out the tast like a far, and generally diawe list the one haff of it and then the other through the teeth, a sheet being plncet on thie gronad to recelve the seede or tollas tur ther fall. One or two whehinen have luwa intowtived for rippling flax, One of these reninver the peeds by pasing the stens lntweth two rant iron cylinders, Anuther performs thas apsation by mems of beaters which loowon the suerle, nail shakern which thom shake them out of the bomider of Hax stmaw.
Fefting in she thatur siven to the next procers in the treatraent of the steme of flas. fos olject is to facilitate the separation of the areful flore from the liman ar wanly part of the stem throngh the removal, ly fermientation, of the guanny of trsinnus metter pinesent in the platit. Thie ix ctone sither loy tew refting or by water-rettiog with or withosat the abil of lesat. Dew retting conssists in sprearling the thax on bie grater, and expouing it to the-ithowect of dew, rain, air, rath light for a com silpablie liur. It is a metho! practived in Russia, hand producer a suft and ribky fibee. Weterretting or stesping is the jilan most geamenlly fullawed. Koft water is somentind, and the dant or poad should not ho more than four feet deep. In this the Hax muntles or 'berta' are phaced in ruves, roots dowrwarils, anit then covered with weeds of straw seighted with boords and strabes, or with harf nal spones, to keep the thax below the water. If the weather is warni fermentation begias som, a change whick causes the flax to fise in the water, and it motst then be move heavily weighted. The flax minks again as the fermenta. tion slackeas, the extra weight lieing then removed. tireat jodgrient is requirel to determine when the retting lias proceedel far enough. The ntems are esmained with mituch carer aid if one finds on breaking them at ane or two places, or twisting thein in the midille in oppusite directions, that the Wowhly core called 'shore' or 'shive' separates freely frum the libre, the tlax in rendy for removal from the pond. From ten to fourteen days are requireal for the process with water at ordinary temperatares. The sinell that accompanien the process is mast offensive, and water in which flax has been steeped is valuable as a liquid manure.

A quicker process of retting, in which water at a
by an American, R. B. Sehenck, in 1847. Wooden vaty are enployed, and the fermentation goes on so much more rapilly that the time of ateeping is reduced to from 50 to 60 hours. By another invention (Pownall's) the flax is passed between heary rollers after it is caken from the vats, clean water being kept flowing over the stems during the operation to remove the gummy matters. Schenck'in method is not much favoured now.
Grassing follows the ordinary retting process. The flax stems are spread in rows of thin layens upon ahort grass for a few days, during which time they are sometimes turned with is pole; but if this is not done, the tips of the stema of one row should overlap the root ends of the next. The flax is lifted when it is found that a slight rubbing suffices to separate the wooly core from the fibre.
Breaking--After the retted stema are dried they undergo 'Greaking' to prepare them for the seutehing process. One siaple and efficient machine for breaking consista of two pairs of horizontal Ilated rollers-one pair haxing finer tlutes than the ocher -inounted in a frame, and turned by the neceswary gearing. There is alyo a feed table. In passing between the rollers the brittle wooly parta of thr stems are broken throughout their length. Later breaking maehines laves more numerous ftuted rollerg, nome of which have a reciproeating motion. The more efliciently the breaking is perfarmel the lens will be the amonut of nentehing required.
Scutching. -The wooly matter of the flax stenis being broken up and realy to be meparated fron the fibroun partion, this in done either by hasdseuteling or, tan is olitefly now the caae, by souteling machines. In the hand procens the flax is bung up in auch a poaition that it can be ntruck repeatedly with the blade of mentehing knile, so at entirely to remave the woody portion. In neatehing-milla -which are qually driven by water.power-the ncutoling is perforned by a meries of vertical whicels, on each of which are mounted a lew woolen bladen projecting conuidernbly beyond the rim. These bades take the place of the sutching knife, and work argaigat wedge-mlaped projectiona in a partition, striking the flax in the direction of its length, a worknab sliding the 'hwoken' fax gralually forward tus the scutching procesils Beniden this armosotitob in seatehing milt there are acutchingetmachines of nore elaborate comntruction useel in the dresaing of flax. Bruphingmachines are nometinet employed to give the Glax a fimal eleaning liefore haling it for the market. Hop the manufacture of flax into eloth, see Lisex, and SpIsNisg.
Flax, New Zralavis, a valuahite fibre quite tifferent from conmon ithx, aud nhtaised from the leaf of a monmeatyledranios, insteal of the stein of a dieotyledonous plant The plant yielding it is Phorniam tences, often called New Zeslaml Flas, and monetimes Flax Lity and Flax Bush (Harakoke of Maoris) It heloggs to the order Laiaceer, and is an evergreen growing wild ower large areas, and very abily euttivated, even apon the pooreat soiln : it has Ilso heep introduced into southern France and Dalmatio, and is fatmiliar in colder climaten as

New Zealand Plax (Phermium tentr): α, inforestimoe ; b, separsite flowers, enlaged.
a decorative plant in greenhouses and sheltered kardens. Its lesvea resemble thowe of an Iris,
and are from two to six feet long and one to twe or three inches brosed. The flowers are produced in as tall branched panicle, and are pumerous, browaiah-yellow, and not very besutiful; the fruit is a three-cornered capaule, with numerous compressed jet-blisek seeds. The fibre of the tesves is both very fine and very atrong, and was uned by the New Zealsinders, before their country was thacovered by Europeans, for making dressen ropes, bwine, mats, cloth, \&e New - Zealand flax is imported into Britain for making twine, ropes, saifoloth, and other usee to which ite stresgth and durability alike well adapt it. To obtain the fibre the leaves are ent thrice yearly, and the fibre ia asaily separated by maceration. Bat the New Zealanders procure the filire in ita greateat perfeetion, very loog and slender, shining
like silk, by a more laborious process, and with out ranceration, removing the epidermis from the leal when newly est, Beparating the fibrea by the thumb-nails, and then numer perlectly by a comb. The root stocks are hitter anal pungative, and have been used as a sulatitute for sarsaparilla. The lesves, when cat near the root, exule a viscid juice, which becomes thick ond gammy, and is then eatea; the New Zealanders prepare a nweet beverage from the flowers.

Flea, a name applicable to aby nember of the amall order Siphonapters or $A_{\text {phssipters, of which }}$ Putez irritans is a fanailiar exanple. They are wingles insects, probably related to ities: with naw. Dike, biting Jowa (manalibles); with other mouth appendages (labial palpa) anlapteol for sucking; with legless, biting, Bagsot larves. The compressed shape of the lody, the longs puwerful, bristly legs, which are sble to take noph relatively gigantic leapa, and the abdomen with eight ringo bearing linistles musy be readily perceived on the comman species; while mieroneppic oxaminafion will show the biting snd aucking tousth-sppendsges, the small eyes snil minute antenne, and two paips of little bristly scales, like remnante of winge, un the second and third segreents of the thorkx. The eggs, unastly net pusotrous, sre laid is safe corvers, or in the for, feasbers, 6 se . of the animsi infested; thie hntching is rapid (six to swelve days), and bristiy, footlesp larve tunge; sfter a few (eleven) days vorseity these form cocoons, asd so rest io pups quiescence for varinble periods. In aummer the entire develogment of fulee irrilane occapies absoat so wrouth. The fienh

 nogrified:

are all extoparasitic ma warm-blouled snimale, and the numerous species are more or lexs rigidily cunfined to diverse farrest and leathered hosts. The eammon flea((Puler irnfater) is sotnetimes regarded as the saly specien of the genus Pulex, and the othern are ranked is species of Ceratopayllua, Ke.; but this aeems rather in hopour of man as being the hoat of the first-named flew than from nny real difference. It secus probable that the flea of the dog is an intermerliate hoat of a tapewormi eomman in Lhit snimal. The muscalar energy of these preste has been utilised in 'fleivexhilltions,' in which tamed captive drag miniature carriages, and perform simflar exerciaes. As regands their leasping posers. Kirby and Spence have the following note: *Aristophanes in order to make the grest and good Athenisn philosoplier, Socrates, sppear ridiculous, represente him aw having mestared the leap of a flea. In our better times scientific men have tone thia without being langhed at har it, and liava ascertained that, comparatively, it equalled that of the locust, being also two liundined limes ith (the flea's) length. Where theas prevail ith spite of clesnlitiess, recourse may be had to insecticide preparations, the roodera salstitute for the old fassaioned fleabane and mormwood. Accorling to Tusser, "where chamber is swopt and wormwood is strown, ma fles fo his life lare abide to the

known. ${ }^{+}$

Fleabane (Pu/ticaria), a genus of Conupositae (aub-order Tubulitlors, fanily Inulee), readily recognised by a jeculiar aromatic smell, sometimes compareal to thas of soap, which is satid to be effica cions in driving inwhy fleas. There are twa British species, P. vulgaris and P. dysenterica, and the latter has a considerable reputation in diarrhoes and dysentery. Cunyzu squarrosu, mao called tleabane, helonges to in closely allied genus.

Fluorescence is the term applied to a peculiar blee appearance exhibited by curiain sulostances exposed to sunlight, and especially observalie in a dilute solation of sulphate of quinine. See PhosPHOHESCENCE.

Fluorine (sym. F, eq. 19) is an elementary substance allied to chlorine. Ita principal natural sance is the mineral fluor spar, CaF, although it in also found in minute quantities in the igneoun rocks, antioral waters, plonts, the bones and teeth of atimals, is alko in milk, blood, \&ec. All attempth to isolate Ifuorine in vesseln of glans, gold, platinum. the lasve failed owing to its powerful'action on theme sulmancea snd the readinenf with which it forms compounds with them. Recently, however, a vensel of an alloy of platinum and iridlum thas been used, and the pure substance obtsined (1888). It in a gha having properties similar to those of eblorine, but differing in energy of action. The compound of Anorine are ant numerous, but are important Hydroflabric acid, H\%, in semenally prepared by hesting gently in a lead still a mixture of one part of fluor spar, CsF , with two parta of sulpharic acid. $\mathrm{H}_{4} \mathrm{SO}_{4}$, when thie vapours of hydrofluorie neid, HF, arv evolved, whilat nulplate of lime, CaSO_{4} th left in the otill. The dense acid vapmurs are conducted thruagh a Jead pipe into a lead receiver or bottle nurrowaded by a froezing mixture of ice and commen salt. The widl in renerally mixed with Wher when tesirod to le kept for some thise. When the mose copcentrated liydroflnorie neid is required, the atill and receiving veoved must loo trade of platinum. The athuer metals are not anit able for such apparntan, an they are rapidly oorroded by the acid. When prepared in ita strongest form, hydroflugrie acid lun the density of 10e0, and is as colourlens, fuming liquid of great volatility, which boils at $60^{\circ}\left(15^{\circ} 5 \mathrm{C}\right.$). Not only does hydro. flaoric acin corrode and dissolve the ordinary metala (excepting lead and platinum), but when placed on the skis it produces a severe burn owing to its canstic nature. The mont important peoperty which hyilrofleoric acid posseses is its power of eating into and disualving glaves, which adaits of ita application in the stelong of charncters upon glass, iss in theriboneter tabies, nad for enting nway grealer or loss thickneuses of plates or sheets of coloured glass, so as to produce a varicty of shades. See Gianss, and Gibass-paisting.

Fiugrotype, a photographie procoss in which ealta of Anoric acid were employed for the purpoes of producing innyes in the camers; but, as the impression was not very utrong. the plate had to Ine afterwards steeped in a weak solution of prote. salphate of iron. The procesh wha First nuggented by Robert Hant in 1844.

Fly Polson. This term includen the variona preparstion which are sold for the purpoed of killing flies. Formerly powders on papers containing arsenic, and aweetened no an to attract the flies, were in general une. Since it has been found that paper dipped into a sweetened solution of quassia is oqually efficacioun, the poisonous article has been partly superseded. Under thin heading may be included verious viacid nubetances which, when smeared on threade or on boards, attract fies by their sweetnens, and retain theni by their ntickinena.
For this parpoee treacle and birdlime are fairly effective.

Fly-wheel, n large wheel with a heavy rim fixtel to siteam-engines, or other machinery, in order to equalise the eflieet of the driving effort. Its action slepends on the priseiple that matter in mation junkessen kinetic energy-e.g. a body in lavingits velocity reduced is caprable of doing work. The sunamt of work it can do depends directly on the hues of the lomls, and on the difference of the syunres of its initial and final velocities, and is numerically equal to ${ }^{m\left(r_{1}^{2}-v_{2}^{2}\right)}$. A heavy wheel
thas becomes a reservair of work when set in motion.

There are two principal chses in which the flywheel is commonly spplied : (1) where the driving effort is internittent or irregular, while the resiatauce to be overcomo is for the time practically constant; and (2) where the resistance or work to Le done is intermittent or irregular. The crank in a fout-lathe is a gool example of the first case; the triving effort of the foot is only applied to the trealle on the down staoke, and the crank mast rise imtependently of the ethort, A Hy -wheel attached to the craink shait effects this, the mantion it meguires while the fort is neting gives is energy, and in virtue of this it is able to lring the crank up again into the proper pasition for the foot to aet on the treaile. In single crank engines the Bywheel carrie the erank over the dend centres (ase CasㅊK), ans whenever used in engines ita function is to krepy the speed steady daring each revolution of the crank-l,e, to prevent misteadiness during each tura; this is sloes lyy storing ap energy darIng parts of the revulation when the effort is greater thim the mean resistance, und giviag it up again durimg those parta of the revolution when the efliart fatls below the resistarice. In the gatengine. where the effort (explusisn) in often ooly applied during part of every seeond or third revolation, it doen yery inportith work. It action masat be dearly separated fom that of the governor, whose fonction is tokileteruine the mean speed or number of tarns the engine blusll make per minute; this the Hy-wheel canimit in any way du-it ean moly keep the speed nteady staring eweh turn

The seconil vase in illustrated by a punching: machune. The ethaine meed not he of paflicieat power to direetly force the punch through the metal, but with the eid of a fly wheel is eacily does it The machine is sot arrangeil that the actual perst of each revalotion ppent in junctorg is very small; all the rest of the ruvolation the tly wheel festoring ap energy, nearly aff the elfort gring in this. Thea at the juoper noment the work ntared up is added to the slirect woirk of the ongine, and the punch forcod thongsh, the pleed of the By wheel being priyertionstely ietluced.

Itie principle of the dy-wheel th nometimen appties in other fonme than iliat of a wheel-e.g. io Ily presses for staniping os coining metals, is wivich two luaty balle ser fixed ot the eala of a long lever, which is mule to awing ronnd with conialder. able vicuity. The sectmalated energy is gives af at the hounent of thopact of the die urown the matal. ansi is force of grem intonaty called into play to conpuen the lattee. My wheela are mot required in becomotiven in marine enjgine gee STEAM. ENGINR).

Fell (Lah folium, 's leaf') consints of metal reduced to very thin aheeta, intermediate between the oxtremely thin leaf metal, such an gold and silver leat, and sheet metal. There sre two dis. tinet clansen of foil is common uso-the foil whiel in tanuity sppronelies leaf metal, sad the much atouter tinnel foil tued by jeirellern, and for theatrical ornamenta, sca.
Tinfoil is made by rolliog lare of tin down to fine sheets, which are farther attemasted by being laid in pilee and beaten with a wooden inallet. Formerly tinfoil was very largely used for the "eilvering' of mirrore, by amalgamation with mertury; but that process is now little employed (nee Mresos). The chief consumption of tinfoil b now in coanec tion with the wrapping up of chocolate and other confectionery, and of tolvaceo and other prodecta which muat be kept from drying in the air. It is also largely used for lining arnall boxen and canes, and in the preparation of Leyden jarn and other electrical apparatus.

The bright foil used by jewellers and for thestrical and other orvamentin, under the name of 'tinsel,' in made of copper, tin, tinned copper, or ailvered copper. The lust in now chiefly used by jewellem. The metal is rolled in a flatting mill, and the requisite brilliancy of surface is produced by finishing between burniahed rollers and polishing. The various colours are produced by conting the white metal with tragsparent colours mixed in ininglass size. A similar varnish without colour is laid over the white foil, to prevent tarnishing. The socket or setting in which is stope or parate is mounted is lined with the foil, which. by reflecting from the internal facets the light that passes through the stone, alds considerably to its brilliancy. The mutural colours of real stones are sometime heightened or modified by coloursd fril, and factitions colours are thus given to the glase or
'paate,' as it is called, of which spurious precions stones are made.

Fomentation (Lat. fepientatio, fomentwm; from foveo, 'I warm'), an applicstion of warmoth and molsture to a part, by niesns of eloths wrang out of hot wster, sometimes medicated with vegetable infusions of subatances caleulsted to relieve pain or atimulate the surface. Thus, opium, bells. donus, cannomile, turpentine, she are used in various forms in connection with fomentations, which sre employed in alracet all painful local disorders. A formentation can generally best be made by laying a strong towel seroee an erapty bwein, placing upon it a piece of fiannel, folded to the proper sive, pouring over thls sufficient boiling water to wet it, and wringing it ont insile the towel. It can thus be applied at onse hotter and lens wet than if it is mrung out by the haods alone A sheet of waterproof material should be placed over it, to prevent wetting of the clothes, \&c. and another flannel sabintitated is soon as the first becomes cool.

Feot. Is men the bones of the foot are twenty-kix in number, and are arnanged in three nstaral groapa-viz the tarsal bones, which are the bind. ermost; the mets. tarsal hrones, which occupy the middle portion: and the phalanges of tha toes anteriorly. The tersal bunes, neven in number, are ahort and somewhat eabl. cal, and farm the heel and the hinder part of the instep. The uppermoet (ree fig. 1) I_{s} called the oufragralue, froms ith supponed resemblance to the tioe used by the Rotosan Above, it articulates with the two bones of the leg, the tifia and Abwla, and througb these bones the whole weight of the body in thrown spen the two astragali. Bolow, it is ponnected with sod reath upon the er calcin, of heel-bope, which is the largist bone of the foot Inomediately is front of the astragsias, snd supporting it in this direction, is the scaphend or bost-like bone.

Fix. 1-Bonis of the Foot and Ankle :

In front of the scaphoid bone are the three casneiform or wedge-shsped hooes; and on the outer side of the caneiform bones, and in front of the os calcis, is the cshoid bone. We sen from fig. I that the front row of tarsal bones is composed of the three euneiform boass on the inner side of the fook, and of the cuboid bone extertally. There are five metatarsal bones passing forwsod, ope for ench toe. Esch cuneiforn bohe is connected with one, and the cubuid bone with two, of these metatamal bonea. Behind, they are close together, but as they run forward they diverge slightly from one
another, asd their antenor ends rest upon the ground sad form the balls of the toes. They constitute the forepart of the instep, The remaining bones are those of the toen, and are named the phalanges, each toe baving three of these bones, excenting the great toe, which has only two. (A simifar law holda, for the bones of the hand, each finger having three phalangen, but the thamb only twa.)
The instep is composed of the eeven tarsal and the five metatarsal bones, which are so arranged and eoanected (see flg. 2) as to form the plantar arch from the extremity of the heel bone to the balla of the toee. The antragalus formh the summit or keystone of this arch, and transmits the weight which it receives back to the heel, and forward to the belle of the tore.
The boeet where they articulate with one another sre covered with a tolerably thick layer of smooth astilage, and by this means, together with the very alight movemente of which each bone in

Fus. 2.
Anetine thromply ther lumer end of the thitas, anil Hiraugh the selragalas of, the heth hait is the seaghoid bulte d, thic tuterual eubeiforen bube is and the bosed of the groat toif.
capalle, a degree of elanticity is given to the foot, and ounsequently to the step, which would be altogether wanting if the plantar arch were componed of one single mane of bona. This alanticity in far greater is the anterior pillar of the arch, which is componed of five comparatively long bonen aloping gradaally to the ground, than in the ponterior piliar, which in short, narrow, and compoeed of a single boas, which deseends almost vertically from the ankle to the ground. Hence, in jumping from a height, we alwaye endeavour to alight upon the ball of the toes, and thut break the phock which we should feel if by acoident wo dencended upon the heels.
The bones of the foot are held together by ahort ligamentous bends of great utrength. These are aftached to the nob-articular surfaces of the bonen. and are srranged mostly on their plantar and doraal-i.e. upper-burfaces, while others are aitusted between bones, and are hence named inter: asseous. So resintant are these ligamente that it is alroont impossible to dislocate the bones which they hold together.

The epot over whieh the inferior calcaneoscaphoid lignment exiends is the weakent in the foot, the entragalua being there utasupported by any benes: sdilitional support is, however, afforded wbere it ia more required by the tendon of a itrong muscle, the porterior timial ($\mathrm{fig}, 3, \mathrm{~B}$), which passen from the back of the tibia (the chief bone of the leg) round the inner ankle, to be inserted into the lower part of the inner nurface of the ecaphoid bone It not unfrequently happens that the astragalus, being either innuffiently sapported, or from ite being overweighted, descends slightly below ita proper level, nausing a lowering of the areh and a hattening of the sole of the foot. The defect when slight is known as 'weak ankle ;' when more decided it is termed 'flat-foot;' and in extreme sheos the bone may descend to such an extent as even to render the inner side of the foot convex when it nacurally should be concave.

In the movements of the foot upom the leg we see a atriking combination of variety of movement with general security. This combination is effected by the harmonivus action of three jointa, each of which acts in a direction different from the others. The first of these joints in the ankle joint, which is formed by the bones of the leg-the tibia sad fibula above, and the astragnlus below. At this joint the movements of fiezion-i.e. approximation of the toes to the knee, and extenston-i.e. pointing the toes to the ground, take place. The second joint is between the distragalus and the heel bone, and it permits the foot to be rolled inwarda or outwards; while the third joint is betweed the first and second row of tarsal bones-vis, between the setragaius and oalcis behind, and the neaphoid and cuboid bones in fronl-and allowa
the degree of curvature of the plantar arch so be increased or diminiahed within certain linnits. The following is the order in which the movensents of these three joints occur = the raising of the heel (by the first joint) is acoompanied by a rolling of the foot inwards (by the second joint), and by an increased flesare of the planter areh iby the third joint) : and the raising of the toes is aceompanied by a rolling of the foot putwards, and a straightering of the sole.
The jointh, however, merely allow of movementa ; they do not effect them = this is the special function

Fig. 8
A, the pustmentmises ancl memens

 Hor; in, nge ioner sokte; P, the
 slame to the that of the thita,
 weime; for the Arkor tetaloh of The perat tore. of the mitseles and each of she three movements wehave indieated ts elfected by apecial groapatof museler. The priseipal of these maryelex are shown diakrounatically in fige 3 and 4 , ropresent. ing the move anal onter siden rebpertively. The first series of movemester is buainly effected by three muscles: viz. (1) musiles of the cuiff (hog 3, A), attacherl above to the bones of the thigh andlez. and bellaw by the Tendo decillis la the heel hoones: (2) the prasteriar tisual (fig, 3, B), atheloed above to the tifia, ant below by ita tendon to the sosphoid bonet and (3) the anort fibular (fig. 4. C), atachel above to the Shula, and below by ita tendan to the outer metatarnal hone. The calf-muselen, whone tenslon in inserted into the heel-bone, are larye and very powerful, for in raising she heel they bave to raithe weight of the hody. The other two museles. the posterior tibial and the short fibislar, tora ruand the inner and the outer ankle reapectively, and are inserted into the inner and the outer effes of the iontep; the furmer heing attacheil to the seaphoist, and the latter to the onter metatasabl bope. They not only malne in painingt the ankle, lnt enpport it laterally. The mapele whoen texulan ie on the inger aide of the foot (the poaterior tibial) eflecte the two movementa which are ausociated with the raising of the heel-bong-vig the turming of the foot inwards ant the inereaned flexare of the arch.
The second serien of movementh-the raising of the toes, the curaing of the foot outwards, and the atraightening of the sole-are effected by two maseles, the anterior tiblal (fig 3. F) and the third fibular (5ig. 4, G), whoee tendons peas, one in front of the inner maklo, and the other in front of the outer ankle, to the corresponding edges of the instep, and are inserteal into the interual cuneiform and the outer meta tarsal bones. These sвuncles are direct flexora of the tarsum spon the leg; the former raising the inner, and the latter the puter border of the foot.

Another point in the anatomy of the foot that requires notice is the mode

Fig. 4.
E, luwer ent at Bhula. fromige ibe
 misacle, altachins above of the
 to the etter matagral bune ;i, the lang ilustar nussity, tee temitan f, fantime fehind the thiter anale and atoler the instep to the lovia Thral tone of the ereat tee, 6 , tan sherwier ihini nbue mivele. telow Jy isstruitne, 8 , th the onter metalar-al ther: is, the extenoos telldanty of the toes. of union of the meta tarsal with the tarsal bones. In these joints in the fourth and fifth toes a slight revolving motion can take place, which probably enablen the outer metatarsals to adapt themselven to inequalities of the ground, and to equalise the distribution of the weight which is thrown upon the footi: while, in the corresponding joints of the three inneretoes, searcely any motion etn ocenr-a provision by which additional
atrength is given to the inner side of the foot, upon which the weight of the body most directly falla

The skin of the suleitr very tough and strovig ; and intervening hertween it and the lone and the strong fascia of the sale of the foot is A thick poul of fas, wlich acte the part of an sir or water euthion in sle fending the ad-

Fig. Fi. jacent parts from injorions presaare, sont in dendeniag the jars and ahocks that woml otherwise lec felt in teaping, \&e.
A few retnerkz on the subject of shoes may here be culdet. The shape of the sole of the mutural foot is shown ln Iig 5 , while the shape nfter the prolonged use of a badly-wnale shoe in given in fig. 6. In the foet in ite norroal atate the great toe in seen to be free from the others, and the line of its axis prolanget luackwards peoses through the ceotre of the lieel 5 while in the foot dintarted hy the und of the aloe the line of the great toe is quite altared, and the toas genernlly-bot being sble to find room aide by side-overlap each other and lone thair separate and individual actions; earna, honions, and ingrowing toe-nails being the taturil consequebee of this rosilueatsoent. Meyer of Zurich drev attention to the baul treasment which the foot reocivo Irom ordinny shoemskers, sud pointel out that the grest foe shoald te allowed to have ite normal porition, wal this cani be done by baking then innes edge of the sole hicline inwaris, instead of out. wrands, from the batis of the towe. The scompobyizg firare (7) given The satline of a shoe slesigned ander Meyer'n saperiatmaleater, nad abows the differenne betweeh it and the resus! shape; the latier being inDieated by the dotted outhise. High lieel piecos tead to makler the etest lea stealy and seetire. to break stown the arelt of the foot, to shorten iI. and te impsir the setion of the calf-mutheles A high beel-piece, pooreorer, placet the farepart of the Vis. 7 . foot at a lower level thirn the heel; Shoe desiguel the weight is the thrown to0 pued by Dr 3ivger in the difectime of the tewes, and the flotsed they are tlirnst formant and outline le: cramped againat the opper leather tuy Ifre watal of the shoes
shapen
If we cumpare the buman towt we find that it preents ceriain pecultaritios all of which have refereticn to manse erect pos ture. The chopf pecaltarities are (1) the greater relative size of the carnal lioper as cosinpsied with the other bones of the fool, atal she mone perfect fromation of the plantar arcli, which is higher and strosger than in any of the lower shimale, strength and slavticity ose thes ormat hised in the humas foot in the highest degree. 12) The greak she is relnarkable in matr for its sire anil streogth, and for che firm manner in which its metatarsal hone is jainei to the sther bones so as to reader it the main oupport to the foot. 13) If we compare the luwan foot with that of the groillan (fiz, B) of ary ather Antanumoial Ape (q.v.) we see that ther foes are slourt and amall in thatb in relation to the usther parts of the foot, while in the gorila the toes form the greater part of the fout Indeed, is reference to 6 g . 8 shows that the organ in quastion is rather a licand than a foof, and loesce the term quadrawarnoms as applied to thix class of animak. Tiere is scarcely any plantar surels, and the weight of the bods Iears clriefly an the onter edge of the foot: thee digits are long and stromig, and the inater one Foat ut Curilla diverges 30 85 to form a thumb

It rensains to notice some of the mont marked varieties of form which the bones of the foot present in mammals. In the following group of figures the same lettern are attached to the same bones. Thus, a marks the natragalus; $c l$, the ealcadeam or heol-bone (the posterior projection of which fornis the hock of the horse) ; 3, the scaphoid + b, the cuboid; $c c$, the ecto- or outer, cm , the rneso. or middle, $c{ }^{2}$, the ento- or internal cunelform. Now, as a geveral rule in all mamwalis, the ecto-cuneiform aupports the third or middle of the five toes when they are all present, the meso-cunciform the seoond, and the enboid the foarth and fifth. Bearing in mind thin law,
we see that the large bone in the horne, known as the cannon-bone, which in articalated to the
ecto-cuneiform, $c e$, in the metatarsal of the third toe, to which are articulated the three phalanges of that toe, the lant phalanx, 3 , being ex poof. The small bone popularly known es the sjlint-bone (not shown is the figure). and articulated to the meno-cuneiform, in the rudimentary or ntanted metatarial of the aseond toe 9 ; and the outer aplint-bones articulated to the euboill, is the rudimentary metatarnal of the foarth toe, 4 ; seo that

Fige Y-Hare Fig 10.-0x.
 in the horse we frave only no the, the third, enttictently developed to reach the ground, with mere traces of a neeond anid fourth toe on wither side. In the foot of the ax the cubpid, b, is relatively larger than in the lorses and is equal in nize to the ecta-cunciform, ce. The esmonn bose articulatel with hoth these tancel bonen, and heoce answers to the metatamal bones of both the third and fourth digits ; it in acenrdingly found to consist of two dintioct bones in the frusis: and in the molult it is divided internally into two eavilios, and ita ariginal moparation is marked out by an external elonsated ridge.

At the lower end nre two distinct jointe for the planamges of the third and fourth toes. While in the horse we had the radiments of the upper parts of two coes (the second and fourth), in the ox we have the rudiments of the lower parts or phalanges of two toes (the second and tifth), forming the 'mpurious hoofs,' and marked 2 and 5 in the figure. In the rhinoceros there is ane principal toe (the third), at in the horse, with the recond and fourth toen in a lens de. veloped state; while in the hippopotamus there sare twa griacipal toes (the third and fourth), as in the ox, with the second and fifth tows not fully developed. In the elephant there is a 6ift dight sudded, anewering to our great toe, and nticnisting with an ento-enneiform bone, so that in the foot of this animal we have all the bones occurring in the humin foot. Owen concluden from these send similar obeervations that the course of the simplification of the five-toed foot is, first, a diminution and removal of the innermost toe ; Dext, of the outermost; then, of the second; and lastly, of the fourth; the third or uriddle toe leing the moat constant and (in the

lower animala) the nuat important of the five.

Foraminifera, a class of unicellular animala or Protozon, almost always marine in diatribution, most eharacteriatically provided with liny shells, which huve formed the chalk of the past and are now forming eimilar depoeite in the deep sea. A living Forsminifer, often ahout the size of it pin's hesul, conuiats of a central nueleated mans at protoplasm, of is ahelf surrountigg this, and of long, bramehed, sull interlaciag threals of Tiving Eatter streaning uufwards, with food-aleurbing and locomotor functions.
Description- The shell, which is mach better known than its tenant, is chanckerfistieally cal. careous, chanhered, anil coveret with tuinute hates. But is is occavionally chitimsid, sud nften sandy, while a tew forme approasto Kadiolariats in being flinty. At first n nimple enough insanonthing test, and ao remaining in many forms, the shell is very generally added to, so an to cover sucetsaive oyerflowings of growth. The ways in which freah chambers are formed-in linear seriea, in apirals, and the like-produce types of architectare of great beauty und variety, in to the bailding of which we can only conceal our iknorance by ealling them organic crystallisationa. The apirals often look like miniature aketelea of the shalls of Naatili, enails, and other molluses. When partithons are formed between auccesaive chambers they leave spertures through whish bridgee of protoplanm preserve the vital continaity. On the

Mhella of varians boramhifiera.
guter surface the outfowing protoplam may reaerve for itaelf one relatively large apertare, or a couple, or a few, but most characteriatically there are sumerous minute holen left all over the shell.
The internal ${ }^{t}$ protoplanm, so far at obverved, in homogeneous, except for granalet, frequent pigment, and the essential queleus or nuclei. On the outflowing procenen, which are more irregalar and interlaced than is aaual in Radiolarians, granules atream outwarda and inwarde in active currente. The colouring matter of on resembles that of the diatoms on which the organinms no largely feed. The general alsence of vacuoles, contractile or otherwise, is another of the contranta between Foramlnifern and Radiolarlane, and is probably associated with the non-pelagic lifo of the former. Partner plant-selin or aymbintie algar have been but rarely seen within Forsminifers, whereas they are almost conntant in Radiolarians. Multiplication typically takes place by a sort of internal budding. The nucleus divides into several, round each product of naclest diviaion the protoplam gathers, and thus are formed young individuals which are eventually enclosed in shells sud liberated from the parent. Diviaion of the entire snimal has also been observed in a few caser. Dimorphiam, or the occurrence of two diverse forms (possibly male and female) in one species, has been noticed, but no eonjugation or incipient nexual union. In a few easer-e.g. Mierogromaia socialis-a namber of individuals are united to form a loose colony, s primitive kind of aunociation exhibited by not a few Protozoa. Mont modern forms are small, below half an inch in dismeter, and many very much less, down to mieroscoptic dimensions. The largest living species (Cyeloclypeus carpenteri) measures slightly over 2 inches across the shell, and recalls the extinct giant Nummulites, many of which were as large as halfcrowns.

Distribution.-The Forsminifern are moetly
marine, and ocriar at all depths; a few (Globigerinisht, like the Radiolarisns, ane pelagie; most live on sulanerged oljjects or at the bottom. A few from brackiah and even fresh water are known, and une species (Grontia terricola) bss gone sahore. The pelsgic forms as they die sitik gently to the bottom, and are there forming, especially at depth between 1000 and 2000 fathous., grest beds of Gioligerins oese ot modern chalk. In other regines ssady whelled forms predominate at the bottume.
In marine geological otrata froma the Sitlarian sawards Foraminifers abound. Chalk consists almost wholly of forsil Gloligerinids, and the Nummulites have contributed Jargely to the grest Eoorne linertones, The animal natare of Eobooll (g, v.) from the pre-Camberian stanta is now generally denied, and is at leart very doubsfal.

Pontion and EFassification.- The Fornminifena were so mamal by DOrhigny in 1825, and placed brside the Cephalopods, th the ehells of some of whick the teata precht a minuetic of prophetic resmblance. The sitle referred not, as raight be supposed, to the supmerficial appertsures on the shell. lust to the corntapisications, between succeasive chambers Hertwig would rall them Thalamophora, in alfarion to the typical chambered abell; while Carpenter rophasisel the living netwark of prosesisen in the title Heticnlaris. Apcenting an they do the amabloid phase of cell-life, the Foraminifera have their place bocile Amorber,
Kaslinlaniand, asal Sas animaleules in the thimopod Kavinlariand, asd Sos animaledtes in the thizopod divation of Prototoa (q. v,) Thiny were formerly clouified as Perforate and tapierforale acconding to the pqesence or alsebce of osmesoms spertaren 3 as the teat, bat an this distibetien separates apparently adjacent forms is is no lonjer generally alopted. If findy, whe thas depcribed the Challengur collection in a mapumpsial manographe they are elossified is Ien favitios of which Gromis, Mifolina, Astrorhint, Litsolion, Textalaris, Chilos: temella, Lagens, Glolbigerina, Rotalin, and Num. mulites are the naniegiving typee Is Gromia the shall is eloitinaib, flpsiblec and with a single apertare; in the related Shepheardells there is an aperture at each end of an olongated test. The teat of Miliolina is normally of hase, but io brackish water tends to broome chilinoid, and at great depthe a siliceous film. Irvegular sabd particles form the primitive test of Astarliziza, and the ure of detarlied sponge syicule led so the related Halt. plymens lejng mintaken (ar a very maple opange Anong LiLhaiddes, Parkeria and Loltusia are relatively largo forme-about swo ibche in diameter and length reppectively. A peculiarly isterpating CAnellonger farm ammag the pelingie Glabigestaits-Haafigerimu niormuy-has the shell suirounded by a mote of bubbly peotepfosin, and in its vacuoles and internal shell suggests Itadiolarian eharncteristios. The njerien of Foraminifera are jegion, prolably shaive tun thanosid. They are internatrig, in illostrating conplexity and boauty of architecture at the very throluald if Hife, and imporkset boits in the anaking of the earth and is the present-fiay ectinmoy of solinarine life.
See Eowoory Nuwvirte Okis, Thomomy, Banio Lantana

Formic Acid, $\mathrm{CH}_{3} \mathrm{O}_{3}$ of HCOOH , derives ite name frum the eircunstaoce of ite having been first obtained from the red nat (Formine rafa). It acears is ante, in the atinge of bees, waspe, and netties, it fir needles sod in various apimal secretions, It may be obtained frum any of thene by distillation with water. Anhydruds formic acd is a mobile liquid of extremply penetrating odoar, eryatallising at $35^{\circ} \mathrm{K}$, and boifing as $214^{\circ} \mathrm{F}$, miscible in all pro. portions with water sud aloohel. It producee a painful blister if dropped on the skin. The aque. ous acid is prejared in the following manner: Half s pound of oxalic acid is mixed with one pound of glycerine, and the mixiture honted is a retort to $275^{\circ} \mathrm{F}$, ; a littis dilete formic scid diatale; enother quantity of oxalic acid is added, and the mixtare again heated, and so on indefinitely, the glycerine momaining unchanged at the end of the operation. The tecouspoaitinn is se follown:

$$
\begin{aligned}
& \text { Oralie Aeld. Pornie Aest. Carbosic Acla. } \\
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{4}=\mathrm{CO}_{4} \mathrm{H}_{2}+\mathrm{CO}_{5}
\end{aligned}
$$

Acid containing 58 per ceath of the pure sabetance is obtained in this way. The anhydrous acid is procured by preparing the lend salt, and decomposing this with galphuretted hydrogen. It may be formed synthetically in variout waya : 11) By direct combinalion of carbonic oxide, CO_{2}, and caustic potesh, KOH , forming KCO, H, potessinm formate ;
(2) by boiling nqueons prussic acid ; (3) by heating chloroform with canatic potash. Formic acid and all ita salta (called formsten or formisten) are atrong redncing agente, and precipitate metal from solutions of gold, nilver, or mercury salta Formic acid is obtained in small quantities by the oxidation of a great number of organic substancen. Formatea of silver sad lead sre sparingly solnble; sll the others are freely so. By heat they are converted into oxalates yielding pure hydrogen.

$$
\begin{aligned}
& \text { Potaselum Formate Potasaikm Oxalate. Hydrogen. } \\
& \qquad 2 \mathrm{KCO}_{3} \mathrm{H}=\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{5}
\end{aligned}
$$

Fexglove, a specien of Digitalis (q, v.) The Common Foxglove (D. purpurea) is a native of

Britain, and a familiar and conspicuous ornament in wooda and hedgerows, ita flowering stem reaching a height of from 2 to 4 feet, or even more, It flowers from June to Augunt. Both it and its white-flowered variety are frequently plantod in gardens and Ahrabberien, Ita Eng. Jish name, the German name Fingerbut ('thimble'), and the botanical name Digi thlie (Lat, digitale, refer to the form of ite flowerh. The foxglove wan a favourite with the fairien, and was
called in Ireland Fniry cap, and in Walen Eif-glove, elne Fhere Fairy-pettionate. But there seemi ma good ground for the attempt to make out that fox Elove in a corruption of Folk'eglove, for Good folk's Glove, or
Pairy. plove. Another Pairy, glove. Another name is Fox-lingers.

Comuann Foxglove

(Dujpalia purpuwra).
Frankincense (Lat. thus), a name employed ta denignate various fragrant reainous sulntancen which diffue is strong frogrance in burning, and are on that mecount nised in certain religioun services. The frankincense of the Jews, and also of the ancient Greeks and Romans, was chiefly or entirely the substance now known an Olibansm ($g, v-$), the produce of an Amyridaceous Indian tree (nde Boswbllia) Several treen, howaver, of different orders, yield sulestances used as frankincense instead of alibanusa, in different parts of the worlid, as aeveral apecies of Icica and of Croton in America; and the common fir (see FiR) in Kurope, the resinotis product of which is the Common Frankincense of the pharmncopoeias, slthough is the ehope concrete American turpentine is very often sold under this nome. It is used in the compoition of atimulating plasters, \&c. Burgundy pitch is made from it. It is a spontaneouin exudlation from the tree, hardening by exposure to the sir, and generally of a whitish or pinkish colour, with it rather agreeable odour and a belsamic tante. See Incens.

Freezing Mixtures. When matter pannes from the solid to the liguid, or from the liquid to the gaseous (or vaporons) state, a considerable quantity of heat in general disappeare or is rendered ' latent.' owing to the fact that, energy being required to effect these changes of molecular state, it is taken from the energy in the form of heat alresdy existing in the eubetance; and this abetrac tion of beat caumen a fall of tempernature (aee HEAT; Mattele, STATEs of). This property is taken advartage of for the prodnction of low tempera taree. The solution of a esit in a liquid, and the liguefaction of two or more solid aubstances when mixed, are both examplea of the change from the solid to the liquid state, accompanied by a lowering of temperstare, unless this be neutralised by
heat developed by some parely ehemical action. The following table gives the composition of freezing mixtures commonly in use The solid materials should be finely powdered and intimately mixed together in a vessel of low thersal ton ductivity. The first column of the table gives the componenta in each mixture; the second their relative proportions hy weight; in the third the resalting temperature (Centigrade) of the mixture, assuming that, with the exception of enow or ice, the temperatare of the materiale previous to mixture is $10^{\circ} \mathrm{C}$. The fourth coluann gives the diminution of tempersture in degrees Centigrade:

	Tvepper farave plovers.	Dtantanalis of Empert
Water 11 Ammonium nitrata,	16^{*}	0
Snow or pounded loeits s)		
	or	3
Snow or pounded lee............ $\frac{1}{8}$ Calchum chloride crgats.		40^{+}
Caicium charide, cryatala ...o., if	*-	*
Bodism carbonate, Water + in	14	30
Hodium phonphate.		
Vuming attrous selder.......... है	\%	3
	15	3
	w	17

Such mixtaren are only applicable where a low temperature is required for a short space of time and are of no use where a continuous process of refrigeration is neceanary. For thin latter purpose the low temperature produced by the expanation of gases and vapoura in chiefly uned, the prineipal substancee employed being water, ether, ammonia, and carbon bisulphite. λ full sccount of these procenaen and of the apparstus connected witb then, will be found under Revutorinitios. Low temperataren are also obtained by the avaporation of a liquid, either under artificially dimininbed premure, of where ita vapour proenare is conatiantly nuall; the energy necemary to effoet the change of ntate being takind from the heas in the asbatance itaelf. The evaporation (and consequent cooling) of water from the nurfice of porous earthenwarn vomels, called water-ooolers, is due to thin principle. The same in true of the formastion of ios in shallow Inkes at night in tropical ellmater.
The extremely low tomperaturee resebed by Natiorer and otbers, in their experimente on tha Hignefactiob of $\mathrm{g}^{2} \mathrm{~s}$, were obtained by a mixtor of nolid carbonic anhydride and ather; or of solid nitroun oxidn and carbon bisalphide By aach means the tempersture of -140° C., the loweet yet attained, was renchel. See alno CoLb, Froirt leg, Thenmometke, Wateri.

French Pollshing, the nama given to the whan method of poliahing furnitare. Simple varnishing with copal or maatio varniah, put on with a bruah, produces a compsatively uneven surface, which soon wears off with frietion. A Frenchpolinhed murface, on the other hand, in beastifully amooth, glosey, and very durable if accanionally rulbed over with ordinary furnitare paste. The procesan conainth in rulbing the 'poliaht," which chiefly onnnints of alhell-lac disoolved in alcolol (methylated spirit), well into the pores of the wood. After it has been left for a night to harden, the surface is next rubteed over with asad-paper. Them operations are repeated several times, but the wood finally receives two rubbing with the poliab only. The pads or rubbers used are sither of farnel or cotton-wool, covered with thin oalico dipped in lingeed-oil. An 'egg shell' finish is given to the anuface either by rulbing over the ordinary Frenchpolished surface with pumice and linseed-oil, or by spplying the polinhing solution in a thin state. Ebony, natinwood, and Spanish mahogany are more easily polished than oak, American walnot, of roeewood. Neither vereels containing hot water nor bottles of perfumes made up with alcolol ahould be placed on poliabed wood.

The composition of French poliah, sometimen called cabinetmakern' polish, variea very mueb. A gool receipt is if lb . shell-lac, 1 oz mastic, 2 oz gom benzoin, 1 gallon methylated spirit. Another is 10 parts shell-lac, 40 parta methylated spirit. For light-coloured woods the polish should be mede of white shell-lac.

Fulminates. This term is applied to a cless of ssite having the same percentage composition as the cyanntea (see Cyanogen), bat, unlike them, exploding violently when heated or struck. Like

Gun-cotton (q.v.) and Dynamite (q.v.) these salts contsin the group of stoms represented by the foraunla $N \mathrm{O}_{\text {ha }}$ and which seems to conter explosive properties in so many cases. There are masy fulminates correspooding to the different metals, but it will auffice if attention is drswn to fulminating mereary and nilver. Fulminating mercary is prepared by heating mercury with alcohol and nitrie acid, and after porification it is obtained in white silky crystals, which have a sweetish taste and are soluble in water. When moist these erystale may be handled witheat risk of explosion, but when dry they detonate violently on being struek or when s spark falle on thero. This salt is largely used in the manafacture of pereussion caps, for which purpoee it is miked with nitre, sulphur, Ke Fulminating sitoer is prepared by henting a solation of nitrate of silver with nitrie acid and alcohol. It forme small white needlen having a bitter taste and poisonoas properties. It explodes mase reatily than the cmercory walt, and the greateat teare is reguisite in its manufactare. It in used in making crackers and other detonatiog toys.
The futminates should never be prepared by amateurs, as aceidents very readily oecur.

Fumaric Acld,

$\mathrm{H}_{4} \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{8}$ oocurs in many plante, mpecially in Corydalis and Fumitory. It is of interent from a ebemical point of view ior being isomeric with malle neid.

Pungl. The early botanista 'eoneiderad the fangi to be leans nafterer and ho plants at slt," and reganded their strange and fitful appearatice without flower or apparent med at the strongent argument for apontanieove generstion. The bland whelrumuenes of some, yet frightial juinonousness or dentruetivenes of miny others, with their coin. sequent world alld amopiation witic that crude and funcifal pharmacy is which socient medicioe and witerheraft were so inseparally intermingled, not a litule mhanoed these noysteries. Heace, alifoagh in Sterbeeck's Thentrum Fungorian (167S), the fint pablished book entirely devoted to cryptogamic planto, thero by an excellent aceuont and tanay Egaren of fupgi, it was not, and jadeed coald not be, antil after that primary twak of natural science initiated by Linasum-the compapilation of the 'System of Natare,' the onderly descriptive catalogue of nataral thinge-bad male considerable progross in almoat all other directions. that its chapter lealing with the fuagi wis fully cummenced. From sboul 17s0 onwards we have illustrated cryptognemie Glorss esseatially of Che modern sype, whief not oaly mon resched iovernble coinpletenem for the more obvious formos, bot with the introduction and improvement of the mierosespe even mide rapid progrean with that description of the multifarions minor forms which is oven now far from ended. It thes becanue known that somo were produced frotn reprodective sella ut spices, jeat like a plant from itan sedi; heuco lor this Limesan school, whose central monument in the works of Yries, bech bew form was, ratarally esough, situply a new species to be deecribed. The identification, however, of the ferm and ite prothallas (see Frens) es phaser of a single lifo-history, and the thoroagh reinterpretation of the bigher cryptegame and their anification with the flowering planis thereupon effected by Hiofmeiater, natarally gave a frew impetes to the stady of the retuaining lower groape of sigre and fangi. Por fangi, this new movencent wha beaded by Tulase, who from 1851 obwards showed that many of the differeat form-specien hitherto described were netastly nothing more than the phawe of a single protess lifo-history. Tulaene esentially relied upon the actual anatomical continuity of different sdult forms, upon finding reprodnetive struetures hitherto regarded as speciically distinet on one and the same vegetative body ar mycelium; whils De Bary confirmed and extended these restlin hy the complementary meethod of cultivation from the apore. Tolasne's new doctrine of 'the plommorphiam of the fangi' aroused storins of controversy; but the Bigoted conservatiom of the systematiste in the defence of thrir rooulto, and the exaggerated apecalation and practical blandering of the younger tchool in the reinterpretation of tbpm, gradoally subsided as the just clelmas of each obtained mutual reoogrition ; and thanks to manay workers, but expecislly to the exset laboun of Do Bery snd his many pupila, the clasification and morphology of
It was long before sony satisfactory defoition of fugi mas poosible, their asociation with alga
meroly upon the negative characters which exeleded both from the higher planta. Their physiological pecullisilites, however, were more spparent : and their definition as a 'mataral order' (or, as it
gradually appeared, a vast class) was accepted as embracing sll Thillophytes which do not vegetate by mesns of intrinsic chlorophyll.' The progreas of research demenstrated the remote diatinctness of some types of thene from others, and the intimate relationship of certain fungi to parti. enlar alge of which they neemed to be merely the colourless forma, Hedee it was argued, especially by the physiologist Saches, that such forms were no more onititled to separate classification apart from the algat than were the very various typen of flowering plante-e.g. dodder and broom-rapewhich maerely agroe in having loat their eblorophyll through parasitism, apart from the ordinary green planta to which they are respectively akin. Abandonings then, the physiology of the vegetative system, he proposed a classitication of the algro and fungi acoording to their degree of reproductive developunent (see AlOE). Thin was, however, going two far, and systematista have retarned to the more conservative proposaln of De Bary, who excludes eatircly from the fingi the Becteris (q, v.) and the Myxumyceten, and, while recognising that sertain fungi are doubtlens merely the colourlese representatives of particalar algal groupa, yet vattly simplifien the subject by insiating upon 'an Ascomyeetous series or main aeries of fungi, albeit with more or less doubtfally related outlying forms At the outaet of this great series are waually Ilescribed two orders (mometimen united ns Oomycetes), both eloeoly related in vegetative and repros doctive type to much simple afgat bi Vancheria (see Alate), These are the Perononporese, including euch well known mualile of living plante is Phytophthera infestans (Potato Dineane, q. v,), Cyntopua candiduas (White Runt of eruciferoun plantah alon Pythium and Perononpors. The allied Saprolegrin (nee SALMON) gived its bame to the other family.
Of the Zygomyoeten the commoneat type is Mucor macedo, the common white mould of dead

Fig. 1.-White Monld (Muepr museade)
a_{i} rijes opmankglises with fow spores represented to show internal septom ingruen as solumalis; b, beginsieg of conjugetion
 ohont veprlative and inmendeto reproduetive bypha.
organic matser, pasticialarly bormedung, a form ossily caltivated and in every way peculiarly nuitable for beginning the attuly of fungology. Start. ing with s spore, this germinated into a filament or hyphe, which remains unioellalar like that of the preceding fornies, and grows and branches rapidly through the nutrient material or solution, the wholo growth of hyphie leing termed the mycelium, Soon ereet hyphie begin to bud from the older byplue of the mycelium; the tips of theee enlarge inte apherical heads, which beconse separated off as dintinct cells, the future sporangium, by a partition which grows, however, inwarde, into the interior of the enlarging epherical bead, ss the colvmella. The protoplasm of the sporsngium is meantime dividing inte a multitude of tiny cells, which surround themselves with cell-walls as spores, while the mineral waste producte of this active change are depowited in the common sporangial wall, rendering it exceedingly brittle. This readily breaks, scattering the spores, which immediately recommence the ame development.
Sooner or later, however, a more evolved procesa of reproduction is neoded, and two adjacent hyphee oonjugate much as in Spirogyra (see fig. 1, b-b, and Alos, fig. 4). The reaultant zygoepore after a period of reat germinates with only a rudimentary mycelium, and immedistely reproduces the characteriatic asexual sporabgiam. Empusa, of which E. mizacre is largely fatal to house.flies in sutumn, is the type of the analogous order Entomophthoreise, The Chytridiscees are an order of minute fungi of which the life-history is fundamentally nimilar to that of the Protococcaces among algre.
The Ustilaginere are it large famity, paraxitic on phanerogamodis planta Their mycelium rami-
fies throngh the intercellular spaces of the hoet, and
forms also stensely-woyen mnsses of spore-bearing hyphe, which show various degrees of differentiation an compound sporophores, so foreshadowing those of lipher fungi. These spores produce a short mycelium, of which the branches conjogate in pairs, while the new mycelis thereafter arising re-enter the plant and in time prontuce new asexum spores. Some are formidable pests of agrienl ture (Ustilaso, Tilletia).
Ascomyceres proper,-The myeelluat is always composed of mufticellolar layplae, which in the higher forms interveave into the atroms or thallus, which nssuines yarious characteristie fornss and bears the short reproductive liyplas, which in twra bear the spore-muther cella or asac. These are usually tnbular, and on reaching fall sixe their protopinant collects at the thop, and the nueleus

Fig. 2-Pexian
a, naci, with barren liamenty (pursphyent) h yection of frueunction sarfen (Ayearu(um) : 3 , proyarations for the eskual process which prepehtes the developaient of the fium. gisb-body: , fertilisation, with spgrowith of in anveluping

divides repeatedly, usually proulteing eight nuelei, whiviseollect protoplasu arnund them, and, devplap ing cell-walla, hecime perfect aweopores. In all sive a lew of the lowest forms (Erematios Extrarecus, \&c., which are accirrlingly srouped as (Eymanoasci) the fructifiention in in ilistinetly develograd sparecurps. In these, bedidea the ascogrenons byphae with bheir nsei, tleme is an envedope derived from distinet lyyphe of the strmas, which also semd in amonget the asci a buititude of harren filaments, the proraphyes. The aggregate of asei sud paraphynes is ternied the bymenian (see fig $2,0, b$) Tulasno and De Razy haves shown with tolerable eerlainty (despite the doulita of Van Tieghem and Beofeld) that the whale fructification ariaes in consequence of a conjagation of nimitar hyphar is the loweat form (Ervinatios), or the sexisal union of diamimilar oneß in higler forms ie.g. Pezizs, fig. 2,, d).
A briel syatematic enumeration of the arders and leading Illustrative forms of Ascomyentes will be found of mervice :
(1) Gymunasel.-Asel not forming definiter ipporecarps with envelope (Eremiancis, Expaseus),
(2) Discomyceres (400 species)--Sparucarp winb envelope, but bytueniam conspletely bneovered, at leant at maturity. The most ingportant genus is Peziza, of which the shallow cup-like sporncary in open from the leesinning, thonght in the allied Ancotolns the enveloper encloses the ligmenian during developusent anal burats, scattering the spores. Bulgaria resembles shis, but is gelatitous. In Dermatia the cap is leatiery of harny. In Stictis the hymeninus is almont withdrawn ints the stroma, while in Phavidinn the sporocarp only breaks out and opens when ipe. In a meentil bat less importint family tloe spotocaypo are leathery and black, elliptical, linear, or winding ; of these Hysteriue the enninmonest in Rhytivana acerionem, which farms the large hlack spats claat appear upun almont every leaf of the colmaon maple townals autumn. The Helvellacei reporesent an mppasite type of developrisent; the large sporocarpas are atalked, with club or hat shapeal ligmenim, ogen and uncovered by the eviclogec from the be pinning. Many are inuportant as evenlent, mintably the morela (Morchella exculentu, teliciossi, ke.), abou Helvella esculentio. The mycelions of Rasteria hypogaca, found on dead and diseased vibe-roots, is the 'pourridie de la rigne' of wine growers.

Among the Disconycetes the life-history is often renderel biore conplex by the mycelinu constricting off crrappores from the tijes of erect filanvents, these acrospores readily reproducing the myoelian.

This stage of Petisn firctefonno was tornuerly known as Botrotix riveren; atal bowny other Acro-spore-feariag mornthls still akcait sitojlar ibentificatione. Yegetative hyphar alon irryuently inverweave into dense resling liasees of sieroliil, is also in the species just nawnel, and thme may eitlier redevelop acroapore fearing hyplec of (aftet a winter) give nise to true logmerial cuja Acrispurrea, 100 , masy loy develogneal either uponin inolatel hyplar on in perninhymenial groupe, whicle say lie ofen of flask-shaped (19 mimint). Sur are the mony junsi. hilitien of 'photamphic' chiriation slins- sqeased up ly any means confined to the Tísenurcetes.
(3) Pyrcuoningretra. This is a lavge viriter of small and imerito jirguse frogi, in all mojerts represent ing a further ilifforntiatione of the Dircrimycete sype, primarily in the deepening of flur shallow cupslapeal bymenivan intos defy flask with suinute apina! apening (jerafirivan), lati alsn in a mane ratien devehopisment-thennot rxtrrine avong fangi \Rightarrow of pleomnorphism se allemations of penerations. The number of sperics iv lience sery uscutain. Bestule the inportant Egive (CYurergis purgmorm, see Eravir), anil its curinu- alls f'unlyerjs, which atlack, raterfillars, punte, ways, Ae, with is frostifivation, thas fonsiag the extrmortinary "animesl/plaits" and 'vertetatione insorts' wlich sis perplexaf the earle nafuralists, any of the conmos furns. ints shieds the whil fand suce altpomprehensivel genum Sykurria hav loes lroken ijp will *ejve ist 1975 soliveriently Nectris, nom. man in ret patclues upan dend wood. Some fonm paruvitie pacelies within liekees
(4) Perisporianos. - Is these the jerithecia nre evanpletely elierd eapmales which fall to pueces on ripening; there are no jaraphlynes. The nyyceliusis is threid like, and acrongarts are froquent- Of the 100 apeeies mune are potalile prots, witumon Fryaphise apd otherc, coparnonly groaped at Mildew (q.v.l, Giliam Tiwnlers, a peotilent vine dimeaves, \&e. Eaxily slistingrished ly the dark or inechispicuous toycelinn sre the aperies of Fumago To this group also lelowg Eurvitum, of whels the cont. mum Brest Mnold (E. Aaproyillosglaturas) is a type commanly put hefore the botanical stadent, from the comparative facility with which the sexual proceen, which aets in after prelinged multiplication ly serompores, can le observed, with ine resultant

Fig. 3-Frrotiam Avergillat-glasent:

 ord tquaracte of fro (twe tols)
development of the peritlmedum ansl its nadi (see 5ise 31

I立 Takenveni- In this grontp, as in the preceding. the hymenime is permanently witheut external opening, bit tha cluanters hevome narraw, coilel, and loranched, and the while cansplex syorocar thas attains an extreme complexity. Moot are subterranean, and are lest represented by the important genus Tuler (nce TruFFLE). With thin Ins marietimes in the last groop near Elaphomyees \mid it to be recknsed the Tery emmanon matuld of jom, liceal. Ac. (Penicillinm gherncemen) it rarely. lowever, attains fulf develoginient locyond the mern. -pore-learing forni.
(6) Licheacs-As the majority of lichen-forming fangi belong in the Asoonyyetles, the lichens are very tommonly now described under this head tyy recent writers. Yet not only the time-hwowired distinctnees of this group, lons its remarkable variety and interest make separate treathent still experlient, hence see Lichisss.
Beaides the large namber of forms in which the existence of an serosporous plase as yet rests upon saslogy alone, De fury reckons at "doubtful Ascomyteter' such forms as Laboulherin, Exomacus, and also the important species which excite aleoholie fermentations, Saccharomyces (fig. 2a), See Yeast, Fermentitios.

From forms in which the characteristic mode of
reprodaction of the Ascompyetes is only doubtfully represented we reulily pase to those in which it does not ngpear at all, but in which naultiphication oecturs only by acrosporea or havidinapores, which may be of variuns forma. One group, bowever, we have to consinler in which the sporacarp, here terned an mcietium, so elasely resembles that of an Ascomycele as to induce De Kury and mont writers to reckoth it with these rather than with the follow ing series
(7) The Uredinar or Acidiomsectes,-These are the itust fungi, a remarkable serica of pardsitie moulds, formerly associnted with the Ustilayinees, which they momewhat resemble in habit, but from which they differ in structare and life-histary. The alternation of semeratisun is remarkably complete and well differentiated, the different forms having Ewastantly been reckonesl in distinct genera, which sre as yet by no means fully criticised. The most familing case is shat of the Rust of wheat (Puccinia gramiais), in wbich the generation found on tha barberry was descriled as Fendem berberidis, Other importanl farms are known as Ureto 最, Ne. to this group is alno reckoned the eoffer dlisease of Ceylon, Henptcia vastatria. The life-history of the group will be understood by reference to IUUST
Basidionycetre - We now conse to the Hasidiomisceten proper, which derive their nante from the bandia which segment ofll or 'abjoint' the mporea (fige 4, d). Theme are usually non-parasitic and have generally laree and well-developed aporocarpa; they are divided inte twe paing groupk.
A. Hymenomycetes-Hymenisin exposed upan the surfact of the sporsearp.
(a) Tramalimi-Gelatinotas with basidia each bearing only nae epore, often arising laterally-. Aurimatarin (Jew's Ear), 'Trermella (q.v.).
(b) IVmenomsprtes priper, not gelutinous, two to 40: spases siming on each linvidtara (tig. 4, a-d).

Fig. 4,

In the simpleat forms the sparacherp in erect or branchest, and beare a hymenima over its whole surface. Of this mmall gromp of 11) Clavarinei many species of Clavaria are common.
(2) In the allied Thelrphorei the byrnerium forms aleo n simple smonth suriace, lut is restricted either to the sipper or under surface ; in the latter case the fangue may be peasile or stilked, and bave a distinct 'hat' or pleus (Thelephoas, Steream, Kc.i.
13) In the Hydnei the bynuenimm hecomes differentiated in varions irregalar and diseontionotis formi, which suy be warty, bristiy, or comb-like.
(4) In the Polyporei the hymenium is continuoms, het with many more ot leas tubular depressions Here lelong, meveral important genera, motnbly Boletus ($q-x_{0}$). Polyporus (see Amadou), Fiatulina (q.v.), ns well pos the pestilent Marulius tachrymens (Dry Kut, q-v.).
(5) In the immense kroup of Agaricini (1200 Earopean spretes) the series culminates, the hyancuium laing arranged in regular radiating lamelfae ur gills. Most important of course is the genus Agaricns and Muklyoom (q, v.), which is broken sip into nung sulugeners (Amanith, Armillaria,
 tarius, Coprinus, Cantharelfus (chantrelle), Marastrius are also important. Many of these are edible, others again poisonous.
B. Gastiniomycetes.-Here the spores arise quate as in Besidiomyceter ; but the hymenin are coanpletely enclased within the fungus-body. Of this
the onter linyer (peridium) becomes differentisted from the deeper sulatance (gleba). Both layers may undergo very remarkable histological and amatomical moditications, and theee changea of ripening often result in the sudden acquirement of the most extraordinary forms, Hence, slthough the pecies are by no means so numerous (about 550), there are 70 genera. These are noatly large fungi, oftel elible, at leant in the young ntate; few are positively pusimидиит.
(1) of the mbatly woliterranean and trufle-like Hymenygutrei, me geana, Ginutiera, affordy an interestink tranvition from the Hymenomyentex, its bymenial depressions remaining open and uncovered by any differentiatel peridium. In the enaining typex (Hymenngastet, \&ec) the glelas ontains many elosed internul hymenial clasminers. but remsing continusu* with the sinaple peribliat coat.
2) The Selemalermei sliffer litcle from the pre: celing, save in the tugre ditflerentiatel perilimes, from which the pleha , trien away in a lorittle notwark, lining the chambers, which lyecone filled with apures sifecodervis vulgare in sometimes nsed as an alaluernat of trittes, hat is commanly regrided as inellible.
(3) In the simplent Lyecopendinei or puff-iballs the gleta may remuin unchambered, trut the tiswe of the glelin usually break up into a wonlly man of dries hyphar: hence the peridiam when limken on ripeninit diveloses a dusty maxs of threain asal apores (Lycoperion, Bovista), See PCPF-BALL
(4) In snother weries, the Phaltoidei in the whilest sense, we have a very ningulay series of forme This loening with the simple earthintar (Geanter), which is essentially a puff ball with onter snd inner periditus, of which the outer opens into nuliating latues, In Batarrea, the gleba, amvered with the inner peritium, becones raised upon a long atalk; in Plallus (see fig. $4, e, f, g$) the muter perihinim, fibmas outaide, becomea gelatinous within, while the sualk puahes the glela throuph this ioner peridium stoo, as a naked cap from which the sporea drop away; while in Clathisus it ts the inner peridian which expandis as a large network.
(5) In the last serien, that of Nifularief, the external peridiam opiens, liselocing several separate which breakn down into a mins of spores. These are the 'bird's.nat fung!' (Cyatbus, Nidularia, (S.). The origin of the Gaateromyente aporsearp from ita myceliam appears to be withuat any nexual procen, but by a procesg of direct growth and differentiation of an upigrowth upon its myeelium. In Hymenoniycotes a sexual procesa has been nometimen thecribed, but not with alouslate certainty. We knuw, hawever, how conatantly the abuadsat nutrition of an organiam leade to the relapse from sexual to asexual muitiplication.

As an appendix to this outline of elassification, it is necessary to note that we mot nofrequently finit sterile mycelima forms, to which any lefiaite systematic position frequently cannot fie given. Such are, for inatance, the well-knows Racodium ecilere of wine cellars. There has been much dizpute over the nature of the complex strands of Bhizomorplia, now regarded as bolonying for the moat part to A grericus melle ise, while the old genus sclerotium lias long been recognied as a reating state of many diverse forma e eg. Ergot.
Gecmination.-Misst spores sre capable of immediate sermination: such are moat acroopores (gonidia), almoat all acrospores, and most apores of Hymenonycetes. Some, however, require a period of rest c such are mont nempoives, zygospores, winter spores, \&e, Althugh same spares perish slmoat immediately, asany others expibit considerable powers of resiatance to heat, cold, droaght, \&c. ; those of sone umulds have been germinated from
herbsium specimens three to ten vears old. For germination we require a reasonable temperature. varying with the species, with supply of oxygen and mointure ; nutritive matter may also be neces. rary. Many spores, however, have never as yet heen olserved to germinate at ail, notably those of the truftle and some other Ascomyeotes. of most Gasteromyceter, and of a few Hymenomytetes, including even the conmon mughroom.
Nutrition and Bfude of Life.-The characteristie alisence of chlorophyll renders the fungus unsble to decompose carbonic anhydride. Hence it must depend upon organic compounsis already formed. Almost any soluble carton enmpound, not too paisonoms or too fally oxidised (such as formic or oxalic acid, urea, \&e.), will, however, aerve for
even urea. The cogatituents of the ash can also be obtained frotn a wille range of sulnctabces lenicillinat grows lent in a valution of proteid (peptene) abil atizar, yet can be frown, of comime with diminixhing vigoor, upon a shole series of poorer solationas, down to ammonius acetate. All of course give off carbonic acid in respiration, and a few are remarkably phospliorescent.
Such facta help us evore clearly to undenstand che wile range of hislitat presented not only by the different members of the groap, but by the same spocies Those fumin which normally obtain their organie matter from the dead organic raatter of decaying bodie are termel sogrophytes, while thoose which elitain theng frome living plants of animalo are ternell parnuites. The former is doulterless to be regarded ns the pmimary state of thinga, and include the great majority of fumi, yet many nosmal maprophyter exhlait 'lacnlative purvit. isan, and conversely namal Iarasice maky exlitit 'facnilative saprophytiem.' Many sapouplytes re. quire a mpecific salatratum $-E g$ dnng, feathers, de -just as many parasites lave only 4 single host; others akain have a very wide range of halitat. The chearical effeets of the growth of fangi, with whifeh, for physiological purporer, we may aleo reckne the Blacteris (F, v), upon argasic nubstances are outlined unime Fkitikstatious and Potre. Vactrox The relation of spocifie parnaites to their bists, besides mention in the various special artieles, such as Emair, Mtlousw, and RUST, is more genernally treated bniler Plasts (Deseasse (ov) and PaKASITISM: the pathological learinga come under (ierm Tusony and Pathology. That remarkable adjustment of fungus and hoet which risen leyonal the pasthothrical level intes the healiby and permasient mutual adaptation known an sym. bionis is described, for the asweiathen of fuegus and aliga, under ticnkNs, and for that of fangus: mycelia with the roote of phaneregnerou* treos, the so called Myenshizs, under Hoor.
Urex of fingo-Of spetiea sued in suolieine, the unly one now of ingnatance is Ergot (q;.v.) the nareotic ane of the silerian fungus lun slao been described under A Muskirs. Amailon $(q, v$,$) and$ Moxa (q.v.) art obl soirese of tibder, and Poly. porus agwemersts, cot in slices, whe moch unol for ramerstrope Hat the chied use of fungils for food, anal in the manafactare of Ketchay (q.v.).
Although fev fungi are lused as food, and mont popularly regarded as poisonious, the pouitively dangernis species aro really ly no means very numernas. Yet the rinks of incantious gathering must not be understatel, sinur tont only are nothe edible fungí liahlle to le confounded with poisonents forms, bnt sunue normally wholsontue forms acquire poisonnos praperifes ander particular cincamatancea, atthought minether this be alse to atefinite variation or to the chemical clasges of incipient decomponsition remains doubtfal. Hente nur comition muthrion is exelnded from the Italian markets. There in no certuin rale which ean superaele the treed of experience and castion in diseriminating wholesome rom unwhelesome forma, the pupular beliefs-e.g. that the laster only vill thixcofour a silver spoon is stirred with it while leing cooked, or that they are puore realily deliquaseent-being, without loundation. Nor dnes coloer ar olour afford way certain
teas, for, alchought mout forns of gaudy exterior or readily elishipeablo internal colvor may he sus. pectel, and all fetid ones of oume avoiled, some paisonosas oned are quite inconspuicunas and inoffensive. Again, eonie which are puigent anal acrit white raw becouse Mand and whelewane when rooked; maceration in vinegar or lirine prodnces a similar effect.
The importance of fungi as an artiele of diet in satarally minimized in Britain through the gre: yailing ignoranee and the consequent excesaive dixtruse; in Yrance, and especially in Italy, ther are of much greater importatice. The cultare of the Mushroum has, lowerer, of late years becontic inicreasingly frequent, while win the Continent that of a number of other species has long been practised with miove or less sucerss, as notally of Agaricus, Boletus, ike, and more recently of the truffe. The lealing edible fungi have already been noted, and are also in most rakes the sulbject of separite articles; it may suffice thetefure bere to bring together the inoot important. Bexiles the Mushroons, its itmmediate congeners, and its closer allies, such as the Chantrelle (Canthmellius cibariuar), we have among the Hymenotiycele a number of species of Roletus and of Polyporus, sliso Fintudina hepentica, and several species of Lactarius. Hydnum, and Clavaris, with Mamennime opectes.

Among Gasteromycetes, the puff- balls (Lycoperdon, Bovista), in the young state. Of Ascomycetes, the Morel, Helvells, with Verps, some of Peziza, \&c. and, of coarse, above all others, the Truftle. Cyttaria Dharimini, which grows on beeches in Tierra del Fuego, forms an important article of native diet.
Poisonous Effectsand Treatment. - Noxious species naky produce sometimes irritant, sometimes narcotic effects. The effects sppear soon after the meal, and may be manifested by giddiness, dimness of sight, and delility. The peran may seem intoxicated, and there may be singular illusiona of sense, while even spsams and sonvulsions may appear in the mont serious cases. In most caser, however, recovery takes place, eapecially if vouiting lie early induced. Hence ensetices should be ndministerel as promptly as possible, and castor-oil also given freely.

Furfuramide is elosely related to Funfrins and Furpuroh, and all thiree sulstances may be prepared from wood. When this is heated with water under pressare for sonte time, and the resulting liquor diatilled, furfurol, $\mathrm{C}_{0} \mathrm{H}_{4} \mathrm{O}_{2}$, an aronnatic oil, with an odour revemhling cinnunkin and bitter almonds, is oltained. By treatment with ammonia this is converted into furforamite, $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}$ a neutral erystalline looly, By lowiling thin ajain with a solution of potasli, furfurine, an alkutine hase having the name composition as, and inpmeric with, furfuramide is produced. These snlastances are of little inilustrial importance.

Fusel or Fousel Oll, known also as Potato Spieit, in a frequent impurity is apirits distilled from fermented potatoes, larley, rye, Sc, to which it communicates a peculiar and offensive odour and tavte, and an onwhatcoome property. Being lean volatile than either aloohol or water, it accumalatea in the tiat portions of the dinisiled tiquor. It in principally formed in the fermentation of alkatine ar neutral ligulide, bat does not ocear in acilalous fermenting fuids which oontain tartaric, racemic, ot citrie acid. It mainty consinta of is sishatance to which elemints have given the name of anylic alcohol, whose comaronition in reprenented ly the formala $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$. It in a colourless limpid thid, which hat a persistent and ofpreanive odoar and a larning taste. It in only sparingly moluble in water, but may be mixed with alophol, ether, nuil the ensential oils in all proportions. Any whisky which profuces a milky aspearance, when mixeil with four or five thmes its rolane uf water, may he suspected to contain it Fusel oit is principully suld is Britain for the parpoes of yielding vent emence (amylie acetate) for theso-called jargonelledrops. See Alconot, Whiskr.

Fusible Metal, an alloy which melth at a temperatare lelow that of boiling water. It consints of at mixture of several metals, of which bisnuth in the mont impertant. The following are exnmples :

Both on account of its melting at a low temperature and of its property of expanding as it coolk, fasilule mertal is valuable for several purposes in thee arts. It is used in stereotyping, in taking costs of merials and of wooncuta, and in teating the finish of dies. It has also been employed for making anatomical carts, aud a pecculiar kind of it was tused for saking safety pluga for steamisilers For the latter purpose it melts when the pressire of the steam becomes dangerounly high. some elange, by leing kept long heated to near its melting-point, which rendered it unsuitable.

Fuze, a mean of igniting an explosive at the required instant, whether it is used in blasting operations, military demolitions and nines, or an the bursting charge of a shell or Bomb (q, v,) In the former eases electricity would generally be meed, but for hasty military demolitions Bickford'n faze is euployed in the British srmy. It is of two kinds-'instantaneocus' and 'oolinary,' the first burning at 30 feet a second, the other at 3 feet a minute. The 'ordinary' comaists of a train of gun powder in layers of tape owverol with gutta-percha; in the 'instantaneonb, which is distinguished by crossed threads of orange worsted outside, quick match takes the place of the gunpowder. Powder
able. It is made of strips of linen, fornting, when filled with powder, what is called Ω - sausage, $\frac{1}{2}$ to 1 inch in simmeter.
The fuzes used for shells are of a totally different character and of masy patterns. They are of two classes, those which ilepend for their ruction upas the rate of burning of the vompouition in thens called 'time'fuzes, abil thoser which harse the slaell on its strikiag the tierget, grounst, or when, ealled tpereussion fuzes, in the British armey time-fages are hollaw trubcated eanes of beech woed, varyying a oolamon of faze
emmpasitinn which lumpos at a fixal

Fins. met marks net firnores the the outside uleav twputietlis of a
 thes fiole must tre heufle ly 4 fivenbroer in order thut the lisme basy futve aceess thingith it to the bursting-charge, anal to open the nheit at the desiced inatant ducing its Ilight. They wre ehielly itsen wish Slapmel Shell (\%). 5 and biertars. Tleph lengti variea frobs 3 ses if incliex, wat they am fixed in $t 0$ the heat of the shefl luefore friag. The thickrums of iven moahl present the pavajege of the Harme thernath the leote munter loy the Funes in the alayter fuzas, ansl tharrefuse Ewo or have powiler chaurneln are mule in them, parallet to she fuze exomporition, to consmbinicate ito flame to the
 fuxe is ignited lix the llane of the bartiodige on veloping the ahell, ozel yoleknatel io placel mo the top of the fise to facilitiste this A wetal enver pestecta the jpickomatch mbill the has monawnt. and is then torn off lyy measin of a tape pavibled or that pirpume. In gune lationg on windaye n perconaion atraggemant is placed in the liend of the fuze, so that the nhunk of diwhenge inay igenta
 the cointion tine $-(026$, throgzh une patiler olfanuel. A mestios of the jervismana fuzs topegned in thet Royal Lateratioy at Woolwidh if whan a in ing i2 it is a hoflow yan-metal pylinalef, "t, cfranged on las to merew tista the bend of the alell. Inaide is a mavisble pethet or timg. h, of white metal striven with fuxe comiposition luke a cube, asul carrying a percustion-caph. It lun fout fenthers or shomblens projecting from its aides, and above thene at ean-mmual gawort, \& fits roand the pellet loosely, sos in to prevent she cap of the pellet coming inticontact with 6 eteel pin which projects dowawaril from the wip of the foze A salety pin, d_{1} goee thrmuly the fose with the maine object, but in cenoved hefore bring, and in lend pellet, is then slamen the apertiare left by fita pernoval. On Jisclatge the maock
cansea the gatised to thear of the feathers, and net back with the petlet ugainst the bottom of
the faze. The slioel of the fues. The ahock of impaet on the tanget of ground canses the jellet to set forwand, brimging the cap geainat the pith, igtriting the fuze-coms-
positions fins burstiog
 the shell. Percnation fuxes are chiefly anen with 'compan' Shell Ig. x, , Very many others wre it use, ehiefly modifica tione of these two types-e.g, the 'delay' action fuze lus looth a percussion and time arrangement, но ns to burst the Alrell an inationt ufler inpact, All ure delicate and apt to deterionate bopelosly with age or expesare to damp. In she Anericas pneuroatic dynamite gan, the sluell contains an electrie battery, and the circuit is completed by the aliell striking either water or the target.
Giallie Acid, $\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{O}_{5}, \mathrm{H}_{2} \mathrm{O}$, is an acid which exists in small quantity in gall-muts, in valonis (the acomecup of Quercus agilops), in dividivi (the pod of Cosodipiniac coriario), in sumach, and other vegetables. It is whually prepared from grall. nuts, which, in addition to gallic atid, eoutain s large proportion of tannin (tannic acil or gretloLataic acid). When the gall-nuts are digested with water for some weeks fermentation take place, and the tannic acid is gradually converted into gallic acid. The same result is obtained more quickly if salpharic acid be present. To obtain pure gallic acid the gall-nuts are boiled with water and the liot liquor separsted. On cooling gallic acid ervatallises ont. and is farther purified by
solution in hot wister and trralment with animal pharcoal.
It forme delicate, silky, wicular crystals, nearly oplourles, and hovivg a sourish thate. It is anlulife in 3 parts of bwilitg water, lut tolly in 100 of cold water, nad misthis accoset it can be readily pari. fied by recrystallisation. With solation of iron alta (fertici it prolnces a Mae-black colonr, and inatly yiells an Theck precipitafe on expmasre to the sir. Hence it masy be used in the prodaction of ink, for which purpose it lins some advesitagers over cannir or gall-wits. When the cryetals are strangly heated pyrogallie apid is producol and antlimes over. Gallir acind is a morful astrimgent. As it doet not coacnalate allomen it is readily nbearbed inte the b/ows, and in thin wey it in effleracious in Bright'o disespe Where a decided local astringent efleet is alesired tannic acid is busch mere powerfal.

Gullimm (oym. Gis, eq. 69 n) is a metal dis eovered by M. Leoon de Boirbasalras in J875 is a ziac-Whende furcal in the I'yrenees. It has nloo lerea found in blendra from Aesaria and from Bensterg Strange to sky, it preperties and ite salts were prelicted before its extstrace wat havwa by Meodeleetf, In virise of his Perinalie Law fors AтoMre Tinsorv, Vol. I. p. 520). Gallium is of a blaial-while colour, and fias a spocific gravify of 50. It ponewars the remarkslife property of fariag at $30^{\prime} \mathrm{T}^{-} \mathrm{C}, \mathrm{f}^{\prime} \cdot \mathrm{F}$, and menaining liquid whes enoled down even to $\bar{\sigma}$, If, however, the globule of molters metal la souctrol with x frajgient of bolid gallism, it as ance sublidiex Heated on bright relseat in contact with air gellian doen not volatilise, asd only a very thim cont of oxide in formel um the surface (:ellium, which lans no Indastrial tompentance, stiventes matily is hyytru eloloste acid lupt io sanvtic jotahh whil evolathes if hydregro It furfore ofer oxide, Gis 0 . whach is
 nomuonia. Tlie chtorifo, uitrate, and sulphate art all very soluthe in waver, Hin miphate combline

Giallotannte Aetd. a scimay in it Trmele

Galvanised Iron. Now narne is theme to bow
 the The inue in simply stopeasl io the mettert
 lo angument, that ary tefonta eatranie proceas

 favemer into men for cookimy verils, ned galvan

 phrross if mannfartem io eoty simple, The aitels

 thorberfacy of ther miefal vinion. The insin platea on

 tetel-istnm onel there is as Alanget nt Instruying

 tan-nitalale whope any araf is phepont, and eny pre
 alde tante if fiacerl incas solsanivel vewel.
 Montionstios. is the deatle of a part of yhe lonts, wlether exterval ar infersal. If is manct colvinot it che estremisien, poperialis then foent. Its imeselisit tages is alpas α arsect or tropsimeent of the suppls of thood to the atfertelt piors. This may le pectared in sarious wion. (1) lay divect thectanioa! injory, ve by extretne heat (fourn) का
 thation, trxually frellorime injors, or attarking in worand; (3) be dionare of the hifent vesuels of the part, in onoflentiues perliapo with weak heart antion: The secrond gromp inclades the noot danmerons and fatal forme of gancretre: Cancruta
 bappily moch loss cotnmons thas they once were. The thind includes gangrene oceurring as a ressilt of poisoning by ergol of rye, of dinlietes, old nge, Ke.

The symptomss and appearances attending gatgrene vary greatly in different cases. Its onset may be sudded or gradual ; il may at once liecome limited, or is may have a constant terdency to extend; it may be preceded and accompanied by great pain, or auay anly lee observed in consequence of the local lows of feeling. Hut in all eases the loss of sitality is nceosupanied tyy loss of natural warnath, of sebsibility and of nootion in theaffected wat, athl by a change in its appearanet. It may tither bepime nioint uidi swollet, at dry ani shrivelled: and its colour may bo either dark purple or jereruishi, of at least at tirst pate and waxy. The comsitotiomal syomptons are equally variable: if the part aftection lie spall and not vital, and the ganifent limitel, they may be sight and of hitile jujustanee; cthorwise there is generally great deprrosion, with ragnid feeble puhse, foul fongue, and uther sidits of alarming ilnesh,
If the gampeno be limital, a separation takes place eradually lof werat the living and slend parts. and. If the jutient survice, the dinorganised and Fiflers lexture is Horown siff, aitl the purt beats by Cieatrisation $10, \mathrm{v}, \mathrm{f}$ or the formation of a mat, in Ciration the foss of entiatance. With pregond is treabinent, the etreugth nust, generally sfoaking. he maintained loy a nosarisloing lat not too нtaun tating fiok atal the pait mirefully jretherved from

In some forme of sandreas atmpitation bay afford the hest ow veven tio only ctmace of maving the parient's lifes in bllen ith resales are diwas Douse, an it bo aliomb cortitiri to lead to fatal exten nion of the thangor Mymicare bs therefore mented in donedime the qumsthat whether surgicas interfer aroct shanhil lem ivsirbent in

 Gver. Iy persilgatian it m sifsatumal an hate yellow

 and is of merche interent cheminally, lout it in af no importaner frons an industribl or joplalar point of vew.

Gelatine, in Fibemtetry. Witte is yet deb nitely knowa of the chemical mature of selatins-
 25.4, bitrogets 18.8 , anil saffhar atanit 0.1 je cent. It is sulalile in lim water, in seedies acid, ntis in coll sulplarie wrid, and is annoluble in alcolool, ether, und other organic liatuila; the muenns aolution is precipitated by lantie adid, elaronne alom, atal eartisive sallituate, lont not by most achis, nalta, or alkalies in ditrite solution. Gelathe may be pmitied by diniolvate it in water and pouripg the solution into a large bulk of alcobol the efot which tamos consista of nearly pure gelatiae containing ouly a trace of ash. By dry dietillation gelatins yiefls a quantity of carhonate of ammonit, and a foul shelling brown oil contain ing carbonate, Mulplide and cyunide of amanonis. esilines metbylanine, pienline, and a numier of pyriline lasea Gelatine solution dissolver lime sod calcium phosphate minch more freely than cold water, forming with the latter a definite compound which probably forms part of the thaste of bones,
In Techondogy, the term golatine, although usuably applied to anly the variety of the smas. utance abtainel loy assolvinis the moluble partion of the gelalinous tissues of animals, nevertheless properly belongs also to Ininglass (g-v.) and Glue [g.v.). which are modifications of the same misterinl. Vegetahle jelly in also analongous. (irlatine sut glat signify the more or less pure and earefally prepared jelly of mammahan animals bol the term isingtass is only applied to certain pelatinous purts of fishes, which from their expeed trit richness it gelatine, sre msmally merely dried and ased withont iny other preparation than that of zumute divarion for the purpose of facilitating their action.

Gelatime proper is prepared for-commercial parpooses from a varicty of animal sulostances, lat clactly from the softer fauts of the lides of oxen
and eqlows and the whin nf sheep, sach os the thin protions which oovers the belly, the ears- Sie, alto fixhi hones tuid atlier parts of anlimals. Une of the limst, if not the hest if Cher vavicties of gelatiac masufactnred in Giseat Britain, is the 'sparkliog gelatine' of Mesors Cox of Cingtion, near Eilmbergh, which is romarhable for ith great parity and stranisth, or gelichinsing fower, ani is purifed by processer patented by treus. The nateriate they

 feet, is deserving of special mention.

The rememal sucthori nulopted with skin-paringy
 phacel in a weak solutint of emastie somp for a week of ten shas 4 . When this gravesn of digestion haik lieen sulticuenty canied the, the pieers of skits
 warls ate placeil - till wot is aumthet chanber lined wifb worale in whots thes ber Lhawhen and [rupified liy vaprosime to the fiomen of borming sulphar; they hext ieceive their timd wastang with cold water, opuration in th transher sheat on the helatisiaimg
 ft a high tempetature by meanin of the steam in the cosce fartesusding thet pite

15 thin meon- Hloo gelacine is quite fiesulved out nt the sken, arol in straiami sif whiat stall hot it it in puared out in thith layeng, which an mom on Lling ure sufficiently cooles and onsolidated are ciat
intos anall plates, unally oblag. and laid on meta, strectieit humemially, to iry it is them eut intos alreile am! is ready for market.

Another procesm intindiged by Mr Swinebarne. onnsicte in ireatialt fiuces of vall-kits by water slone, withone the unila ind solpter procenses: ther pieoes, after aimple woiling lieng Lransferrel at bice to the poth to be actod apoa by the nteam. Inferior gelatione is buste from lones sind other parts of spisuale, ond is is underptiaal that thed ensminas number of rate killent in ther sewers atid nisathairs of Patis are inest loy Lhe gelatrpe-makors. This French manufarturen maceepl hedter Ehan any othini in danfyinge theor inferior gelatimen, and they rarely make any otbors; they non theit plates but very this, which fives thew greater trannaseney; and they colnur tham with mast brilliats eolonis, ionl form very theerulfed sheetn, tempting the eye with an apprearahe of great delicacy and purity.

Gelatite mbould never liee joigged by the eye stone. Ite purity thay to very easily tested thos soak is in cold sater, and thatil joor ppon it a smail guantity of houling wafer; if pure if with form a thickish, elear, shaw ealaures salation, free fiom amell, bot if maule of impare materials it will give off a vety offenaive oflour, and linke a yellow gluey consistency, No urticle manufactarel rephires buct carefal ablection of material and sach nice and cleanly manipulation to ensure a guobl marketable character: and those anxions for purity shoula avoid all artificially coloured varieties, however temptingly got op, unless they are required for merely decorative purpmes and not for focol, of late years the conimercial uses bave grently increased. Gelatine ts the foundation of the dryplate systemi of photogeaphy, and by its mesns the science has been revolutionised and its capabilitien extended ta an extramalinary dugree. To the printing procens as employed by Messrs Goupil of Parin and others the world is indebted for cheap and at the same time highly artintic copies of masty admirable picturen. It is further very extennively used by druggista for costiog pills and nauesous drugs, liquid and solid, which are thas rendered thateless ; and by confectioners for some kinds of oweetmeata. For the value of gelatine as food, nee DIET : and for applicationa of gelatine to the purpose of book illuatratiod, see ILLCSTRATION. See also Protceraphy.

One of the qualities of gelstine is its power to form chemical oombinations with certain organic matters ; hence, when it is mixed and diswolved in a fluid containing ruch ruatters, it combines, and the compound is precipitated. It would appear that this combination, however, is thresdike is its arrangement, sad that the eroesing thrsads form a fine network through the fluid, which, in falling, carrien down all Hoating subetancen that by their presence render the liquid cloudy; hence ite great ralue in clarifying beer and other liquida
For this reamon ininglaus, which has been found the
best gelstine for the purpose, is very largely consumed by brewers.
Various kinds of animal food are valued for the sbundance of gelatine they contain, as the Trepang and Beche-de-Mer (species of Holothuris), sharki" fins, fish-maws, ray-skins, elephnat hide, rhinoceros hide, nod the softer parts, all of which are luxuriee smongat the Chinese, Japanese, Siamese, Malays, \$ke. Turtle-ahells, or the upper and lower parte of the shield (carapeces and plastron), conetitute the callipash and calliper of the epicure, and form, in the hands of the experiesiced took, E rich gelatinous soup. The tleahy parte of the turtle, calven' hend and fieet, and many other thingo ruight be enumersted is valusble chiefly in consequence of their richnes in this material.

Gentian (Gowtiama-so called after the Illyrian king Gentius, whe is said ly Pliny to lisve introduced G. Iutea into medirine); a genus of Gentianacep. There she more shan 100 species, natives of north temperate regions, very offen growing in high noonntain pastares and mendows, which they cover with their besutiful Dlue or yellow flowers. The roots of the Common Geatina or Yellow Gentisu (G, futen) are collected by the peasents of the $A)_{\mathrm{H}}=$ (along with the less valuable ponts of (i. pansomica, perpurce, and punctafor) Le farniali the gentian root (rudix grntianes) of pharmasy, which is largely employed as an excellent bitter and stomachic, That medicinal propertiva sere exentially lae to the porence of a sod also sugar aro preast in quantity, hence the peasanta of the A) po prepare alcoliolle bisterntheir Engarngeast-by the fermestation of the fresh roots. G. Ciftesber is used as gentian ront in North America, and G. Kurroo in the Himalayma.
The florint recognises two main groupe of these beantites lisnly plasite, the firat ntrusg and envily xrowa in borden, of which the Willow Centian (G. muclepradea) sad G. Iutea are specisily common. Tlie lormer can sho be grown with good effect under Iren and amang groas The dwarf kinds regaire wore esrefal treatmient, with the exiseption of the Conmen Gestianella (Q. weendie) wbich rensily frims elginge and carpets. The name Gentianella is sornetispe also applied to the allied Cinceifte fitfor, mis. a small, slender, and gracelel plant with yellow flowers, Q, vernd (Verbal
(ientian) cas be gruwn well in tleep mady linim. with abrandant tmoiatare and sanHine. Bavalive Gentian (19. banurioa) anal Created (ientian |G: ecplemfofor) of the Catacnats rejuire thore nioisture Other species tas la cultivated with enre of Notth American tpectes 6. crinift is specially cole beated for the lesenty of ita Howers? the kenas in fact may fairly be allowed the very limt place amose the floral glories alike at Alyure Negiona, in which they range
 up to tie snowilevel, nid

Crested Restiten
 of the alpthe garden. Several speries of Gention sre popalarly called Beeld. money. See Alpine Plants.

Gentionusive frem an ciriler of eorollifloral dicoty lectoms. The 300 epecies are almost exclusively hertaceons, and are mavally native of temperate and cald latitudes and altitade. Many have flawers of great leatory, sod a genenal notripgency
 preaent imodieinal tepate.

Gllding. There are many processes of gilding, Farying with the nsture of the sulastance to be gildeal, and the kind of effeat required to he prodaced, but they may all be elnstified under taree heads-viz (1) mechunicsl gilding. (2) chemical gilding, (3) enonustic gilifing

The irat in used chiefly for gilding wood, plaster of Paris, leather, paper, and other salustances. If the object to be gild is a picture or mirror frame, cansisting of a plais wooden inowlding, then, nfter getting a eont of oll-paiot, from four to tea costs of fine whiting mixed with fixe glue are put on, esch in its tury being amoothed with pamice-stone and fine sand-paper. This done, a soat of gold-sine is
given to those parte which are not to be burnished; Sut those which are reccive only a coating of clear snimal size. Both of these preparesl surfaces now receive the gold-leaf, which is laid on by means of a broad thin bruali called a tip, and further pressed on with a thick soft-haired brush. Those parth which have been gold-sized are in thin way oil-gilt, and will stand wathing ; while such portions as have been gilt on the size preparation in order to be burnished will not bear soap and water. If the picture-frame is much enriched with fine raised ormament, the nurface to be gilt in previously prepared with oil paint and gold-size alone, an the coating with whiting destroyn the sharpness of the work. The result, however, in more tender and lens durable.
Japanner's Gilding.-Where gilt ormanents are to be put on a japanned ground, they are, by one method, painted witls gold-size, and gold-leaf afterwands applied. By another method, rather more thin the spacs the ornament in to nccupy is wholly covered with gold-leaf, adhering with isinglani. The ormument is then painted on with asphaltum, which protects the gold beneath it while the super. fluaus raf is being washed sway. A little turpentine will then remove the protecting anphaltum so in to diaplay the gitt oroshent, Japannern' gold. size la a mixture of lineced-oil, gum-animi, and vermalives.

False Gilding, although an old invention, tha becofne in recent yenni an important trade in Gerniany. The moulding intended to be 'gilt 'in this way is first covered with bright silver-lead or tinfoll on in sarface prepared an above, and then coated with a yellow vaminh. Other nabatitutes for genuine gilding that are largely uned connint in spplyigg 'Dateh gold,' which is copper beaten out Thee gold lenf, as in genuine gilding, or in asing nocalled 'gold paint,' which is finely powdered bran or etber simifar alloy.
Chemical Gidding.-Metals are now usually gilded by the procens of electro-gilding (nee ELecrnomictallungy) but, besiden thin, varioun methoda of chemical gilding have been ndopted, and nome are still in une.

Hater or Wrash Gilding, as it is momewhat inap. propriately termed, swosinte in applying to motal a paite formied of an amatgam of gold, and afterwards evapornting the volatile mereury by heat, which leaves the gold firmly adliering to the surface of the metal.
Gilding by Immersion.-For this purpone a solation of gold in sitro-muriatic acid is uned whioh slowly sttacks the metal to be gidded, and at the same time depoeite on ite surface an equivalent of gold. The method enlled Grecian Gilding in surother similar procees, in which gold is uned dissolved in n solution of anl-ammonine and corroaive sulblimate in nitrie scid

Mont articlee that are gilded by either of the alare chernical methots, or by electro-gilding, are suhmitted to an after-process of colourng. This consinta either in seting upon the aurface with a salibe solution, and beatiog the article afterwards, or in conting it with a kiod of varninh of boenwax and yellow ochre, and then buming this off. The colouring of jewelry, oce, minde of gold alloyed with eopper or brass, is performed by aubmitting the sarticle to the action of a mixture of nitre in water, heat being applied in either case. The
baver alloy is thus removed from the surface, which becomes covered with a richly coloured film of nearly pure gold.
Sword-blades, lanceth, and other ateel articlea are gilded in fancy devices by drawing the design with a camel-hair pencil mointened in a molution of gold, preparel by agitating ether with a solution of terchloride of gold, and decinting the light Higuia which flosts on the top.
Silks,"Mrtificial flowen, ivory, bone, \&e. may be gilded by immersing them in, or puinting them with, a neatral solution of one part of terchloride of gold to four or five of water, and then expouing them in a versel containing hydrogen gas, which readily combines with the chlorine, and reduces the gold to the metallic state.

Enconslic Gilding is usually applied to glase and porcelain. The gold is first obtained in a finely divided state by precipitating from the chloride with protosulphate of iron, or by simply treating the chloride. This powder is ground up with ${ }^{\text {Pt }}$ th of its weight of oxide of bismuth and morne borax and gutn water, and then painted on the ware. It is thegn heated till the borax is vitri fied and the gold thereby fixed. Sometimes the
gold is ground with turpentime, or ant analgam of gold is used. This has a brown slingy appearance when it leaven the kiln ; the gola lustre in brought ap by burnishing,

Gidding Metel.-The metal of whieh gilded gools are made is required to have as nearly as posaible the colour of gold, so that when the surface gilding is worn off at the rase exposed parts the difference of colour will not be rendily apparent. This is obtained by making a kind of hasa having a mueh larger proportion of copper than common brasa The following are three receipts from among a variety in use: (1) 6 parts copper, 1 common brase; (2) 4 parts copper to 1 Briatol hrase; (3) 13 parts copper, 3 parts brass, 12 parta tin. The last is much harder thre Nis 1 or 2 .

Gin, or Geneya. an aleobolic drink, distilled (rom malt or from anmaleel barley or other grain. and afterwandin rectified and Gavgured. The gin which forms the commen opirituons drink of che lower claspes of Landon and ita vicinity is thavoured very slightly with oil of turpentine and conmon nalt. Each rectifier hus his own partienlar recipe for regulating the quantities to the used, but unanlly aboat 5 Haid nonces of apirit of turperatine and 34 th . of aall are mixed is 10 pallons of water; thene are placed is the rectifying still, with so gallons of proof cors -npirit, and distilled metil the feints begin to come over: The prosluet is then used either unaweptened or mweetened wish ougar. Potate opirit is uned in the manafacture of inferion qualities of git.
The worl gin is a shortenued form of genew, so called by confusion with the Swise town of Ceneva, hat ithelf really a corrupted form of the OWl Fr. genewre, 'juniper,' from the Lat jumperus. It is well known that josiper berries are still uaed is Havouring the apirit made from ryemeal and malt in Holland, where it in an article of grant maniafacture, chiefly at Eichiedsnit lience it is of en called Schiedam or Hollande, as well as geneva and Ein. The lagger part by for of the apirit made in Holland in exparted to other coantries, eepecially in North America and northern Europes. It was formerly alwsys exported is bottles, a nquare form of which in atil tamilian, but caske are now much ased on well.
Alousot every gia-palace kenper in Lendon him ame vile recipe for inereasing the pungency and giving a factifion atrengel, to the much-diluted aweetened spirit nold under thiv name. A mero emumaration of the articlen unually emplayed will give some jujea of the extent to wbich moptratication givenrried on with thin spirit ; roach alam, asals at tartar (carbosate of potarb), bila of juniper, canaia. nutarg. homonos, "woobs, and capnicums, snd, it in alleged, even sulpharic acid. Excens of tarpentine is the most common and perbape the wont adul. terant. Still mach wound gin ie tmade in Londonthe diaratic qualition of ita 'Old Tom,' mo well in the diaratic qualitell known.

Gliger (Zingiber), a genus of Zingileracear, of Which mot npecien yield root-atocka tusefal as condimenta and atomachios, enpecially the narrow-leaved or common ginger (Z. Sficinale), whirh has tren

cultivated in the East Iadies from tume immemorial, and is now also cultivated in other tropical count rice, particularly the Weat Indies and Sierra leune, from foth of which, as well as from the East Indies, its root-atocks-the ginger of commerce-are a con iderable article of export. The cultivation is ertremelv easy, and is carried on up to $4-5000$ foet in the Himalayan in molat sitostions. The root. stock in taken up when the stems have withered, and is prepared for the market either simply by calding in boiling vater-in order to kill it sad anbegoent drying, or by sersping and waphing The first method yielde black Ginger, the second Whife Ginger that thare sre considersble varnets differsnoes in the ahader of thene. The blackest of and the whiteat of White Ginger very far Irom perfectly white, unlese bleaching by chloride of fime be afterwardo enployed to improve ite sppeas-ance-a procens not nifierwise advantagernas. The unes af ginger, beth in medieine as a stimulant and carminative, and in domestic ecvnopoy se as cundi ment, are too well known to require particular notice. It euntaina a kood dras of stareli, but ite mais qualition depend apos its prale yellow valatile oil. Prostreed Ginger, largely imported from China and she East and Weet Isdies, convists of the young root atocke preserved in syrup $=$ it in not ouly i delicious swertsoeat, Let a utefol stemandic The young rool stockor wo often alsi cundied. Ginger iwn known to the Hemsiys, and is ssin lay Pliny to have been torought frum Aralia.- Zeranilel (Z. zerupabet), alma rallol Brond-Jeaved Cimger 1 and sometimen eroneously Round Zedosiy his cal ivated in Java: ita root-slock is wuch thicker, hes tese
 called Yellow Zedosry, has a camphor-like starll. asd a bitter arnmatic taste. It who of hight repucation in os medicine about than close of the 12th century,-Mioga (X, mooga) is less jungent thas ginger, and is uned in Japias-Cattle seot to graxe in the jungle of murthera India, daring the rainy seavos, sre supplied with the root stivelk of 2 . asifatum. to preserve stoit health - The rimst uf Arutolocila (q.v) camadraur, sumptimes called Indian Giager ur Ifidd Gumger in Nowth Americs, is applied ta sirallar fases.
Eatesed of Binger, much used for davouriogi is trerely an alcoholic tinctare-Syrap of Cinym is used chiefly by dragains bue Hinveunnig-Ginger Teu in a domentic pronely very tuednl in cases of fatulence, anal is an infuxiors of eifuer its lailing Water,- (inger teer is an cffervo-ing aries rusile ly fermenting givger, ampor, and motre athep lagre divsta, and foithing lefore the formentation in cona. pletent - Ginger Hise or Cinger Cordiat is an ligucur fisvoured whith githyer. - Ginger Ate ta obe in the Aerated Watersily vi Gingrehorwal is avety weli knows srtiele uf haed, which in the 14th eentury was innde of rye dosigh. kpenilol with ginerr atrd other spice, and honey of eluger. Now ite cossatite. ents are treacle, muint sogar, wbrates dhast, bilier, and egar, fovoured with gainger aul sthes pyises a. little carboroste of nomgorsin aind Iarianie aehl, or earlonate of ammotim, ate sometiones jut if to kive lighties.

Ginseng, a rout lighly entectoel it China ax a mediciae, lielog aniversally regardal is jumetaing the munt extromdinary virtues, sad as a reanaly fir almiont all diarises, hat parturularly for eshas-tim of tody or roind It is the ruot of a fievien al Panax (ordes Araliseral), sppropitately st callel
 Tartary is, however, scarcely distisict frous 1' yur
 Chins to the amment of abost $500,600 \mathrm{lh}$ ammaily, but fetcbes a lower piries. The ginvelg of Corea is ninot valued, and is carefully caltivaterl in that coustry. It is mined frous seed, the sectlithss are plantent out, and frequently transphanimi, and it is not till the fifth year thon the plant reaclicmeaturity. Ordmary gitivetig' is jurjarel by sumply drying the root over a obsiccial tire; the teat at clarifies ginweng is steamel is eastheriware vewuels with holes. The mos is ombilaginuas, swnetish, ulso slightly bitter and anmualic It lisa been reganded as a very elusir of life all aver the East. brat especially in Chiry aril Jajan. Western medical practutioners, luarver. lave as yet fathed to confirm or explain its exfiaondinary tepatation smong the Chimese The expent from Carei, amonnting to $2 \pi, 000 \mathrm{lb}$ in A grool year, is a strjet monopoly. The wild gumeng of Cores the fre quently fetebed twenty timps its areight in silker in Chins. P. frothonsor and conifleates of thet

Molserses are Iragrant mromuses used in Indiun mative medicine.

Glauber. Jomann flumolit, a German at chemist and physiciant, was hirn at Karlatadh, in Franconia, in 1603 or 1604, and died at Amatendam in 16gR. No detanls reganding his life are known, except that be reaileci at Vhenlife, Sialzbare Frank fort on- the Main, sul Cologre, from whence in 1648 he removed prolubly to Ansterdsm. 'Al thouach a Velicver in the philoampher's ntone and in the elixir vitar, loe contributed very mate rially to the progrean of chemiktry, Ia 1648 lue dincovered hydrochloric acid whilat experiment. ing with oil of vitriol athat comamon ralt; hy whes probably the fint to prucure nitrie acid: Rin! lim oame foas hept trasansitiand is Lifabber't Salt, which Jiswise dineaserel His tratiges wery which he likrwise dinciteres sols, 1661 ; and an Engliah tranelation was printed ly W'arke ai London in 16 k 9 .

Glaveer's Saly in the popular gintue of the beutral solplante of roile whosechemical composition is regramented ly the formula $\mathrm{Na}_{2} \mathrm{SO}_{4}+10 \mathrm{H}_{2} \mathrm{O}$. Is acesurs is long four-niled iranalveent priminis terminated by diliedral anmmith, and comtaining en Atamis of water. On extroante to the aif, the crystaln lome all their wawor, uad become rowolval inta is white powiter. When lieated they resdily melt is their water of eryntallination ; and, if Hue heat in sufficiently cuncinued, the whole of the water is expellesh, and the enthydrous salt remaine. Glauber'm malt lius a coolinki bitter, sal naltinh tante; it ie rendily estuble io water ; ite noluhilty (in the ordinary erymbitane (arza) inereming uf to 92', when it mypure to bindergo is mulecular change, anil in for converteit theo the anhydrunn
 the laydrated oompousd, and nejuaraten in minite erystale. Cilaubers mate in a casmitituent of matiy
 and in fannd alne in an eftloritectace Alximt maline lakee in nothe pirts of the IVitel Statems nad it ocrirs in small quantity io tho blond and other smimal fluide.
 quantity from comanos halt and oil of vitriol, with the view of being sforwhrid converted into carbodates of mida (tee somali. Fur mumien whe a parer forni is reguired. The nalt which remairis after she dintillation of bydrocbloric achot-this rati being sulphete of moda contamianted with fiee sulphurie ncid - in dtuadved its water, 40 which in alded powderal white marble jearlusonie of time is to neutraline the free scil, and to precipitate it fur an insoluble walpinite the molntion in foiled down till a pelliele spquesro, is atraitied, and eet seide th eryatallise.

It in nead ha, 5 common purgative, and in onpecially application in fevern and intlemmatory affectiona, when it in precenaty to evacuate the boweln without increnaiog or exciting felorile distarlence. The usual dise in fratm hulf no ounces to an ounce; lint if it is prevtotaly dried, in on to expel the water of mryblallikation, it lemames doublly efficient of a purgative. It is thow mbeh tena frepuently uned is domentio medicine thoto formerly, having giver plisce to midder Aperients,

Glue in merely an impaye Gelatine (g.v.) Alroot every animal sutatance will yield it, heoce sll kinde of neimial refune find theil way to the to me makere' boilers. 'Tbe refuse of tannerieh, consistiog of the elyppinger of hiden, looofs, ear and tail [recea of ox, calf, and aboep are preferrel, becaune they cas be dresond with lime, which removes the hair, anel acts as an antineptsc. Fir thro purpowed they ave jumeed in thaka with gricklime and water for two sir thee weeks. Tbey are miterwards whalied aud dried, sund are ready for use by the glue maker, who basally given them another losasier lime-deresing, and sulmequently wishes there; they are nflerwarde exponed to the action of the ait for a time, to beutraline the canatice limes. When well drained, the pieces are placed in llatbottanned copper boilers, which bave a perferated fale bothom placed a littie distance alnve the true one, to present the harnings of the mutcerials, and Which bave been appodid with rain of other noft water gat bo twai thinds the depth of the lowiler, the pieces tring piles up ta some homght atove the top of the etpers labiler. The whole is kept at a gencle boiling hest until all the gelalimona part has dipkolver thet, nad the thass of matens! liss munk Jows into the floid. The laviling is munlnaned until,
by repeated trials of amall quantities, the operator knows the fluid is of the right consistency, when it is
The congenling boxes are of wood, and are nearly square, being alightly narrover at the bottom than the top; they are flled to the brim, and when their contents are sufliciently solidified the glae with a little management, turns ont in the forme of a cube, which is cut intur thin silicen ly a wire in the same manner ha soap; snd these larger alices are aublivided into amialler cakes by a wet knife Frames, with neta streteled upon them, are provided for drying the cakes upon: and thase frames, when covered with the caker of glue, are sedjuated one over another at a listle distance apart, supported between four ugrights, aud, if in the open sir, covered over with little wooden roefs, the whole being arranged no that the air cas late free access to facilitate drylag. This procem in an anxioas one for the manufictarer, is the ehangee of the weather bave great and ofteo rompletely deatruetive effects upon glae in this state. In Britain spring and antumn sre the bent drying mensons. Generally, after the eperi-air dryisg, the glue is taken to dryimguoms, heated nlightly, where it hardens effectailly; hat it is not y et finished; the colies ah this itage have a dull, unnightly look, to remedy which they are tippied into cold water, or are wetted with a brush dipped in hot water, and redried, this wetting giving the cakea a bright varninhed appearance.
While England doen not excel in thim manufactare, it is is recognised fuct that Seotting glueauch in that made ly Menss Cox at Edinbarghranks in the front of the glaye of all countries. A light-coloured plue i not necesaarily good, mor dark-coloured glae necensarily bad, A bright clear which is the beet and moat econemical. Lightcoloured gloes (as distinguisbed (rum gelatine) sre mude either from bones or sheepskins. The glue yielded by theae materials cannot compare with the strength of that yielded by bides. A great quantity in now made is France and Germany from bones. It is got as a by-product is the manufacture of animal chareonl. Slthough beantifu! to loak ak. it is found when naed to le fisr inferior to Scottab hidetiglue. The latter ls lorgely used by matelmakers, piano-sakeri, and cabinet makern, who export their goods to all parta of the World, aud to whom, owing to the darnp elimaten of prany parte to which they export, a firit-elewn glue is sleolutely necesary. Benden ita une in jofnery, eabinetmaking, book-hinding, match-making, and similat operations, flue is useel by paper-makery and in ilreasing silke, sid for these last tivn parpones fine lighticoloured kiruds in thin eskes are miade. Large quantitien are employed by paper-hangers and others for rizing walla, It ie aloo used for atiffening straw, cotton, homehail, and sther plaite for making booness and hafa,

Marine Glue in not a glae, but a mementing compoeition used in slupturiding, for paying seatns in ships' decks after being caulked. In hot climates it is preferred to tar for this and nther purpoaes, where the materiala are exposed to the intuence of wath It consiste of india-rubber out very mmall, and digested at a gentle heat in selosed veeael with coal. tor naphtha until it is dissolved, when powdered nhell lac is addied, atal the digeation continued until it also in dissolvel.

GIuten is one of the most important constituents of the varieties of corn aged ar food It
is abtained by mixing Hour with water, and thus is obtained by mixing Hour with Water, snd thus
forming a prete or dough. This pente is placed in forming a praste or dough. Thas pente is placed in
a bag of tine linen, and kreaded in water, which a bag of tine linen, and kreadied in water, which a milky appeatance. A gray, tenacious, viscous, a milky appearance, havigray, the appearance of bird lime, in left in the hag. This subatance comaista mainly of glaten, mixed with traces of bran stareb and of vily matter. The glaten thas obtsined from whent and from rye is far moze tenacious than that which is obteined from the other cereals, and it is the great tenacity of this constituent that eapecially fits shese flours for conversion into bread. It is found by anslysis that the proportion of gluten (16 per cent.) contained in wheat grown in Algeris sund other hot countries is conaiderably higher than in whest grown in England (10.7 per cent.), or still colder countries; the proportion in the whest of the United Statea seems to vary from 9.85 to os much es $15-25$ per cent,
of this ingredient than the softer varieties of the grain.
Gluten in a moist state rapidly patrelies, the mass sequiring the smell of deckying cheese; but when dry it forms a hard, brownish, horny-looking mass, that does not very resdily decompose. On tresting gloten with hot slonhol, we find that it resolve itself into at least twa distinet enbetances, resolver itself inta at lessi twa distinct entistable in that fluid. The insoluble portion-vegetable fibrin -is a gray, tough, elastic sulastance, inkoluble in wster or in ether, bat readily soluble in dilute alkalies, from which it is precipitated by neutral. isation with scetic acid. The salable portion is in part precipitated from the alcohal an cooling, in the form of tlakes, which have the composition and properties of essein-s vegetable envein; while a third sabatance, gliadin, Femains in salation, giving to the alcohol ss syrupy consistence, bet sepsrating on the additiva of water, on a white wibatance resembliag albumen. All theme capaticuents of gluten eontain carbou, hydrogen, nitrogen, oxygen, and sulphur, in mach the same proportion as the animal albuminstes or protein bodies, and they all doubtles belang to the fleh-forming group of foods.

The sction of gluten in the manufncture of bread is probably a double one; it indaces, by constant action, an alternation of the starch, and subsequent fermentation, while by its tenwity it prevenie the swespe of carbeoic acis ges

Glycerine, Clycepol, of Propezivi Alconol, $\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OH}\right)_{5}$ whe discovered by Scheele is 1779 , whi olitained it in the preparation of lesd.jlanter, and named it 'the nweet priseiple of fots.' It in a colourleas, viscid, neutral, Inodorous fuid, of ta intensely sweet taste, is solnhle in water and slcobol is sll proporcions, but in insoluble in ether and in chloroform. Ita ejecific gravity is $1-27$. If quickly cooled down, plycerise does not oryetal. lise, but malidifes at $40^{+} \mathrm{C}$ inte a guns-like mosi, In the vinter of 1867 it, wa disouvered that sonse glyotring which was leing slippod to England had frosen into 5 moljd srystalline niver sill then glycerise wia believed ta be uncryptallisable Xt 100^{*} is is alightly volstile, hat if sintilled slone the griater part of it becomes decimposed; it may, however, be distilled without alterstion in a cir rent of superhnated ateans. By this meshe Wilsom succeeded in 1854 in sepusratiog bested fate into glycerine and the acid with which it wes pies. viously io combination; the glyoerine is chan obtainod in a sigh state of conicentration an a molourless, syrupy Moquid, which cas be thus prepared is unlifaited quantity.
Glycerine occurs ready formed in a few fate (an, e.g., old palm-oil), and, seosoling to Pattear, is sontained is alt fermented liquors, and enperially in wise It is a product of the saponification of the warious fate see soar.
Glycerine is a tristomic alcohol-i.e it is derived from three anolecules of water by replseing three atoms of hydrogen ty the trintomic radical $\mathrm{C}_{2} \mathrm{H}_{3}$; or it may be comaidered a momponnd of $\mathrm{C}_{3} \mathrm{H}_{\text {}}$, with three molecnles of hydrosyl, OH-anil may be represented by the formala $\mathrm{C}_{2} \mathrm{H}_{3}\left(\mathrm{OH} h_{2}\right.$: and in the animal and many vegetable fats, the three malecalper of hydroxyI are replaced by three molecules of the anhylrous fasty meid. In the saponification of these inte-that is to sty, when they are treated with potash, soda, or oxide of lead, or under the influence of superheated steani-the fatty scid saparstes from $\mathrm{C}_{\mathbf{1}} \mathrm{H}_{\mathrm{p}}$, which nusimilates three malecalen of hydroxyl and becomes glycerine, Glycerine forins soluble cmmpounds with baryta, strontia, and lime; snd it dissolves oxide of lead and numerous salta It if found that glycerine is convertihle into \& true fermenlable sagar when treated with a mixture of potassiem bechromate and salpharic actid, or with potasaium permanguaate in presence of sanlight.
We have slresty

We have alresdy referred to the beat mode (Wilson's prosess) of obtaining glycernine on a small seale is from olive-oil, which is napooified by treating it with an equal weight of litharge \{ leat oxide) This is mixed with water, and ardded to the oil, with which it is boiled till the kaponification is somplete. The glycerine is dissolved by the water, and is esaily separated from the insoluble lead plaster (a mixture of oleate and pal. mitate of lesd). Any traces of lend are temoved by salphuretted hydrogen, and the water is
expelled in pacuo, as the glycerine would turn brown in the open air.
The uses of glycerine are numerous, In medi cine it is employed as a local application in diseases of the okin and of the enr; it is used na a solvent for many drugs; and is taken internally for the ssme purposes an codliver oil. It in is valusble preservative finid for small and delicate santomical preparations, and it hut boen applied to the preservation of mest. Is is ased in per fumery, in calico-printing, and in the preparation of leather. It is ased by the wine-4lemler to 'improve' the quality of wine, and by she brewer, na It in said, to impart kneping power to heer. Very large quantities of glycerime are required for the production of Nitro-glycerine (q,v) and other explosives. It hisa bees mflded to the water in yare roblen with the view of preventing it from frooring It is used in the manufacture of copying ink, and is of general spplication where a lubricating agent if required,
Like the alcoholn in general, to which class glycerine belongs, it forms neversi clames of series of derivativen, the mont miportant of whoce are its cosolinations with neidh, which tre amalogous in their eonipoution to the various futs and aila. See Roscoe and Scluarlenmer's Trratese on Chem istry, und Schanlemaer's Mrmual of the Chemistry of the Cavion Compoundh.
 $\mathrm{CO}_{2} \mathrm{If}$. Was first jrepared by Braconoet in 18200 , being otetained anoong the products of the sction of oulphuric ncid ob glue, and recelved from him the nuspe surre de gelatine, on account of its nweet thate. It le in product of varioun procenabs of decomposition of primal matters. Gilyencall if very moluble is water, the molution having no etfect on vegetable coleurn, hat it is insoluble in sleohol. Glyeocnll combine both with neids jull bises, abd the compoundis in both canng are sulable ans eryatallisuble:

Elycogen. $\mathrm{C}_{12} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{H}_{2} \mathrm{O}_{\text {, }}$, nometimen catled animat ptareh wan dibcoverel by Claude Jernurd In the luman liver nu well ou that of grabinivorobs animish. If bas been shows to exist very whlely diffured throughout the esimal kingdom, nod appeare to be an ensentiat recoripionimest of cel. lufer growth, occorring tin large prantitien in the fotus. If ocenine alno is blrod and muscular tirsate. It is found in mollusce, dried oysters being naid to contain as much ou 0ts per eent. Glyechen has nlso bues detected in the regetable kinglom, in tronalis and other fanizi. Ite ishet in the unimal economy are notioed in the article Livent.

Elycol in the type of a clnes of trificial compoonds, whoie exintence wai inferccil, and after. warde dincovered, by Waria . In their clesmical relation and properties they form an inwrmediato suries between the monatomic alcohole, of which commen ateultal is the type, bn the ase hund, and the triatomie alcohole, a cluse of lmadien of which ordi. nary glyecrine th the type, on the other. The namu of glyool, formed from the first wyllable of atycerfie and the lnat of afcuhal, bus been given to exprean this relistion. The giscols are necerringely termed diatomic aleohole. Ontinary giycol is formed from ethylen, $\mathrm{C}_{4} \mathrm{H}_{4}$, and henee tmay loe called ethyl. glycol, to distimguinh it from propyl-glyeol, which is formed Irom fropylers, C_{2} H (rurn butyl-glycol, Which is formed from batylen, $\mathrm{C}_{2} \mathrm{H}_{3+}$ ar fenm angl)
glycol, which is formed from sinylen, $\mathrm{C}_{3} \mathrm{H}_{\text {po }}$. Glyes is a colvurless, plightly xikcid fuisl, with a nweet taste, nnil its connjosition is expreshed by the
 of the Chematry of the Carben Comizonmuts.

Geitre (Fr, i, or Bnoncnoceles, the name applied to any enlargenent of the Thyroill Glund iqs,
which in not either infammatory or cancerous. The commonest and mont intereating form of the digease is that which is endemite in certain distriets, jour ticularly in mbuntainous regions- c, , a , mong the Alpa, the Himalaysas (as at Darjeelingh, and the Andes. In Britarin it is moat offen met with in Derbyehire, and Leace papalarly called Derhyshire neok: 'but even there it is not commot. Its some villagee amisgy the Alje oll the inlinkjitents without exception are affected Endemic goitre is
often asanciated in the mame diatricts and the same faniilies with Gretinism (q v) Nimpions theorits have been advanced to account for it: it has been attributed to damp climate, snow-water, water with: excess of lime of of magresia, brad focding, bad of tovese alleged caumes is prestent in inukki degrice
in an affected localities: it seems probable that various different combinations of causes rare capable of producing a similar effect on the thyroid.
Sparadic cases of goitre, indintinguishable sa regards the swelling from the endemic form, except that they do not attain such a large size, vecur in all parta of the world. In either case, the enlargement may affoct all the tissues of the gland equally, or may bave its ehief seat in the blossiveesels or the fibrous tinsaes, or may be much axaggerated by the formation of Cysta (q,v.) in the gland. In that form called Exophekalowi goitre, or Graves'a dinease, after ita firmt describer, the thyroid enlargement is vescular and pulsating, and is associated with protrision of the eyen, rapil action of the beart, \&e., and is elearly only one symptom of a wide disturbance of the nervous system.
In other formu of goitre the tumour producen as a rale no obvious ill effects, oxcopt the incorivenience arising from ita size, for it may be bo large as to hang down upon the breast, or even to sdmit of being thrown over the ahonlder. In some few casem, however, where if does not project so much forward, is is apt to presa upan the windpipe, embarrosing the reapiration, and may even cause death in this way.

Endenic goitre may usually be cured or checkod by removal at an early stage of the malaly ω an unaffected diatrict and more healthy surroundincs Where shis is not pristicible, and in iporadic caves, iodine is the favourite remedy, both applied locally and administered internally fout no method is uniformly or certaialy suscemeful in the reduction of the entargemont. In bad casee the gland hau frequently been removed; but the evil results which are now knows often to follow (8ee MYXas. DEMA) have made nargeans, during late years, moet unwilling to undertake the operation, itaelf a merious one Partial renoval is not open to the name objectios ; 'nor is divesion of the cumour in the middle line withont renoovsl. Both thene proceedingm nometimes give great relief, and may he followed by shrinking of the remaiming ighasd
nabatance.

4old-beater's $\$ \mathrm{kin}$, is very thin but tough membrase propared from the extomal coat of the ceicum-A part of the great intentine-of the ox. It is drawn off is lengtha of 25 inchee or more from the other couta, inmersed in a weak solation of potanh, and acraped with a blunt knife upos a basard. After a yoaking in water, bwo of these pieene ard ntretched upom a frames, dried, and then Heparated by a knife. Each strip is agais lixed with glue to a freme, and walned aver with a nolution of alum. When ilry it is next costed with tish-glae, and afterwards with white of egg. The piece of merabrane is then out into squares of 5 m 54 inches. A gold-benter's moadd cinataing frum 900 to 950 of these aquares, sad to furninh thin nearly 400 oxen are required. Beside ite application in gold-bating, this firte membrane is used in the dreating of plight wounde-

Gold-beating is a very asciont art, having been irnetimed from a remote perind among oriental nationa: Gidding with leafgold is found on the coffins of Egyptisn miminied, on nome Grbek pottery vasee of as early a date as the 4 th or 5 th centary M.C., and on portions of the palaces of ancient Rome. Beckmann staten thas the Germas monk Theophilus, who appears to have lived at least as Barly as the 12 thi century, deacriben the procees nearly as it is at present, the gold baving beers benten between parcliment, which is practieally the same as the modern method. Formerly the gold-benter's art was largely practiged in Florence, bat in that city the production of fine gold-leaf has greatly dimininhed during the latter half of the $19 t 5$ century through French and German competition, the latter country especially now rakking large quantities of an inferior gold-leaf. Gold-beating is practised in must of the large towns of the Uniced Kingdom, but London is its chief centre-
According to the shade of colour required gold is alloyed for leenting either with silver or copper or with both. The proportion of copper rarely exceeds one-twentieth part that of the gold, but the quastity of silver in the alloy is sametimes mach larger. The ingot being prepared, it is rolled out into a ribbon $1 \frac{1}{1}$ incher wide, a 10 . feet length of which weighs an ounce. This length of ribbon is then annealed and cat into sbont 75 pieces of equal weight. Formerly these were placed between lesves of vellum, but a toogh kind of papes
is now used with in lesf of vellum at intervale through the packet, which is from $3 \frac{1}{2}$ to 4 inches square. The pile of bite of gold ribbon thus interleaved is called a 'eutch,' and this, having been placed upon a thick block of marble about 9 inches square, reating on s strong beoch, in beateo with a hsmmer weighing from 15 to 17 lh , till the piecess of gold extend to the aise of the aqaares of the paper. The hammer rebouvds by the elanticity of the vellium, which saves or at lesat lessens the labour of lifting ic. Each aquare of goid in the entel is sow taken out, eal into four piecres, and pinced lietween leaven of Gold-beater's Skin (q.y-). This packet, termed a "shoder," is beaten with a 9-1b, hammer for about two hours, of six times as long an in the first or entch beating. For the final beating the gold leaven from the slooder are aggin divislef into four, and esch piece placed between leaves of tine gold-beater's skin, about 950 of whirh form s packet termed s 'mould.' Affer foor hourn' lenting with a $7-1 \mathrm{~b}$. hammer the gold leal is the meold is of the thickness usually mold, which aversges the 2w2,000th part of an inch Each skin of the mould is ruhbend over with calcinnd gypums to prevent the gold adluering to it. Ope grain of gold to she form of gold-leaf of the orlinary thinkness used is gilding mesares about 36 square inches, laut it cas tre Lieates wst te the estent of 75 nquare taclime A grais uf ailver can be beaten rai io a still greater extent, but the leaf would really he tlicker, sloce then metal has not searly the densily nef gatal:

An alloy coasioting of 37 grains of $\mathrm{K}_{\mathrm{oh}}^{\mathrm{I}}$, 2 of vilver, zad 1 of sopper rakes a leaf with B derp yellow coleor. A omppound exatainang 4 drains of gold to 1 of Eilyer giver a pale-gellow leas, hat as the propurtion al vilver in leswenel it beconien Jeeper in the yelliow. Sien loy tronansitied light gollileaf when unly alipitly slloyed alypars etcen, Tint if it enntaine sa bere prapention af silver lis colone is vpolet. Pot excernal gililans, leal mate from purv gold in the liet, an it Jume nol tarnish by atmuphernc iaffuences; lat it is not so cunvenient for ondieary parpmos.

Gonorrhea (Gs. gumest, 'progeny or mopl,' and phes, 1 diow ', a mutre originally spplied almont Indinsriminately io all dimelarges from the genital pheiggth in haith mosos, bat ewpecially is the male. In the course of onage the term lan teen alouont entirely restricted to the designation of ane par. tienlar kised of discharge, whilh, from fie connec. tion with s sontagious potson, was origimully called, in strict nowological lasguage, G. verulenta. This form of the dithous is umanly cataed by the direet commanication of mound pernons with thome already affected + and acoordingiy gooarrhes is ane of the sufneroue peaalties astenaling an ibdincrinuinate and impure interootine of the eises (hos Sveritis). Coaorrhes is a very ncute and painfal form of divenser it is lisble, sleo, to leave ite trmee in the more clarovic farm of gieot, which may last for a conaiderable time. Oftea, tmoraver, it lesved soms of the porte nffected permsoerstly dnensged, and atricture, aterility, \&ce may remuld. The only emastitational effeet of any importance is a very intractable infistaroation of jnists, elowely resetibling theumatic fever, which oecesionally fallown it. The name gonorrhea wan formed on the erromeves suppoxition that the discharige consint of the spermstic flail, wherous, tho dismse leitig an infixmmation of the macoas membrane of some part of the generative ongans, the diacharge in the muen-purulent or parilent dischnrge fram the disensed surface. Heace the nsme Blennorthagin has boes propoed for the silment. The disense may remelo ito height in s period of from one to three weeke; it then usually nubsiden, and the various aymptornes abate is severity. For gonorthesl ophthalmia, see, under EYR, Pwrident Conjuncturitio, vol. iv, p. 514 . Vietims of gonerrlies end the allied disorders shoald comolt nane but medical men of ligh atanding and undocbled charscter.

Gourd (Cucurbita), a genus of planta of the natural order Cacorivituoce, nearly allied to the cuenmber, having male and female fowers on the same plant, the fiowere large snd yellow. The specien are annual planta of very rapid growth, their lesves and aterss rough, their lesves lirosad and lobed, their stems of are natives of warm climutes, althoogh the native region of the kinde chiefly cultivated is very uncertain, and they have prohably been greatly modified by long callivation, so that perhape afi of them masy be forms of one origias species, a
nstive of some of the warruer parta of Asin. The

Common Goard of Pumplin, Citrouilice of the French (C. plepo), with smooth globose or pesp shaped fruit, varying from the size of a large mpjele to 50 or 100 ft . in weight, is mueh caftil vated both in gariens and fields in almont ail parth of the world of which the climite is werm enough for it; and the fruit is not only a very Important article of human foosl, hut is nleo used along with the superabundient shoote for feerling cattle. In many countries pumpkins arv a puract pal part of the ordinary fool of the ponter chastion, and are much used even by the werthiy f they ang but eaten raw but dressed in a great vaiety of ways-as in pies, with augar, apice, doc., or nliced and fried with oil or butter, or mande inta soupos, ke, I'umpline sre much cultivated in Narth Ameriea. In England they are alan coltivaled, bot not to a great extent, had never for food for cattle.-The Vegetable Marrow IC moiteri of C. suctada) sppearn to be a mere variety of (hus pumpkis. It is now more generally cultivated in Britain than any other kind of gourd, leeing one of the most hardy, and ita fruit of exceflent puatity and useful for culinary parpases at almant every atage of itw growth. When full grown the from is elliptic, very emonoth, genernlly stoni 9 molisa lang nad 4 imehes in dinmieter; but there are many varieties distinguivied by the forms of the frait and ly the delicncy of the ifactare and flavour of the Alsh-Obe of the nuat valuable gourdn for culinary purposes in the Great Gonsd (C. maximais), of which the Spaninh Gourd is a green-frnited variety f and the Great Yellow Gourd, the largeet of all, has yellow fruit, with firm flesh of il deep! yellow oolour. It is monelimes fuily 200 ib . is weight and k feet in circumference. Tlie fortn of the fruit is a anoswhat finttened glober whers boiled it is a very plensant and whontnome article of food. It in mache cultivated in the mouth of Earope. The Freach call it I'otirom, and lune it largely in noup. - The Symuil \{C, melongie) diffors from all those is generally forming a bush, instend of sending oas lang trailing ahnata। alno it the extremely thattened (rait, the outhine of which is eenerally irregular, and ita whole form often so like nome Kinels of cap thet in Germanoy ose variety in Estranosoly known in the Elector's Haf, nad the newe Iumk's Gap io

beatowed os asother The Squaill in reghrited ns obe of the best gouris, und is much caltivatesi in some parth of Europe and in North Amucrich -The Warted Gound (C. verracosa) , which has a very hard skinned fruit covered with large warts, and the Musk Gound (C. nascharta), dietingaialded by its musky smell, are lews hardy than the kiadi already nasmed; as in alow the Orange thmani ic C
aurantia), sometimes cultivated on sccount of its beantifal orange-like fruit, which, however, slthough sometimes edible and wholesome, is not unfrequently very unfit for use, on accouat of colocynth developed in it. This is apt to be the case in Home degree with other gourds also, but the bitter taste at once reveals the danger. The same remark is applicable to the young shoots and leaves, which, when perfectly free from bittetness, are an exce! Jent mubstituce for spinach. In Scotland even the monat hardy gourda are generally reared on a hotbed and plantert out. In England it bas been suggested that railway-banks might be made productive of at great quantity of human food by planting them with gounds Ripe gourds may be kept for s long time in a cool well-ventilated places Liet are they injured by eatting off portions for use us required. The name gourd is often extended to many other Cucurbitacers. Sos BorTls-aourd.

Graftigg, a mode of propagation applicable to all kinds of Lreea and ahrule, and avece herlimesons plants whose tienues are firm. The oparation conaiste in the inserting of a brasch or bud (erion) of ane tree into some part of another tree (stock), so as to bring about a ution of the two. The prectice of grafting is doubtleas one of great antiguity, and ita origin may in all probability be traced to a nataral provess which in of rrequent oocurrence. It has Wen oterved that, when two brancheen of a troe or branchas and eyen the atema of kindred trees krowing elonely togother overlap and touch ench other, the bark becombe wounded or abraded, and the returning juicee exuding from the ruptured veanels is thu Alburnem ($q . v$.) produco granula: tionn by which a perfect incorporation of atructurn in effeeted, and the partn becorne one. The object of grafting is, first, to perpetuate and increase the abock of varietion and aub-variaties of frait-treas the jnoate qualities of which cannot be tronamitted with sertamty to their progeny by meede, and which would be mone nlowly nad I eas nurely multiplied by nay pther artificial mode of propagation, sepandly, to incroper and noselerate the fruitfulaten of frait-treas-for, thie elatorated sap being impeded in ite deocent at the junction of the nelion with the atock, the procesen of maturation is thereby promoted, and fartifity more largoly and quiekly induced. Old and atraiffol treet, whose stemn and rooun aro vigorous and healthy, may be rendered fruitfat in the counse of two or three years by baving their tope out beck nod re-grafted with meionan Prom a friitital nad benlihy tree Grafting to aloo employed for the purpose of dwarfing frutt-trees, while at the same time abnormally increasing their fruitfulnesa. Thin ia stcained partly by the nelection of a atock which oxprtin a reatrictive influeace on the ncion, and by double grafting-i,e. grafting twice or ofteaer at will. Very young trees are thas rendered prodigioualy fruitfil, and are in demand for the purpoee of pot eulture and planting in orchard hounes. Troes damaged by wind of otherwine liave their injarien repaired by grifting, and thooe that are nnequally balanced may be broaght to perfect symmetry by the jodicious insprtion of scions in the ill-farninhed parta.
In grafting it is particularily to bee attended to that the alburnum of the ncion is lrought into contaet with that of ths atock. The hard wood of the one never unites with that of the other, remaining separate and marking the place of the operstion even in the oldest trees. For aciona or grafth, pieces of about aix to eight inchea long sre gevernlly taken from the shoote of the provioun summer, with several buds: but portions of shooth of two years old are nometimes succesafully employed. The time for grafting is in apring, iws woon sn the eap begina to appear. The acion nhould, if poseible, be taken from a healthy and fruitful' tree, but acions from the extremitiey of lateral branches are more likely to become apeedily fruitful than thone from the appermont branches, where growth is moat vigoroos. The socion shoald be kept for a few days before grafting, wo that the atock may rather exceed it, not only in vigonn, bot in the progres of ita spring growth; and for this parpooe it mayy be from the direct rays of the min, Sciohe may bo kept for nome time, and onnily carried to a diatanoes, by aticking their lower end into a potato or moist moes or clay. The end should alwaya be freehly cut off when the scion is to be used. There are various modea of grafting. Olef-grafting (igg. 1) is
very commonly practised when the stock is very com-

Pig. L-Clefb-grating.
sidersbly thicker than the scion. The stock, being eut over, is cleft down, and the graft, cat into the shape of a wedge st its lower end by a sharp thin knile, is inserted into the cleft. This mode of cratting is particuof large trees, when the introdaction of a new variety of frait or increasod fruitfulnese is sought- Crovongrafting is used for still thicker stocks, which are eut merom, and then cleft down by two clefte crosaing one andther at right singlen, two sciona being inserted cloee to the lark in asch cleft; or no eleft as all is misde, and nny desired vums. ber of scions obliquely cat away on one side
 between fly bark and wood of the stack, the operation in this onse bing deferred till the berk roalily parts from the wood. In this kind of grafting a longht todinal alit is the bark of the stoek, opposite to esch grait, is ed. vantageoue - Tongueyrafting (ig. 2) is the tnode mout commonly practised for young this it is necessary
 liystom zyphed, 5 sta with melon ahould be of not
shy A slit or a very narrew sogular incision is mande in the ofntre of the stock slownwards, sud a similar one in the soion spwards, buth haviig besn first eat obliquely at corremponding' asgleng and, the tongat thon made is the neion being insarted into the incision in the stock, they sre fastened very eloanly and thoronghly together, In matifle-gruffing the end of the stock is eat into the form of a wedge, and the ecion it allixed to it, the baed of the scion having bees cut of slit up for the purpose- Shewdifer-graffing, sand chiefy for ornameatal trees, is performed by cuttiog obliquely,
and then eattiog serves ssanall part at top of the and then euttiog servis s anvil part at top of the
atock, so at to form a shoulder, the neion being cat is fit it-Peg.grnfting, pot now touch is ung, is acesamplished by roaking the ond of the nevm into it peg, and horiog the top of the stock to receive ith,
Whichever of thene modes of grafting is ndopted the graft munt be fantened to ite plase by tying. conmonly used. The acoene of sir is further prevented by means of elay, which has been worked up vith a little chopped hay, horse or cow dung. and water, and which is applied to the place af junction no an to form o bell, tapering both upwards and dowpwarda In France a composition of 28 parta black pitch, 28 Bergunily pitch, 16 yellow Wax, 14 tallow, and 14 nitied auhes is generally
uned instead of elasy. The progres of the bads show the union of the graft sund stock, bet it is not generally nafo to remore the clay in lese than three montha; and the ligntares, athoogh then
loonened, sre allowed to rematin for apme thme loonmed, we allowed to remanin for aomo thene longer From some kinds of truit-trees frait to often obtained is the nocond your after grafting,
Budding $(q-v$.) is in princlple the sume is grinting; and fute-grafting is o kind of bodding in which a ring of bark wilh one or more bud is usod instead of a single bod, and, a ntock of similar thicknest havigg been cut over, a corresponding ring of bark is removed, nnd the foreign one sulatituted. This is eymmanly performed in apring, when the hark parta resdily, and is ooe of the surat nodes of grafting- - Fnarching or grafl. ing by approach, in which the scion is not cot of from ite parent stem untal it is nuifed to the new stock, is practived chiefly in the case of some valuable shruls kept in poth, in which suobse by the ordinary methods ts very doubtfol.
An effeet is prodaced by the stock on the seion which it nouriahes analogons to that of a change of soil: rutuch of the vigour of a strong bealthy stock is also communicsted to a acion taken even from an aged tree. There is, moreover, in some degree, an influence of the elaborstod sap denoending from the scion on the stock which supports it An important part of the practical skilf of the ganlener or putheryman consiets in the selection of the proper kinds of stocks for different species and
varieties of fruit-trees. The stock and scion, however, must not be of species extremely dissimilar. No credit is due to the statements of sncient suthors about vines grafted on fig-trees, epples on planes, Ece. the seroblance of which can only have been brought about by some delusive artifice; for all attempte at grafting fail except among plants of the same genus, or at least of the same natural familly.

Herbaceous plante with firm ntems, as dahlias, are sometines gralted. Sotut kinds of plants, of small sire, in pots, are placed in moist bothonsea or hotbeds, under bell glasess, whilst the junction of the scion and stock is going $\mathrm{on}_{\text {, }}$ which in thewe circumstancen talkes place very surely and very
expeditionaly. But an neeumaiation of too mech expeditionaly. But an noeumalation of too mach
mointare ander the bell-glans must be gaarded againnt.

Eramme in the standard anit of French messures of weight, and in the weight of a cabic ceatimetre of distilled water at 0° Centigrade (correaponding to 32^{\prime} F.); the other weights have received nsmee corremponding to the number of stammes they contain, or the number of times they are contained in a gramme (seo Dbecimal 8y8tEM, Mertic Syatgu) A gramme $=1542248$ graisi troy, from which the equivalente in Engliah measare for the other weights can easily be found ; thun :

Geamar-atom,-A quantity of an elementary nubetance, such that the number of grammes. weight is the same an the stomie number of the element-ag. 12 grammee of carbon ($\mathrm{C}=12$).

GBAMES-BQUIVALENT,-A number of grammesFeight of a substanoe, elementary or compound, tqual ecmericelly to the quantity of that mubritance hydrogen- $0 . g .8$ grammes of oxygen, 9 grammes of waier.
Gramye-molecule - A quantity of s mubatance, elementary of bompound, nuch that the numbor of frammen and the molepnlar weight aro numerically
 grammen of water ($\mathrm{H}, \mathrm{O}=\mathrm{IB}$).

Araperslent, callod nan fier
 filed ronmil an wot ping lmhlIrom polnte of the knine thatieler an the pan from which they sie
 ly looles tar the platest On lowing diecharteal they freend aver a wife arvis. In arruther petern enlleil gehitrol grape the aboi ane held to
gether on the cental poin by oath gether oth the centual pin by cath
vas insteal of iman phites Jtoth

Grastioll, a name moder whidh eeveral volk ale oile derived from widely difforent plants are grouped. The grase-oil obteined by distillation used for rheamatiom, and hapogon moarancusalan same stimulant effeot as esjoput oil. Ginger-grane Oil is obtained from A. nocolur, a native of India, and other species of the seme gonas. Gersuium Oil, derived from Pelargonism radsula, in so like gingerforan all in ita propertied that they are naed for the name parposes, and are bought and nold under citber namse, mainly as an sduiterant of Oil
of Pione. Turkish Graseoil is obtained from A. pachnodes, tndigopous to Indis, Persin, and Arabia. Lemon-gras Oil, or Citronella Oil in derived by distilletion from A. schansenthut, indigenons to Indis and enitivated in Ceylon. It has an odour resembling oil of eitron, and is largely used for noenting soap. Cyperas-grase Oil is extracted from the taben of Cyperis sacilentas, indigznous to monthern Earope, and is uned both an a table oil and in the manufncture of soesp.

Greelc-ifre, a composition suppoeed to have been of pounded resin or bitumen, sulphur, nsph-
tha (the priscipal ingredient), and prothably nitre, with which, from about 673 A.D. onwards, the Greeks of the Byzantine empire were wront to defend themselven agninst their Saracen adversaries. The accounte of its effects are so mingled with obvious fable that it in difficult to arrive at sny just eonclusion an to ita power ; but the mix. tare sppears to lase been highly infismmable, and to have been difficult to extinguiah; though the actual destruction caused by it was hardly proportionate to the terror it crested. It was poured out, onraing. from ladles on besiegers, projected out of tubes to a distance, or sbot from balistex, burning on tow tied to srrows. The invention of this material has unially been ancribed to Callinicus of Heliopolis, sad to the year 608 A.D. At Constantiaople the procena of making Greek-fire was kept a profound eacret for esversf centurise. The know. ledge, however, of ite componition gradnally spread: and the use of it apread to the Weat Subninting for some time concurreatly with gunpowder, it gradually died out before the advancea of that stil more effective competitos. Combuat ibles with a himilar aim were uned at the aiege of Charleston in 1883, componed of eulphar, nitre, and lampblack: and naphtha in sbella was nlec tried. The petroleum boube of the Paris Cowmune of 1871 enrreaponded matre bearly to Groole fire than does grapowder.

Green Pignemith. These are namerons and some are very important Several of them are mechanical mixturee of blue and yellow ; a largor number are chenical compound which are natar ally groen ; but of dither kind only a faw are oxtenaively meed. Ait thome which aren eervieseble or have any special intereet are noticed in what follown.
Sap preen is the only oue of vegotable origis thas nood bo mentioned. It is prepared from the gammy juice of the berrien of a specien of buckthera (Rhamnur cotharticue), and is a fins tratieparent yellowiah-green, it is anfortanately fugitive, but is oecanionally employed in water-colour painting.
Torra verte io a kind of ochre. Thio pigment in much uned by artinta for painting in oil, being ons of the most permanent groens. It hea not mach body, but can be mixed with other coloura without injurioun remalta.
Oxide of chrontum, like the laus, is foand native, bot for une as a colour it is alwaye srtificially preparod. It is a sober, permanest green madeh liked by noms landacape-paintera. Viridian and Veronter green are also oxiden of chromium, but the latter in often sdulterated with arsenie.
Stmerald grees (cupric seeto-sraenite):-This very bright (but poinsuouss) green, sioo eallsed Schwoinfurt green, is only employed to a limited extent by artinta and decorstorn, but is used for other purpoees. It is fairly permanent.
Schede't green (cupric srsonite) is snother bright green, although not as vivid in colour an the lant, which it resemblea in stability and in other propertien. Thia is a dangeroua pigment, and is unfor tunately a good deal enuployed for colouring paperhangingo, artificial leaven, and toye.

Brwowtock Green.-Sieveral diatinct pigmenta are known by thin neme. One of the kinds employed by the bouse-painter is a basic carbonate of copper, mixed with gypeum or other bodies. It in fairly permanent. Mountain green, mineral green, and malachite green are also carbonates of copper. In chemical booka Brannwick green in batally aaid to be the oxychloride of copper. Chrome green, noticed below, is likewine called Brunawick groen.
Rimman's green, known also aa zine green and cobalt green, conimist of 88 per cent of oxide of zinc and 12 per cont of protoxide of cobalt. Thin colour is permanent, and is not sffected by atrong best.

Chrome green in a mixture of chromste of lead and Prusian blue. It is a bright, strong colour, and is suitable for ordinary mechanical paintingIt is, however, not permanent; a moke durable grean, but one of less power, being formed with Fronch ultramariae and chrome yellow.
Hooker's green is a mixture of Prussian blue and gamboge, and poasesses some permanerce as a water-colour. Pruasian greer is formed in the same way, but contains more blue.

Greens which are bompounde of copper are all more or lees poisonous even when they do not also contain arsenic.

Artists generally prefer to make up the shade of
green they require by mixing blve and yellow pigmeate for bright shades, stad blue sad lirown colourn for dull shades. As s rule the green portions of pictures have atood the effecte of time worse than other cnlouth
For the ranterialn need in dyelng vextile falbrics green, see DyEIse.

Greand-nat, Grousid-BEAS, or PEA-NUT, the fruit of Arachie hypopana, an ananal plant belonging to the nataral order Leguminowe, exten: aively cultivated in saathern North Americs, bus sappoed to be a native of Africa. The name Arachis, Araroo, of Aracidina, was given by Pliny to a plant which was stemless and leafless, being all poot- Moders botanista have given the natue to a apecion which ripens ite frait underground, The pods, though firnt formed in the air, are as they inerease in size forced inte the earth by a watoral ruation of thelr atalks, and there come to matarity 3 or 4 inches uader the surface, hence the popular name Ground or Earth-rut. In the sogthera
 states of North Afoerics the sereds, or buta, so they are rosated. and used as chocelate. Whes frenh they have s aweel tante resembling alropnde. They are a favourite article of foond with the negrom A 5xod very
sweet ai! is extracted from the seeds, which is considered by sume egeal to olivenot become rancid, rather impraving with nge. Grased-auts are to toe met with oecasionally in fraiterern' shope io Britain, and some altempt has boen made to cultivate the plant sround Paris; but requiring as it does to be reared is bot bods, oxpense and troublo bave eireumseribed ita adoption as a comanercial prodaction there It fs, however, cultivated in notae of the warmer countries of the mouth of Europe-The roots of Busivem Aulhocastawum and B. Pervorvm sere alan known as grnundinats of Earth-nute (q. v,).

Gruel is a mild, nutritious, easily-digosted sorticle of foud. Te prepare it, pet stescopfal of asioneal into a pist of waler; alter standing twenty miauten pour off the water, rejocting the cosme parte of the nieal ; boil the water twenty minutes. It may be flavoured socording to tavie, butter ahould sot be ulded if the groel is meant for invalide. Gruel is more nonrishing than preparations from smowroot, nago, tapiock, and other starchy en besances.

Ganiscerrs, a geous of treen of the nateral order Zygophyllaces, natives of the tropical parte of America. The flowers bave e 5 -pertite caly, five petals, ten stamens, and stapering style; the fruit in s eapmale, δ-angled and S-oelied, or the celia by abortion fewer, one need in ehch oell. The treen of thim genas are remarkcsble for the hardness and heavinese of their sood, known variously an Lignum Vita, as Guaiocnon-spood, and no Branil soood; as well as for their pecaline resinous product, Guaincum, often but incorrectly called a gam. The species to which the commercial Lignum Vitee and Gusiscum are commonly relerred is G. offinale, a native of seme of the Weat Indis ialands, and of some of the continental perta of America; : tree 30 or 40 feet high, leaves sbruptly pinnate, with two or three pairs of ovate, obtane, and perfectly wmeoth leaflets, pale blae flowers ie small clasters, which are succeoded by comprossed roundish berries, a furrowed hark, and geterally a crooked stem and knotty branches. It soems probable, however, that other species, well as this, eupply part of the gusiscom-wood and resin of commerce. At prevent they are obtained ehielly from Cabs, Jamaica, and St Dorninga. The wood
ie imported in billets about 3 feet long and I foot in diameter, of a greenish-brown colour. This is the coltur of the heart-wood; the rap-wood in pale yellow. Guaiscunt-wood is remsrikable for the direction of ith filves, ench layer of which cronuen the preceding dingonally ; snnual ringa are acarcely to be observed, and the pith is extremely small. It ainks in water. It is much valued, and used for many purposes, chiefly by turners ; ships' blocke, ralers, pestles, and bowls (see Bowls) are among the articlee most commonly made of it. When rubleed or heated, it emits a faint disigreeable aromatic smell; itw taste in aleo pungent and aromstic, Shavinge and raspings of the wood are bought by apothecarion for medicinal une. The bark in also usod in needicine on the continent of Earope, although not in Britain. The virtues of both wood and bark depend chiefly on the resin which they contain, and which in itaelf used in powder, pill, and tinctare, It in an acrid stimu. lant, and has been employed with advantage in cloronic rheamatieto, in chronic akin dimesser, in certain cases of scasty and puinful menatruation (and hence it is ocenionally an effectinal remedy in canes of uterility, nod in chronic catarrh. It has aloo been highty prained an a jreventive of goul. The rexin in an iugredient of the welt know P P/wameris PiMa, In the 16th and 17th centurien Guniacum wha the remedy most in repute for syphilis. It in uned in tealing Blood rataine (g.V.) The resin mometimes Hows npontunoonsly
fron the stem of the Guniacum tree; it in enmetimes obtained artificially. It in of a zreenish. brown colour, and has a brilliant realoous fracture.

It has a vary persintent tanke, and lesvee a bum. ing aensation in the mouth. One of ith most atriking charaitarintion in that it is coloured blue by ith oxidining agenth, It contrine geatacie acid, H $\mathrm{OC}_{n} \mathrm{H}_{1} \mathrm{O}_{\text {p }}$. Which closely resemhlon benzoic acid, and yielde, on distillation, certain definite compounde known ns guaiacio, pyroguaiacin, and Audride of guafacgl.

Guma, a geberal term applied to certain exudn tions from trees stod planta, which are very different in their chemical characters and their general propertion, There are, however, three phusses of garon which may be more particalarly referred ta -viz those containing arsbin, theme containing bussorin, atid gum-resins.
(1) Gunis containing arabin are bent repre. nented by gum-aralic, the ordinary gum of the shope. This mabwiance in foumd wn nir exuda tion on the hark of the Acacia Senegal. a tree of some 20 feet in height, growing bhuml andly in wentern Africa. According to the care taken in eolleeling it, it ranges from the pure white or colourless gum of Kondofan to the darkreddinh varieties imported from Senegal. Chemienlly theme are absolutely tdentical, and therefore a ningle description will suffice. It occurs in irregular lumpe, somewhat spherizal or vermicular (as in Gum-Senegal). It is brittle, and shows a glassy Iractare. It dissolver readily is water, forming a cleas, viscid, adhesive solution; but it is innolnble in strong slcohol, glycerine, ether, vils, or chloraform. The addition of alcohal to a watery molution throws down a precipitate of arabing, if a few drops of hydrochloric acid have previously been sidded.
Medicinally it hus very, slight remaedial powens bat it is largely used in prescriptions for the parpose of sumpending insoluble bubstances in
mixtares. The fiber varieties, owing to their cost, ure surely foupd outside the druggiat's shop; but in the manofacture of confections and in the arte ltrge quantities of the chenper kinds stre enployed. Theee are known under different nsmes, indicating the dintrict fram which they are imported. The whifef are: Souggal guan, found in large firm reditiah prumen : Saakin gum or Talka gum, forming diall opaque looking teans, colourless or brownish; und Moroceo or Barbary gum. Cape gum bis derived from the Acacia horrida, a mative of Cape Colony, while Wattle gum ie a very adhesive variety ubtained from Australia. Euat Indinn gum In as Affican product, being sibply imported into Burniay from the Red Sea
(2) Gums containing Bassorn.-The chief of thene, Tragacanth, is ottained from various apeciea of Asursgalus, low spiny bushes, nativen of Asia Minor and Perrial. When the stem of one of these planis is cut transversely it will be found that the space unnaily ocerapied by the pith has the appear. ance of a tranalucent gurany mana, which the imeroncope thows so peasese the atrueture of an
ordinary pith. If inciaiona are made in the bark this semi-solid exudea ander presuure, and, aessord. ing to thee matare of the inctaion forman dattened wing like masmes, nodulen or worm-like piecea. The fineat varirty in known no Flake-Tragacanth, consieting of thaken 1 to 3 tochea long by I ineb in bresilu. The surtace ie marked by wary lines and the fakes are much contorted. Trugncanth is tranalucest, white and without lestre, somewhat flexible, anill not britule, and with little taste or amell. When placed in water it awella, aboorbing iffy timen ita weight of that liquid, and form. ing a shiek macilago. It has no setive medicinal propertien: bat it in mach weed for firming pill mansed and lotengen. It enters into guany emutaions, for instance, that of cod-Hyer oil, and it in nometions employed as as atiffener for the halr. It in tued at a ntiffeuing matarial for varione textile fabrice, und is much valued for thia purpone, whers it is not desired to give gloen to the materiai.
Beeiden thene true gums, there are (3) the gumresist. to general termas chese consiat of certain renion naluble io alenhol, and of the true jum, no that it requires both water snd alcolal to dinoolve tberm entirely. They are ehiefly oned in medieine and parfuinery, and may be naid to form a connecting link lutwees the trae gumis and the true reains, comomereislly spenking. The principal are : (1) (Tinm-Ainnonineram (nee Asmosiacus), (2) Gum. Anafotida (nee Asarcirida), (3) Gum-Renzuia (aee BzKzoik), (4) Gom-Galbanum (zee Galai NUM). (5) Gum-Camboge (
 but these ure the onee mont oned in the arts and medicine Many aleo of the trae resins, an copal, animot, \&n, are called gumb, but they are strictly reaius. See Resiss.
Gum-bibstiluter are manafactured Irom various formis of Atarch, either hy baking, rosating or cherifeal treasment, ao as to convert the atarch into Dextribe (q, v). Thuy are made on a very extennive vale, and are largely employed in dreasing caliconen and other fabrice alas as as sulscitute for the more expentive gumis in gumming paper, on in the cand of peetage.ytanges and tabela, which are made adheaive by dextrine. For this and some other parphass, the guat-substitutes are guperior to the real gumn, at they are canily diesolved, and can be spread more equally aver is smooth sarface.

Gan. The term gun formerly comprised many arietios of the weapons uow more correctly termed Firearme ($q . v_{1}$), snd to atill applied in \& general sense to Cannon (q.v.) and large ordnance, also to quich-ftring or Mechine (Guas (q.v.); but it is now more upocisily beld to signify the sporting gan ins distinguinhed from the military Rille (q, v, .) The ipedera shot-gun is invarishly breech-loading. and unually upon the 'drop-down' principle (nee BAEECR- COADINO). The manufacture of shotguas is an important Britiah industry, and one of the processes of manufactare-bsrrel-weldingit oufficiently intereating to warrant dencriptive detaily. The other processes, some eighteen or twenty in number, call ouly for the akill of the trained workmean:
Shot-gun barrela are generally hand-forged from a red of apecial material which is usually composed of iron of two distinet vssieties, or of iron sad ithel. It is neccsasty that one of the metsis be kurtion of the harder metal, and greater the pro-
quality of the softer metal, the better will be the qquality of the welded barrel. Some varieties of gan-iron con-
 cent of eteel ; in others a good quality ferior quality of irun are and no steel enters into the cempposi-
 rod of The Iron is built up of alter
nate layem of the hard and soft metals, sand in the masufacture of a Damsecen barrel this rod must be twisted upon itnelf belore it is welded side by side te obe of more rads, or welded into a barrel. Thene twisted rods are drawn ous between rolin into a flattened rod or 'rikusnd' of metal, the ribund being compposed of oae, two, thiree, of more twisted rode acoording to the quality of the barrel or the Anenese of Gigure denired. The Belgiss welders sre more expert this the Aritiah in malding the fineat Igtured barrole. putting on masny ha six differsatly twisted rods together to form su singto riband; but Belgias larrels are not so hard an the English, and arogearally cossidered to be ioferior to the beat Birninghem hand velded liarrels. The welder, having propared his iron and received it frum the mill rofled dows to the proper sixe, procosele to form the barrel by twisting the riband opon a masdrit, jost as one woold cover a whip tock with s narrow atrip of leather. This coil has then to bo liested, a few inchen at a time, and the odgen wolded to each other, the rewult being a tube foar timen heavier thas it will weigh whes finished by loring. grinding, and bling, which are the next throe proceser through which the tharrel muat pase In doable shot-gunk the two tuber to form the harretr are brated together for a fow inches at the broeeh end, and soldered to esch otber and to the two rite and 'packing' which unile them dirnugh out their entire leogth. The breech actions are Atted to the barrels, the lock-wark and bolting: nuechaniam adjuated, and the gan is meady for the atocker: he roggtly fashions the piepo of walnet to which the irouwork is secured ty the 'serewer, who pasoes the gus oo to the 'finither' to prepare for ith fiasl embelliahmente, in which sere comprised the proceses of polishing, engraving, hardoning, blueing, and temporing. The harrels when finely polished are trested with seid, which ruste the surface of the teetals of which they sre composed, and eating roore readily into the softer metal tuma it a darker colour. This process, lermed "browaing.' ococopies soveral days, and when nocounfol thows elearly the damescening or currs of fillore obtained by twisting the gun-iron rods in the earliest stage, A barrel not showing such carts would be termed is ' scelp ' berrel if it were s twisted velded barrel, but if of tone oniforto colowr, unbroken by regular maskibge, it would probably bo composed of plain iron or nteel onty.
The maperiority of the Damescus barrol to one of beat modern steel remains a vexed question. The avidence addaced in behalf of the Darnuseas is sufficient to prove its saperiority over certain qualities of steol, but it is not overwhelming : and it fr now generally simitted that steel can be obtained of sofficiently grool quality and poesessing sufficient streagth to withutand any pormal struin to which as a ssot gan herrel it miny be subjected. The advocates of the welded barrel cootend that liaws, which cannot be vetected by the eye or by the most searching test, occasiopally exint in steel, making it wareliable for use thi a gum-harrel. Sir Joseph Whitworth's fluid compresed ateel has been uned very sucsesafully as a material for shotgun berrels, but the imnuaity from Glaws which barrels of this steel eujoy is waid to resalt from the carefol teeting and examination of each individual tabe rather thas fromi absolute perfection in the metal itselif. The complete and almost perioct heterogeneity of the masterial of the Damascus barrel prodncen a homngenesus whole, which, when soundly welded, has no woak spot, and will beither split longitudinally nor break of short as steel berrels have done, bot when burat is pulled, za it were,
from shred to ehred, exhibiting great tenacity in every direction. The steel barrel here referred to is that drilled from a solid rod of beet mild steel. Stoel barreln drawn from blanks in the same manner an ordinary tubes are inferior to the drilled barrel. Still less reliable are the lap-welded ateel barrels in which the two elgen of a strip of metal are brought together and welded as it passer at welding hest between the rolls. Cold drawn steel barrelo were
at one time manufactured, but proved too expenst one time manufactured, but proved too expen-
sive, and twisted steel barrola are not yot a commercial succens. The standard size of the modern shot.gun in 12 bore-i.e. twelve spherical leaden bullets of the same diameter as the interior of the barrel will weigh 1 Ib , avoir.; formerly 16 and 20 bores were much in vogue, and 16 bores are still very common in Germany; 10 boren are much uned in North America; ; 8 and 4 bores are used only for wild.fowling: and punt-gune, guns of frons l-inch to 3-inch bere fitted into shooting punte, are enployed for fining from of th, to 4 Ih. of hhot at a time into
With tbe exception of the punt-gunn, which require special mechanism, guns of all bores are made upon the same principle of breect-loading, and nestly all tre more of lese choksol-in. the diameter of the barcel in nudidenly leanened near the muzcle, forming a cone which canser the pellets. of the charge to tly from the gun more compnetly and at an mereassed velocity. Such in the perfec tion to which the boring of mhot guns has loen brought that a 7.4 ll . gun may now be expected to and on an average s20 petlets of a charge containing 305 pelleto into as circle 30 inchas in diameter (ar 60 into os 30 ivel agnare) ht 40 yarde dintance. the pellets lasving an averoge velocity at the mazze of 840 feet per necond, and a ntriking force at impact (40 yaride) of $1-100 \mathrm{oz}$.
Shot-gune are now builh very much lighter than when breech loadern firet came into general use (1) Re5): elarter barrela the uned without lonn of shooting pewer or appreciable incereane in the velame of the recoil. "Smakelens exploniven are in general use all the world over for nhot-guna, and the rasulta of the slightest variation in the charge or quality of the powder, or in the size and quantity of the thot, ean be nacortainod with the greateat scieatife accuracy, by meani of special instrumenta found in all leading gun-manufectories. 8hot-gun manafactore is a mechanical acience no well as a handieraft, and the finest prodactions of the most reoowned gua-makera will alwaya command $£ 50$ or aven higher priess. Chisap ill-mmele, ill-fitted, illregolated guna, sbaped by muchinery, or atill more roughly by hand lafour, constitate tbe shot-gue of commerce, and their valas Buctuaten with the price of material. The abot-gua of the beet clana is now mo highly perfected that a new departure, whether towarde the development of the killing powern of the weapon or elaboration of ite mechanieni, is undenirable, and, until some radical change in the compraition of explosiver, or the method of uning thot-gans, takes place, no noteworthy imtproveraent apon the existing type of gun can be expected.

Gun-cotton. There are a very large number of explosive sitro-compounds which may bo divided into two main clarsen-viz. (1) Thowe containing Nitro-glycerine ($q . v$.) in which is included the great dyonmite clank, and (2) those not containing nitro-gIycerine. Gun-cotton is an explosive nitroopropound of the latter elans, and in by far the monet important of the clase.
So long ago as 1832 it wna dincorered by Bracon. not that woody fibre and similar aubetances could be converted into highly combuntible bodies by the action of concentrated nitric acid; six years later Pelouze extended this discovery to cotton and other organic substancen; he was followed by Dumbs, who treated paper in s similar way, and be proposed to make cartridges with paper ho trested, the idea being thst Do resirue would be left
in the barrel ifier firing such cartridgea. But no practicsl result followed these discoverice until in 1845 Schönbein, a Gerroan chemist, having hit upon the proper mode of treating cotton with nitric and sulphuric acids, announced the discovery of gun cotton, which he proposed as a unbetitnte for gunpowder. He claimed for it that the advantage out leaving any residoe, and consequently without smoke. He prepared it by immersing carded cotton wool in a mixture of nitric and sulphuric acids, and the equation for its formation may be

stasted thuis

Celluloss Nitric Acid, Bi-nitrated Celialose Water

$\mathrm{C}_{4} \mathrm{H}_{0} \mathrm{O}_{2}+3\left(\mathrm{H}_{2} \mathrm{NO}_{3}\right)=\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3} 3\left(\mathrm{NO}_{3}\right)+3\left(\mathrm{H}_{2} \mathrm{O}\right)$

It will be observed that no mention is made of sul pharic acid in this equatiou, the preserce of which is, however, eseential in the production of gun cothon, for although it takes no active ehemica part in the action, it sbeorba the water which ie formed by the chemical tranoformation, and thus
keeps the pitrie acid up to ita fall strength. Schonbein's diseovery gave a great impetius to the queation, and experiments contimned to be made by many eminent chemint in nearly every country in Europe with the idea of atilising the new explosiye for military purposes. It was fims manu factared in Enghand on a large seale io the year 1847 by Mesara Halt \& Son of Favershum ; but, in aldition to minor accilente, a terrible explosion took place in their works, which created so touch distruat that its manufacture in England was dis: sontinued for several years, as the cause of the exploaion, with the then imperfect kaowledge posiensed of the sabject, coolh not be antiafortorily necounted fon The first coantry to turn Schiba. bein's dineovery to priotical account wan Austria General Von Leak, an Austrian artillery offeer. after exteínive trialis suocseded in greatly improving the method of manufactare, hy whieh meana he was sunbled to moderate and engare a uniform rate of sombastion of gut.cotton in air r hin discovery Wai conaiderod of so much importance that in the yenr 1802 neveral hahlerien of Austrian sertillery wore armed with gun-cotton eartridgea. But if soon fell indo disrepate, not only on secount of ith inatable natore, but also becanse it wan found that Yon Lenk's improvementa were of no practical utility wheo the gun-eotton wian confined in the bore of a gun ; the groat heat generated canaed the intamod gas to penetrate rapidly sthrough the Whole cartridge, so that there wan little or no roLurdation in the rate of sombuntion, and the rapid combuntion cainedl exconive presure in the bore, bosiden giviog very unequat reates when fired.

Since the failure of the Austrisa eartridges guncotton hai not beea used as a propelling agent on a large ncale. But ita atility an a diarruptive agont hai baon omornously increaned by the discoverim of Profoesor Sir Frederick Aberl and the lato Mr E. 0 . Brown. Nothing danated by the failare of tho Austrian experimente, aor by the explosion at Menars Hall'/ worki, Sir Protorick Abeot sontinued hie experimente, and he ultimately dincovered a mathod of manufacture wheraby not only a complote parification from free acid in smared, bat tha material io converted into tharoughly comphet bomogoneoun masaes. Ai a resits of hie expenmenta the mothod of manafacture adopted in England may lie briefly deacribed as follows she beat white eptton whate alone is employed; this in firat thoroughly cleaneed from all groase by boiling with alkalioe it in then picked over by hand and all foreigu aulalancen romoved, after which the fibro is moparated and all knote and lompa opened out by passing the cotton waste throngh as 'lensing machine it it then eat into 2 inct lengthes, thoroughly dried, and divided into charges weigh ing 14 th, each, which aro kopt in sir-tight tin boxes till roady for dipping. The neide unod in the maunfacture of gun-ootton are nitric acid having a apecific gravity of 1.52 and aolpharic acid of 1.84 ap. gr, i these are mixed in the proportion of one patt by weight of nitric acid to three of salpharic acid, and allowed to coot down in iron tanka. The mixed acid is rua off into the dipping pans into which a 14.1 l , charge of cotton is immeneed and eft in for about five minnter, in which time it will have abioorled about 14 ib . of acid. The elatrge in now allowed to cooi down, after which the waste neid in extracted hy meana of an 'aeid extractor. and the charge thoroughly washect to remove al the free acild. It in now palped and preseed under hydraulie prestes twone third ite bulk, and moulded into slathe of various sizes and shapes for mtoring. The method of manufacture as here deecribed I perfectly nafe, the the gun-cotton throughout in is a wet state.
The propertien of gun cotton, as compsred with gunpowder, are mainly as follows: (1) it can be gnited st a temperature of about 300°, whereas gunpowder requires a temperature of about 600° to ensure ignition; (2) its combustion leaves no solid residue, and is unattended by smoke; 13) the action of gunicotton is nuth more rapid than
that of gunpowder, and, as has ellresily been
pointed out, it is this rapidity of combustion which renders it unauitable to be used as a propelling ayent in cannon : (4) wheress ganpowder is greatly influenced and injurionsly affected by moisture. gun-cotton on the contrary is periectly uninjured, and inay be kept for any length of time in water without change. For militsry purposes this is a most important consideration. Apart from the guestion of asing gunt.cotton as a propelling ageat, ite value for destructive purpotes whe incontestable, but it was theoght to be neceasary, in order to develop ite fall power, that the charge should be struegly confined. Experiments, bowever, con. ducted by Mr E, O. Brown clearly dernoostrated the fiset that compressed gan cotton could be fully de. consted in a witally uroonfioed state by fulminate of tnereury. This discovery was thought to apply to dry gun entfon only, hat Mr Brown continuing his experiments accertained that wet compreseed gan-cotton coald be detonsted by using a small primer of the dry material, Still forther disooveriea wers made with regard to the detonation of gun-eotton; it was aceertained that detonation, being eatabliabed at pone end of a contlauoun row of distinet masues of comprosed gun-cotton, travele slong the whole length of the row, even if a space of half an inch is fett botween the disce. These discoverie have rived gus-cotton to the highent rank an a military explowive, as the necensity for staring it in 4 dry state, which is mo highly danger. poas, is entirely obviated; it it now afways ntored in a wet atate, the gun-cotton containing about 20 per cent. of water, and is packed is air-tight metal cases, to that the neceswity for rewetting seldom ocears ; in this condition it cas be tranuported with perfeet safety.
The diseovery with regard to ite detonation when in a wet state has led to this material being used as the charge for torpedose and subunarine minee The first patters of Whitehesd torpedo was 14 feet fong and 16 inches in diameter ; the speed of the torpede wat 9 kanth for 200 yards, and the charge wes 118 13. of corapremed wet gun-cotton. Several subasquent patterna of torpedioct have beet introdered, the lateat krivg 14 feet long anal 14 inchen in chamelor, sad by reducing the charge of guin-ontion to 80 lt . the high epeed of 27 knoth for 000 yards lise beek attained. Tbe innuense its portance of this incressed speed can he readily appreciatel, an it ensules a corpedo to strike the vosel at whieh it in diacharged before she han time to get out of the way. The torpedones are tired by a seriker actuated by a apring whieh is released ob the berpedo striking the pide of the ship; the atriker is pointeol, and penetrates a cap charged with 38 grains of fulnoinate; thie cap is emliedded in in son dise of dry gun cottion, eoclowed in a hernetically, easled cine, and placel as nearly an ponaible in the centre of the wel gun ootton charge containigg 12 ger cent. of water, Gan-colton is aloo used 'me the charge for sulunsripe nines, the charge consisting of from 50 to 500 Ih , of wet correpressel gun-cotton.
There are various deacriptions of marine mines. (1) Ground nines: in theer the cbarge is contained in a esae of sheet steel, with cact-iron sinkers attached to it to keep it at the bottom of the harloour or river; thew mines are fired electrically ty obeerva. tion from the abore when an enemy' abip passee ower them. (2) Buoyant mince, these wre anchored a few feet below the aurfice of the wistor by is steel
rope attached to a aunken weight; they are connected with the abore by electric wires; a buoy with a mignalling apparatua in attached to the mine, and Whea a ship wtrikes a bwoy it ringe a bell in the signalling room on shore; if the nhip is a friendly one it is allowed to pass, bat if it is an enemy's abip the mine is fireof by electricity and the ship blown up, (3) Electro-contoct mines; these are
turd paly in places where an enemy's ship would pass. When the rnine is atruck by a passing ship a steel spring or pendulum snoves towards the point of impact and thus closen the circuit and fires the mine antomatically.

A powder made by the Exploaives Company, and generslly known under the name of E.C. Poteder is another form in which gun-catton can be used. There are two descriptions of this powder-vix aporting and rifle powder; they are both essentially grinulated gun-cotton, and consiat of small rounded granules, the sporting powder being coloured orange with surine, and the rifle powder yellow with picric acid.
Schultse Poweder masy be mentioned bere ms, although not strictly apeaking a gun-ootton powder,
contaming nitro-glycerine. The process of manufacture consista in macerating soft timber from which all resinous and fatty matter has been ex. tracted by chemical means, the residne being pare finely-divided cellulose; this is saturated with nitric sod sulpharic acids, and thoroughly purifisd by washing. The nitro compound thus formed in finely ground and waterproofed, and then sifted inte the various sizes of grain roquired. Schultzo powder has been manufactured since about the yest 1860, but E.C. in a powder of more recent date. Both these powders are now largely uned for sporting purposes. The great advantagee they possesh over the ordinary liack powder are that an equal velocity is obtained with a very much amaller charge, that they do not fout the gan, and that they are nearly smokeless. But against this must be pet the disadvantage that under certain conditions the atrain on the breech of the gun is
greater. But hitherto the reaulta obtained from these powdere when uned in military firearms are not sufficiently malorm or regular to justify their sidoption for military purpusea. There can, how ever, be but little doubt that a momelees powder of enme sort will, heifore losg, be univerally ndopted by all the prent powers of Earope, not only for rifles, but almo for artillery purposes ; it in no longer a quention as to whether a nookeless powder ahould be adoptes or not, bat which of all the amokelens powders experiumented on ty the best for adoption. moketesa powden, in order to lee suitable for military porpuese, niust not be the violent in their action, they must be athe to stand extremes of beat and cold, they maut not he very hygroasopic, and they munt keep well in store without feteriorat Ing in quatity; and the prollem to solve in to find a powder which will fulfi) thene condition Nearly all nuokelens powdern consint owentially of gun cotten, of oflier lower furnme of nitro cotion, acted on by a nolvent such an acetic etber or acetone, which reducs the nitrocedlulose to a viscid pante the parte is then rolled out into nheeta, and the onlvent allowed to evaporate; the sheeta are left an a dense borny mabstance, and are cut firnt inte atrips, and then the atripe are cut cronawise into grainh of any required miset; or the aulmance oan be left iar ntripe or in a fibroun form.
The Frebef, in 1857 , were the first to adopt a mokeleses powder for the carlsidges for their new sinall-bore rifle, the Leliel. It in known as Vieille'n powder, or 'Poadre B:' ita exact compowition has been kept a secret, lot it in believed that pieric neid
is mixed with the paite as dencribed above. The ballistice attributed to this powder when firot introdiced were remarkahle: a charge of about 70 grsins imparted a aruzele velocity of 2000 feet per secmad, to a lullet weighing 230 grainn , fired from
a rifle bartel whote calflire wan sis a nithe bartel whose calilire wan '315. But it wan
found that the powder rapidly deteriorated, and that these renulta were only atiainable with rocently manufactured powder, ihere being a notable falling off in velocity a few montlen sfier manufacture. in orineegurace of this it in atated that the French in 1889 alaniadoned the sase of this powder, and reverted to the une of a good type of black powder intil they can discover a mare atalle one.
The Germaps aleo in 1889 intrisdaced a amokelone powder for their new amall- bore rifle; ; it in a nitrated gun-cotton, but allhough it was very highly spoken of alter the attumin manuruvres of 1889, when it wha extenaively tried, it is believed that like the French powder it if also wanting in atability, and that the Germans are already endeavouring to find a better description of powder.
Several patente for stookelews powder have been taken out in England, but mone of them are entirely entisfactory, oo that at the beginning of
IRio the sulbiect whs atill under the coniderntion IRBO the subject was stith under the consideration of the Exploniven Committee, to whom it har been referred by the English government 3 and, although the difticulty of obtaining a emokelesn powder of
the nectuvary stalifity bas not yet been sur-
 sre confident of being alle to provide wuch a powder.

There cen, therefore, be but little doubt that, as hns atready been mentioned, not only in England, tat also on the continent of Europe, the use of smokelens powder as a propelling agent in all military firearms will be universel. Its introduction will have sa immense influence, not only on drill, but also on Tactice (9.2 . 1); and, considering ite importance, the Ryglish government are wise on the particular amokelese powder which wifl eventually be adopted. And putil the queation

CHAMBERS
is mettled the cartridge for the new Eugliah sauall boure rife in made up with a compressed pellet of s particular description of black powiles.
One of the most powerful explosives knowa is blasting gelatine, which it is tuale by disoolving 7 per cent, of gun-cotton is 93 per vent. of what resembling honey in colour, and varying in consiatency from a wough leathery material to a soft subutanca like otiff jelly. It is atronger than dynamite, as the nitro-ecllaluse itself is explosive, and, if made with great care, and if aboolutely free from alt impuritien, is a anfe and atable explosive. Bat, unlest the iogredients of which it is coupposed are absolutely pure and free from all foreign matter, it beeomea excesdingly dangeroas when stared in large quantitiea, as the following ntory will show. A farge quantify of this explesive was sent out to Aden to be used in the execution of the defensive works now being erected there. It was stored in two magazises mitanted at a considerable distance from one another. One of the magaxinea blew up, when extrit precautiona were abaerved at the other magazine; fatt after an interval of two or three months the secomd magaziee also blew op. There was no autipicion of fonl play, and afler an exhanastive inquiry the conclasion arrivel at whe that the mann had begun to decompose owing to impurities in mome of the ingrediente, and that it weas up by apontanedua combraation.

Gunpowder is a well known expliaive mixture composed of saltpetro, charcoal, asd nolphor mixed together in certain proportione, somewhat varying in different countrien and in different descriptiona of powdes.
The early hiakory of gonpowder in very obecure: but there appearn to be title datht that the ex. plonive nature of naltpetre (the great bulk of which conein either from Indis or China) when mixed with chasegal or carbon was known to the Chinote lor many centurien before the Christian oris. It may meny amaned that the diucovery of thit property of naltpotre wam accidental: a wood-fire lighiced on the earth Where salfpelre wan mixed with the wai
Would bring the two ingredients logether, and the notion of the heat would lef suffeient to show the natare of property of the mixture ao brought about nhare ratsed w o ecertain teap perature it is cortain that firsworke were known in China from very ently periods: bat in a paumphlet writuen by Colonel Omodel (Turin. I 834), and later io no articlo in the Atheneam of December 28, inbs, by Captain (now Lient.-General) Hepry Brackenlary, RA. the giveation ais to the frint fiavention of cupperwider wan fally dimeunaed, and the cenclusion arrived at was that there in great roasob to distbt whinther either the Chinese or any other Avistie people invented gunpowider in ite true senue, or were the finst is nue it ait a propelling agent. It wis left far mare western bations to develog the discuvery of the Chinese, and our firat knowled gro of the now of gunpowiler an a military agent dates from the 7 th century, when it was used by the Byzantine empowder all granalated powders are made. The meat in compreneed in a press-box, the smount of come: prezaion it undergoen being dependent on the density of powder required. After compresaion the preen-cake in broken inte pieces ready for gramuiating. which is done in the granulating machine, the powder pawing betwcen gur-aetal rollens fill it is powder pansing ingtween gruinequal of the required site, different powders beiog made to pann through niover whase meehes are of the nize of il a grain required. There is is coneiderable smoup of dust formed by the granulating proceas, so t' at after granulating it is necensary to dust the pr sider previous to glazing it, which in the next oper tion. It is glazed in glazing drums, which, revolviug rapidly, impart a glaze to the powder timply by the friction eet up. The powder is now stovel or dried in copper-trays in as drying room, which is heated to a temperature of about 100^{\prime} F, and the powder in left in this room from one to two houry necording to the amoant of mointare that it contains. Formerly all powder wae gramulated, but the enormoun increase in the pize of the gans now used necessitated the iotrodaction of other descriptions of powder-viz cuf and moulded powderi. In the cut powidens, sfter the process of prearing, the prea cake, ingtesd of being procesl of pressing, ted is first cat into stripe, and theee stripa are then cut into cabes and the powder so made is called cubical or pebble powder; there are as present two sizon-viz f-inch and 1 inch cuber. In the moulded powders, no is implied in the name,

Queen Wliasheth by iar the larger quantity of powder required by the Englist was obtained ?rom abrosd; bat in her reign its manufacture was introduced tate England The esarliest English powder-mills of which there in sny record were etablished at Long Ditton and Godetome, in Sorrey, by George Evelyn (John Evelyn'h grand. father) in 1590 ; the Favershism mills were started soon after this date, se were also thope at Waltham Abbey. The mills at Favershism suleequently beeame the goverament powder-factory, and in 1787 the government alan bought the miils at Waltham Abbey, which have remained in ite hands down to this day. The Favershnm mills were given up by the government after the peace of 1815; they were soon after booght by Mems John Hall \& Soi, who still retain them.
The niode of manoufnetare ndopted is England when these several powder-mills wert all thanoughly etablistiad remained practically unthasaged up to within the last thirty-five yearn. But before procesding with 4 description of the aranufactare and of the different powders now in uas, it will bo decirnale to ceiosider very briefly the part playod by the several ingrediente of which groppowder is componed, and the chemical aetion which takee place on ignition. The altpetre or nitrate of polath, KNO_{s} sete as s rongazine of axygen, with which it realily parte when rsised to a certain tempersture. Whes the powder is fired, the oxygen of the slipetre converts mont of the carbon of the charoosl inte carbouic scid, CO_{5} A partina of which conalinen with the potaili of the nitre to form eartborate of potarh, KCO_{n} the remaieder existing in the state of gre , and the nitrogen is libersted. The aulphur, which perfurma the part of a secood coanboatible ia gunpowder, in fier the munt puar converted into sulpharic ncid, SO_{p} ant forns asiplate of potash. The rexction on firing the gunpowder may be expromed by the equation $K 0, N O_{3}+\mathrm{S}+3 \mathrm{C}=3 \mathrm{C} \mathrm{S}_{3}+\mathrm{N}+\mathrm{Ks}$. The heak generated ly the explosion evolves a large quantity of elatie gues, the expanmive power of which if grestly morissel by the best. The presure befiug equal in alt difections, the work doan on the projectile to the twere of the gue in due to this ethaticity anil expanajve force. The method adopted for mesasriag the sinouot of prosure in the boro of the gun will he dealt with hercafter.
Sir Frederick Abel. C.B, F.RS, and Captsin Noble, CB. rarried oat two seres of mont exhanative and complote experituents on fired gunpowiler, and the concluaions they strived at were communicated by then to the Royal Socloty is twil papers (187s-80) under the head of 'Researchies on firm Gospowder.' The resalte are summarised ne follown: when fired in a conGined apsce (1) the producte of combustion are aboat 57 per ment. by weight of altirostely solid matier and 43 per ofnt of permsnent ganser: (2) the permanent gues occupy aboat 280 tirben the velume of the original powider; (3) the tention of the producte of conibustion when the powder entirely fillo the apace in which it is fired in sboat 6400 atanoupterss, of 42 tons per square finch; (4) the tamperatore of explosion is aboat $4000^{\circ} \mathrm{F}$; (5) the chrief gassous prodacta see carbonic scid, nitrogen, and carbonic oxide ; (6) the solid reeidue in mainly composed of potassium earbonste, sulptides, snd sulphate
From the foregoing description of the part played ly the nitrate of potaab it inight be thought that it would be highly ndventagoons to make puopowder with mome sitrste contaiping a arger pertentage of oxygeo than nitrste of potas niam; and an a matter of fact there are a large oumber of nitnate mixture other than gonpowder in which nitrate of sodium, harium, or ammonimm are aubstituted for the nitrate of potassium. But anfortunately they are extremely hygromopic, so that gunpowder maile with them would, under ordinary circanastances, soon become uselens on account of the damp it would atisort from the atmosplaere. In a hot dry climate nitrate of soda powders would doubtlesn be valuable, besides being wosch cheaper to masufacture than nitrate of potash powders: indeed such powders were need to a considerable exient in the copstraction of the Suec Canal; but, as these powderm sre not in general ase, it is unneceswiry to refer to them marther
Process of Mansffacture. - The method of manafacture of gunpowder at the Royal Gunpowder Factory at Waltham Abbey (fully explained in the official hand book) masy be briefly described. As in all other exploaives, it is exvential that the ingredienth of which the powier is consposed should be ant
pure as possible. The selection and preparation of the chsrcosl in of the grestest importance; for, without any change in the proportions of the components, the propertien of the gunpowder are capable of greai variation from the quatity of the charcoal ared
in ite manufncture. The ingredients are firat rednced to a fine powder by grinding. They are then mixed by hand in the proportion of 75 per cent. by weight of anltpetre, 15 of charcoal, and 10 of sulphar, and are next thoroughly incorporated in a wet state in a powder-mill into a cake called a mill-cake. Thir cake is then broken down between copper-plates into meal. From this mealpowder all granulated powders are made. The meal incompremed in a prosebox, the amount of comgrowion it undergoee being dependent on the proes cake is broken into pieces ready for granulating, which in done in the granulating machine, the powder pasaing between gun-metal rollers till it in

broken into gruins of the required size, different powders being made to pass through sieves whose mentes sre of the size of t a grain required. There is a considerible amous of dunt formed by the granulating prootes, so t, at after granulating it is which in the next oper tion. Ft in glazed in glazing drume, which, revelviag rapidly, impart a glaze to the powder simply by the friction eet up. The powder is now stoved or dried in copper-trays in a shoot $100^{\circ} y$, and the powder is left in this room from one to two hones secording to the amount of moisture that it enetaina. Formerly all powder wan granulsted, lut the enormens increase in the size of the guna now used necestitated the introduction of other descriptions of powder-viz, out and moulded powders. In the cut powdens, after the proses of prewing, the prosi-cake, instead of being granalated, if fint ent into ntripe, and these atripa Is called cut into cubes, and the powder no mado proent two sirm-yis finch and ly line sel at fre the mualded powders, as in implied in the name | ench grain or piese of powder in monlded or prened |
| :--- |
| in a meparate mould. Thin is done in a hydraulic | machine The exact yuantity of granulated powder required to form sach primm is deponited in a block containing sixty-four monlde; the powder in theoe woalds is then proesed by plangem exactly fiting the moulds till the required dennity is obtained. This powder is called primpatic powxier, the grinn pearly 1 inch in height and about 14 inel seroes, with A bele in the middle about th of an oxplainod later on. There are two dencriptions of pramatie powder-black and bmiwn. The proporsame as in all other Englist military powders ; but in the brown powder the charonal in made from atrive, inatesd of from wool, and the proportion of charcoal 18, enil mulphur 3 per cent.

Ganpowder more nearly fulble the objecte repqirged in a propelling agent than any other
explowive hitberto dineovered. Theme objecte, are (1) a maximum muzale velocity with even and low promuren ; (2) uniformity of notion, so that the asme roulto maky always be expected (3) freedom Hable to injury in transport, and that ita condition dose not materially alter when storod.
The advantages of gumpowder over other explo. dives are (1) that, the rate of combuntion being gradual, the explosion is not so severe on the bore siven ; (2) the ingredients of which it is compowed are esaily produced and are cheap: (3) it in, with proper precantions, safe in manufficture, in store, or in transport. Experimenta made by the Explosive Committee bave ahown that any nlterstion in the proportions of the ingredients has not no great an influence on the 'explosiveness' or rave of garning us the density, hardnees, aize, and shape of grain important effect on the rate of burning. By sboolute density is meant the amount of powder actually present in a certain balk-i.e. if different quantition of meal-powder, containing an equa amount of moisture, be pressed into caker of the ssme size, thet which contains the most meal will be densest ; then, if these cakes be ignited demaitaneounly, the cake which has the least Hardnoss doen not depend on denaity; incrensed
hardneso \& given by pressing the meal in a mointer ant characteriatica to be considered in connection vith the explosiveness of powder. Other thingor being equal, a larger-grained powder burna alower than a amaller-grainod; aud in grain of equal weight that which has the largeat surface will burn the quickent. A highly giazed powder, again, burns alower than an unglazed one, probably because the glaze somewhat retards its thorough igaition. The temperature at which powder ignites variea from 530° to 600° F., according to the natare of the powder, the fineat ipporting powder igniting at the bigher temperature.
It is only of late yearm that all these pointe have received the astention they deserve, but they have been forced apon the anthoritien by the necennitiee of the times. As soon sa shije began to be plated with armour, gunn had to bo made which conald throw a projectile capable of piercing that armour: and as the armour increasod in thickneas ao did the guns increase in oize and power, throwing heavier projeetiles, which necensitaten as enormous powder charge to propel the shot. In former daye there was a boantifal simplicity about powder. Practi. cally there were but two kinds, one for menkete called fine grain or F.G., and the other for eannon callod large grain or L.G., and no particular attention was paid to the quality; it was certainly not subjected to the searching proofs and testa which all powdere made in these daya have to undergo.
The first improvement in powder took place on the Introduction of rifled arms, when a riffe fine-grain powder or H. F.G., alightly langer io the grain than F.G., and a rifle large-grain powder or R.L.G., the graing of which were about twice the size of those of L.G., wers introduced for small-arms and canoon respectively. The R.F.G. powder was improved and minde of a rather anialfer grain, the aize of grain being from in th to foth of an inch, on the Introduction of the Martini-Henry rille, and this powder, known as R.F.G. ${ }^{1}$, has not since lreeo altered. But in cannon powder, of powder for large guas, the development has been great and contingous. When R.L.G. powder was introduced it wat the largent grained and alowest burning powder then in exiatence in England ; but as the guns ware made larger and larger it became necenary to une a slower-burning powder, which led firat to the introduction of H. Ln G. ${ }^{\text {E }}$, having grains varying in aise from 3 to 6 to the finch; that家, the grisins must pase through as sieve of 3 menhee to the inch, and muat not pain through one of 6 mashen to the inch. A ahort time afterwanda a ntill larger powder called R.L.G. ${ }^{\text {a }}$ with graias of nearly half an inch in size, wan introduced. Thia was noon followed by pebble powder, a still further development of 1. L. G_{-4} for guns of large calibre for which K. L. G, ${ }^{4}$ was not suitable. The first pattern of pebble or P, powder was eut is eubee of about half an inch in size, and s second pattera or P. What made in cubee of sbout $1+$ fnch in sixe, with rounded edgee. Both these powders have a deanity of 175, wheresa that of the R. L G. powders in 1 B5. Next in order came the prianstie powiers, of which there are two dencriptions-yin. priamatic black of Priam' and priamatic brown or Priaml brown, a deseription of which han been given under the bead of manufacture. There sre two ather powders of a npecisl pattern which may be men-tioned-viz. M. G. ${ }^{1}$ which is used only in the 1 -inch Nordenfelt machine gus, the size of grain of which is considerably Lstger and of more even aite than that of R.F.G.' ${ }^{\text {; }}$ and Q.F., a powder which at prosent is used only in the 3 , and 6 -pounder quichfiring guns, the aize of grainy being sbout half an inch square by abont ${ }^{3} \mathrm{~F}$ of an inch thick.

The powdern of other natione differ bat slightly from those manufactured in England; the method of manufactare in the same in principle, but the proportions of the ingredienta vary to a slight degree in every nation.
Gaving now described the various powdery in whe, it remains to asy a few worda about velocitiea and pressures. The great desideratum with all firearms is to obtain the maximum velocity with the ininimum of pressure, and in the experiments and inveatigationa carried out by the committee on explosives, and by Sir F. Abel and Captain Noble, this end was kept in viow. It has already been pointed out that the rate at which powder burns depends greatly on tho density, hardness, size, and ahape of grain : the greater the denaity the slower it will burn; the larger the grsin the slower it will burn, aimply because the anount of lighting surface is reduced in proportion to the volume; and the smoother the surface of the grain the slower it

Will barn for thb same resson. A powder there fore composed of, comparatively spenking. small graina of irregular size and shape, burnis very rapidly, and generstes a large volume of gis sud. dealy, thas setting ap s very high pressure in the bore of the gan. In some of the experianents of the committee the pressure rocorded in the bore of the gan was as high as 60 tons to the square inch; but, as Captain Noble had previonaly discovered that the maximum presame of powder fired in a confined space did not excesed 42 tons, this extrin pres. sare peald only be due to wave-setion, s suddea evolution of gas locally easueing a vibratory motion of the gas. This led to the introduction of largergrained powders, so an to retand the buraing of the clarge, bat this did not entirely de swsy with the wave prosure. It was sext sulught to dimibish the pressure by giving sir-ppsce to the charge, as it was foned that the deasity of the charge-not the density of the grain-materially affected the presaure; this air-space wha given by ealarging the chamber of the gun, and slthough it became neces asry te increane the charge so en to maintain the samet muazle velocity, if wis found that the prea mure was senaibly dimioished.

But whilat Great Britain was atill adhering to pebble powiler, nther nations bad adopted a prisinatic powder with s hale through the centre of the pellete or priems. The idea of this perforated powder is dat to Genersl Rodtanan, tan American artillery officer. who thought that by this tamand a clange of powder wauld evolve the gas at a more uniform rate. In a charge eomposed of nolid grains, the graine being lighted on the our. face and burnisg fowards the centre, the surface giving oif gas rapidly dedreams, snd thecelore the volumes of got given off by the grain will beo greatont when the charge in first fired, and will rapilty fall off ; lience the maxiunuin pronsure on the bore of the gus is set up almost befure the projectile cotomences to mave. Te overcosen this, the dea securred to General Rodman to lave a hole through each lisge grsin or pellet of powder, to in to give the grain an interior as well is as exterior lightiag surface, so that as the exterior lighting surface ifecrodsed the interior lighting surface in erewsed, thas preserying the ignited surface more unifors duriag the burning of the pellet, and therefore keeping up a more constant evolation of gas. This ternils to distribute she pireseure twore unifornily along the lore of the gen, and increneen the initial velocity of the projectile. The Itumanse in 1860 were the first to ndopt this plan, followed by the Germana, the English being the last to take it sp ; it it now, havever, alopted for the heavieat gains in the lingliah vervice, the charge baing buils up of the hexagonal prisoss alresdy described, sy srrasged that the holes through each enlams of priams shall be centisumas from one end of the charge to the other. The intro duction of this powder has enabled the type of gun to be entirely altered a description of the gans aow is the service will be fonad ubder the head of Camnon, Fitiles (q.v.) We sre indelited to the Ciermans for the favestion of hrowa ar cocon powiler ; it is claimed for this powder that it gives s higher initial velocity with leat presure than the aame charge of blark jowider.

The name principles as have leca esunciated here with regand to zurn should goveri the nelection of powder for mining or blasting purposes. If it Is ulusirsd toshatter is mens of ruck, a very violent guick-bursing, pooder, having a great disruptive forre, whould be used ; bist if it in only derired to dislodge, say, a nias of coal without shattering it, a denser, slower burning powder sbonld be chosen.
The instrument generally ased for takiag velo cities is a elroungraph. the invention of Major De Boulenge of the Belgian Artillery. It contista of a brass colums espporting two electoo-mag. sets. Na 1 electio-magnet sopports a loug cylindrical rod, ealled the chronometer, covered by a zine tube干. No. 2 glectromagret supports is shorter rod. Two screeni of copper wire are placed at cerlain fixtd distances in front of the mazzle of the gun. No. 1 electro-magnet is mag netised by the current pessing through the firmt sereen, and No. 2 ly the current paving through the second screen. As the shot passes through the finat sereen the current is broken, sad the rod or chrosometer suspended by No. 1 electro-magnet falle by gravity. Similarly, whes the shot pesses through the secoud screen, the sborter meight suspended by No. 2 electro-magnet falls ou to a disc, which, prewaing a apring, causes as knife to be re-
leased, and this, darting forward, strikes the
chronometer in ite fall, making an indent in the rinc tube. The distasce of this indent from the zero point leing measured off on a ecale specially gradu. ated for the instrument gives the velocity of the thot between the two screens, from which can be calculated the muzzle velocity. Another sesle gives the time of flight.
The pressures in the bore of the g^{un} sore calcu. Lated by means of a cruaher gauge. A small copper cylinder in inserted in the gauge, which is screwed into the gun at that part where it may be dedired to moasure the presure. The copper cylinder is measured before and after the diacharge af the gun, the amount by which it in ahortened by the force of the exploeion being the measure of the force, or pressure, exerted. The actial preenare in tone to the square inch is calculated by means of A mathematical table prepared for different coppers.

Gutta-percha, a aubatance in many respocta similar to choutchoue, is the dried millcy juice of various trees of the onder Sapotacees; the chief in apparently that called by Hooker Isonandra Gutta, and by Beatleg and Trimen Dichopsig Gutta The tree, which in found in the penipenls of Mataces and the Malayan Arclipelago, is very Jarge, attainlog a leight of 70 feet; the trunk in nometimes 3 or svep 4 feet in dismeter, although it is of little une as as timber-tree, the wood being npongy. The Iraves are sltemate, on long atalke, obovate oblong, entire, nomewhat les thery, green above, and of a golden colour bennath. The flowern are in titule vafte in the axile of the leaven, nmall, ench on - distinet etalk, the cerolls having a short tube enil six elliptical segments; they have twelve slamens and one pisiff. The name, gatta-percha (gitta pircha, or gottah pertjo), is Malay. There are two or three kinde of gatta-percha known in commerce, and it is more than probable these are

Guth-purcha (Tonnandru (Diekopoiel Gutta) : A_{1} a flower ; B, Fruit.
yielded by different epecies. That from Singapore Is entermed the best, and in distingubined by the Malay traders an Gubta Tabon or Tuban that of Borneo in of lese value-thin is called Gutta Percha by the traders, and han given the general name to all; and snother kind goes by the name of Gutta Girck. The fint two are those generally known in our marketa. The former mode of obtaining the gutta perchas was a mont deatructive one The finest trees were selected sid cut down, and the bark stripped off; between the wood and bark a milky juice was found, which was scraped up into little troughe made of plantain leaves. Now the plan of Lapping the living trese in employed. The juice eoon coagulatee, or may be thapled, and is then kreadeal by hand into oblong cuerses a foot in length.
Gutta percha was knows in Europe long before its peculiar charncteristica and uben were known. It whe brought home at various times by voyagers, in the forms of drinking bowls and native nhoes : and was thought by some to be a speciew of india-rubber, whale othern unserted it was a kind of wood, which they named mazer-wood. But for Ita introduction in 1843 we are indebted chiefly to Dr Willism Montgomerie of the Indinn Mexlical Service, who was rewarded with the gold medal of the Society of Arta. He finst noticed that the Mslays used it for making handlen to their Knives, \&ec, and it immediately occurred
to him that it might be of grast use in a variety of ways, especially in making handlea for surgical instrumente, the hand being able to get a light but firm grasp of them. Soon the importation of guttapercha increaued ainazingly; in 1860 it exceeded $16,000 \mathrm{cwt}$. In 1864, 1805, 1870, and 1871 the imports varied from $25,968 \mathrm{cwh}$ to $35,636 \mathrm{ewt}$; in 1876-83, froin $21,100 \mathrm{ewt}$. to 66,000 cwt. Down to 1888 these imports declined very mach, a In that year they only reached $22,500 \mathrm{ewt}$, at an average price of 162 shillingo per ewt. In 1880, however, they ahowed an upward tendency both in quantity and value, the total imports from January to October 1899 being $38,040 \mathrm{cwt}$, and the average price 241 bhillings per cwh. By far the greateat portion of it in imported from the East Indies.

Ita mast important application hum lieen in the coating of marine electric telegraph wireb. In thin application, is in most others, ith inherent defect, sraing from the readiness with which it becones oxidised and decomponed, han manifented itwell uerionsly, and it ia greatly affected by age in its resisting qualities. Hence subetitutes of greater stability have boen looked for. Many of thene have been fortheoming, india-rubber being uned now to a large extent, an alno a compoaition produced from suphalt, balnam of sulphur, \&c, sud other compounds. Gutts-percha is used for malcing a vast varioty of unofal and ornsmiental artielea. Among others the following may be mentioned; golf-balla (very extensively) overshoes (more In America than in Brikia), heltingo for machinery, pump-bucketa, sheating, tissut, thread or whip cord, and tabing. A very large trade is doan in ahoe nolea, It in turned by exageone to various uneb, chiefly for splinta and niobst coveriag to retard evaporation. It has aleo been used for ntopping hollow teeth.
The great value of gutts-percha ariaen from the eane with which it can be worked, and ite being no complete is non-condactor of electricity It soltens in warm water, and can loe moolded inte any form is that state, as when soft it is not sticky and turns well out of pounlde It will alwaya be of graat value an a material in which to take cants, tha it cas in the soft state be moale to take the sharpest forme most falthfully, and, an it quiekly becomen hard, and preserven ife shape if not too thin, the range of ite atility in this respect in very extenaive.
It fo imported in blecks and lampe of Ive io tee poundn welgbt is varion forms, chiofly like largo caken, or rounded into gourd-like lompe. It han a very light reddinh-brown, or almoet is flesh coloner, is fall of irregular poren alongated in the diroction in which the mave har been kneaded. It han a cork-like sppesiranee when cut, and a peeuliar cheeselike oforer. Before it nea be need if has to undargo some preparstion. This consinte in slicing the'tumpe into thln shaviogw, which are placed in s devilling or tearing machine revolving in as trough of hot water. This reducen the shavings to exceedingly emall pieces, which, by the movement of the tearing.teeth, are walhed free from many imparitibl, eapecially fragmenta of the bark of the tree, which, If not ieparated, would interfere with the compactnens of fin texture-one of ite most important qualitios. The suall tragmente, when safficiently cleansed, aro kneaded into manser: and theea are rolled adveral timen between bested cylinders, which prese ont any sir or water, and render the masa uniform in texture. It is then rolled betweed hested ateel rollers into aheets of varions thick. nessen for niec, or is formed into rods, pipen for water, speaking-tabee, or sny of the innumerable articles which may be made of it.
Gutta-percha differs very materially from caoutchoue or indis-rubber in being non-elastic, or elastic only in a very amall degree., Notwithatanding thin very striking eharteter of caontchoue, the two very atriking are very often confounded in the public trind.

Gypsum is a valuable mineral of a cotnpari tively soft nature. Chemically it is a hydrated sulphste of lime, $\mathrm{CaSO}_{4}+2 \mathrm{H}_{4} \mathrm{O}$. Its specific gravity in 231 , and ite hardneas is from 15 to 2 of the mineral ncale. The masaive marble-like variety, which is usually white or delicately tinted and translucent, is called Alsbaster ($\mathrm{q}-\mathrm{v}$.) : when tranoparent and cryatallised it is known as Selenite ($q . v$.) ; and when fibrous and with is pearly opalescence it in termed satin spast.
Gypeum occurs in varions geological formations, and has a wide geograplical distribotion. Exters-
sive beds of the commoa variety sre generally made up of irregular, concretionary, nodular manech. In the Now Red formation pear Derby, at Carlisle, and in some perts of Nottinghamshire, as well as in the Tertisry beds of the suburbe of Paria, it is largely worked for the preparation of plaster of Paria. Productive beds of it are found in mumerous localitics in the United States, principally in Ohio and Michigan; in New Prunswick, Nova Seetis, and Ontario; and in the Punjab. Gypaum is very frequently maociated with rock. salt.

Gypeuns contains 21 per oent, of water. which ean be driven of by hest. It is lurned in kilnes at or a little below is temperatare of $250^{\circ} \mathrm{F}$, and afterwarde grosod to a fine powder, which is called piaster of Paris. This recomblibes with water, evolves heat, and slmoet imhedistely soliditien or sets. It is this property which makes it no service. able for many porpoises in the industrial arth. If is the burning of gyperm the temperature in raised ss high or ligher thish $480^{\circ} F_{\text {. }}$. it loses the power of rehydrating, and it then said to he dead Burnt, in which state it will not set wheu mixed sith sater. Like gypuns, planter of Paris is soluble to the extent of minher move than 2 parts in 1000 parts of wister at ordinsry temperstares, ita poist of maximum salability beiog $25^{\circ} \mathrm{F}$. It is sherefore unsuited for external work, except is dry elunsten such ns that of Persia. For making casts the plater of Parie is made op with water to so conalateacy of thick ereato. In this state it is poored into on mould, which is sunoally alno made of the same msterisl, and lelt to malidily. Some oil, such as slive, is lirumbed over the mould to form a parting between it and the cunt. Plater of Paris is thost exteneively used for taking eants of acalptare and arehitectaral detailn, as well ne for caste of sunall objectes such es coine, medels, and engraved goms For jottery monlds it is alno largely exployed, and it is used to take a firet eopy frots the modelled clay in the prodnction af metal patherns. Large quantition of it are coneimed for the mouldingr of the internal platerwork of hasesp, and fis eorrice and other oma manote. For hardened planter of Paris, sach en Keehels evient, soe Cruseyps; and lor the agriealiaral spplications of sypento, seo Mavtruss. Gyperm is one of the sulatances which rebdere water laard, and asels waler is tuotful in the brew. thig of some kinds of boer. Pearl hardening, used is is Blling ts tho masonfacture of mone kinde of paper, is as artificial aulphate of time, precipitaled by eulpburie scid froms eflonde of valelias. Fiotile froery is plater of Paris which has been made to abeorb boowax, sgermaceti, and stesric scid, is their meltel state. - The sverige assaed pruluction of gyperm in Great fritain is searly 190,000 tons, valize about $\$ 48,000$. Is 1808 the production of the United Stator was about $96,000 \mathrm{lonh}$; of Nova Scotia, 125,118 tons. For the anhydrous sulphate if lime, see Ashybsitk.

Sypay-wort (Lgeoplit ewroponiu), sometimes aloo celled Water Borehourd, is a percanial plas! belonging to the nataral ordor Labiata. It is a tall ereet branching plent, slightly beiry, with a ereoping root-atock. Is is camamon in itoint places in Brivain, the Contiment, Raesien and central Asia, asd North Americs, and is reconded an 6 febrifwge and natringent. it dye blaok, and gives a jermanent colour to wuol, linen, and alk, and a long ago is $\mathbf{j} 578$ the Gyprain were fabled to stain sheir Akis with it. The Bugleweed of North Americs (L. viryimicu) has swore powerfally astringent propertios.

Gyroscope (Greok) the name given to an inntrument for the exhibitiot of varions propertion of rotation and the cotryonjtion of rotstions. It differs from a top in bsving beth eods of its axis sapported. The ieveation in probably French or Germans, sad in sonve of its forms it deter from sbout the end of the IBeh cestury.

If a mave be set itt motation abort its principal axis of inertis of greateot or lenst moment, it will continue to revulve aboet it s. sud, unless extraneous force be applied, she direction of the exis will remain unchanged. Such, for instance, would be the case with the earth, Wers it not for the distarhancte (see NUTATros sund Precessios) prodaced by the san and moon t the direction of the sxis would remain fixed in space. It is for this very renson that modern artillery is riffed. If, then, s russe of metal, ae for inatanee, a circaler fisc, londed at the rim, and revolving in its own plane, be made to rotate rapidly ahment its auns of greatoct moment of inertia, and if
it be freely supported (in gimhals, like the box of a csumpass), the direction of its axis will be the same so long as the rotation inats. It will therefore constantly point to the same star, and may, of counse, be employed to show that the apparont rotation of the stars about the earth is due to a real rotation of the eirth itself in the opposite direction. This application was mude by Foucault shortly after his celelorated Pendulum (G.v.) experiment, as it had been many years before (March 1836) by Dr Sang (see the Trans, of the R. Scat. Soc. of Arts). It is. in practice, ly 206 means mo perfect a mode of proving the earth's rotation the the Foucault pendulum; but this arises solely from unavoidable defects of workmanship and riaterials. Professor Piazzi Smyth han applied this property of the ayruseope to the improvement of our means of making astronomical abservations at sea. A telescope, mopnted on the suine support as the ends of che axis of the gyroscope, will, of course, be altanst unaltered in position by the rolling or plteling of a vessel; and a steady horizon, for sextant observations of altitude, may be procured by attaching a mirror to the aupport of the gyroscope, and setting it once for all by mentis of spirittovels.

Itat the niwit singular phenomena shown by the groncope are those depensing on the comparition of rolation (eee Rotatios). Any motion what. ever of a budy which has one point fixed is of the mature of a rotation ahout an axis plasing through that point. Hence, simulianeous rotations Ahont any two of more exes, leing a motion of nome kind, are equivatent to at rotation sbout in aingle axia. The eflect, then, of impreasing upon the frame in which the sxim of the npianing gyroncope in sunpended a tendency to rotate about nome other axis, is in give the whole iostrament a rotation abrat an Intermedtate exint and this will coincide move nearly With that of the geroucope itmelf, an the rate of ite rotation is grenter. The compoand motion consiste it the colling of an Imaginary cone tixed is the gyroscope upon snother fixed in space, the rotation of the sxis of a top rotund the vertical |when it is not 'sletping' in an nipight porition) stul the preosssion of the earth'a sxin,

we precisely similar phenomena. Tlus, when the gyroscope is spinaing, its axis being borisontal, a weight atcached to the fromework at one end of the axis (fig, b) maken the whole rotste about the vertical ; sttached to the other end, the rotation takes plase in the opposite direction. And the framewerk may be lifted by atotring attached near one end of the axis (fig, a) withont the gyroscope's falling. Its exis still projects horizontally from the string, but it revol ver as a whole round the string. V arions other singular experiments muy be made with this apparatus ; and others, even more curious, with the gyrostat of Sir W. Thomson, which is simply a gyrmocope enclosed in a rigid case, by which the ends of its axis are supported. When a gyrostat is made the bob of a pendulam under certain conditions, the plane of vibration of the pendalian turnis, as in Foucanlt's celelorated experiment, but in general at a much greater rate.
$\rightarrow 2 \mathrm{ER}+$

ENCYCLOPEDIA

0

PRACTICAL

RECEIPTS AND PR0CESSES.

conraminso

OVER 6400 RECEIPTS;

EgBRLCNI

thobovgh information, in plain language, applicable to almost byery pOSSIBLE INDUSTRLAL ASD DOMESTIC REQUREMENT.

Enterod according to Act of Congrems, in the year 1872

$3 x$
WILLIAM B. DICK.

Legend; C $221=$ GRANDDAD'S WONDERFUL BOOK OF CHEMISTRY page 221
S1 32 = SURVIVOR Vol. 1 page 32
S2 $896=$ SURVIVOR Vol. 2 page 896
P1 $158=$ NEW IMPROVED POOR MAN'S JAMES BOND page 158
CONTENTS.
ACETIMETRY 232
ACIDIMETRY 233 ANATOMICAL SPECIMENS, SOLUTIONS S1 427
ACIDS. 246 ANODYNES C 306
ALCOHOL 236 ANTIMONY S2 895
ALCOHOLMETRY 229 AROMATIC OR PERFUMED WATERS S2 827
ALKALIES 255 BALSAMS. 304
ALKALIMETRY 234 BEES $^{\text {' }}$-WAX S1 422
ALKALOIDS .C 256 BISMUTH S2 895
ALLOYS S2 896 BITTERS C 234
ALUMINUM. S2 894 3LEACHING S1 430
ALTERATIVES . C 307 BOILER INCRUSTATIONS S1 447
AMALGAMS S2 902 BOOT AND SHOE BLACKING S1 449
ANILINE COLORS S2 816
BRONZING S2 921
BOOKS, MARBLES AND SPRINKLES FOR S2
S1 32
CANDLES, HOME-MADE TALLOW.
S1 433
S1 433
CATSUPS, SAUCES AND PICKLES
CATSUPS, SAUCES AND PICKLES
C 304
C 304
CAUSTICS
CAUSTICS
S2 840
S2 840
CERATES, OINTMENTS, SALVES C 299
CHAMPAGNE S2 808
CHEESE S1 423
CHEMICAL MANIPULATIONS C 221,243
CHEMICALS, MISCELLANEOUS C 259
CIDER S2 814
COLOGNE WATER \& PERFUMED SPIRITS., S2 823
COLORS, LIQUID S2 860
COPPER S2 890 S2 890
CORDIALS OR LIQUEURS S2 811
COSMETICS S2 828
DENTIFRICES AND TOOTH POWDERS S2 837
DEPILATORIES. S2 833
DIAPHORETICS C 306
DISINFECTANTS S1 429
DIURETICS 306
DRYING OILS AND DRYERS s2 864
DYEING RECEIPTS, FAMILY 788
DYEING, THE ART OE S2 779
DYES, HAIR S2 832
DYES, WOOD S2 869
ELECTROG ILDING S2 917
ELECTROPLATING S2 914
ELECTROPLATING WITH VARIOUS METALS 914
ELECTROTYPING S2 910
ELECTUARIES 307
ELIXERS 289
EMETICS 307
ENAMELS S2 849
ENAMEL, TO, WOODWORK S2 878
ESSENCES, ARTIFICIAL FRUIT S2 826
ESSENCES, MEDICINAL 285
ESSENTIAL OILS 238
EXPLOSIVES P1 164
EXTRACTS, FLAVORING S2 825
EXTRACTS, FLUID. 282
EXTRACTS, PERFUMED S2 82E
FACTITIOUS MINERAD WATERS 278
FATS, FIXED OILS AND. 241
FLOUR PASTE S2 845
FLOWER GARDEN RECEIPTS S1 436
FLUXES S2 900
FOILS S1 447
FOMENTATIONS C 304
FREEZING MIXTURES S1 428
FUMIGATING PASTILS \& INCENSE S1 416
GARDEN, RECEIPTS FOR S1 436
GARGLES C 304
GASES C 257
GEMS, ARTIFICIAL S2 851
GILDING, SILVERING, ETC. S2 903
GLASS S2 848
GLASS, SOLUBLE S2 868
GLAZES S2 850
GLUE S2 846
GOLD S2 887
HAIR DYES S2 832
HAIR, FALLING, WASHES FOR S2
HONEY S1 421
HOUSE PAINTING S2 865
INCENSE. S1 416
INDIA JAPANNING S2 880
INKS AND WRITING FLUIDS S2 852
IRON S2 891
IVORY, ALABASTER, ETC S1 444
JAPANNING S2 879
KALSOMINE AND WHITEWASH S2
LACQUERS S2 880
LEAD S2 890
LEATHER, PRESERVATION OF S1 448
LINIMENTS
LIQUORS, IMITATION, S2 806
LOTIONS 297
LUBRICATORS FOR MACHINERY S1 419
LUTES S2 845
MEDICAL RECEIPTS 317
MEDICATED SYRUPS 285
MEDICATED WATERS. 292
MEDICINAL ESSENCES 285
MEDICINAL SOLUTIONS 293
MEDICINAL TINCTURES 279
MEDICINES, PATENT 307
MERCURY 894
METALS 886
MISCELLANEOUS Receipts S1 449
NICKEL.
OIL, PETROLBUM AND COAL OIL 894
OILS, ESSENTIAL OR VOLATILE 238
OILS AND FATS, FIXED 241
OILS, SCENTED OR PERFUMED S2 833
OINTMENTS, SALVES AND CERATES 299
OXYMEL 289
PAPER HANGING S2 868
PAPER, PREPARED. S1 441
PASTE, ELOUR S2 845
PETROLEUM AND KEROSENE S1
PHOTOGRAPHY S2 882
PICKLES, CATSUPS AND SAUCES S1
PIGMENTS S2 862
PILLS 298
PLASTERS 302
PLATINUM 895
POLISHING 876
POMADES.
POULTICES 302
POWDERS, ROUGES, PEREUMED 828
PREPARATIONS 225
PRESERVATIVES AND PRESERVING 423
PYROTECHNY 158
REAGENTS 275
RUBEFACIENTS 304
SALVES, OINTMENTS, CERATES 299
SEALING WAX 847
SHOE BLACKING 449
SILVER 888
SILVERING 903
SMELLING SALTS 235
SOAP BY THE COLD PROCESS 803
SOAP, ART OF MAKING S2 799 TOOTH AND MOUTH WASHES S2 838
SOAP, SOFT. S2
804 TOOTH PASTES AND ELECTUARIES 838
SOAP, TOILET. BO1 TOOTH POWDERS AND DENTIFRICES. 837
SOLDERING AND WELDING. 901 VARNISH 871
SOLUTIONS, MEDICINAL293 VARNISHING876
SPECIFIC GRAVITY 229 VARNISHES, OIL 872
STAINS AND SPOTS, TO REMOVE 789 VARNISHES, SPIRIT 873
STEEL 891 VERMIN, EXTERMINATION OF 440
SYRUPS 417 VINEGAR. S1 431
SYRUPS FOR SODA WATER $B 39$ VINEGAR, AROMATIC. 235
TABLES OF WEIGHTS AND MEASURES 338 WATERPROOF ING 420
TANNING .SI 45
WELDING 901
TEST PAPERS 277
WINES, HOME-MADE 808
275 NOOD, TO DYE 869
234 WOOD, TO PRESERVE 428
TESTS OR REAGENT
THERMOMETER, THE
893 WOOD, TO STAIN. 870
TIN:
TIN: S2 S2
TINCTURES279yEAST.S1 436
TONICS C 305 ZINC. S2 893
DICK'S INDEX FOR THIS VOLUME PAGE 923

TThe Art of Dyeing. The art of tixing coloring mattors iniformly and permanently in the tibres of wool, ailk, linon, cotton, and other subatancos. Jyemg is a chemical process, and the maste of its pers. liomance depends upon the substause operated on. Thus it iy found that the procesis by which wool is dyed black, would oaly impart a rusty brown to linen. Hool uniton with ahunat all coloring ratters with great facility, silk in the next degree, cotton lexd enally than ailk, and linoh with eved more diffeulty. Preparatory to the operation of slyeing, enob of thost smbatinkes imdergoes a specios of preparation to froo the fibres from wheriog toreign mather, ns ilitt, grease, so, which would prevast tho absorption of thes aqueona tluid to be afterwarda pppolied, as well as impair the brillimuey of thedye. Wool inacleatiod of esouted by means of a weak alkuline lye, roap aud water, or putid urines the latter being vory gonetally nsed fore this purposec. Silk is cleoned from the natural varuish that covers it, by boiling with whitoseaty and water. Cotion smi Zaen aro clocuent with alkalino tyea of more of less density. The substainces so proparnd aro ready to undergo the varions operations of dyeing.
Among the various coloring materials employed by dyens, nome impart their tials to difforent substances by simpile imnersion in their infusions or dococtions, and have henea been called "substantice colors;" bat by far the greater number only impart af fogitivo dye, unlens the fibres of tha stuff havo been previously filled with somo sulstauce which has a strong affinity for tho latter on the ono hand, and the coloring material on the wther. The substances applied with this intention are called "Mordants" and generally eserciso tho doublo property of "fixing" and "striking" tha color. Thus, if cotton goods be dyed with a decoction of madder, it will only rerajeo a fugitive and dirty red tinge, unt if it bo first run through a molution of acetate of alumina, dried at a high temperature, washed, and then run through a madder lath, it will como out a permanent and lively red. The prineipal mordnats are the acelates of iron and alumina, sulphate of iron, alum, and Homo other chemical salts. A porfeet knowledge of the effect of mordants on different coloring substances is of paramount importance to the dyer.

After having received the proper mordants, the goods are dried and rinsed, after which
they aro pased for a chorter or longer timo through an infosion, decoction, or malstion of the dyving materials, which constitite the "dyo-bath"; they ore again dried wal rimsel. In many cases tho immendon ia the tye-both is repented, either with the esane numteriala or with others to vary or wodlify the culor. Aftar the substanees have heen properly dyed, they aro subjected to ot thurough riming or washing in oult water, wath tho lather ruan ofr uneolored.
94. Dye Woods, dc. Decoction of the diffurent wuods aro prepared for gesoral ine in the elye houso as they are required. If tho woont he in tha chipped state, it muat bo builed for an hour, in the proportion of 1 pound of wood to I gallou of water; a eecond boiling is generally given with new water, asd the biquor obtained used hastead of Water with thore new wood. This secund liquor is not good for dyeing alone, but when euployed instend of water for now wool, 4 proud of nesy wood is multicient. The escond liquor may, howover, lie used as an ausiliary in tho dywing of compound colons, wach nas browne, dralk und fawns. If tho wood be ground the same gquantity is takich-namely. 1 pounil for ench gallou of tho decootion required, and is prepared as followsi-on a piece of coarmo elolh netrotehed npma a fratiar, or laid inter a basket, putt the ground woul, and plaen it over in reasel, then pour boiltig water over the wood until the liguor that rims through is nearly colorlose, Jarwood and Canwood ese ofways beed in the ground state, the wool loing pht into the boiler along with the gondr, no deexetions of thesm woods are mule. Jecoetions of bark and weld are often formed by putting them into a consse catras hog, and then suspending it in boiling water.
The coloriag prineiple of archil is lighly soluble in hot water, and is usefol in combination with other dyoing evaterials, but used alone, does not linpart a permanent color.
95. To prepare Annotto. Into 2 rallons of water pat 1 pumad of Anwatto, 4 ounces of pearlash, and 2 otuces of soft soand, and apply heat, stiering until the whole is dissolved. When convenient it is best to bail tho solution.
98. To prepare Catechu. To 7 or 8 gal lons of water pat 1 pound of catechu, and boil till it is all dissolved; then nodd 9
sunoes of sulphate of coppres, atir, and it is ready for uso. Nitrato of Copper may ulso bes used, taking I winerglassful of the solution made according to the next reecint.
97. To make Nitrato of Copper SoIution. To 1 part by measuro nitrie adid, sad 7 parts water, ald metallie copper mo fory as the acid will dissolve it, then bottle the kolution for wae.
98. To make Sulphate of Indigo. Into 5 pumals of the anost concoutrated sus. phurio acid, stir iu by degrees 1 pound of the beat indigo, fiucly ground; exprose this mixturo to a heut of abrout 160° Falis. for 10 or 12 houra, stirring it oceasionully; a tittlo rubbed upou a window-pana mbould nssume a purplebhe color.
90. To mnke Indigo Extract. This is propereal by proeceding oxaetly as stated for sulphate of indigo and then diluted with about 4 gallons hot water, and tho whole put upoa a thick woolen filter, over a larga veesel, and hot wator poured upon tho filter, uatil it pasies through nearly colorless, tho blackish matter retaned upon the filtor is thrown awhy, and the filtered eolution is trausferred to a leaden vessel, and evaporated to ubout is gallones, to which is added about 4 pounds chloride of sodium (table salt) and well stirred; the whole is again put upon o wooden filter and alluwed to drain. Tho extract remains as a thin pasty maed upont the filter, and is ready for uso.
100. To make Red Liquor. Into 1 gallori hot water place 2 pounds alum; dissolve, in a separate vessel, 2 pounds acetato of lead in 1 gallon water; in is third veasel dissolve $\frac{1}{2}$ pound erystallized soda; mix all the bolutions together and stir well for somo time, thes allow to stand over ajght; decant the clear solution which is ready for use.
101. To make Caustic Potash. To 3 gallons water add 2 puunds either bluck or pearl nsbes, and boil; when seething oded newly-slaked lime, antil it small tuantity taten out does not elferveser when an ucid is added to it. To test this, take a tumbler half filleal with cold water, put at table-spoonfit of the boiling lye into the tumbler, and add a fes drops sulphuric acid; if the acid wero adderl to the hot lye, it woult spurt up and endanger the operator. When the addition
of acid causes no effervescence, the boiling and adding of lime is stopped, and the whole allowed to settle; then remove tho clear liquid into a vessel having a cover, to prevent it from taking carbonic acid from the air, This serves as a stock for general nse. The lime sediment remaining may have some hot water added, which will give a stroug Ige, and may bo used for first boils for yarn or heavy cloth.
102. To make Caustic Soda. For every gallon water ald 1 pound soda ash, or 2 pounds erystallized soda (washing soda); boil and proceed by adding slaked lime, and testing as for potash; boifing for some timo is essential in order to onsure perfect cansticity.
103. To make Lime-water. Tuke some well and newly-burned limestone, and pour water over it as long as the stope Eecms to absorb it, and allow it to stand; if not breaking down freely, sirinklo a littue moro water over it. A small quantity is beat done in a vessel, such as an old cask, so that it cas bo covered with a board or bag. After being slaked, add about 1 pound of it to every 10 gallons cold water, then stir and allow to settlo; the clear liquer is what in tued for dyeingThis should be inado up just previous to using, as lime-water atanding attracts earbonie acid from the air, which tends to weaken tho solation.
104. To Make Bleaching Liquor. Tako a quantity of bleaching powder (chloride of lime) and add to it at much water as will make it into a thin ercam; take a flat piece of wood, and break all the small piecea by pressing them against the side of the vessel, theo add 2 gallona cold water for every pound of powder; stir well, put i cover upon the Fessel, and allow the wholo to settle. This will form a sort of atock yat for bleaching operations.
105. To malke a Sour. To evory gal. ton of water add 1 gill of sulphuric acid, stir thoroughly; goods steeped in thas shuuld bo covered with the liquor, as pieces oxposed become dry, which doteriorates the fibre; if left under the liguor the cloth is not lurt by being long in the sour, but on Leing takea out, overy care should bo taken to wash out tho liquor thoroughly, otherwise the goods will bo mado tender.
108. To make Cochineal Liquor or Pasto. Put 8 ounces ground cochincal into a flask and add to it 8 fluid ouncon ammonia and 8 ounces water; let the whole simumur together for a fow hours, when the lignor ic ready for uee.
107. Acid Preparations of Tin. Tbe acid preparations of sin used in dyeing are called spirits, with a tern prefixed to each denoting their particular application, as red spirits, barwood spirite, se. The tin employed for making thess? preparations has to undergo n process callel foathering, and is as follows:-the tin is melted fo an irou pht, and thon poured from mome height intu a ressel filled with cold water; this granulates or feathors, the tin. (See No, ;310.)
108. Red Spirits aro mado by mixing togethor in a stuneware vessel, 3 parts by moasuro hydrochloric acid, 1 part nitrie acil., and 1 part water, and uuldiag to this feathered tin in small quantities at a time, until about 2 ouncos tin to the pound of acid used are dissolved. In this operation tho tomperature shoukd not lee allowed to rists. (See No. 4124 .)
109. Yellow Spirits are prepared is the rame way, only substituting sulphuric aeid for the nitric acid. This is used for the same purposes as red spirits, with the advantage of the economy of sulphuric over nitrie acid.
110. Barwood Spirit is prepared by nsing 5 measures hydrochlerric aciil, 1 nitric acid and 1 water, dissulving in this 1 ounce feathered tin for every pound of the whole misture. $1 \frac{1}{2}$ ounces tim may be used if the red dya is requined to be very deep.
111. Plumb Spirit is mado by usiug 6 to 7 meazures bydcochloric acid to 1 nitric actul and 1 water, diswolving in it $1 \pm$ oances tin fot each paund of tho arid mixture. This spirit is named from a preparation made with it and a decoction of logirood. A strueg solution of logwool is made and allowed to cool, thos to each pallos of the solution thero is addel from 1 to $1 \frac{1}{2}$ pints of the epirit: the Wholo is well ktirred and net wide to settle. This preparation las a beautiful violet color, and ailk and cuitun aro dyed of that ehade by dipping tbem into thas phirsib liqzor without auy provions mordant. Tho depth of tint will depend on the strengith of the solution.
112. Plumb Spirit for Woolen Dyeing. This is preparsil by alding tin to bjtrie reid in which a prantity of chloride of ammosium (衵 anmaniac) has been dissolved. OLeerve, that all these rparit preparations are varied by difforent operatorx, some prefering more or lexs of the two acdids, and also of the tin; but the prophortiona given form good working spirits, and if care lo taken in their preparation not to fire them, that is, not to allow the temperatare to get so ligh as to convert the tifi into a persalt, the eperator will not fail in hits processes as far as the quatity of the spind it concerned.
113. Tin Spirits. The followiog are among the liest reconmended preparations of

I pound uitrfe acil, 1 jound water; diesolvo in this If oumees ral antuoniac, and thou adM, by degrees, \& enasees pure tin, leaten intu ribbuas.
Or: dieaolve 1 part sal ammoniac in 8 parta nitrie acid at 300° Eanmé; nidd, ley degrees, 1 part puro tin; and bilute tho sulation with oue-fiarth its weight of water.
Or: 4 parta hydrochloric acillat 17° Baamé, 1 part nitric acld at 30° Balumé; dissolve in this mixture 1 part purs tim.

Or: 8 parts nitric ncid, 1 part nal ammonina or coumum salt, aod 1 part grain tio. This is the enusmum apint mosd by dyers.
114. Alum Plumb. Makn a xtrong dersetion of locwomd, and then suld tor it i ponmil alum for every poutind of logwood itsed.
115. To Test the Purity of Num. The usaal impurity which remalers alum unfit for the uses of the dyer, is the fermosalphate of putassa, but if inm be proent is may other shape it is equally injorioses, Cotimorn alam frequently entains ammonia, froma ufino or the crude sulploste of the gas works haringe been emplayed it its manufactars. This may he detected by aulding a little quicklime or cattstic potassi. Pure alum vhould fonn a pulorlesa splotion with wrater, and sive a whito precipitate with pure potasea voluthe in an exeess of the latter. It sbould suffer no changa on the auldition of tiucture of palle, prussiato of putash, or sulphuretesl hydrogen.
116. Nitrato of Iron is assad in the dyo bonse fur suriots perposes. Its principal uso is for dyeing Prussian Bline, and is obtained as follows: Talie 4 parts nitric neid and 1 pert Water in a glass or stoncwaro vessel; placo it in a warmi lath, and ald clean iron so long as the acid continaes to dissolva it vith efferyescence: take out any iron that remains nndissolvod, amb, after sotulitg for 1 bour, tho elear sulution is ready for use. The fumos given off during thcoperation shuuld beguarded agninst, being deleterions to fealth and injuriows to any inctal or vegetal with which
they come in contact. This solution should be kept in the dark, as it loses some of its strength by exposure to light.
117. Chloride of Iron is another salt ased in the dye-house for dyeing silks and woolens a deep lulue, and is preferred, for that parpose, to copperas. It is prepared for uno thus: To 4 parts hydrochloric acid ndd 2 parts water, and apply a gentle beat; then ald iron in picees, or filings, so long as it continues to be dissolved; then pour off tho claar liqnid into a basin, and craporate, when greonish colored errstals of chloride of iron will bo obtained. This salt erystallizes with diffieulty, deliquesces in the air, and should not be cxposed. Instead of ovaporating and orystallixing, the solution may be pat in a bottlo and reserved for use.
118. To make Iron Liquor. Into a large cast-iron builer, or pot, a quantity of iron turnings, boops or pails, aro introduced, and acelie acid-the errude pyroligaoous acid from the distillation of wood-is poured in upos thom. The strength of the neid is generally of 5° Baumé, or specific gravity $1,035$. A temperature of 1500° Fabrenheit is maintained till the solation of protoncotate of iron is ubtained. During tho molation of tho fron much tary matter separatos, which is skimmeel off, and tho solution frequently agitated, to free it, as much as possible, from tho tar. As sooh as a itreupth is gained of a specifio Fravity of 1.09, at00 Fabrenbecit, tho solution is allowed to econ, for a further quantity of inuprities to separate. When clean turninga aro operatest ont, the process of solution is conspleted in 5 to 7 days.
119. To make upa Blue Vat. Tako 1 puand indigos, and grind in water uatil no grittiness can bo folt betwean the fiugers; put this into a drep vensel-casks are gunerslly aned-with almut 12 galluns water; thon add 2 pounds copparas, and 3 pounds newlyslaked lime, and stir for 15 minutes; atir agisu afuer 2 hours, and repeat every 2 houns for $\$ 5$ or 6 times; towarda the ond, tho liquor should le of a groenish yollow colar, with bluckinh veina through it, and a riel froth of indigo on the eurface. Alfor standing 8 buurs to settle, the yat is fit to use.
120. To make Blue Stone. Sulphate of copper is known in commerce as Btae stone, Roman vitriol, and Diae vitriot, and maty be prepared by exposing pure copper ins thin sheets to the joint action of dilate sulphario acid and air; or by treating freshly precipitated oxide of copper with diluted pure oil of vitriol; or by boilhing tho metal with oil of vitriol, either in the concentrated state or diluted with an equal bulk of water. Theas sre the simplest ways of obtaining this salt, which may be reduced to is crystalline form by evaporation. The orystals assume a welldefined rhomboidat form of a fine sapphireblae color.
121. To make Solutions for Dyeing. In making solutions of copperas blue stone, chrome, \&ci, there is no fixed rule to to followed. A quantity of the crystals are pat into a vessel, and boiling water poured upon them and stirred until dissolved. Some salts require less water than others when saturated solutions are wanted; but in the dyehouse saturation is not essential, and therefore there is always used ample water to diasolve the salt, In all cases, however, the proportions are known, so that the operator, when adding a gallon, or any other quantity of liquor to the dye-bath, knows how much ralt that portion contains. From $\frac{1}{2}$ to 1 pound per gallon is a common quantity.
122. To Prepare Cotton Yarn for Dyeing. Cotton yarn, when spun, is put up in hanks, a certain number of which com-
bined constitute a head; the number of hanks ranging from 6 to 20, aecording as the fineness of the yarn varies from Fery coarse to very fine, Sufficient of these heads are tied togetber, or banded with stout twine into a bundle, to make 10 pounds.

After banding, the cotton is boiled in water for 2 or 3 hours until thoroughly wot. The bandles are then loosed, and each roll of yam is put on a wooden pin, about 3 feet long and $1 \frac{1}{3}$ inches thick, 4 or 6 pins making a bundle. The yarn is now ready for dyeing dark colors; but for light shades, it must be bleached previous to dyeing. The bleaching is performed thus:
123. To Bleach Cotton Yarn. A vessel sufficiently large to allow of the yarn being worked in it froely without pressing, is to bo two-tbirds filled with boiling water; add I pint bleaching liquor (see No. 104) to every gallon of water in the vessel, and work the yarn in this for half an hour. Into another Fessel of similar size, two-thirds filled with cold water, buld one wine-glassful sulphuric acid for every 9 gallons water; stir well, and then pat the yan from tho bleaching solation into this, and work for 10 minttes; then wash out until all the acid is removed. This will bleach the garn for dyeing any light shade.
124. To Prepare Cotton Cloth for Dyeing. The ehitb a takea pot of the fold. and hanked up by the hant, taking the ond through the hank rat tying it loosely, technically termed kinching; it is then steeped over night in wh nlkaliue lye, which loonena and romoven tho nii. grease and dressing which it has ohtuinol in weaving; it is then thoroughly rimaet in clean water. Whers thers is a dash-wheel, it should be used for this washing. In conssequence of the liquor often formenting with the peste in the cloth, this prueens has beun technically termod tho rot stecp.
If the cloth is to bo dyed a dark color, no further preparation is needed; but if Light, thin choth has to be blenched na follows:
125. To Bleach Cotton Cloth. Aתer undergoing the rob steep, boil for 3 hours in caustio lye, of the strength of 1 gill of stock lyo (sce No. 101) to the gallon of water: wash out, and steep for 6 hours in as anlution of 1 pint of bleaching liquor (sece No. 104) to the gallon of water; wahb, and atcep 1 hour its a strong sour of 1 wine-glassfol galpharia acid to 1 gallon water; wush well from this before drying or dyeing.

If the cluth be very heary, it may be necesmary to repeat in their proper order the boiling in lye, the steeping in bleaching liquor, and in the sour, finishing, as before, with chorough washiag ot drying.
In bleaching cloth for dyeing, care has to be taken that it is all equally white, otherwise it will show in the color.

The quantity of water used shoold be andicient to cover the cloth casily without preasure.
If the goods be old, and have previously been dged, and if the shade required be a deep shide, and the colnr of the goods light, in that case nothing is generally required but steeping in alkalino tye to remove any grease or starch; but if the color of the cloth is dark, the best method is to bleach as if they Were ersy goods.
126. To Remove Oil Stains, When there are oil spots upon goods, and so fixed or dried in, that steeping in an alkaline lyo will not remove them, rub a little soft soap upun tho stain, and let it remain for an hour. then rub gently with the hand in a lather of soap, slightly warmed, and wash in water; for cotton, a littlo eaustic lye will do equally well, but the soap is preferable, and seldom fails. It is essentinl that all oil or grease bo removed before dyeing.
127. To Remove Iron Stains, Take a little hydrochloric acid in a besin or aatucer, and make it slightly warm, then dip the iron stain into the acid for sbout 1 mimite, which will dissolve the exide of irom; the cloth must be well washed from this, first in water, then in a little sods and water, zo as to remove all trace of acid. A little osaije acid may be used instead of hydrochloric, but more time is requirel, and with old fixed spots is not so effectire. The same precautions are necessary in whohing out the acid, as oxalic neid dried in the cloth isjures it.
128. To Remove Mrildew from Cotton. Proceed with the stains by rubbing in suup or stceping in a little soda, washing, and then steeping in bteaching liquor (see No. 104), or by pratting a wine-glasaful of the stock tiquor (sed No, 101) in 1 pint of water; afterwards wash, pasa throagbsisnur (see No. 105), and wash again.
129. To Remove Indelible-Ink Marks,

Steep in a littlo chlorine water or a weak suldition of bleaching liptror (ive Ni. 104), for about half an hutr, then waile in ammonia water, which will obliterato the stain; then wash in clear water. They may also be removed by spreading the doth with tho ink marks ovor a basin tilled with bot water; then mobiten tho juk marks with tincture of joding, sad immediately after take of feather and moitten the parta stainel by the incline with a solgtion of hyposil) phate of sodn, of canatio potasa or zenfa, until the color is removed; then let the clath dip is the hot waLer; aflor a whilo wash well and dyy.
130. Indigo Blue Dyo for Yarn. The vats axed for dyeing indigo blue aro usually wine pipes or other large caiks, suak in the ground to a deptl convendent for the operators to work at. Five of theso constitute a est, and aro worked togetber and kept of the ranut atrength. The yarn beinje worlied in guanti. ties of 100 pontalts, 20 poitpds are pased through each vat.

Elach vat is filles about threc-fourths with cold water; there arv them mided 8 poumis of indign, 16 poonids of kulpthato of iron (copperise), and 24 poosed ouxd g-alaked lime. The Whole is well stired with a rake for balf an hour, and this stiming is repeated every $1 \frac{1}{2}$ hours for the first day:

The time to stop the stirring is koown by tho molutton hernoning a rich onk yellow, having largo bluo teins rumming through it and a fine indigo froth on the kurriace. Whan these aigas aro all favoralite, the solation is allowed to stand for eeseral hosirs till all tho solid matter zettles, whels it is ready for use.
The mode of dyeing consists in sinply immarsing the goody, and working them in the solution for 15 miqutes, taking ont and wringing or pressing, and then exposing to the air; repeating this operation antil the desired depth of color is ulitained. The yam is then washed in celd witer and dried. When the shade requiresl is very deep, the garn may, provioua to washise, be passed through a tub of water woblahited wili yitriol till it tastes acid, and then whashed; this melds brillisncy th the colar.
131. Sky Blue Dye for Cotton Goods. To dya 10 pounds of cuttun, finat blessch the cotton (sec No. 125); then, to a buts of cold water sufficfent to work the goods easily, auld I pint nitrate of iron, and work in this for 20 minutes; wrisg out, and pats thruagh a tah of elean water. Into aqutbef tubl of enld water add 4 , smoes ferrocyanide of potassium in solution, and about a winn-glaesful of kulphuric aeid; work the gonds in this for 15 minntes, wring out and wash through cold water, in which is dissolveal 1 othre of alum; wring out and ily. For lighter ar darker
shades of blue, usin less or more of the jron and ferrocyanide; or, shonld the color the too light after passing through the process dezeribed, add 1 vinuce mure ferrocyanide, repuat the operation through tho same tubs, and the shade will be deupeacal nearly douhle.
132. Napoleon Blue. For 10 pounds cotton goods, the cotton must be first bleached. Into a tub of cold water put 1 imperial pint of natrate of iron and 2 gills hydrocthoric acid, then add 3 ounces erystals of tin (or 1 pint chloride of tin): stir well and immediately work the goods in it for 30 minntes, wring out and put directly into the prussiate tub, made up witis water into which is put a solution of 12 onnces ferrocyanide, and one wineglassfal of bydrochloric actid work in this for 15 minutes, then wash out in clean water ia which is dissolved 2 ounces of alam. If a deeper shate of blue is required, wash thean in cleun water without the alum, pasa them again through the two tubs; and, litstly, wash them in water with the aluth.
133. Royal Blue. This is dyed in the spme manner as Napolcon Blue, hut the II. graurs are stromger-using 2 pints iron solution, \& gills hydrochloric wid, and 4 ounces tin crystals. The Prissate tub is mula up by dissolving in it 1 posind ferrocyanide of potassium, aund mhting 1 wine-glassfol of sulphario acid, asel I of bydruchloric acid. If not dark enough with putting through ouce, repert,
134. Blue, Copperas (sulplato of iron) ba wed as a morduat for dyeing blee by ferroeqaaide of intiasfumi (prousiate of potas: s(um). The copperas bevtsialted for the blue vat chonld the of a dark rusty green color, and free from cupper, zige, or alumina. Thus, 10 potanda cotton may be dyed a good rich blue by working it for 15 bintites in a solutions of 4 pounds copperas; wring out; and then work Lhrough a solution of 4 ounces of the ferrocyande; finally, wash in cold water containing 1 ounce alum to solution.
Copperas is also used as a dyo by the oxidation of the iron within the fibre. Thus:
135. Iron Buff or Nankeen. Take 2 pounds copperas, and dialolvo in warin water, then auld tho requisite qqantity of water for tworking the goods; work in this for $20 \mathrm{~min}-$ atos wring oat, and put immediatoly into atiother vessel filted with lime-water, and work iu this for 15 minutes; wring out and expose to the air for half all hour, when tho guods will assume a buff color. If the color ta not sufficiently deep, the operation may bo repeated, working through the kame copperas solntion, but using fresh lime-water each time. The goods khould be finally washed throngh clean warm water and dried.
136. Nankeen or Buff Dye for Cotton Goods. To a tab of hot water udd 1 pint nitrate of tron, and work in this for half as hour 10 pounds cotton previously bleached (see No. 125); wash out in water, and dry, This process is simple and easy, and produces a permaisent dye.
137. General Receipts for Dyeing Cotton. In the following receipts, the guantities are given for 10 pounds coiton, whether varn or cloth. Eor more or less cotton, the ifuantities can bes increased or diminished in proportion; lutt when smull articles aro to bo tyed-such is riblous, gloves, \&c,--A littlo thore of the materials may be used in proportion to alvantage. Where washing is referred wi, it is always in cold water, unless otherwise speciferl.
138. Common Black. Steep tbe goods in a decoction of 3 pounds sumach while it is hot, and let them lie over night; wring out and work them for 10 minutes through lime-
tion of 2 potuls copperas. They may either bo washed frota this, ut worked argan through limerwater for 10 mimines, then work theor for haft an buar in a warm decoction of is pounda logwoud, adding + pint clamber lye; befure entering the goods, lift and rilise with 2 ounces copperas iu solution; work 10 miinutes, then wash and dry,
139. Jet Black. Tho pools are dyed in tho same manuer as the list receipt; font along with tho logwood is addeal I poum! fustic.
In both the above reecipts if 3 pints iron liquor (sec No. 118) bo uxied finstead of the copperst, or in part mixed with Hte copperas, it matios a richer slatalo of black, but copperas is generthy nsed; if mised, use half tho quantity of eweh.
140. Blue Black. Dye the poods first a good iskale of btae by the vat (sce No. 1:0), and then proceed as for common black. It the bluo be Fery deep, then half the quastity of tho materfah for creiug black will nufice. 141. Spirit Yollow, Work through a solntion of protochiotido of tin, of tho specifie gravity of 1° Butmé, for 30 misutes; wash
out, and work for 15 minutos in adecoction of 3 pounds bark kept at a boiliug beat; lift out tho gands and add ter the bark soletion \& phat ainglo chloride of tin, work the goods br 20 minutes in this, and thon wash well in cold water. This gives a rich yellow.
142. Spirit Brown. Firet dye the goods a apirit ycllow, according to the last receipt; after washing, woek for + hour in s docuction of 9 pound lima or penchwood and 1 pound logwnod ; life the grouls puth ant ndd 3 ounces nlum in solation, and work tho goods in it 15 miautas; wash and dry. Dy varying tho proportions of logwood and limawood, a vanety of shades may bo produced.
143. Mordant Brown. Steep tbe grods for six bours in a decoction of somach, nest dyo a sperit yellow, accorting to tho recript given alrove. Then work for balf an boas through a decoction of 2 poands limawood and 8 ouncos logwond; lite tho goods, and add 9 othees alum in solation; work for 15 minates, wash and dry. This methoil ts well alapteil for cotton poeed, is lyecter than the spirits, and rooro casily performed by the nampructical man. The spirit brown is best for yam,
144. Cinnamon Brown. Dye a dark spirit Yellow (sec Na, 141), and wnok for 30 minuten in 36 pronds timawood and + poumd logsonad; 1 iff the goods anal podd 2 vusces alau in solution; Wash atad dry.
145, UVanterin Brown. Dya a spinit yellow (see No. 141), then woth for 20 minates in a decoetion of 1 phand limawood and 1 pound fustio; fift, and sulit 4 pint rod liquar (sec No. 100); work 10 mitustes in this; wayh and ify.
146. Fawn Brown. Take 1 part nanotto liquor (sec No. 95), and 1 part boiling water; stir well, and work the gools in it for 10 minutes; wring out and wash in two watera; then work for 20 minntes in is decoction of 2 pounds fustio and 1 pound swmach; lif. and add 3 ounces copperas in solution; stir woll, and work for 20 minutes longer; then work for 20 minutes in a decoction of 3 ounces limawond, 8 umees fustic, and 4 ounces \log wood ; lift, and add 1 unnce alum; work in this for 10 mimutus; wring ont und dry.
147. Catechnt Brown. Wurk the gonds at a boiling beat for 4 hours in 2 pounds of catechu prepared according to No. 96 ; wring out, and then work fur half an hour in a hot solation of 6 ounces biefromate of potasa; Wash from this in let water. If little suap bo adlied to the wash water, the colos is improved. Deeper shates of brown may be dyed by
repeatiog Che operation.
148. Catechu Chocolates. Dye lirywn according to the last reccipt, then work for 15 mingtes in a deonction of if puands logwoud; lift, and abl 3 onnees alam in solution; work 10 mithtes louger; wash ont aud dry. Difforent 9 bules of Lrowir and chocolate can be prodaced, by varying the proportion of logFood, and the strength of the brown dje.
149. Chocolate, or French Brown. Dye a spinit yellow according to receipt No. 141 ; then work for half na hour in a tecoetion of 3 pounds logwood; lif, and ald i piat of red liques (sec No. 100), and work 10 minutes louger; wush and dry- A deeper zhade may be obtained by adding 1 pound rustic to the logwoed.
150. Catechu Fawns. Work the gooda 15 minutes in lot water containing 2 pints eatechu, preparest ax in receipt No, 16 ; wring out, and $\frac{p r o r l}{} 15$ miastes in hot water contrining 1 aimen licluromate of potassa in 6olution; wash and dry.
151. Catechu Fawns-Another Method. Wark in the enteclun the saune as in tho last receipt; wring wit, apd work for 15 min . ates in warm water containing 2 odmees acetato of leal in solution; wash in cold water and dry.
152. Catechu Fawns-Another Method. Worl in warta water coutaining 4 pinta catechn (see No. 96), lif, and ndd $\%$ cunces copperas in solntion, aud vork for 15 minutes; wath in water, and then in another tub of warm water in whieh stemeient foap has been dissolved to raivo a lather, and then dry.
153. Common Red. Make a decoction of 3 porudts smanch, and put the gonds in at incos let twots steep over nipht; wring out and twom for an hour in a Donsture of 1 gill red spirili (sec No. 106), to every gallon water; mrin tout nnd wash well ; then mork for half an butur in adecoctios of 3 pounda limsunted and 1 puopd fostic, theing this decoction as: hat as the hand can benr it; lif, and add I gilt fol spirits, then work for 15 minuter niore; wash out aud हैन.
154. Barwood Red. To is decoction of 9 permis suttach, add a Eine-glaciful of vitrint, mul stecp the gonds is it for 6 hours: wriag vat atal whrk for an homtr is ged rpirit (sed Sio. 101), vilutel to 29 Dacinć; wrimg ont asel wadt, thes paes tornatgh a tub of warlit waber; ; fet 10 promd lyrwoed iato a tuiler with water aund bring i^{+}near to the boil, ther put lo the groda dust work among the wowl fenins fir ? luatr; lif ont, wasb, vrine and dry. Deeper mathes may be dsed by twang larger quantities of the materiala in oach nperation.
155. Scarlet. For 1 pound of cooda, boil 14 ounces ercans of tartar in teter in a block-tin vesself ald $1 \frac{1}{2}$ ounces tia spirits, malo according to the first receipt in No. 113 boil for $\$$ minutes, then boil the goods in it for 2 hours; drain and let the gouds cool. Next boil \ddagger vuace ereaini of tarlat for a few minutes in some sater, add to it 1 oance powdercd cochiseal, luill for 5 minutes, aiding gralually 1 ounco tin spirit, stirring well all the time, thea pat int the gooda aud dyo inmediately.
156. Common Crimson. Steep over might in a tlectretion of 3 prands sumach; wurk in spirits diluted 20 Baume, wast and then work for 30 minates in a decoction of 3 pogads limawool and 1 porind logetrond; lift, and ald a gill of red spurits, (see No. 103), work for 15 mintates, wash and dry. A beautiful red crimsoa is abtained by omitting the logwond; aud a divensity of tints dyed by varyiug the proportions of the limawood and logwood.
157. Light Straw. To a tub of cold
water ald 4 onnces acetate of lead in solution, work the goods in this for 15 minutes, and wring out; then work for 10 mimutes in another tub of water containing 2 ources hichronate of potassa, wring out, and worl again in the lead solution for 10 minutes; wish and dry.
158. Leghorn. This tint is dyed in tho same cuanuer as the last, but adding t pint of anapteo liguor (see No. 95) to the chrome solution. Different shades may bo olstained by using more or less of theso etuffs, without varying the nude of working.
159. Annotto Orange. Heat tho annotto solution (sec Nu. IV) to about 140° Falir.; work the goods in it for 20 minutes; wring out thorougbly in order to economize the liquor, wash in a cooplo of waters and dry. If the goods aro then passed through water with satificat acid to tabto sear, a very red orango, abjust searlet, is obtained, bat the tint falas guiekls.
180. Logwood Bluo. Dyofirat a lipht blae with tho vat (sec No. 130), then soak the goads for several hours in a lot decoction of 2 pounds sumach; then work for 15 minaten in water cobtafuligg 1 piat red liquor (see No, 100) and 1 pint iron liquor (sec So, 118); wash in two wators, bot; then work for 20 minutes in a decoction of 2 poumds logwood; lif, and add i plat rod lignor, aud wofk again for 10 minules, wash and dry.
161. Fustic Green on Yarn, Dyo a blue with the rat (sec No, 130), wash and wring, and their para through red ligutor (seo No. 100) dilnted to 40 Baus3é, wash throuph a tuls of bot walor, and thea work for 20 min . utos in is decoction of 4 powuda fustic; lin, and add 2 ounces alum ha Eolutions worle for 15 minutes, wast and dry.
162. Fustic Green on Cloth, Work the gapds in red liquar (sec No, 100) diluted to 4^{3} Batant 6 anil try in is bot chashler; thon wot in hot water and work for 20 munter in a decnetion of 3 prounds fustic: lif, and nill 8 onnces alum in nolution; work agaill for 15 minutess, wring'out and work in chemice (a $100-$ lution of sulphate of Judigo whose acid has been neutralized with earboanto of sodit); wring out and dry.
163. Dark Green on Cloth. Afer the goods have been cleaned, work them for 10 minutes inred liquor (\sec No, 100) at 5° Bamué; wring out, and pass through a tub of hot water then work for hald au hour in a decoction of 3 pounds bark; lif, and add \& pint red liquor (sec No, 100); work 10 mimates longer, then lift and drain; work next for 20 minutea in a tub of cold water containing 5 gallons chomic (sec last reccipt); wring out and dry. Tho depth of shade can be varied by inereasiug or diminishing the quantities of material in proportion.
164. Green with Prussian Blue. Dyoa gooil Prassian blao (kec No, 131) accurding to the depth of green required; then work 10 minates in red liquor (sec No. 100) at 4° Baumé, wash in warm wator, and work for half an hour in a decoction of 3 pounds fustic; lift, and add 2 ounces alum in solution; work again for 10 minutes, wash and dry. A finer tint can be obtained lyy using bark instead of fustic, but it nust not be workel toos warm.
165. Sage Green. Dyo a Prussian bluo (seo No. 131), and work 10 miautes in a solution of 2 pounds of alum; wring out, and work 15 minutes in a decoction of 1 pound fustic lif, and add a pint of the alum solation already used; work 10 minutes; wash and dry.
166. Olive or Bottle Green. Dyc a gond sbudo of Prussian blue (sce No. 131); then mordant 10 minutes in red liquor (see No. 100) at 5° Bunae; wring out aud wash in bot water; then work half an hour in a
decoction of 3 pounds fustic and I pound sumach, then ald $\frac{1}{2}$ piat of iron liquot (see No, 118), and work 15 minutes; wash in at (tb coataining 2 ounces altum, and dry.
167. Olive or Bottlo Green-Another Method. Work the gonds in red liquor (xyd No. 100) at 50 Busumé, wash put is warm wi. ter; then work for half an hour in a decoction of 3 pounds bark and 1 pound sumach; lift. and add $\frac{1}{2}$ pint iron liguner (sed No. 118), and work 15 minutes; wring ont and work 15 minutes in tho chemic (sec No, 102); wring out and dry.
168, Olive Green, Dyoa Prussian bluq (sed No. 131); then work for 10 minutes in red liquor (sec No. 100) at $4^{\circ} \mathrm{Baum} \hat{S}_{;}$wrsh in bot water, and work in a deenction of 3 pounds bark and 1 pound logwond; lin, and add $\frac{1}{2}$ pint red liqum, and work 10 minates wash and dry. By varying tha proportions of bark and logwood, different slamles of green may be obtained.
If tho goods bo yarn, of light Who may bo dyod ly the yat (sce No, 150) instead of tho Prussian bhe, and proceeiled with as ahoye.
169. Lilac or Puce, Work for tas hour in red spipits (sce No. 108) nt. $1 t^{\circ}$ Haume; wring ont and wath; thou work bat na hour in a decoction of 3 pounds logwont as sbout 140° Pahr: liff, and puld I gill red spirsts, and work 90 minutes; wash und dry. Jlalf o pint red liguor (sec No, 100) or 2 eunces alum, may he aided to the logwood after lifling, inateml of the red apirit.
170. Lilac or Puce, Work for 15 min uter in red lifuor (see No. 100) ot 5° Banabs; wring out and wash in a tub of warm wator; then work half an bour in a decoction of: pounds logwood at 1400 Fahr. lift, nod add I pint red liquor, or 2 punvea alum; work 10 minties, aud wash in cleas warm Wuter; wring out and dry.
171. Light Purple or Adelaide. Steep the goods in a decoction of 2 powades sumach; wring out, and work lalf an hour in plamb ppirit (sce No, 111); wring out, and wash in eleant cold water antil no tasto of acid io left on the goods, aud dry.

When working with the plamb npirit, it is adviable to put a sulficiesicy of it inte a separato yessed for working tha gooda, returning the liquor afterwards to the plomb tub.
172. Light Purple. Steop it a decoction of 2 pounds sumach; wrigg out amil work for 20 minutes in red spirits (sed No. 108) at $1{ }^{\circ}{ }^{\circ}$ Baumé; whash well a0d then work in plamb spirit, and finish the same as the last recelpt.
173. Purple. Steep in a decoction of 2 pounds sumach until cool; work in red spirits (see No, 108) at 11° Banmé for an hour, and wash in cold wuter; then work for half an hoar in a decoction of 3 pounda logwood at 140° Fahtr; lift, and add 1 gilt red spirits, and work 10 minutes more; wash in cold water and dry.
If a browner tint is required, use a litule more suunch; for a bluer tint, use less sumach and moro logwood; and adil, after lifting, i pitt red liquor (see No. 100), or 2 ounces alum, instesad of red spirits.
174. Lavender or Peach. Work for 20 minutes in plumb spirit (sete No. 111); wring ont, and wash in clean cold water till free from aeid taste, and dry.
175. Logwood, Lilac or Puce. Dye a good shade of Prussian blue (see No, 131); then work 15 minutes in a decoction of i pound logwood at 140° Fahri; lifh, and add 4 ounces alun; work 10 mimutes, then wash in cold water and dry.
176. Logwood Lilac. Dye a sky blue (see No. 131); then work for 15 minutes in a tub of warm water contaiuing 1 gallon alum plumb (see No. 114); wring out and dry.
177. Common Drab. Work for 15 minutes in a decoction of $\frac{1}{5}$ a pound sumach; lift, and edd 1 aunce copperas in solution, sad work 15 minutes more; wash out in a tub of cold water, then work 15 minutes in is decoction of 4 ounces fustic, 9 ounces litulwood, and 1 ousce logwood; lift, and add 1 ounce alam in solation; work 10 minutes, then wring out and dry.

A grat variety of different tints can be produced by varying the proportion of the fimawood, Instic, and logwood; and lighter or darker shades by diminishing or increasing the quantitios of sumach and copperas.
178. Olive Drab. Work for 15 winutes in i pound sumach; liff, and add 1 ounce copperas, and work 15 minutes more; wash in Wator, then work for $\overbrace{0}$ nimutes in water with $\frac{1}{2}$ pound fiestio; lift, and add 1 musec alun, and wort for 10 minutes and dry.
179. Drab. To a tub of hot water add 1 pist amnotto pruparation (sce No. 95), which gives a IIght salmon color; theu proceed as for olice drab in last receiph. By
varying the quantities a great variety of tints vsrying the quan
may bo oblained.
180. Stone Color, Work the goods 20 minutes in a slecoction of 1 pound Eumach; lift, and add 1 ounce copporas in iolation; work for 15 mingtes, and wash in cold water; then work 10 nifultes in warm water containing i pint alum plumb (sec No. 114); Wring out and dry. This gives a reddish tint, which may be avoided by asing a solution of t ounce of alum instead of the alum planit.
181. Catechu Stone Drab. Work the goods is minutes In hut water contsining 2 piuta preparel catecbu (soe No. 96); liff, and add 2 uuncea copperas in solution; work for 15 minutes, and wuh in water, thon work for 10 pimutes in a tub of warm water containing a docnation of 2 ounces logwood; lift, and aded $\frac{1}{2}$ ounco alum; work 10 minutes more, wring out aud dry.
182. Catechu Drab. Work for 15 minntes in bot water containing 1 pint prepared catechu (pee No. 90); 10ff, and add 1 ounco copperas; work 10 minutes; wash out and dry. A variety of tints miay be obtained by finishing in a weak decoction of ote or other of tho diffurent dye. woods.
183. Chrome Dyes for Cotton Goods. The following recipes will serve to illustrate the tibe and value of chrome (bicbromate of potacas) as a djeing agest. The quantition given are for dyeing 10 patods wuight of cotton, and may bo incrensed or diminished in proportion, accorditig te the quantity of goods to lie dyed.
184. Iight Straw, To a tulb of cold water add 4 ounces acetate of lead, previously dissolved; work the goods through Chis for 15 misutes, and wring out; into another tab of water mild 2 ounces bichromito of potassa; work the goods through this 10 abinates, wring out and pass again through the lead solution for 10 minutes; wash and dry.
185. Lemon Color. Into a tub of cold water put 1 pound acetate of lead, previously dissolved; work the gronds in this for 15 min utes, and wring oul; isto another tub of cold Faler put 6 olanees birkromato of potassa in solution; Work the goods for 15 minutes through this, and wring out; then work it 10 minutes it the leal sollution; wring out, wash, and dry.
188. Deep Yellow. To a tuh of cold water sild 1 pound acetate of Itad, and 1 pound yitrate of lead in solution; work the goods in this for 30 mimites, and wring out; then to a tab of warm water add 12 ounces bichromato of potassa, and work the goods in if for 15 minties; expose to the air for half
an hour, then pass again through both solutions, working them the same theme in each as before, and exprese to the air for one hour; then pass them through the lead solution; wring out, wash and dry. If the color is not deep enough they muy lio passed through the solutions again, observing the kame rules.
187. Deep Amber Yellow. Put into a tab of water 1 pound acetate of lead, and to this add gradually caustic potaesa or soda, until the precipitate formed be re-dissolved, taking care not to ndd more alkali than is required for this solution; work the goods in this for 30 minutes; wring out, and work for 15 minutes in another tub of watur to which 8 ounces bichromnte of potassis has been added in solutim: wring ont, wash and dry. 2 or 3 ounces bulphate of zine may be added to the chromes solution with good effect. If a deop red anber loe required, add to the clarome solution i pint mariatic acid.
188. Chrome Green. Dye a blue by the process described in No .131 ; then dye a yellow according to the last receipt. The depth of the blue and yellow will regulate the tint of green.
The prinejpal difficulty fa whea a particular depth or shade of green is wutted, to ascertain the exact shade of blue to he given, as blue cannot be added opou the yollow. This is a mattor which can only bo tearned by practice.
189. French Process for Dyoing Tur-key-Red. The following prucosa for dyeing tarkey-red, in the ono in general weo in France at present.
The quantities of materials, \& c ., giveu, ne for dyeing 2900 pounds of cotton, which has already, it is assumed, beon subjeoked to thorough washing and neouring in maph.
Dissolve 90 to 22 pounds carbonate of potasse in about 330 gallons of wator, and provide for future use 1300 to 1400 pounds of fat oil ; nost divide the gooda to be dyed into threo oqual portions.
The first stop in the procens is ofling the goods; mix together one-third part of the fat ol and of the solution of potassa, stirring by degrees into the oil sufficiest solution to produce an emulsion; this makes the white liquor.

One-third of the goods are padded, that is, drawn through evonly back wards and forwards, is this white liquor; then take them out and lay together in a heenp in a fresh cool place for 10 or 12 bours, and dry in an attansphere heated to 140° Fahr.

While the first portion of the goods is dry ing, propare a second purtion of whito liquor, and stilject a second portiot of tho goods to the same operation as the first; tho remainisg portion of the goods is in Lurn subjected to the same treatment, using tho remainder of the fat oil for a third tulh of white liquor; by this means the process proceeds without intermissiun, sach portion being under different stages of trontment simultaneously.
This roulino is repeated several times (generally scven or eight) on each portion, each always in its own tub, according to the quantity of oil which it is desired to fix on the goods. If the balh begias to fail, either a little tepid water is added, or a certain quantity of old white kiquor proceeding from the washinga.
The next stage is to remove superfluous oil; this is done by maceratiug the goods twice, successively, for 24 hours each time, in a solution of carbonato of potassa at 10 Baumb. The hiquid which is wrung or prossed out of them constitntes the old twhite liquor, which may be employed again for filling up in the oilling operation. The goods
are then carefully rinsed.
The third process is galling or mardanting. Bruise 22 pounds gall-muts, and boil repeatedly until thoroughly drawn; add sufficient water to make up to 66 gallons; dissolve in this 35 pounds alum with tho essistance of Leat. This is sufficient for working one half, that is, 1100 pounds of the cotton, which must be padded in the liquid at a temperature of about 160° Fabr.; it is next suspended for 2 days in a drying-room heated to 112° Fahr., and then passed into a hot concentrated bath of chalk. Care must be taken to work the goods very equally in this bath, in order to ayoid atreaking. The goods are then washed, und presont a fawn-colored appearance.
The fourth stop is the first dyeing. This is performed on 10 pieses at a time, the proportions of madder yarying according to the breadh and length of the pieces, from 13,15 , 17 to 20 pounds madder for each piece. Au in the preceding process, the madder in divided iuto two equal portions, one portion being used for the frot dyeing, and the other portion reserved for the second dyeing. The one portion is mized with the requisite guantity of water, from 300 to 400 gallond; the 10 pieces aro introduced foto this both ati a tepid heat, sud kept in it 3 hourn, the temperature being gradnally locreased, untif, at the end of 29 hourn, boilling point is ruached; and thia heat is rustajned for the romaining i hour. The goods must then be washed, thoroughly cleansel, rinsed and dried.
The fifth atage lis the second galling; which is prepared hithe samo gall liquid, and in the tane manner as tho first galling, finishing with tho chall bath, washing and drying.
The wixth operation is the second dyeing, an oxaet repetition of the firgt dyeing, using the remaining half of the madder reserved for this purpose.
The sevonth stop, first clearing, is performed in a close logler, Lwo-thirda ailed with water containing in solution 13 pounda soap, and $3 t$ pounde carbonato of potassis; tha gooda are bolled in tbia for 8 bours.
The eighth proeess is a second elearing, conducted in tho same mumer as the first clearing, but dissolving in the wator 144 puunds soup, and 14 ounceas chlorido of tin instend of the jotassa solution.
For only very lively reda a third clearing, similar to the seront, is required. The goode, nfler clearing, are exposed for some time in the air; then worked tbrough a bren beth, which adds to the lorightnexs of the color.
The process here devcribed is slightly modified by some French dyers; thus, axperienco proves that the oit is better fixed in the atuff when the drying is not performed too rapidly; and there are yome who, when the scason docs not admit of exposure to the air, heap the pieces together, after ailing, in a dryingroom beated to 05° Fahr., turning them over from time to time to prevent injury from overheating. Some use ox-blood in tho proportion of 40 pounda blood to 100 pounds madder.
190. Violet. Dya a turkey red (sed No, 189), and then pass through the blue vat. (Sce No. 130.)
191. Preparation and Dyeing of Woolens, To prepare new woolen goods for dyeing, the cloth or yarn (if the latter, it is first banded with twine into spindles, seo No. 122,) is steeped over night is soap lye, and then scoured through clean soap to remove all oil or grease that may be upon the wool. Insteed of soup, a scouring raixture may be prepared with 1 pound soft soap and 1 pound common soda (or $\frac{1}{3}$ pound sods-ash), in 10 gallons water.

Goods to be re-dyed must first be steeped
and scoured in soap and soda. If the remaining color be unequal or dark, the goods must be worked for a short time in a sour, made by dissolving 2 ounces bisulphate of potassa in each gallon of water psed. Woolen goods are always dyed hot, as near luiling point as possible; this necessitates the use of boilers, which should be of copper, or copper and tin, as iroa will not answer the purpose. The dye-stuifs are generally put in the beiler, and the gooda worked with it, but it is eleaner to make decuctions (sec No. 94), and uso the clear liquor. All washings are to be in cold water unleas otherwiso specifiel. The quantities given in the following receipte ars for dyoing 10 pounds of woolen goods, either cloth of yarm, untess otherwiso expecified.
192. Black. Work for 20 minutes in a bath with 8 ounces cammood; lift, and add 8 ounces copperns; wurk 20 minutes more, then withlraw the fire froin tho looiler, and nubmerge the gowds in the liquor over night, then wash out. Work for an hour in another bath contatning a decoction of 5 pounds logwood and 1 pint chamber lse; Iif, asel add 4 ounces copperns; work for 30 minutes longer, wash and dry.
193. Brown. Work for an hour in it bath mide up with 2 pousda fustic, 2 pousids maider, 1 ponnd pearhwood, and 4 ounces of logwood; int, and add 2 otuces copperas; work for 30 winutes, wash and dry.
194. Brown Dye. The different shades of this dye vary from pale yellow and reddinb brown up to very dark lirown, almost black, every shalo of which, however, may bo produced, as the taste of the workman may dictate, by mixturea of reds and yellows with blues and blacks, or by slapple dyes, which it once impart a brown, -35 catecha, walnut rinds, or osthle of manganese.
Boil the cloth in a mordant of alum aod gommon salt distolved in water, then dye it in a bath of logwood, to which a litule green copperas has becu added. The proportion of alum nhould be 2 vusces, and of salt 1 otance, to every pound of cloth.

Or hoif the prools io a mordant of alum and sulphate of iron, then rinse them through a bulte of eiadder. The tint depends on the relative proportions of the alum and copperas; Whe prore of the latter, the darker will be the dye. The joint reight of the two should not exeeel \& of the weight of the wool. The bent proportions are 2 parts of alum and 3 of copperns.
For otber receipts for dyeing black and Irown sec 1ndex.
195. Grimson. Wart in a bath for one hour with 1 prund cochineal paske, 6 ounces dry cochincal, 1 poumel tartar, aud 1 pint protochloride (singlo chlorile) of tim; wash out and try.
196. Scarlet. Wurlc for as hoar in a bath with 1 pound fartar, 2 otuces dey cochineal, 8 ounces stmucis and 8 ounces fustic; wash out and dry.
197. Red. Work for 30 mipotes in a bath made wp with 1 ounec clirome and 1 ounce alum; wash ia cold water; then work for 30 minntes in another lath with three pounds prachwood of limanood; lin, and add 1 ounce alum ; work for 20 minutes; Wash and dry.
198. Claret Red. Work for an hour in 5 ounces camwood; lift, and expose the goods until well drained sud cold; meanwhile, add to the camwood hath 4 ounces copperas, 2 ounces alum, and 8 ounces logwood; work the goods for 30 triuutes, wash and dry.
199. Scarlet. Fur every 100 pounds of fabric, boil, it a suitable kettle, In ponnds ground Honduras cochineal, 5 pounds half-refined tartar or 3 pounds tartaric acid, 2 pounds
oxalic acid, 1 pound tin crystals, it pounds flavine, 10 pounds scarlet spinit (sce belone). After it has builed for about fifteen minutes, cool the dye to 150° Foh., enter the goods, handle then quickly at first, and let them buil slowly for 1 bomr, when they will be a good scarlet. Take them out, cool, and rinee in cold water. If it shonld happen that the wool or flamuel shows some white hair, which is fenerally the case when new wool is used, then add 5 pounds of raw muriatie acid to tho dre. This powerful agent will work wonders in searlets, oranges, and pinks, as it tans tho wool, which is perhaps a little greasy, und pre. rents the tim crystals from fastening too quickly to it, and thereby evener colork aro obtained. This Jatter fact is very valonblo, and not generally known.

Scarlet spirit is thus prepared: Toke 16 pounds muriatic acid 220 Banmé, 1 pound eathered tin, 2 pounds water. The acid should be put in astoneware pot, and the tin adiled, and allowed to dissolve; the mixtura should be kept a few days before using.
200. Lac Scarlet, Work for 30 minutes in a lath with 1 pound tartar, 8 oances sumach, and 2 poundin lac; lift, and add about a gill of bichloride of tin; work for 30 misutes, wayls and dry.
201. Pink, Work for au bong in a tath made up with 1 pousd tartar, 8 onnces alum, 1 pmud cochineal pasto, and 1 pill red ppirits (ene No. 108): wath in cold water and dry.
202. Yellow. Work for 20 mineter in a bath of water containing 8 ouncea tartar and 8 ounces alum; IIft, and edd 2 pounds bark, 8 wuncer sumach, 8 vunces fastic, and 1 pint red spints (sec No. 108); work in this for 40 minuter, waili out and dry.
203. Orango. Werk for 40 minutes in 2 pounds evaiarts, 3 ounces dry cochineal, 1 pound fustic, 8 counces tartar, and 1 piut red spirits (sec No, 106) f what and dry.
204. Sky Blue. Work for 30 minntes In a bath contsibisg 8 ounces argol, 1 pound alum, and 1 gill indigo extract (sec No. 09); wash out nat dry. The alhade of blue will depend ou the quatity of indigo extract med.

For other abades of blac see Index.
205. Piseon Bluc. Work for $40 \mathrm{~min}-$ aterin 2 oumcerchronno (bicluromateof potash). 4 onaces alnas, aul 1 oance fartar, wash out is cold water, and then work for 30 minutes in nonther bath made up with 3 pounds \log. Whod; lifr, ank euld 1 ounco verdigris ; work for 15 minater, Tand and dry:

206, Applo Green. Work for 30 min utes in a batil with otse ounce chromes and 1 vunec alums wablh through eold water, thes work for 30 mitntes fo another bath with 2 pounds fustic and 8 omeces lugwood; wash nad dry. Different propertions of the matorials used will produce different shades.
207. Green. Work for 15 minntes in 5 pound fustic, 2 ouncen argol, and 5 onnces alum ; lift, and neld \ddagger gill of indigo extract (sce No. 99); work for 30 minntes and dry. More or less indigo extract will make the green bluer or yellower, as required,
208. Fast Green. Fisst dye is bluo in the indigo sut (sce Nin. 130) acenraling to the depth of the green required; then work for an hour in a loath with 4 pounds fustic and 2 pounds alum; dry out.
209. Olive. Wark for an hour in a luath made up with 10 ounces fustic, 8 ounces log. wood, 4 nusces madder, and 2 ounces peachwood; lift, and add 4 ounces copperas in solution; work for 30 minutes and dry.
210. Wine Color. Work for an bour in a bath with 4 pounds cudbear, and dry. For a darker shoulo use more cudbear. If the tiut be desired bluer, add, after 30 minutes working. 1 gill ammonia; if a relder tint is
wanted, ald it mine-glassful of hydrochiotie acill; but if this last fee inied, the goode must be washed oat betore dryims
211. Light Violet. Work for an hour in a lath with 4 nasees cudthas, 4 pateres logwoot, 2 onnces harwood of canmword, and 2 ounces poselywuod; liff, and sudd $\frac{2}{}$ minees alun in solutivn, work for 30 minutes and dry.
212. Lilac or Puce. Work ia a bath for one hour with 10 momes Ingwhod, 1 obmee camwond and 8 puusds cultsear; lift. ans add 2 otuces copperts in solution; work for halt au Jutur and dry:
213. Brown Drab. Work for 30 min ates in a bath with 2 anmes ground madder, I -uncen yotichwood, 2 otueot \log wood, and © (onnes- fastie; [if, whid ald 3 umees copphras it solution: mix woll and work the goode for 30 alinutes more; then whas and dry. The shate ean too atjunted to-suit, varyjing the quathities and proportions of the dyearouls.
214. Properticsof Dye-woods, Peachwood reddens, nutder gives the itrals tint, fustios sapplice jellumnesc, and logivinod induces a alate hise.
215. Stone Drab. Work the geolls for 20 pitates it it hath contaitige it suees pematroon in limawnok, y nghens logiviod
 pera in solusim: fetip wel wad wooth is this

 diaden ars mande by varytaf the phatitiod of tho dign-whaks. (suefant reveiper.)
216. Slate Wosk tire hafr mon lum in a Talle with A mame hagrovil atal 1 sume han-

 wanta and dey; For a bher tims. (en frov dims
 furtivent moth alum. ise.
217. Blue. Dyame wrimbar bitue is pera format lis vagyint in the bum vat (on No.

 shtianed.
218. Bluo Purple 100 patimbs Wool are liset dippod at lative ithes if the Fat, and
 pintials fartar, 3 potals fiathered cing. Is

Prom thas muridant ruter 10 promis in as sublable kettle; culet 5 pmisils tarfar the it, etir it Well, and enter the wool at 1700 Fabr.; let it boil For 1 lower, take it oot, cool, and let it lay for 24 hours, Then hinil ont 20 poonds goenl logwoul hir $\frac{4}{2}$ hoter in fesh water; cool iff the kettle to tom Folir., enter the wowl, aud hatule it well fur an bohs, then beat it up to 1850 Thals., but so not lot it boil; let it go lor 1 buly hoorn when it will be a watk parple. Tbis cofor stands the sun romarkably weff, purlays owing to the fact that there is not why nhum or sulphutic acid neeth except that rentatant in the bine vtrial.
219. Blue Purple, Fast Color. 100 pounds of whol are first dipped is the blae vat to a ikght shate, shru bolled int a solution of 15 pounule altum, and $: 5$ pounds lalf-refised tartar, for it hutrs: the wool takea oat, cooled, atad let statul 24 hours. Thead boil in fresh water 8 permbs prowdered cochineat for a fow minutes; conl the kettle to 1500 Paht; handle the prepured wool in this for 1 hour, in which time let it boil for $\frac{4}{4}$ hour, when it is ready to cool, rinse, anot dry, By coluring first with cochineal, as thove, and finishing in the blue rat, the fast purple, or dahlia, so much admired in Germatn broudeloths, will te produred.
220. Royal Blue Dye for Woolen

Goods. Wrolens may be diyed different shases of blue with nitrate of iron, ohserving the gemeral sule that woolens must be worked at a boiling heat.
To dye 5 pounds of wooten goods-work for 20 minutes in a bath with 1 pound ferroeyanide uf potassum, and lift; then take \ddagger pint nitrate of irom and ndd to it 1 ounce crystals of tin (or 1 pint chlorile of tin); stir trell for a few minutes and then add this mixture to the bath, and work the goods in this for 30 minutes; wash out and dry. For varians shades of color, inerease or diminish tho quantities in proportion.
221. Chrome Dyes for Woolen Goods. The grantities given in the following reccipta arè for dyeing 5 pounds of woolen gonds, unless otherwisd statel. It must be understood that the goods mast be cleaned before dyelag, and the dying mast always be performed at n bolinge heat.
222. Black, Work for 1 bour in a bath with of ounces bichrouate of potassa, 6 ungees alyin, amil 4 vinice fostic; lift, and expuse to the air for a short time; trash well, puil then work for 1 homr in another lath with 4 puends losswoud, 4 umpeen larwood, and tomices fintios: lift, suil aild 4 wuses copperit iff sulfition: wurk half an hour in this, aml then wash and dry. In order to dge a betne bleck. the givels untast be first dyed blue liy the vat (uer 30.130) or otherwise, and then viocredeal ville as for blaek, vily osing less mauprabs.
293. Brown. Work for balf an botr in 4 pimeos of biclironute of potassa; 1 fr , and vepourc 1all woll; then work an bair in 2 prombls fustic, 4 omses mulder, 3 autees codlear. 4 wileer lactar, 2 butaces logwond; lif oft ant dity; or it may be traflied before dryNe
224. Rich Yellow Brown. Work for an buut ta the follonivitg bath: 2 ounces biFhnomato of potava, is numeex arpul, 2 onneca afuro: wa-k thin this bath; then wark ibnat 40 minuten is atsother hath made np with 9 pultwid fustic, I poand mudder, 8 oascen peaphwurd, sal 4 nthenst thewoud; wash ont sail dry. This poves at sery leabtion lrown: and is groat virnety of tints and shades may be ntath by taryone the Twantified of the lant bath, the lires foth rettaining the vasme.
225. Rich Yellow, Work fur half an Luar in a lath with 3 ounces bielironate of potaven and 4 ousneot alons; lift, and expase till weil cooled atsd drained: then wook for i hour in another buth with 5 pounds fartic: wash nut and diry.
226. Bottle Green. Work for an butr in a bath with 2 ounces bichrumate of portasa and 4 oroces altum; lift out and expose to the air till cold; then work for an bour in a ssiored letth with 3 pounds fustic, if pounds logwond; wash out atpl dry.
227. Invisible Green. Work for an bour in is lath with 3 satuces bichromate of potassh, 4 uinces alum; lift, and expose to the air for some tifue; then work for an hour in a seevnd bath with 2 poands fustic, 3 , pounds logwood; wash out and diry. By comiparing chese lact two receipts it will be kecen that the different stades are produced ly viryis the proportions of the same dye-stuff, atal will serve as a guide for other sbivles of dark green.
228. Olive. Work for an bour in a bath with 4 ounces chrome, 2 ounces alom; lift and expose to the air; then work for an hnur in a loath with 3 pounds fustic, 14 pounds camwood, 1 pound logwood; lift out and dry.
229. Purple. Work the goods balf an hout if a bath with 1 ounce bichromate of potiksa, 1 ounce alom; lift out and wash in cold water; and then work half an hour in a
bath with 2 pounds logword, 1 pound peachwool; lift, and add 1 ounce alum in solntion ; work in this for 20 minutes; whah and dry. If a lighter and redder shade be riqquired, use less logwood and more peachwood. For a darker sthate use more of tach.
230. Rich Green Drab. Work the goods 30 minates in a bath with I ounce bichromate of potassa, $\frac{1}{2}$ onnce alum, $\frac{7}{}$ ounce tartar; lift ont and wash in cold water; then work for half an hour is another bath with 4 ounces logwood, 2 ounces fustic, 1 wances barwood (or f ounce peachwood); wash and dry. The shales of this ean lis varied by Exing different proportions of the stuffs.
231. Rich Drab. Work for 30 minutes in $\frac{1}{2}$ ounce bichromate of potaska; lift, and ndd 1 ounce of logwonal ; work in this for 30 minutes; lif out, wash end itry, Differeal proportions will pruduce different bhades of color.
232. Chrome Blue, 100 paunds of wool are boiled fur one huur in a malution of 3 pounds bichromates of potash, 6 puunds alam, 1 pound balf-refined tartar: then it is taken out, cooled, and rinsed. Buil 10 poands good logwood in a beg for ladr an hour in frowh water, fud 3 putands cudlyear. well moistened and dissolved. Coml tha dje to 180 C Falir. Euter the preparod wool, and handle it for $\frac{7}{}$ of an bums, liring it (0) it lanil in thin time. Tisis cutor ought to he always leff a shade lighter whon fittinliod, is all chrone colora darken in dryipy.

In the foregoing recojpis, the quantite if water to he used is not materiat, mith wifl lis regulated according to the size of the vaseel and the anmonat of pooids to be dyed, bat thero slanuld tulwins the ravongh water to cover the goouls without the nesessity of pressing them denvoi.

Entes for mation decoctions, \&c., will bo Cound in Xit. 94.
233. Preparing and Dyeing silk, New alk is latactal in the same manner ras contun (sec No. 122), ill quantities cunvenient for makiale up inta skeins when fimubed. Aftec banding, it is tiod up eserefully to fino convis Longs and boiled threen or four heare in strome soapewater to rmove nll tho gum. Yellow silk must be first worked on sticles for an hour in a salution of salt kimp nt a temperatare of alont. 200° Fabr., and then boiled in luags. It is theil wahed from the somp and put ou sticks for dyrung.
silk goonds in lie re-ilyed mast be stnepasd in a stronje vaap solution at nearly boiling point for a fow hours, to remove all stans and grease; they are then wished, and if the color on them is litht and ental, and they are to bo dyed slark, then no farther preparation is required; but if the color is unequal, they must be saaked for 15 minutes in a sour (see No. 105), and then washed out.

The quantities given in the following roceipts are for five pounds of silk. If tho goods are tightly криu, such as ribbons, dress silk, \&e., the quantities must be slightly increased.

There must be stfficient water used to cover the goods laping lousely. When goods are washed from the dye, it is always to bo in cold water, unless otherwise stated.
234. Black. Work for an hour in a solution of 8 ounces copperas; wash well out in cold water; then work in a decnetion of 4 pounds logwood, adding to it 4 pint chamber lye; liff, and add 2 ounces copperas in solution; work 15 minutes, wash and dry.

This gives a good black, but not very deep235. Deep Black. Wurk for an hour in a solution of 8 ounces copperas (stlphato of iran), and 2 fluid ounces nitrate of iron; and, after washing out, work in the decoction
of Ingwood and chambar lye, as in the last receipt, finishing as there directel.
236. Blue Black. If a blve black is required, follow the same directions, but add s little white soap, instead of the chamber lye, to the logwond decoction, nad add no eopperas anes lifting.
237. Full Deep Black, Work for 1 hour in a solution of 1 paund copperas and 2 ounces nitrate of iron; wash eut, and work for an hour in a decoction of 5 prunds log. wood and 1 ponnd fustie; 1 in , and auld 2 ounees copperas, and work 10 minutes; wash and finish. If the enlor is not deap enough, add is little more logwond before lifling.
238. French Black. Work for ant hotr in a solution of 1 pornd copperss and 4
 an hour in a decoction of 4 poumels logwood. with a little wobite sonp abled; wath out and fimikh.
239. Blue Black by Prussiate. Dya a itec! Prmsian blae aecorditg to recerpt No. 1:1, ninl whirk, froni the prusaiate, for batt in hour, it 8 makes enpperati whash well ind is eold watar, ibal then work for half an how it a decoction of 2 pounds logwood. Mn , and add a littlo of the capperaa kolutinn frit used, then work fire 10 minates more; wash and dry.
240. Deep Hat Black. Wurk for 15 minutes in a decoction of \& prunda fastic and 1 pound bark; litt, and add 6 ouncus acotate of copper and 6 ounces copperas in solution; work for 15 minuten more; then sink the silk below tho surfice and let it steop over night; lift out and wash; then, to a decoction of a pomdu logwood, add white seap sufficiont to make as lather, and work tho silk is it fie anis hour; wash out Aud dry.
241. Brown. Dye an anunllo veange (sec.No, 150); then work for 20 minutes in a decoection of '3 patitids fantic, 8 ounces sumach and 8 ounces pouchwooil; liff, and add 3 ounees copperss la kolntion, and work for 15 minutes; wash ont in two waters, Bdding t pint alden nolution fis the liwt water. If the partioular tint is not obtained, it may be given in the loss alum-wayh by ulting as fothows: for yellowness, a littlis fastic; for reduess, a littlo poaebwood; for depth or hlmeness, loge wood, A mumber of different tints of litown may be obtained by varying the proportions of fustic, sumpeb and peachwood, A grent many particular hues of lutown may be dyed by this method; for instance, by using only fustio and smmach in the second operntion, a Calffornia brown is obtainel, \&o. So that any intelligent porson may regulate his colors and tints.
242. Red Brown. Dye is deep aunotto orango (see No. I59); theu work for 15 min totes in plumb liguor (see No. 111); wash well and dry. Particular tints can be made by adding fustic, penchwond or logwond to the last washing, as deseribed int the last reeejpt.
243. Red Brown. Steep the silk for an hour in a solution of B ounces slam to each gallou water, then wash ont in warm water; next, work half an hour in s decoction of $1 \frac{1}{2}$ pounds fustic, $1+$ poumds peachwoed, and 8 ounces logwood; liff, aud add I pint of the alum solution; work 10 minutes, wash and dry,
244. Chocolate Brown. Steep the silk for an hour in a solntion of 1 pound alum to each gallon of water; wash once in warm water, and then work for halt an hour in a decoction of 3 pounds peachwood and 1 pound $\log w o n d$; lift, and add 1 pint of the alum solution, work again for 15 minutes; wash out and dry.
For deeper shades use less peachwood and more logwood; for a still deeper tint, add
sbout 4 ounces firstic.
245. Bronze Brown. Work for half an hour in a decoction of 8 oc..ces fustic, in which 4 Iluid ousces of archil liquor has bean added; litt, and add 2 sances solation of copperas; work 15 minutes, whah and fmish.
246. Cochineal Crimson. To every gallon of water used, add about 2 flasid opnces bichlorido (oxyebloride) of tin, allow auy sediment to sottle, mad warm the clear solution; work the silk in this for an hour ur nime Boil 2 pounda cochineal by surpending it in a bag on the surface of sume watert, allil this th a quantity of water snffivent for working the goods, and bring it to a houd Leas. Wring the silk from the tin solution and work it in the oochiseal solution for $\frac{1}{\text { o }}$ hower; theai let it steep for woveral hoars whil under the liquor; Wish nut well in cold water. If the shade if not blue canugh, abl to the water a littlo eschineal disotyel in autmonia; work in it for 10 voinutes, wring anc and dry:
247. Common Red. Work the goods for 15 , juinites is a devection of 2 poands perehwood and 1 provill fiatic; lift, and add 4 flyhl ouncen rod spirits (sec NV. 108); work for 15 minotes, wash is oold water and finith.

Differont shimled ane made by varying the propertions, and claret tints are obtained by ishiting a little logwool. There common dyor are nipt in fitle.
248. Cochizeal Pink. This is dyed in the rame wanier as cochincal critamon (ses No, 246), ming truch less cuobjuend fabout hall a pound ruakes a good pink, and intormesfate shaxless are produced by alljusting the proportion of enehineal.
249. Cochineal Scarlet. First dyo a derp abnotho orango (see No. 159); then dye

250. Mixture for Dyeing Comman Reds, Make a strong deonetion by boiling I pound limawood or brazilwoul to esch gallon of water. Let the wood ketde; decant the liquor, and lot it stand to cool for 24 bours; decast tho clear liquor and add \& pint plemb spirita (sec No. 111) to every malion of liquor; after standing a fer bours it is ready for use.
251. Common Crimaon. Pat siome of the conatiot red misture (res No. , wro) into a copper of stoneware recsel, and worle the goods in if for \& an hour; then wawh out choronghly, wring and dry.
252. Common Scarlet. Dye sumantto orango (see No. 159), theu dye a common erinsson iscording to the last receipt.
253. Ruby, Maroon, ©c. Take 1 pound cudbenc, and buil io a bag for 15 min utes; and work the silk in this for + an hour.

Forn bluish lint, lif, and ald 3 Hinid ounces liqued ammonis; work 10 minutes, wring and dry.

For a red tint, lif, nod instead of the mm monis, full 2 duid ounces red spirits (see No. 108); work 10 miputes, wring and dry.

Fera brownish line, Hiake a deciection of 1 pound cudhear and 4 ounces fustio; work for is an hour; lifi, and seld 2 ounces red spirits; work for 10 minates and foish.

For a deep tiolet hur, proceed as in the last receipt, using 4 ounces logwood instead of the fustic.
254. Sky Blue. To 1 pint sulphate of indigo add 2 or t pallons boilmg water; steep in this a pieen of woolen eloth, such as an old blanket, for a day; take it out and wash in cold water.
If the sky blue is required to be light, warm some water in a vessel to aboat 90° Fahr., steep the woolen cloth in it for a few minutes, and wring out; this vill leave sufficient blue in the water to dye the silk; add 1 ounce alum in solution, and work the silk in it for 20
minutes; wring out and slry
255. Dark Blue. If a clecp bluc bo repaired, blue the water as before with the woulen cloth, add 1 ounce pearlash; then add 1 ounce alum in solution, with a fow drops of sulphuric acid; theu work the silk in it as before.

Half an ounce of indigo extraet (see No. 99) way be used for bluing the water, instead of using the woolen cloth for that purpose. The exact quantity of indigo extract deponds on the shade of blue required.
256. Sky Blue Dye for Silks. For 5 pomsda of silth goode, add the a sufficient gutantity of water to work the gooids $\frac{1}{2}$ pint of nitrate of iron; work in tbis for 24 minutes, then wash out in cold water. Into another versel of cold water add 3 ouncea forrocyanide of potassium in anlution, and 1 fluid vinee of strong sulphoric acid; work through this for 10 minutes, then wash in cold water with 1 onuce of alum dissolved in it, and finish.
257. Royal Blue. Into a vessel of cold water add 2 pints nitrate of iron; then take 1 pint water uni \& pint of hydrochloric ncid, and auld to it 3 ounces erystals of tin; when dissolved, add this (or 1 pint chloride of tin) to tho vessel containing the iron; stif woll and work the goods in it immediately for half an hour. Into another tals dissolvo of ounces of tho forrocyanide, and add toit 2 fluid ounees of sulphuric acid; the goods are wrung out of the iron solation, and put direetly foto this recond vassel, and worked for 15 wisutea; then wahb vat in cold water with 2 otinces of alum dissolved in it, and finish. If the shade in fot aullieiently deep, befure wasbing them In the alum water, they may bo passed through the ironsolution, and the ferrocyanide solution, working in each the mame time as at first, only addigg 2 oinces jnore fermeyanide before passiog the gonds through the second time: then fiatikh as before stated. Deeper whades aro obtaimel by tesing tuore imon and tion, or by repeating the dipa. Some wash ont the iron solation in water befure groing foto the forrocyanide, and almo wads it again in clean water hefore putting linele into the iron; the whade will not he sh deep, bat thera is less risk of as tutequal color.
258. Rich Deep Blue Dye for Silk Goods. To dye 5 prundes of silk poods, add to the water required to mork the silk, 2 pints chloride of iroa asd 1 pint doblo mariate or ebloride of tin'; work io this half au hour lift, and work in a solution of 8 ounces ferrocyanide of potassium: if the color bo nut deep chumgh, repeat tho operation through both solutons; then wash out in water in which 9 vneeces of alum lave been dissulyed,
259. DeepBlie Dye for Woolen Goods. To dye 5 pounds wnilen gomis, add to the rerpisite quantity of water, 2 pints chloride of from and I piat ctiloride of tim; work in this for half an hoir ; lif, and work hate an hour in 4 batls with 4 onuees of the ferrocyanide. If tho colur is reftuired to be deoper, repent this through the samd sthff, alding 2 ounces thoro ferrocyanide; then wash out in cold water, aul dry.
260. Lavender. Add 1 pint plamb li. quor (sod No. 111) to sufficiont water to work the gronis casjly; stir well and work in this for 20 miantes, then wash in enld water and dry. Λ darker or lighter tint is obtained by using mure or lese phrmh liguor.

If a buc tint is required, add to the solution before putting in the gords, 2 or 3 drops either of stlphate, or of extract of indigo. (See Nos, 98 and 99).
261. Fine Lavender. Into a vessel of water as hut as the haut can bear, dissolve a little white somp-mough to raino a lather;
then add 1 gill archil ligwor，nad work tha goods far 15 minutes，wring ont and dity．To obtain a redder tint，boil 1 unnce etulbear， and use instead of the archil liquor．A stifl redder tint is attaimable by leaving wat the soap altogether．

262．Violet，Lilac，Wino Color，\＆e！ Work the gonsis for 20 minutes in phumb li－ quor（sec No．111）in it eopper pan of stone－ ware vessel；wash out repeatedly until the gooda ceasic to tasta of the biqnor，then dry＋ To obtain a rich blue shrde，ald to the plumb liquor 1 fluid outhee either sulphato or extract of indige．For a ret slade，tinst dye a laven－ der loy etudbetar withosat sonp．（See Ni．，26L．）

263．French and Pearl White．Dis－ solve in hat water sutfirient white soap to make a lather；then wdid flaid oance archil liguor；work the gools for 10 ininates，and wash nut．A little ondlear may be ased in－ stend of archil，less or more，accopling to the shaule required．

264．French and Pearl White．Put 1 thuid ounce plumtr liquor（see No．111）into a vessel of cold water；work the gondx in it for 10 minutes；wash out ant thy，For these shades the gonds must be perfectly white （seco No．23：）proviuas to dyving．

265．Weld Yellow．Work the silk for on form in a sulutiou of alun，ahout 1 pestad to the gallont wring out and wash to warm water，Boilt pruaids weld，strain the liguor， and work the sitk in it for 30 minntes；lif， raul suld 1 pint of the adom in solation，th tha weld liquor；work the silk 10 miputes luager． wrimg out aud deg．
This gives a rich lomon gelluw：deeper shades are pade hy wing mors wedd：staw and amber tintw are obtained by the haer of a little anguith．

266．Bark Yellow，The process is tho kune ns lion dyeing ueld gellow，axiog y poumis hark justead of the weld．The bark shosth too boited in in bats．

267．Deep Rich Yellow．Proceel as in the recupt for tavet gellon ；except that， after litines，insteal of a pioto of the alam sas： lution， 2 fluid ounces sibgele ebloride of tin are mided to the lark livtur；work 10 min： ates，wash in water，and finish in a solution of white map．

268，Gold and Straw．Tu warm water vontainity white ksip，add 2 pint ammeto li－ ytur（sec Sv．D9），whet in thit 15 nitsites； wast vat，then work for 20 mimitas ith a ile－ coctiont of 8 sumees batt： 1 ift，and ould 1
 10 imimtes motes wasly whe abd fintsh．Dif－ torent quantitios of anmotto and bark promico diflercite shades．
269．Nankeen，Buff，\＆c．Makn a kn－ fution of sump in wafur wates ablh to it it piat nunotLe lignor（Nee No，45）；work in this for 20 binutes，wriay mat and finish；a deceper

270．Salmon，Flesh，\＆c．Dye a naw－
 nhe + waters alam in zolution to the cold wh－ ter usent for finishug

271．Orange，Work the silk for 15 min － utes in a stroly wann sulution of anwotha （sed No．95）；Wash mat in warm water and dry．

272．Tellow Drab，Into a vesisel of warn water put 1 pint munotto liquor（sce No．95）；work for to mimessand wash；then work for 15 minutes in a decoction uf $\&$ pound sumach and 1 pound fustic，lift，and widd 4 ouncos copperas and 1 ounce ahm in solvtion； work 10 minutes，wash it culd water and dry． A variety of drabs may be dyed in this tray by varying tho proportions of the sunuach and fustic，and by introducing a little logwood or peachwood．

273．Drab．Work for 15 minutes in a decoetiota of 8 ounces sumach hull 8 ounees fustic；tin，and ald 4 ouncrs copperas；work for 20 miuntes，apal Eadl out in coll water； then work 15 ninutes is a ressel of warm water containing $亠$ pint archtil liquor，and dry．

274．Greenish Drab．For a greenish drab，ruld to the archil lignor a decuction of 4 ounces fistic and $\&$ fluid ounce chemic．（See No．162）．

Por 1 purplo tint，use 1 ornee alum in sola－ tion，instead of the chembic．

275．Slate or Stone Color．Work the silk for 30 minntas in in deevetion of 1 pound sumach， 4 ounces fastic，and 4 outhres logiroml； liff，asd nold a solation of 4 ounces enpperas； work 30 migutes more，wash it coll water， and finesh．

Eor different tifts，vary the proportion of smanach，\＆c．
276，Common Green．Steep for un hour in a solation of 1 puand alata to the gallop of water；wash in warm water，then work fir 30 minntes in a decoction of 6 ponuds fastic；litt，and add 2 fuid ounces is． diga extract（ere Na．00）；wark for 30 win． ntes more，wish and finish．For bluogreen uto more indego exiract．Tharker or lighter slambed arn dyed ly using more or lesa in pro－ purtion of ench ingrallent．

277．Greon．Work for 40 misutes in a decoution of 4 momis fixtic：lift，asd add 1 poind nlsm in solution，nad 4 dabl oppees it： digo extract（sce No．90）；work in this for 30 minutos，wash ort in coll water containing ： pint atuin solntion，and finish．

278．Pea Green．Steep for an bour in a sotation of a nuwees alum to the gallon of wa－ ter，thes wadh out in warot water，boil 4 pounds cboay trood chins for an hoor；Lalou tho olear liguer abal work the silk its it for 70 minttes；lift，asd whl t fugi vazee ituligo extract（sec No． 99 ）；worlc for 10 minutes； wask in cold water containial $\frac{1}{4}$ piot alum No． Intiva，and dry：
The indigo extract mat be sulded with caur－ Hion，at too antela will mako the green tuo blte；it is safer to alid lecs，and then，if ne－ cesary，lif，and athd mome．

279．Bottle Green．Wutk for an hour in a solution of 2 poumils alum and t posad coppuras；wash oist in waris water，then wopphrar for minutes in a dectetion of 6 pounds fastie：lift，and add 2 tuat ounces in－ bigo estract（sce No．93）；work fus 20 min－ utes，wash ous snd cuish．
280，Bottle Green．Proceed eractly as for comanas green（see No．206）with the anl－ ditina of 1 pound logerast to the 6 potaids fastic．Tha siddtion if a littlo meve logwood makes a atill deeper abado if required．

281．Olive，Work the silk for 30 minates in asolitfoh of 1 pornd copperas and 4 oances Alum：wade nat in hint water，then work for
 and 4 －utaces lugrovil；lift，atul bad 2 embees aloin it solitson；work 10 minotes，wash atid dry．

A litule chemic（sen No．162）sidded to tho last wash wator will induce a grecher hue it requited．
282．Light Olive．Dyea 立glit Prussian blue（see．No，t206）；then twork for 20 minutes in a decoctive uf 2 promiss fostic fand $\frac{1}{2}$ pint archil lighor：lift，aml atd 1 ourice ahom in solutiont 1 tomk 10 nimutes and finish．
283．To Dye Mixed Fabrics Two Colors，Miscal filories of cotton and worl． such as colmens，damaskis de．，may bo dyed all of rise color，or the cottum and wool in them each dyed a different color．This is seldom done escept with new pourls，or with rery light colired goods which are desired to bedyed dark calurs．As the process for dye－
ing woolenswill seldom impart the same color to cottons，the two are dyed soparately，and the method is quite simple．For most colors it is unecessary to dye the woolen portinn first， anal then the cotton；but in a few eases the cotton must be the first th be acted on．

284．Green and Pink．First dyo tho woulea green by either of the methods given in Nus．206，207，\＆e．The cotlon is then dyeal piak，aceording to receipt No .248.

285．Green and Crimson．Dya tho woolen bg working for an hour in 2 pounds tartar， 4 pounds alum，and 6 poneds fustie； liif，and aid $\frac{1}{2}$ pint indigo extract（sec No．93）； wash out，and lay overnight in 6 poumds su－ mach ；then work for 30 midutes in red spirits （see Nio，10d）made to a strength of $1 \frac{1}{\circ}^{\circ}$ Baume；wash nut，and work for an bour in 5 poumds poarlawood at blood beat；lift，and auld a little aloni；work in thís，then wash out and fisish．
286．Blue and Orange．Firet dyo tho cotturn by the blue vet（sce No，130），wash out，and then dye tho woolen by working na hour in a bath mude up of 2 pombda tartar， 8 ounces corchineal， 2 pounds fustic，and $\stackrel{2}{7}$ pints bichluritle of tin；wash and dry．
In this way almost any two colurs may bo dymod upon woolen and cotton，although woren together，by proceeding necording to the re－ eript for the color required on each sent of filire．Tho wool is always dged fiest，oxce日t． ing in the ease where the cotton is dyed in the blue vat，when the cotton has to bo tecated Grat．The kame prineiplo is applica－ ble to silk and womben fabies，althoukh in masy cases tho pilk becomes usure imbued than the enttos by thi woolendyes，A mix． thre of silh and cottos can be dyed ta tho samo manner，but it is mach more dictecth， and camant be dom with all kitubs of colory， and the process is seldiom resorterl to．Bui the zatelligent dyer wll！lan alile to combine a tarinty of ticts by following tho rules and re＊ exipt girems．
287．To Dye Mixed Fabrics one Col－ or．If the mised fabries aro eequired to be dyed one uniform color，the dambler process has aften to be atopted，expecially for cotton and wiolsm fallrien，thus：
288．Black on Cotton and Woolen Goods．Firct dyo the woolen accordiug to No．192；then，afor steeping the gondsisis． mach，dyo the eotom liv reesipt No． 139.

289．Brown on Cotton and Woolen Goods by one Process．Wurk for 2 bours in cateclon，us in Nit．14；then work at a boil． ing heat for an hour with 8 ounces bichromate of potassa aud 2 ounces tartar；noxt work for an hour in 2 putads fristic and a outaces chd－ buar；wash and dry．For a deeper shade，or of a moro chocolate bue，udd 4 sunces \log ． wood to thu onthear．
290．Black on Silk and Woolens by one Process．Work for an hour in a soln－ tion of 8 ennces tartar and 8 ounces copperas； wash out，then work for 15 rajputes in a de－ coction of 4 pounds logwood；lift，and udd 1 ounce chrome；work for 30 minutes and dry．

291．Black on Cotton，Silk and Wool， by one Process．Sterep for 6 bours in 2 pounts sumach；then work for an hour in a solution of 6 ounces tartar， 6 ounces sulphate of copper，and 6 outuces copperas；wash out， and then work for half an bour in a decoction of 4 pounds logwood；lift，and add 1 ounco coppora3；work for 10 minutes，wash and dry．
292．Deep Black，To obtain a very deep black，add 1 pound of bark to the log－ wool，and proceed as in last receipt．
293．Drabs on Cotton，Silk and Wool， by one Process．Work for half an hour in

8 ounces copperas and 4 ounces tartar; Fift and drain; then work for half an hour in 4 ounees logwood and 1 ounce bichromate of potassa; wash out and dry. By varying the quantity of logwood, and by introducing a little fustio or peachwood in combination with tho logwood, a great variety of drabs, slates or fawas can be prodnced.

These few receiptr for mixed fabrics will show the caro required in auch operations, althongh, by practice, they become comparatively simple.
294. To Detect Animal or Vegetable Fibres. Treat tho fabric with bichloride of tin heated to from 130° to 150° Fahr., when the cotton and Eisen become black, and the wool and silk remain uneharnged.
295. To Detect Mixed Fabrics of Cotton and Wool. Dip as piece of the cloth in bleaching liquor; after a little while the woolen turns yellow, and the cotton white, and may easily be distiaguished.
298. To Detect Cotton in Linen. The piece to be tested should be boiled to ramove all dressing, sud then dried ; put a portion of the piece into common vitriol for about ond minate; take it out and wash it in water sep. eral times, and then into a weak solution of soda or potash, and all the gammy matter formed is retaoved by gentle rubbing. By this process the cotton is dissolved and the Linuen regains, or any portion of the cotton that is not dissolved becomea opagiae white, whiles the limen id traniparent. By comparing the portion thus tested, with a similar portion not tried, the quantity of cotton present ean easily be eatimated.

297, To Detect Cotton in Linen. Take A smali piece of the elath, Linil In water and airy then take 3 parts, by weight, of stalphuric acid, and 2 parts of eruabed nitrate of potasse: put the dry piace of cloth in this mixturo for 6 or 7 minutes, and then wagh it in water wintil there is no taste of acid; dry it at a gentlo heat; noxt put it into a mixture of ether and alcohol, which will dissolve the cotton and not tho linun. If the piece be woighed hefors and aftic putting it into the other and aleohol, the quantity of cotton in the faliric can bo acenmately asteertained.
298. To Distinguigh Cotton and Wool Take a small piece of the eloth and boil in canstio sodas; the wool will be dissolved, and tho ention remain. If the threuds bave been previonsly countad, their rolative uixture can be fourid.
299. To Detect Cotton with Silk or Wool. Put a piece of tha cloth inte chloring water or bleaching liquor. The cotton is whitened, and the Bilk and wool tara yellow, and cau ensily be distinguished by the aid of a pocket loos.

300, To Detect Cotton in Silk or WooL. Take a small piects and unravel the threads, und inflame thom; the cotton burns away freely and leaves little nr no block charcoal; the wool and silk shrisol up, Leave a black charconl, and give a strong sfnell.

Decidedly tho best and saiest method, and one applicable in all cases, is a microscopio examination, by which not only the structure, but also the naturo of the filbre can be demonstrated. Cotton, wool and silk are eosily distinguished by the microscope, as they differ materially in appearance. Cotton torms flat, narrow ribbors, curled up in spirals like those of a corkscrew; wool fibre is stouter than all others, and may be recognized by its scaly surface, while silk is the thinnest fibre, bas the smoothest surface, and possesses the least structure. These appearances are fery characteristic, and any one who has observed them once will ever afterwards recognize them again at first sight.
301. To Distinguish Silk and Wool in Fabrics. Silk ean always be illentified in a mixture with any other animal or vegetable fibre by means of concentrated hydrochloric acid, which dissolves it completely and immediately, withont appreciably affecting ang woolen or woody fibre with which the silk may have been interwoven. Strong sulphuric acid has also a powerfol soivent efficet apon silk, and is likewise mbeh more destruetive inits action upon cotton than the other acid. Should it be desired to determine the nature of any fibres remaining after the solutiou of the silk, it is first necessary to wash and collect them, when they will usually be found destituta of color. To decinle whether wool is present or absent, a solution of pierie acid may be employed, which instuntly imparts a full yellow tint to the wool, bat does not in the least affect eatton, linen, or China grass; so that it is only necessary to immerne the fabric in the dye, wring it out, and wash well with water, Should aay portion remain of a yellow color, the presence of wood is indicaled. Other methods can be erpployed similn in principle, but the pierio acid is Lelieveal to bo best. Discrimination between the different kinds of fibre can best be prosecuted by means of the mictuscops, but their quastity fa vest found by dissolving away oue fibre, as already direoted, and weighing.

Flamily Dyeing Receipts.
 The following receipts and direvinus are

 excellent fur dyeiog on a small soalo, and cal pecially sdapted for family use. Thu ingredients required cas bo obtained at any color store.303. Black for Worated or Woolen. Dissolvo $2_{\text {, ounces }}$ biclurountur of putailh in 3 jadloms water. Bot! the goorls in this 40 minnutes; then wash in cold water. Then tate 3 gal lons water, add 9 oumcea logwood, 3 ourked fuatic, and ono or two drops, D. O. Yy, of Double Oil of Vitriol; boil the goords 40 zinisutes, and wash out in eold water. Thik wit! dye from i to 2 pounds of cloth, or a ladj's dress, if of a dark color, as loruws. clarct. $\mathrm{d} \cdot \mathrm{C}$, All colored drostes with cottons warps bhoond be previously steeped 1 hour its sumach li. quor; and then soaked for 30 mimates in 3 gallons of clean water, with 1 eupfal of 1 i trate of iron (see No. 116); then it duast bo well washed, snd dyed aa tirat atated.
304. Black for Silk. Dye the same an black for worsted; but previonsly steep the stik in the following liquor: scafd4 ounceslogrvond, and $\frac{1}{4}$ ounce turmerico in 1 pist boling water: then add 7 pints cold water. Steep 30 or 40 minates; take out, and add 1 ounce sulphate of iron (copperas), dissolved in lot water; steep the sif 50 minates longer.
305. Brown for Worsted or Wool. Water, 3 gallons; livelisomate of potash, $\frac{1}{2}$ ounce. Boil the goods in this 40 minatos; wash out in cold water. Then take 3 gallons water, 6 otances peachwood, and i2 ouncess turmeric. Boil the goods in this 40 minutes; wash out.
306. Imperial Blue for Silk, Wool, and Worsted. Water, 1 gallon; sulphuric acid, a wino-glassfal; Imperial blue, I table. spognful or more, according to the shade required. Put in the silk, worsted, or wool, and boil 10 minutes; wash in a weak solution of eoap lather.
307. Sky Blue for Worsted and Woolen. Water, 1 gallon; sulphuric acid, a wineglassinl; glanber salts in erystals, 9 tablespoonfals; liquid extract of indigo, 1 teaspoonful. Boil the goods about 15 mizutes; ringe in cold water.
308. Claret for Wool or Worsted. A Short Way of Dyeing the Same. Frater, 3 gallons; endbear, I2 ounces; log-

Trood, 4 ounces; old fastic, 4 ounces; alram, $\frac{1}{4}$ ounce. Bril the gorils in it 1 hout, Wash. This will dye from 1 to 2 peouds of material.
309. Crimson for Worsted or Wool. Water, 3 gallons; puste cochineal, I ounces; eream of tartar, 1 euned; nitrate of tin (ste No. 113), a winerghasful. Boil your goods in this 1 hour Wash first in cold water, then In another vessel with 3 gallons warm water with a cupfal of ammonis. the whole well mised. Put in the goods and work well 15 minutos. For as biuer shade add more ammotia. Then wash onk.
310. Fawn Drab for Silk. Hot water, 1 gallot; armotho liguor (Nec No. 95), I wine-glassitil; 2 ounces ench of sumach aind fustle. Add copperas liquor according to the required shade. Wash out. It is leat to use the copperas Hiquur in unother vessel, diluted according to tho shado desired.
311. Dark Drab for Silk may bo ob. tained by uning a fittle archil and eitract of inuligo.
312. Fiesh Color for Dyeing silk. Boiling water, I gollons; put in 1 ounce white soap, aud 1 eqamen pearlash. Mix well, thon Bid t eupfial of manotto Jiquor. (See No. 95.) Put the silk tlrough several times, and prot purtion the liquor till you obtain the reqrifed shauld.
313. Salmon Color for Silk may bo obkuised loy first powingt through the nbove Itquor, and they throazh difleted mariate of (ini (See No. 1113)
314. Magenta for Silk, Wool or Worsted. Water, I grallon, hoated iptio 180 dogroch; and mipenta liquor, I tablespoonfil; stir is woll tip This will dye a hrond ribloon 4 yords longs, of a pair of timall stockings. To dse a lagger quantity of mutorial, mad more maventa ligune ind water. The shade of color may be casily rernalated by using more or Jens. Mugenta Pink may hoobtoined by incrusied dilution.
315. Mauve for Sillc, Wool or Worsbed. Water, 1 fallon: fdd 1 tablerspounful sulplatie acid thon licat to boiling point. Wor in rery liakz marres, mid 1 Lea-spontifal imperial vinlet liquoc; boil the kume umonat of thaterial, as stated todet Magenta, about 10 rotatates. Rinse in cold watar. If the evolor be too decp, siod is iltto somp in timing, using wertu witer.
318. Violet Color for Worsted may ho produced by using it tablespounful of violot jiguor tusteal of is tea-spomafid.
317. Pen Green for Silk. Te i guart water, put \& tea-speonful pocric acid, and ratls or more than 3 wine glasftul sulphurio acid, and os tea-spoonful prate extract of indigo: boil about 5 thimutes, thes ndd water to cool it down to blood heat, or 1002 Fater. Put in thesilk, and work it about 20 minnten. The shade may be varies by additig more or lems of the picric acid, or extruct of indipo; if isoro of either be adided, boil separately in a little water, and udd to the provious liquor,
318. PeaGreen for Worsted. Use the same tnaterinls ass thet fitoreatid; but boil mil the tarte in 1 gallots of water for about 20 or 30 misutes.
319. Dark Green for Worsted. This moty lie obtained by using a larger quantity of matcrial. in the same way as the last.
320. Plum Color for Worsted, Silk or Cotton. Water, 1 pallow ; sulphurie neid, 1 tea-spownful; glauber saits, in crystals, 2 table-spoonfuls; violet ligror, I table-spoonful; magenta liquor, $\frac{f}{}$ table-spoonful. Boil the articlo (silk, wool or worsted), about 10 minrutes.
321. Remarks on Dyeing Cotton. Cutton shouk be dyed the nbove colars sepurately, and by first running them through
weak gall liquor, and weak double muriate of tin. Then wash well, and work in the aforesaid liquuer, according to color and shade. The dyeing liquor should be cold.
322. Scarlet on Worsted or Wool. 3 gallons vater, 2 vunces dry enchineal, 1 ounce eream of tactar, 1 wine-glassful nitrate of tin; boil the gends 1 hour. To give the goods a yellower have, add a little young fustic to the above mixture. Wash out as befora
323. Tellow for Dyeing Silk. Prooeed the name as in dyeing pea green, omitting the oxtract of indiga, and essing oralic tin instead of salphuric acid.
324. To Dye Feathers. First steep them a fow hours in warm water.
325, Blue may be dyed by extract of indigo and boiling water. Situmer over the fire 4 liaw minutes.
326, Greon. Verdigris and verditer, 1 ounco cach; and gam water. Dip tho feath. ord. Or mix tho indigo liquor with Persian berry liquor.
327. Lilac. Use cudbear and thot wator,
328. Red. Brazil wood, a little veruil. ion asi alam, and viaggar. Buí 30 minutes, and thon dip the feathers.
329. Yellow, by tarmoric,
330. Scarlet, by cochimeal, cream of tartar, and mariate of tin. (Sea No. 113.)
331. To Dye Dove or Slate Color. Boll a seacup of black tea it an irme pot, addfog a tea-spoonfif of eopperas. The depth of color will depend on the gुantity of water used. lyyo tho articles in thila pith thou hang theut up to druin, finally sinuing out in soapbuds.
332. Anilino Red. Thit produces as color varying from the sleppest erimson to a very brilfiant and beautifit roso pink, according to the wtrougth of the dye. All that is necossary is to enclose the suiline in a small muslin long. and bavitg a bette (the or lorass) fillod with moderately bot wator, rnb tho aubatance ont. Then firmerse tho artioles to be colorad, and in a short timn they aro done. The dyo is so readily absorbed that care is rocuired to prevelt spotting. No mordant is requited, although if inproves the color to wring the goods out of strong soapsuda bofore putting thontis the ilve, This is a permanomt color for woolen or silk.
333. Anilino Blue. To 100 pounds of fabrie dissoled it ponnds aniline Whe to 3 quarts hot alcohol; straiu through is filter and add it to a bath of 130^{2} Pathy also 10 pounds ghaber solts, mud 5 pounda meetic soid. Euter the goods and laandle then well for 20 aninates; mext heat if slowly to 200^{2} Fall.; thon abd 5 potnds sulpliurie achil diIuted with water. Lot the whole boit 20 minntos longor, then rinse and diry. If the aniHine be added in twa or three propurtions during tho process of coloring, it will facilitate the oromuess of the color. Hard amil elose wovo fabries, such as braid, ought to be preparod iu a boiling solation of 10 pousds sulplarie acid and 2 pounds tartarie acid before coloring with the anilino, as this will make tho fabric mote susceptiblé to tho color.
334. To Dyo Hats. A bath for dyeing 12 dozon hats cousistr of 144 pounds logwood, 12 pounula green sulphate of frots or copperas, is pounds verdigris. The copper is made of a somi-cylindrical shapo, and should be surroundol with ail irou jacket, or case, into which steam may bo nulmitted, so ns to raise tho tomperature of the interior bath to 100^{5} Fsh., but no higher; otherwiso the heat is apt to uffect the stiffening varaish, called the gum, with which the body of the hat has been imbued. The logwood having been introduced and digested for some time, tho copporss and yerdigris are added in successive
quantities, and in the above proportions aloug with every successive two or tbree doxen of hats suspended upon the dipping machine. Each aet of hats, after being exposed to the hath, with occasional airings, duriug 40 minutes, is taken off the pegs, and loit out apon the ground to be moreconupletely hlackoned by the peroxydizement of the irou with the atmospherric usygen. In 3 or 4 hours tho dyeing is completed. When fully dyed, tho bats are well sashed in ruming water.
335. Spirit Stiffening for Fats, 7 pounds orauge shellac; ${ }^{2}$ pounds gum sonilarac; 4 ounces fuat mastic; \ddagger pound amber resin; 1 pint solution of copal; 1 gallon spirit of wine, or wook naphtha.
Tho shellac, samlarac, mastic, and resin aro dissolved in the spirit, and the solution of copal is ouldel last.
336. Alkali Stiffoning for Hats, 7 poubds couisoon block shèlloc; 1 pound amber resin; 4 ounces gou thus; 4 ounces gum mastie; 6 oubces borax; i pibt solution of sopal.
The borar is first disaolved in about 1 galIon wann wator. This alkaline liquor is pat into a copper pan (heated by steani), together with the ghellac, resin, thus, and mastic, and allowed to boil for some time, wore waran wator being added oceasionally until it is of a proper condiatoned; this may he known by prouring a Littlo ou a cold slah, somewtint inclineol, and if the liquor rams off at the lewer end, it is sufieciently Auid. If, on the contrary, it sets before it reaches the bottom, it regnines uroro water. Wheu the whole of tho gims seom diasolved, I pint of wooil naphetha unitho introdaced, with tho solation of eopal; then tho liqnor mutht be passed through a fino siove, and it will bo perfectly clear aud reaty for use. This stiffering to useal hot. The hat boolies, before they are atiflomed, should ho steuped in a weak solutions of soda in wates, to destroy any aeid that misy hare boen left in them (as silpharie artil is nsed in the making of the bodies.) If thia is not attended to, stowlet the hat bouly contain any acid when it is dippest into the stifforing, Clse alkali is neutralitisl, mad the gams conse quently precipitated, Aher the hady has been stecped in the allatiac solution, it must be perfectly dried in the stovo befors the stiffening is appthed; when stiffened and stovel, it must be stepped all hight in water to whioh a surall quantity of the aulphuria acid has been nulded; this sets the stiftening in the hat body, and fixishes the procesk.

To Remove Stains, Spots, directions for cleaning, and removiag stains of

 every kind, from clothing, linen, ete, and articles pertaising tos the houseliold. Receipts for cleansing other niticles will be found clsewhere under their appropriate focalings.338. To Remove Resin Spots from Silk. Stains by wax, resin, turpentine, pitel, and substances of a resinnus hatuire, may boremoved by purealcohol. It frequently happents that when common turpenting is cmployed to remove grease, varnish or paint stains from silk, the turpentino itself leaves a atain almost as objectionable as the original one, which it was used to remove. These stains are due to the resin which is beld in solation by the turpentine, and which remaius in the silk after the volatile or spirituous portion has evaporated, Alcohol applied to the stains with a clean spongo will remove the spots, because alcohol dissolves the resin. The silk ataina should bo moistened with the
alcohol first, and allowed to romain soaked for a few minutes. Fresh aleohol is then applied with the sponge, and with a slight rutsbing motion. It is then wiped as dry ns pussible and afterward permitted to stry perfectly in the open nir.
339. To Remove Pitch, Varnish, or Oil-paint Stains. When pitch, varnish, or oil-paint stains have become dry, they should be softosed with a little butter or lard, befors using turpentine and soap. In these cases, 4 Eimple way is to soak the part in spirits of turpentine, and, when softemed, to wash it off with the same fltid. Burning.fluial coubines tho solvent powers of both alcoloh and turpentine. Bemzine is also good. Chluroform will also romove paint from a garment wben almost every thing elve faila. The fits, resins, and unetuous oils, are dissolved by cssontial oils, as oil of tarperitine. ©ommon spirita of turpentine, bowever, requires to los purified by re-distillation, or it will Jeave a resinous stain upon the हpot whore it is used. (See last recoipt.)
340. To Remove Paint Stains from Clothes. Culorofona is an excellent medium for the removal of stains of paint from clothes, etc. It is found that partions of dry white puint, which rexisted the netion of ethor, bensole, and bisulphide of carbon, wro at once disaolved by chloroform. If the paiut is freah, harpuatine or alcohol will reusove it. (Sce No .3 SK .)
341. To Remove Wax Staing from Silk. Mix powdered Fretelh chalk with Lav. esador water to the thicknoss of muntard. Pat it on the stain, and rub it gendly with the finger or palar of the hand. Put a slieet of clean bloting paper and brown paper over it, and monoth if with is warm iron. When dry the ehalk twat be removed, abd the vills gent. ly duated with a white haulkerolief. If a faint mark atill romaina, a seemend application of French chall and lavender wator will gonerally remove it. If tho wax atain bas fullen thickly of the silk, it should be romovel first carefully with a penkuife.
342. To Removo Wax Spots from Cloth, Remove, by sorsping with a knife, as much of the was as you coat without injury to the fabric; drop benaine on the spot, then with a equago rub it gently; repent it till tho tpot disuppenre.
343. To Remove Spermaceti, or Stearine Stains. To reniove spots of прегmaceti, scrape off as much ns you can with a boife, then lay a thin, roft, white blot Ling paper upon the apots, and press it with is wamn iron. By repeating this you will draw out the spormaceti. Afterwands rub the eloth where the spots have been, wilh some very soft brownish paper.
344. To Remove Grease Spots, To do this withont injury to the color of the fabs. ric, is sometimes easy, frequently most difficult, and often inppossible, Mueh may depend upun skillful ant persevering minifpulation; and although various agents are oftentimes valuabile, yct good soap, after all, is tho chanf reliance. (irease spots may generally be removed by the paticnt application of soap and soft water, but other means ure also enployed. Ox-gall is an excellent and delicato cleansing agent. It is a hypuid woda sonp. It removes grense, and is suid to fix und binghten colors, though it bas a grecmish tinge, whiel is lad for the purity of white articles. Aqua ammonia is also pood for removing greaso apots from any falric. Use the ammo. nia mearly pure, and then lay whito blotting paper over thespot and iros it lightly. (See also No. 126.)
345. To Remove Grease and Dirt from Cloth and Woolen Articles. Place
a ootton or woolen eloth, or as piece of blotting paper, under the article to be cleansed, then rub upon the spots some pure benzine, and the grease or dirt will disappear as if by magic.
Be sure to place a cloth under the garment to be operated upon, otherwise a circular stain will remain, which camnot be removed. The benzine drives the grease through the article to be cleaned, end is alsorbed by the cloth placed under it. After the spot is removed, continue to rub with a dry eloth until the benzine is evaporated; this also ia done to ayoid a stain.
346. Cautions about Benzine. From the facility with which it removes grease spots from fabrics, this substance has come to be regarded almost aa a household indispensable. But fow persons, bowever, realize the explosive character of benzine or the dangera atteuding the carcless handling of the liquid. Being one of the most volatile and intlamma. ble products resulting from the distillation of petroleam, it vapurizes with great rapidity, so that the contents of is 4 ounce vial, if overturned, would render the air of a moderata sized room highly explosive. The greateat care should be oxercised in handling this substance, in proximity to fire, and it le important to remember that the yapor eacaping from an uncorked bottle will cause a flame to leap over a space of beveral feet.
347. To Remove Greaso from Oloth. Take 1 guart limej udd thereto at mueh water as will diseolve the lime and leave about 1 quart elear weter after it has been well stirred fund settled. Let it stand about two hours, and then pour off the clear liquad into another versel. Now mad to it $\frac{1}{a}$ an ounce of pearlash; otir it well, and, when bettled, hottle it for use, This liquor in to he diluted with water, to suit the atrength or delicacy of the colur of the eloth. It is applied with a plece of coarso sponge, rubbing out the grease, and applying dear water afeerwards.
This is otie of the best receipts known for the extruction of grease ; bat it is destructive to cartain vegetable colors.
348. To Remove Grease Spots from Cloth. Soft soap, and fuller's curlh, of cach t pound; beat well together in a mortar, and form into cakes. Tha spot, first moistened with water, is rubbed with is caso, and al. lowod todry, whenit is well rubbed with a little warms water, and ringed or rabbed off clewn.
349. Scouring Balls. Dry fallor's earth, moistened with the juioe of leronos; sadd a small quantity of pearl nahes, and a little sof soap; knead the whole well together into a thick elastio paste; form it into small balls and dry them in the suu. When used, moisten the spat on the clothes with water; then rub it with the ball, and let the spot dry in the sun. When weshed with pare water the spot will disappyar.
350. To Remove Grease from Cloth or Silk. Separate the yolk of an egg from the white as perfectly as possible. Tben strotch the fabric on a board, and with a soff clothes brush dip into the yolk, and rub the spot with it until tho grease seems loosened. The yolk will not injure the most delicate colors, but the rubbing tnay, if too severe. Then rinse with warm rain water, rubbing the edges with a damp cloth, and clapping the whole between dry towels. If the stain is not quite gone, repeat the process. It will not do so well for fabries mixed with cotton or linen.
351. To Remove Grease from Silk or Velvet. Rub the spots on the sills liglthy and rapidly with a clean soft cotton rag dipped in chloroform, and the grease will immediately disappear without injuring the color of the silk. Repeat the operation if ne-
cessary. Be careful to rub the article rapidly and lightly, then finish with a clean dry cloth. If these precautions are not taken, a slight stain is apt to be the result. Very highly rectified benzine, such as is prepared by the first-olass druggists, will also immediately remove grease from the most dolicate colored silks.
352. To Remove Grease from Silk. Take French chalk finely seraped, and put it on the grease spot, holding it near the fire, or over a warm iron reveried, or on a waterplato in which is boiling water. This will cause the grease to melt, and the Erench chalk will absorb it, and it may then be brushed or rubbed off; or, put a little powdured French chalk on the spot, cover it with a piece of white blotting-paper, and over that a piece of brown wrappiag paper, and apply a hot flat-irun. If auy greaso remains, proceed as bofore, until it is all extracted. The French chalk is a fine soluble powder of a dry alasorbent quality, soting upou silks the eame as fulters earth does upon eloth.

The above plans may bo adopted whon you desire to extract the grease immediately; bat if time in not an object, proceed as followa:
Sprinkle pulverixed Vrench chalk upon the spot and pat the artiele isi is dark place, and in a fow daya the grease will eatirely disappear. We think this last method the best, as the heat from the irou will nometimes Injure silk of a delicate tint.
353. To Remove Grease $S_{\text {pota }}$ from Silk. Grease spots wey be taken from ailks in the following manner: Upon a wooden table lay a piece of woolen cloth or baise, upon which lay mmoothly the part stained, with the right side downwards. Having spread a piece of brown paper on the top, apply a ilat-iron juat hot enough to scorch the paper. About five or eight reoonds is usually nufficient. Ropeat until the spot is extracted. Then rab briskly with a plece of writing paper. (See last receipt.)
354. French Scouring Drops for Removing Grease. Cumphere, 8 ouncos; pure alcohol, 1 onace sulpburio ether, 1 ouves; osseoce of lentun, 1 drachun; or, apirits of wine, 1 pint; white soap, 3 ounces; 0r gall, 3 ounces; essence of lemon, $\frac{+}{\text { quaces. }}$
355. To Remove Grease from Velvet. Grease may be takell out of velvet by is littlo turpentine, poured over the spot; then rub briskly with a piece of clean dry flanel. Repeat the application, if necemsary, and hang tho article is the air, to remove the smell. (Sce No. 351.)
356. Simple Method of Removing Grease Spots from Silk. Take a visiting or other card; separate it, and rub the spot with the sof internal part, sad it will disappear withont taking the gloss off the silk. This is a simple and valuable reseiph Bo careful and rab the silk on the trong side, as the card sometimes will soil delicate colored silks, but if the above precastion is takeo, the spot cannot be seen on the right side of tha silk.
357. To Remove Oil from Carpets. To take oil out of a carpet, as soon as it is spilloil put on plenty of wheat flour or whiting, to absorb the oil and keep it from spreading. If the oil is near a seam, rip it, so that the spot will not spread, and put whiting on the floor under the cappet. Next duy sweep up all the flour above and under the carpet with a stiff brush, and put on plenty of fresh flour. To take out grease spots, rub thom with white flannel dipped in raw spirits of turpentine. If they show after a while, rul again on both aides. If there aro gresse spots ou the floor, remove them with potter's clay before the carpet is laid down.
358. To take Grease Spots out of Carpets. Mix a little soap into a gallon of waria soft water, then add $\frac{f}{2}$ ounce of borax ; wash the part well with a clean eloth, and the grease or dirty spot will soon disappear.
359. To Remove Oil Stains from Leather and Paper. Oil stains may be removed from leather, paper, de., by applying pipe-clay, powdered and mixed with water to the thickness of cream; leave it on for four heurs. This will not injure the best colors.
360. Methods of Removing Various Stains. Fruit-stains, wine-staina, and those made by colored vegetable juices, are oftennearly indetible, and require various treatment. Thorough rubbing with soap and soft water; repeated dipping in sour butter-milk, and drying in the sun; rubbing of a thick mixture of etarch and cold water, and exposing loug to sun and air, are among the expedients resorted to. Sulphurous acfi is often employod to bleach out colors, It may bo generated at the moment of using, by burning a small plece of sulphur in the air, under the wide end of a amail paper funuel, whose upper orifice is applied near the cloth, Coffee and chocolate statins require careful Boaping and washing with water at 120°, followed by sulphuration. If discolorntion' has been produced ly acida, water of mamomis should bo applied; if apots have been made by alkaline sulastances, moderately strong vinegar may be applied; if upon is delicate articlo, the vinegar should be decolorised by filtaring through powderod charcoal.
361. The Effects of Acids and AlkaLiea upon Different Colors. The effect of acids upon blacks, purples, blues (except thote produced by indjgo or Prussian blue), and upon all thone shades of colora which are produced by means of tron, arohil, and as. tringent eubstances, is to turn them red. They ronder gellows mory pale, except those produeed by annotto, which they turn to an oratge color.
Alkalies turn searlets, and all reds produced by Braxil or logwood, to a violet eolor; they tura green (upon woolen clothas) to yellow, and thay giva is reddish cast to the yollow produced by manotto. The effect of the perspiration is thesame as that of the alkalies.
Spots oecasioned by acida are removed by ailicalies, and vice versa. (See tast receipt.)
362. To Restore Colors that have been Injured by the use of Re-Agents. The colors of eloths are often injured by the re-agents made use of in order to restare them effectively; when nuch is the case we must not only anderstand the general principles of the art of dyeing, but the nature and composition of the particular dye that was origimally employed for dyeing the cloth whose color is to bo restored, and thus enabled to modify the means accordingly. Thus, when, after using an alkali to remove an acid spot upon brown, vinlet, or blute cloth, \&c., there remaina a yellow spot, the original color is again produced by means of a solution of tin. A solution of the sulphate of iron restores the color to those brown eloths which bave been dyed with galls. Acids give to yellow eloths which bave beeu rendered dull or brown by alkalies, thoir original brightaess. When black eloths dyed with logwood have any reddish spots occasioned by acids, alkalies turn such spots to a yellow color, and a little of the astringent principle makes them black again. A solution of 1 part of indigo in 4 parts of sulphuric acid, properly dilated with water, may be successfully employed to restore a faded blue color apon wool or cotton. Red or scarlet colons may be restored by means of enchineal, and a solution of muriate of tin, de. (See No. 113.)
363. The Choice of Re-Agents for Restoring Color. The choice of re-agents is not a matter of indifference; vegetable acil (Decolorised Vinegar, see Index), is generally preferable to mineral acids. Tho sulphurous acid (see No. 360), bowever, may be used for spots from fruit; it does not injure blue upon silk, or the colons produced by estringents; nor does it affect yellow upon cotton. A volatile alkali (Fater of Ammonia) succeeds better than a fixed alkali in removing spots produced by acids. They are usmalIf male use of in the form of vapor, and act quickly, seldom injuring the color of the elotb.
364. To Remove Fruit Stains. Spots caused by fruit are removed by sulphurous uedi, or what is atill better, by water acidslated with a little muriatic or osalie aeid, or kalt of lemons; but cure must be taken not to apply thia liquid to colord that it will mjure. A lighted sulphur match beld under the stain will produce sufficient rulphurous acid.
365. To Remove Fruit and other Stains from Iinen. Froit and other upoth on limen may be romoved by applying to the part, previously washed claan, a weak solution of chlorine, chloride of lime, spirits of salts (muriatio aeid), oxalie seid, or salta of lomon, in warm water, and frequently by merely using a little lemon juice. The part should he again thorumgthy riased in clear warm water (without soap), und dried.
Many other stains may le taken out by dipping the lines in nour butter-milk, and drying it in a hot sun. Then wash it in cold water, and dry it, 2 ur 3 timen 4 day.
36e. To Remove Acid Staina from tinen, \&o. Theis may he removed by the following metbods: Wet the part and lay on it sotuo salt of Wormwood (carbonate of potassa); then rub it, Without diluting it with more water.
Or: Tio tip io the stajued part some pearlash; thea serapas some soap inte cold sott water to bako a lather, aud boil the linen till the stain disappeats.
367. To Remove Acid Stains from Garments, Chloroform will restore the color of garments, where the tama has been destroyed by neids.
When acd hus neeidentally or otherwise destroyed or chauged the color of the fabric, wamonia should be applied to neutralize the neid. A subsequent application of cbloroform restores the original eolor.
Spots produced ly bydenchlorio or sulpharic aeid can be remused by tha application of concentrated amthonis, while spota from nitric acid can scarcely be obliterated.
368. To Remove Alkali Staing from Garments. Spots produced by ulkalies, such ms soap-boilor'a lye, noda, ammonia, ete, cau generally be made to dispppear completely by the prompt epplication of dilute nectio acid and a good deat of water. (See Mo. 360.)
369. To Remove Claret or Port Wine Stains. Apply a little table salt to the spot stained, and alko maisten it with sherty. After washing, no trace of the stain will lo left. The acid contained in claret decomposes the bult, and sets free chlorine (bleaching gas), whioh removes the vegetable coloring matter of the wine. If the stain is from port, slerty should be added, as it also containg acid.
370. To Remove Stains of Wine, Fruit, \&c., after they have been long in the Linen. Rub the part on each side with yellow sonp; then lay on a mixture of stareh in cold water very thick; rub it well in, and cxpose the linen to the sun and air till the stain comes out. If not removed in 3 or 4 days, rub that off and renew the process. When dry it may be sprinkled with a littlo
water.
371. To Remove Stains of Iodine. Stains of iodine are removed by rectified spinit.
372. To take out all Stains which are not Metallic. Mix 2 tea-spoonfuls of water with one of spirit of salt (moriatic acid); let the stain lie in it for one or two minutes; then rinse the article in cold water. Thia will be found particalarly useful in removing stains from while napkins.
373. Prepsured $O x$-gall for taking out Spota, Roil together 1 pint of ox-gall and 4 ounces powdered alum; to which add 2 ounces common salh; lot the Hquor bettle ;
sdd a few drops essence of lemon, pour it off into a bottle, and eork tightly.
374. Scouring Balls for General Purposes. In order to renlove a stain, tho canset or arigin of which is doubtful, a composition is requisite which poaseases various powers. The following is a guod one for sach parposea: Disuolve anome white soap in alcohol, and mix with it the yolks of 4 or 5 egiss; add gradually a little spirits of turpentine, and snificient fuller's earth to make the pistare into balls. To removo n stain, wet the spot with eoff water, rub it with a ball of tho above compoaition, then ruls the eloth and wash out. Thin will remove almost any stain, oxcept ink and other molutions of jrous.
375. To Remove Iron Mould or Ink Stains. For iron monld or ink stains, lemon juico or aslt of norrel (oxalate of potiasle) may bo ussed. If the ntains aro of long standing, it may bo necessary to use oxatio actd, which is much more powerful. It may be applied in powder upon the epol, proviously moistoned with wator well rubbed on, and then washed off with puro wator. It shoald be eflectually Washed out, for it is highly corrosive to textile fibees. (Sce also No. 127.)
376. To Eemove Iron Mould. The part stained should be remoistened with ith. and this removed by the nse of muriatic weid diluted with 5 or 6 times its weight of water, when it will be found that the old and now stain will be removed shrultampously. This is a very effeotual method.
377. To Remove Stains of Iron Mould from Fabrics. The removal of these stains is a mattar of somo difticulty if they have remained un a fabric for some time. The usual substances maiployed for this purposo (oxslic scid of quastroxalato of polassa) roquiro placing, in concentratod solation, its contact with the material for a consilerable time, thereby materially weakening and rotting the fibre. The following mothod is free from this objection, aud will remove stains of long standing almost immediately: Wet the mark with yellow sulphide of ammonium, by whieh it will be immedistely blackened, and allow it a minute or so to penetrate; then wash out the exeess of sulphides, stid treat the black Egot with cold ditute murintic acid, by which it is immediately removed. Finally, wash well with water.
378. To Make Eseontial Balt of Lemons, for removing iron woulds, ink spots, and atains from lizen and cottom. Take 1 onnee of oxalic acid is fing powder, mix with 4 ounces of cream tartar, and put it up in small oval bexes.
379. To Remove Ink, Iron Mould, \&c., from Linen. Wet the fiuger in water, dip it in the powder (sec last reccipt), and rub It on the spot gently, keeping it rather moist, and the stain will disappear without injuriug the fabrio. After tho stain disappears, wash tho limen en pure water. The salt of lemon used as a beveraga is simply tartaric scid, pat up in long bottles. The above is poisonous if swallowed.
380. To Remove Iron Mould and Ink from Delicate Linen Fabrics, These may be taken out by wetting the spots in milk, then covering thern with common salt. It thould bo done before the garmenta have beon washed. Another way to take out fink is to dip it in melted tallow. For fine, delicato artieles, this is the best way.
381. To take out Mildew Spots. Wet the spots with a solutiou of chloride of soda (Labarraque's solution), or of chloride of lime (bleaching fluid), or with chlorine water, and they will disappear immediately. Frait and wibe stains of all kiads may bo removed in this way. (Soe also No. 128,) Starehed linen which hes contracted mildew spots will require an application each day fiec 2 or 3 daya; rinsing out and bleaching in the kunshine ofter each application.
389. To Remove Mildew. Mildew is easily removed by rubbing of scruphiug a littlo cummon yellow soap ou the articto, and then a little salt and sitarch on that. Rub ull well on the article, aud put in the sunshine. Or, suap the linen previourly wetted, and apply malt and lemos juice to both sides; or apply finely powdered pipe clay, or fulfer's earth, or finely powdered chalk. Exposs it for sovoral hours to the atmosphore.
383. To Extract Mildew. Mix soft soap with powdered starch, half as much salt, and the juice of a lemon, jusd lay on with a brush. Let it lay on the grass day and sight till tho stain is gone, This is a grood receipt. Or, tako 2 ounees chloride of flone, pour on it a quart of boiling water, Gien add 3 quarts of cold water; atesp the lineo 10 or is hours, when every sput will bo estructed.

Mix oxalic acil, citrie acth, and mitk, together; rab intor the lineen; repeat os it drien; wasls, and blenche on the grias.
384. To Remove Common Ink Stains. Ink stains may be rembity removed from white articles hy seabs of a little salt of Lempus, dilutad muriatíc acid, osalic acid, or tartaric acid, and hot water; or by mems of a littla nolation of chlorine or chloride of Jime. When the stain fa caused by jok manufictured with logwood, a red raark remains, which may be romoved by tho application of a littlo chloride of lime. All strong acids and alkalies tend to injure the fabric; therefore, jumediately the stains are removed, the epots should bo well rinsed, and repeatedly, it cold water. 385. To Remove Staing made by Hair Dye, or Indelible Ink. The staining principle of common indelible ink is nitrato of silver. It may be removed by first soaking its a solution of common salt, which produces chloride of silver, and aforwards whashing with ammonia, which dismolvos tho chlonide. Nitrate of ailver, or hair dye staing can be removed by a solution of 10 grains of cyanide of potassfum, and 5 grains of iodine to 1 ounce of water; or a selution of 8 pirts of perchloride of mercury and muriate of ammonia in 125 parts of water. (Sce Nos. 129 and 367.$)$
386. To Remove Marking-Ink from Linen. Dip the garmant in a solution of 1 ounce cyande of potassium it 4 onuces of wuter. After a few hours the stain will be obliterated. This is very effectual, lut the mixture is highly poisonous, and stiould be carefully removed.

387. To Remove Silver Stains from

 the Hands. Put $\frac{1}{2}$ pound glauber salts, $\frac{1}{4}$ pound of the chloride of lime, and 8 ounces of water, into a little wide-monthed bottio, snd mben required for use pour some of the thick sediment into a saucer, and rub it well over the hauds with pumice stone or a nailbrush, and it will clean the fingers quits equalto cyanide, but without any danger. This will do to use over again until exbansted, and should be kept corked up. The disagreeable smell may be entirely avoided by the liberal use of lemon juice, which not only entirely removes the emell, but whitens the hands.
388. To Remove Stains from the Hands. Ink stains, dye stains, fruit staing, ete., can be immediately removed by dipping the fingers in warm water and then rubbing on tho stain a small portion of oxalic acid powder and cream of tartar, mixed together in equal quantities, and kept in as box. When the atain disappears, wash the hands with fine soap. This mixture, being poisonous, must he kept out of the reach of childrea. A fow drops of oil of vitriol (sulphurie acid) will also remove most stains from the hands withont injuring them. Care mast, however, be taken not to drop it upon the clothes. It will remove the color from woolen, and eat holes in cotton fabries. The juice of ripe tomatoed will remove the stain of walnuts from the hands, without injury to the skin.
389. To take Ink Stains out of Mahogany. Put a few drops of spirits of nitre (nitric acid) in a tea-spoonful of water, touoh the apot with a feather dipped in the misture, and on the ink disappearing, ruls it over immediately with a rag wetted in cold water, or there will be a white mark, which will not bo easily effaced.
390. To take Ink Spots out of Mahogany. Apply spirits of Ealts (muriatio noid) with a ray wntin the Epots disuppear, and immediately afterward wash with eloar water.
391. To Remove Ink from Mahogany. To $\frac{1}{}$ pint of sof water pat 1 ounce of oxalic noid, and i ounce of batter (terchloride) of antimony; shake it well, and when disowlved it will be very uschul in extracting staina from mahogany, as well as ink, if pot of too long standing.
392. To Extract Ink from Floora. Remove ink from floors lyy seonring them with bsad wet wilh water and the oil of vit riol, mixed. Tbou riuse them with strong saloratus water.
393. To Remove Stains on Mahogany Furniture. Stains anl spots may be taken out of mahogany furnitare by the use of a little aquafortis, or oxalic acid and water, by rubbing the part with the liguid, by means of a cork, till tho color is restored; observing afterwards to wall wash the wood with water and to dey and pollish as usual.
394. To Extract Oil from Boards, Marble or other Stones. Make a stroug lyo of pearlashes and soft water, ant edd as much unslacked lime ns it will tako up; utir it together, and then let it settle a fow minutes; bottle it and stop close; have ready some water to diluto it whea nsed, and semur the part with it. If the liquor shonld lie loug on the boards, it will draw the color put of them; therefors do it with care ant expedition. When used for murble, the surfiwemay be improved by rubbing or polahing afterward with fine patty-powder and olive oil. (Por Putty Powder, see Indes.)
395. To take Oil and Grease out of Boards. Make a paste with fuller's earth and hot water, coyer the spots therewith, let it dry on, and the next day scour it off with sof or yellow soap.
396. To Clean Marble. To clean marble, mir quieklime with strong lyo, so ss to form a mixture hasing the consistency of cream, and apply it immedintely with a brush. If this composition be allowed to remain for a day or two, and be then washed off with sosp and water, the marble will appear as though it were new.
397. To Clean Marble. Take 2 parts
of common soda, 1 part of pumice-stone, and 1 part of finely powdered chalk; sift it through a fine sieve, and mix it with water; then rub it well all over the marble, and the etains will be removed; then wash the marble over with soap and water, and it will be as elcan as it was at first.
398. How to Clean Marble. The following is an excellent way of cleaning marble: First, Jrush the dust off the piece to be eleaned, then apply with a brash a good coat of gam arabic, about the consistency of thick office mucilaga; expose it to the kun or dry wind, or both. In a short time it will crack and peel off. If all the gun should not peel off, wash it with clean water and a clean eloch. If the first application does not have the desired effect, it should be applied again.
399. To Clean Marble. Mix $\frac{1}{}$ pound soff sobp with the aame of pounded whiting, 1 onnce soda, and a piece of stone-blue the size of a walnut; boil these together for $\frac{1}{2}$ of an hour: whilst hot, rub it over the marble with a plece of flamel, and leave it on for 24 houra; then wash it off with clean water, and poliak the marble with in piece of coarse flaunel, or, what is better, a pieco of an old hat.
400. To take Staina out of White Marble, Take 1 ox-gall, 1 vine-glasis soap lees, it wine-glassfal turpentino; mis and make fute a pasto with pipe clay. Put on the paste over the stain and let it remain for several deys. If the stain in not fully temoved a second application will generally pruve suflicient.
401. To Remove Oil Stains in Marble, Staina lo marrle canses by oil can be removed by applying counmon clay saturated with henzive. If the areave has remained loug enough it will bave veconce acidulated, and muy inlure the polish, but the stain will be removed.
402. To Remove Iron Mould or Ink from Marble. Iron moald and ink spots may be taken ont in the following manner: Tako $\frac{1}{}$ ounce butter of antimoty and 1 ounce oxalie acid, and dismolve them in 1 piat rain water, add flonr, and bring the composition to a proper consistence. Then lay it erealy on the stained part with a brush, and after if has remained for a fow days wash it off, and ropeat the prockss if the stain is not quite removed.
403. To Remove Stains from Marble, Mix an ox-gall with a quarter of a pruad of suap-liviler's lye, and an eighth of a pound of oit of turpestine, and ndd cnough pipe-clay earth to form a paste, which is the to be placed upon the marble for a time, and afterwarda acraped off, the application to be repeated until tho marble is perfectly clean. It Is quito possible that a faint trace of the sitains may be lell; but this will be almost fropprociable. Should the spots be produced by oil, these are to be first ireated with petroleuta, for the parpose of softening the hardened oil, and the abovo-mentioned application may be made subsequently.
404. To Remove Printing Ink from any Article. Priuting ink can be readily talon from auy article by means of ether or oil of tarpentine. Pare bearine will also have a similar effect.
405. To Remove the Varnish from Oil Paintings, \&c. Varnish and dirt can be removed by whabing over with a weak solution of carbonate of ammonis, wiping it off with a sponge wetted with water as soon as it has fultilled its object; if allowed to remain too long it will injuro the oil colors. Another way is to spresul a thick cont of wet fuller's earth over the surfuce of the varnish, lesving it on long enough to soften it; it may then be
removed by washing.
406. To Clean Pictures, Havingtaken the picture out of the frame, take a clean towel, and, making it quite wet, lay it on tho face of the picture, sprinkling it from time to timo with clean soft water; letitremain wet for 2 or 3 days; take the cloth off and renew it with a fresh one. After wiping the picture with a clean wet sponge, repeat tho process till you find all the dirt is soaked out of it; then wash with a soft sponge, and let it get quite dry; rub it with some clear nut or linseed oil, and it will look as well as when freshly done.
407. To Clean Oil Paintings. Put into 2 quarts of strong lye, $\frac{1}{}$ pound of Genoa soap, rasped vory fine, with 1 pint spirits of wine; lot them simmer on the fire for half an bour, then atrain them through a cloth. Apply the preparation with a brush to the pictare, wipe it off with a sponge, and apply it a second time, which will remove all dirt. Then with a little nut-oil warmed, rub the pieturo and let it dry. This will mako it look as bright as when it came out of the artist's hands. If the canyas is injored by damp, mildow or foul air, the first thing to bo dono is to stretch and line it with new canyas.
408. To Clean Japanned Waiters and Uras, Rab on with a sponge a littlo white soap and some lukowarm water, and wash the waiter or urn quite elen, Nayer use hot water, as it will cause tho japan to sealo off. IIaving wiped it dry, sprinkle a little flour over it; let it rest a wbile, and then rub it with a soft dry cloth, sind finigh with a silk handkerchief. If there are white heat marks on the waiters, they will be difficult to ramove; but you may try rubbing them with a flanel dipped in sweot oil, and afterwards in spirits of wine. Waiters and other articles of papier mach ehould bo washed with aspongo and cold water, without soap, dredged with Gour while damp, and after a whilo wiped off, nad then polished with is silk bandkerchief.
409. Method of Cleaning Paper Hanginge. Cat into 8 portions a loaf of bread 2 days old; it must tieither bo newer nor stalor. With one of these pieces, aftur having blown off all the dust from the paper to be cleaned, by the means of a good pair of bel. lows, begin at thetop of the room, holding the crust in tho hand, atd wiping lightly downward with the crumb, about half a yard at each etroke, till the upper patt of the paper is completely eleaned all round. Then go round again, with the lise sweeping stroke downwards, always commencing ench successivg courte a little higher than the upper stroke had extended, till the bottom be finished. This operation, if carofully performed, will frequently mako very old papor look almost equal to new. Great caution must bo uaed not by any means to rab the paper hard, nor to attempt cleaning it the cross or horizontal way. The dirty part of the bread, too, must be continually cut away, and the pieces renewed as हnon as may become necessary.
410. To take Grease Stains out of Wall Papers. Oil marks, and marks whero people have rested thair heads, can be taken from the paper on drawing-room walls by mising pipe-clay with water to the consistency of cream, laying it on the spot, and let. ting it remain till tho following day, when it may be easily removed with a penknifo or brush.
411. To take Grease from Paper. Gently warm the parts containing the grease, and apply blotting-paper so as to extract as much as possible. Boil some clear essential oil of turpentine and apply it to the warm paper with a soft clean brush. A little rectified epirits of wine should be put over afterward.
412. To take out Stains of Ink from Books. Oxymuriatic acid removes, perfectly, stains of iuk; and should the paper require bleaching, the operation will answer both euds at the same time. Nearly all the acids will remove spots of ink from paper; but it is important to use such ns do not sttack its textare. Spirits of salt (muriatic acid) diluted in 5 or 6 times the quantity of water, may bo applied with suecess upon tha spot, and after a minute or two, washing it off with clean water. A solution of exalio ecid, citrie aeid, and tartarie ncid, is attended with tho least risk, and may be applied upon the paper and plates withont fear of damages Theso ncids taking out writing ink, and not touching the printing, can be used for restorlag books where the margins have been writton upon, without attacking the text.
413. To Remove Yellow Stains from the Margins of Engravings. The yellow stains on tho margin of engraviogs may bo removel by in solution of kydrochloride of soda. This liquid is commonly known under tho wame of Labarruque's solution.
414. To Clean Silver or Gold Lace, Lay the laces smonth on a woolen carpet or piece of woolen cloth, and brush it free from dust, then burn rock aluas med powder it Ano, and aftorwards gite it through a lawn sieve; then rub it over tha lace with a fine bruah. and in so doing it will take off tho tarnish and reatoro it to its brightucssor, if it bo not too anch worn on the throusls.
415. To Clean Papier Maché. Papier mashóneticles slould be washed with o aposige and cold water, without noap, droulged with floar while dang, and polished with a flasnel.
416. To Clean Hair Brushes and Combs. Wash tho bristlea for a fow booonds In a weak sotution of hicetahoris, say as tablespoonful to a pint of cold soft water. Them rioso in clesm cold water, and dry. Do aot set them near the fire, nor in the sun, to drg, but, stter shakiag them well, set them oa the point of tho baudte in a slady place. By this process the brash will be thoroughly cleansed with very littlo trouble. Ohnorvo that the mahogany or satin-wood beck of the brush must be kept out of the molution, as it is apt to discolor wood. Contbs may lie cleaned to the gamo manner.
417. To Clean Looking Glasses. Take part of a newspaper, fold it small, dip it in a busin of clean culd water, and when it is thorouglaly wet equeczo it out as is sponge, and then rub it hatd over the fuce of the glasa, taking care that it is not no wet ns to rundown in streams. After tho glass has been well rubbed with the wet paper, let it reat is few minutes and then go over it with a fresh dry newspaper, till it looka clear und bright, which it will do almost imueditelely. The inside of windows may be cleaned in this way, and they will look beautifnily clear.
418. To Clean Straw Matting. Wahh it with weak salt and water and dry it well, or boil a small bag of bram in 2 gallons of wator, and wash the matting with the water, drying it well.
419. To Clean Cane-Bottom Chairs. Turn up the chair bottom, and with bot water and a sponge wash the canework well, so that it may becoune completely sonked. Should it be very dirty you must ndd soap. Let it dry in the open air if possible, or in a place where thero is a thorough draught, and it will become as tight and firm as when new, provided it has not been broken.
420. To Clean Sheepskin Rugs or Mats. Make a very strong lather, by boiling soap in a little water; mix this with a sufficient quautity of water (rather wose than lukewarm) to wash the mat or rug in, and
rub boileil soap on those portions of it whieh require milditional cleansing. When the nat has been well wastied in this water, propure another lather in the same way, in which a secoml washing must take place, followed by a third, which ought to be sufficient to cleanse it thoroughly. Finso it well in cold water until all the soap is removed, and then put it in water in which s little blae has been mired, sufficient to keep the wool of a good white, and prevent its inclining to yellow. Aftur this it sbould be thoroughly wrung, shaken, and hung out in the open air with the akin part towards the sus, bit not whilo it is scarching, otherwisd the skin will becoune hard. It must also be shakèn often whilo drying, for if not, it will be quite stif and erackly. It shouh be froquontly tumed, velug liung up finst by one end and then by the other, until it hasdried entirely.
421. To Clean Knives and Forks, Procafa s shouth luand, freo from kionts, ur oue covered with leather. If the latter, meit a sufficient quatity of muthos-smet, and pot it hot upon the leather with a piece of flannel: then take two pieses of soft Bath brick, and nib them one egainst the other over the leather till it is covered with tho powder, which rub in until no greaso comos through when a knife is passed over the leather, which may easily the koown oy the baife keeping its poliah. If only a plain board, mol the Math brick 2 or 3 tines aver it; if tuo mach be pat on at emes it will unks the blates of the kuives look rough and wratcheol. Tat the board to of a proper height, and sut so that the person bay be is little ou. the sfoop while cleaning the haver Take a kelfo in ewsh hand, hodting thens thack folmork : stand egraeste the suid. dle of the bourd; lay the kurves flat mion it, and to rout bear tom hard njuat then; by this method it will loe easjer to dem two knives at a time than aber, and they will loe less liablo to be broken, for gacel knives will shajp when prossal on tour bravilg. Masy will fuy that they cannot clean two kuiver at once, or that they ran get Darmeh tlewn faster one by one; litif they will only try it a fow times in tha way recombebsled, thay whill fibd it not only much noro expelitiona, lnat sasker. A litto practice is all that is mepeswary
The beal way to clean stoel forks is to filt a small harrel with fine grathl, brick duat, or sanil, mixed with us lithe hay or moss; make it tinderately damp, juess it well down, asd let it nlways lio kept flump. By ruming the prough of the stcel furles a fow times into this, all tho shains on them will be removed. Then have a small stisth, shaped like a kpifo, with leather round it, to pofish betwreen tho prougs, havisg first carefloly lotushed the dust from them as sonu us they are takes ont of tha tub. A buife-loard is nten spuiled in cleasing forks opon it, and liliewiso thie facke of the knives; to provent this, hase a piece of old hat or leather jut on the boand where the forkas and lacks of the traises are elesued.
422. To Preserve Knives and Forks in Good Condition. Wipe the knives and furkn as groan int prosibilo aiter heing used, as the longer they are left will grease and stains of them tho burder they will be te elvan; particularly if they have been used for acide, caluds, tarts, etce; have then a jog of hot water ready to plat them into as zoon as dove with, and wipe them as before directed.
In order to keep knives and forks in good coudition when they are not in lise, rab tha stecl part with a flapnel dippeel in oil; wipe the ofl off after a few hours, as there is often water in it; or dnst the thales and pronga with quickline, fincly powdered and kept in a muslin lag.
423. To Clean Spice Mills. It is often
desired to grind different spices, orange or lemon peed, in the same mill, withont any one being affocted by another spice. Grind a teaspoonful of rice through the mill aud ull impurities will beremoved. Acolfeu millmay bo fitted to griad uuy spice in the samo way, using rather more rice. The rice will of course the flavereal by whatever may have been in the mill. It is usefal to thicken soups, or gravies, or zances, when the spice is no objection.
424. To Keep Oil-Cloths Looking Well. Wash them once a munth in skim milt and water, equal quantitiea of each. Tub them once in three months with boiled linsoed oil. Pat on very little, malr it well in with a rag, and polish with a pieco of old silk. Oil-clochs will tast yeara if kept in this way.
425. To Clean Oil-Cloth. An oil-cloth should never be scralued with a brush, but, after being first ewept, should bo eloaned by washing with a soff flannel and lukewarm or cold water, On no account use zowp, or waler that is hot, as either would hava a bud effect on the paint. When tho oil-cloth is dry, rab it well with a small portion of a mixture of bacs' wax, sofumed with a minuto quantity of turpuatine, usiog for this purpose a soft furniture pelishiug brash. Oil-cloth cared for in this way will last twice the time tham with ordinary trisatument.
426. To Give to Boards a Beautiful Appearance. Afor wasking thom very nicoly with soda and waran water and a hrush, wash then with a vary large fipoggo and clean water. Both times olbserve to lease no spot untouched; atid clem straight up and down, not erossiag from board to board; then dry with clean cloths, rubled hard up and down in the same way

The floors should not be ofton wetted, bet very thorougbly when dotio; and oncen weik dry-rubbod with hot aund and 4 heavy brubh, the right way of the buards.

The sides of ataird or pasengen ou which are carputs or floor-cloth, should be washed with spongo instead of linen or flaunel, and the edges will not bu soiled. Different sponges should be kept for tho above two uses; and thoso sud the brushes should be well washed when dobe with, and kopt in dry places.
487. To Bcour Boards, Sime, 1 part; sand, 3 parts; Hoft soap, two parts. Laty a litule on the boards with a serubleing-brush, and rub thoroughly, Rinss with clean water and rub dry. This will keep tho boards of a good color, and will also koep away vermin.
428. To Clean Stone Stairsand Halls. Boil 1 pound of pipe-clay with a quart water, and a guart small beer, and put in a bit of stoneblae. Wash with this mixture, and when dry, rub the stone with flannel and a brush.
429. To Clean Glass Globes. If the globes aro much stained on the outside by smoke, boak them in tolerably hot water with a little washing soda dissolved in it; then put a Lea-bpoonful of powdered ammouia juto a pan or lukewarm water, and with a tolerably hard brush wash tho globes till the binoke staia disappears ; rinse in clean cold water, and let them drain till dry; they will be quite as white and clear as new glolees.
430. To Clean Decanters. Thero is often much difficulty experienced in cleaning decanters, especially after port wime has stood in them for some time. The best way is to wash them out with a little pearlash and warm water, allling a spoonful or two of fresh slaked line if necessary. To facilitate the action of the fluid against the sides of the glass, a few small cinders may bo used.

Or, soak the decanters for somo hours in warm soda and water; if there is much cut-
ting on the outside, a brush will be neeessary to remove the dirt and stains from the crevices. Cut a potato into amnll dice, put a good handful of these into the deenter with some warm water, shake the decanter briskly until the atains disappear; rinse in clean cold water, and let them drain until dry. Vinegar and saace eruets can bo cleaned in the same way,
481. To Clean Glass Bottles. Chop upa large potato very fine and put it in the bottle with some warm water, and shake it rapidly until it is clean. Some use shot and soda, but potato is even more effectual.
432. To Clean Medicine Phials. Cleanse bottles that baye had medicines in them, by putting ashes in each, immursing them in cold water, ant then heating the water gradually till it boils. After boiling an hour, let them remain in the water till it is cold. Wush them in soap-sade, and rinsa them till elcan in clear water.
433. To Wash Castor Bottlos. Put them $\frac{1}{2}$ full of riee and fill up with warta water: shake thent well; this will cleanso them thoroughly.
434. To Clean Greasy Earthenware. Stone pots and jars in which lard or fat has been kopt, and yellow ware pie plates, may bo cleaned by puiting them in a kettle with ashes or bal soda, covering them with cold water, and allowing them to bili slowly an hour at least. When boiled enough, take them off the fire and leave them in the water until is cools.
435. To Clean Paint. There la a very simple method to clean paint that has become dirty, and if our housewives shoudd adopt it, it would gave them a great deal of trouble. Provide a plate with nome of the best whil ing whe had, atsd have ready sorne clesm warm water and a piece of flannel, which alip into the water and squeezo nearl \bar{y} dry ; then take as much whitiog ise will adhere to it, apply it to the pacuted surfiwe, when a little rubbing will instantly rumove any dirt or grease. After which wahth the part well with cleas water, rubbiag it dry with a non chas mois. Paint thus cleaned looks as well is whon first laid on, without any injary to tha most delicate culors. It is fur betier than using boap, and does not require more than half the time and labor.

Another simple method is as foflows:-put a table-spoonful of aqua ammomis io a quart of moderately hot water, dip in a flannel eloth, and with this merely wipe over the Wood-work; 10 - acrubbing will te neceswary.
436. To Clean Varnished Paint. Boil a pound of bran in 1 gallon of water an hour, and wash the paint with the bran water.
437. To Clean Soiled Ribbons and Silks. A inixture of alcohol anid Afghly rectified bensine is excellent for cleaning ribbons and silks. It is applied with a clean sponge. Persons who apply these liquida and nixtures to eleaning ailks, de., must be careful to do so in an apurtment where there is neither fire nor lamp tourning, under the penalty of an explosion. (Sec No. 346.)
438. To Remove Stains from Kid Gloves. Stains may be remored, even from the most delicately colored gloyes, by susponding them for a day in an atmosphere of ammoniu. Providentall glass eylinder, in tho bothom of which place strong agua ammunia. Be careful to remove from the sides of the jar any amuonia that may have been epattered upon them. Suspend the gloves to the stopper in the jar. They must not come in contact with the liquid.
439. To Clean Kid Gloves, Dr. Reimann gives the following directions, in the Scientifio American, for cleaning kid gloreds-

A bottle 2 feet high, and 1 to $1 \frac{1}{1}$ feet wide, the stopper of which is also made of glass, is filled with 2 pounds of benzine. Then the gloves which ara to be washed are put also into the bottle. On this account the neck of the bottle must be very wide, perhaps from $\frac{1}{2}$ to 4 foot in diameter. Such bottles are easily obtained, being muck usel in plarmacy. As many gloves may be introduced into tho huttle as the liqual will cover. The bottle is then olosed, well shaken, and allowed to stand some minutes. The shaking is repeated, the bottla opened, and the gloves taken out with a pair of iron forceps.

To prevent the posaibility of there being any smell, it is a good plan to open the bottle under a good chimney, which thua carries off all the vapor that escapes.

The gloves, whan brought by the foreeps to the mouth of the bottle, are taken out, oue after the other, by the band, and wrung out, care being taken that the superflusus liquid runs book again into the bottle. It is highly adviasble to porform this operation under a chimney, or the workman will soon suffer from the injurious infleence of the volatile hydrocarbon.

Under the chimnoy is placed a cord strotehed betwoen two pins, and the gloves are bang apon this by mesns of small S-nhaped hooks. After hanging a short time thoy will be dry.

The benvine contained in the bottle disaolves all the greaso whiel adheren to the gloves, and the dirt which had been consbined with the greaso in consequently rewoved at the sarme time. The benzilu remaining in the lottle assumes a dirty gray color daring tho process of whehing.

When the benxine las become too dirty, it is put into as distilling apparatus, and distilled over. In this way the benzine is restored th its original purity and whitenass, so that it can be rued again in further operations. (For directions how to accomplish this, see next recespt.)
The gloves, when taken out of the bottle, aro often not quite clean, in which case it is necessary to ruh them with n rne, moistened with benine, in all places where they are still dirty.

Thus the last traces of dirt are removed, and the gloves become perfectly cloan. In this state they may be buig on is cord under the chimney.
The gloves soon become dry, bat a part of the bonaine atill remains belind, which is less volatile, and which, whos the glove is in contact with the warm hand, caunes a stroug odor of betraine to be expiped.
To retuove this also, the gloves are placed on a common plate, which is put upon an iron pot containing boiling water. The first phate is covered with a second, and tho gluves be tween the two plates are heated at the boiling temperature of water, until the last tracea of the unvolatilized benzine have escaped.
The gloves aro now removed from the plate, and put upou is wooden glove-stretcher, of shape. In thin way they are made to resume their original form, and are now ready for ase.
The whole operation must be so conducted that no amell of beasing is peroeptible. The amell of benrine is always a sign of carelessness on the part of the workman, who can readily eonduet all the benrive vapors up the chimney. (See No. 346.)
440. To Re-Distill and Purify Benaine that has been used for Cleaning Kid Gloves. If the operation of distilling the benaino is disagreeable to the glove maker, he can have it purified at the apothecary's or
chemist's, It is, however, an operation which he can readily perform himself

The apparatus is neither complicated nor expensive. A small wooden pail, such as is used in every establishment, is furnished with two holes. The first of these is drilled near the upper margiu of the pail, so that, when the pail is filled with water, the water runs out tbrough the bole, until the surface of the water within the pail is on a level with the lowest portion of the hole, that is to nay, just below the upper margin of the vessel.
On the opposite side of the pail another hole is made, but this time near its hottom, so that water would ruu through this hole, until the surplus of the containet water was within a short distance of the bottom.
A leaden tube, the thickness of which equals the dismeter of tho hole, is bent so as to form a distilling worm, the upper end of which is inserted into the upper opening, and the lower end into the lower hole.
The tube is tightly inserted into both holes, so that no water can ran through the spaco between the sube and the hole.
The pail is thed filled with cold water.
The upper and lower enda of the leaden tube muat project a liftlo beyond the outer surface of the pail-perbaps two inches,
The lower end is bent downward a little. The upper end is a little enlarged, oo that the tube forms a nort of fumsel above,

In this is inserted a glasia retort, conveaiently fixed in a holder.
Tbe siace hetwern the neok of the retort and the enlarged end of the leaden tube is conveniently filled with moistesed cotton, so that no vapors cau escape through it.
It is a good plan to employ a glase retort with a tube, so that any fluid can be pourod into it whou the apparatus is already fixed.

Having placed the retort on a vapor bath, where it can bo beated nt 212° Fahr., the neek of the rotort is connected with the worm, as above mentioned, and the pail filled up with cold water. The retort is then filled with the fmpure benzine or petroleum eshenco which hai been uneid iu wushing gloves,
ster pouring in the treazine, the tube of the retort is elosed by is stopper, and then the apparatus is completed ly a bottle placed under the lower end of tho leaden tube, which jmpeets beyond the outer surface of the pait, so that the liquid running down this flowi directly into the battle.
The vapor bath is now heated, the retort soon beoomes warm, and tho volatilo liquid begins to distill over, either quickly or alowly, uceoraling to the may in which the beating process is conducted.
The papor of the hydrocarbon condensee in the worm, and a stream of lignid flows out of its month. In a short time there remain behind in the retort only tha grease which the bensine had extracted from the gloves.
441. To Reflne $O x$-gall for Fixing Chalk and Pencil Drawings, and Removing Grease. Allow fresh ox gall to rupose for 12 or 15 bours, decant the clear, and evaporate to the cunsistence of a thick syrup, in a water-bath; then spread it thinly on a dish, and expose it before the fire, or to a current of dry air, until nearly dry. It will then keep for years in wide-mouthed bottles or pots, covered over with bladder. For use, a little is dissolved in water.
Or:-fresh gall, 1 pint; boil, skim, add poundod alum, I ounco; boil again until the alum is diesolved, and when sufficiently ocol, pour it into a bottle, and loosely cork it down f in a similar manner boil and skim another pint of gall, and add to it 1 ounce of common salt; boil till dissolved, and cool and bottle as above. In three months decant the elear
from both bottles, and mis them in equal quantities; the clear portion must then be soparated from the codgulum by subsidence or filtration. It is employed by artists to fis chalk and pencil dtawing betore tinting them, and to remove the greasiness from ivory, tracing paper, \&e. It is also used to oxtraet greaso and oil from clothes: for the latter purpose it answers admirably.
442. To Clean Cloth Clothes. Dissolve 4 ounces washing suda iut 1 quart boiling water; when dissolved, uld to it 1 moderate sized fresh beel's gall; lay the garment to be cleaned on a clean tablo or board, and with a sponge of brush (a lirush is the lest) wetted in the liquid, rub well the grease spets first, and afterwards the whole garment, frequently dipping the spouge or brush in the liqual ; when sufficiently rubied, rinse in enld water until the water is clear, then squecte the water out thoronghly (but withoat twisting-if pessible, use a patent wrimger), thake well aml hang in the air to dry. While drying, shake the garment occasionally and pall it iuto shape to prevent sbriaking: When atill alightly damp, pross it on the wrotig side with a warm iron, aud then fininh ainser. Clothes elaned in this way, ir the airectiona be strictly followed, lomk atmust eypal to rew. The use of the patacte wringing machine is a great improvementin this operations, as it haswas drying, and proveuts ulrinking. The editor has used this receipt io his farnily for the last 15 yoars with the most netiefaitory resulta. Por dark colored eloth garmente, it is is common prnatice to whll some fillor'a earth to the mixtura of Enap and gall. When nearly dry, the map should be laid right, nad the garment carefully prewed, aner whieh, is brish, piofictened with is drop of two of olive oil, should be passed over it several timed; this will give it as superior finish.
443. To Clean Woolen Clothes. Mis $\$$ ounce sulplaris ether and $\frac{1}{2}$ ounes hartahoris (ammonia water) with 3 ouncod water. kuli the article well with a apongo frequently wetted with the mixture, wiach will robure the dirt; then apongo wilh slean warm water; next lay a coarse towel, which bas been raturated with hot wator and wrung out, over tha artiole, and press it with a hat iron; while the stean is stin riving from the eloth, brush it down with a clothea lirunh.
444. To Clean Carpeta. Carpets may bo eleatred as followis: Take theti up and shake and beat them, 80 as to reoder them peefectly free froan dast. Have the floor thoroughly scoared and dry, and nail the carpet firmly down upon it. If atill much soiled it may, be cleansd in the following menner : Take a pailfol of clean cold spring water, and put into it about 3 gills of ox-gall. Take another pail with cleat cold watur only. Now rub with a soft serubbing lorush some of the ox-gall water on tho carpet, which will raise a lather. When a convenient sized portion is done, wash the lather off with a cleau linen cloth dipped in the clean water. Let this water be clianged frequently. When all the lather has disappeared, rult the part with a clean dry eloth. After all is doue, open tha window to allow the carpet to dry. \triangle carpet treated in this way will be greatly refreghed in color, particularly the greens. Any partichlarly dirty spots should be rubbed loy nearly pure gall first ; and every spot of greaso must be romoved from the carpet by the following process: Scrape and pound together, in equal proportion, magnesia in the lump and fulfer's earth. Having mixed these sulistances well together, pour on them is sufficient quantity of boiling water to make them into a paste. Lay this paste, as hot as possible, upon the grease spots upon the carpet, and let it
dry. Next day; when the cumposition is quite dry, brouh it ofl, and the grease eput will have disappeared. (Sce No. 3i57.)
445. To Clean Hearth Rugs and Stair Carpets. Hearth rogs and kthir caro pets may bo treated in the kame manner as given in the last recepipt, ouly that these may be spread abd washed upon a table.
446. How to Clean Carpets. Carpets may be wasted on talles or ou the floor. In either caso they must he taken up and well lieaten and swept. Grease is taken oat by fubbing thard soap on the spot, and seruluing it out with a brush dipped in clean cold water. Each spot auset be rubled dry with a cloth as it is washel. Dissolve a lor of feap in 2 galJons of water, by cutting it into the water and heating to a buil. Lay the carpet on the floor and tack it down, or have a heavy board, 3 fapt wide by 12 feet lopg, laid ou stuatstands, or berese, and throve the carpet ovor that, keeping a cleam buard or sheet underneath to recefve the carject as it is cleansed. Proride lruakes, arol a pountity of coarse ontton clothe flannols, and a largo nponge. Take 9 paila filled with blood-warm water. put 2 querts of the puelted sonip into otre of theas to swour the carpet with, abd uso the other for riusing. Dip the brush in the saap-sude, mad peour a syuare yard of the carpet at a thas, using as licte water nepoussible, not to suak it through. Whan tho soap has doae its work, rubs it wefl ont of the earpet with a flautel or coarme spango, sueking up with these all the wets and dirt left by the lerush, rinsing the article nased in eleas water ropeatedly. Hare nouly a pail of dean cold water, with eimugh sulphorio acid or sharp viougar io it to tante monr; dip a cleau prowne in this, equrexa aud ruh ic well into the bpht just chameal. Aborward wipe dry witb roaree cloths, rinsing asal hanging thera whern they witl be dry whent tha next yard is wrothed. Finish yand afer youl in this way, rubbing each clean asd dry as you go. Ksop a good fire fo the room to dry the carpet thoroughijg. If scoured on a fratse, anall the carpet against the side of a houso in the sun to dry. This is a tedious, bat thorough procesor. Hearth rogs may bu eleanod in the name way, beatigg nad brunbing them well, and tackmg on a fargo board becore whebing. Scrub one-sisth of it at a thine balens you are oxpeditious, auldry woll with an old shent. The beeret of haviag carpets look well is to wab and fiaso them thoroughly, withont monking them through lugrain, tapestry Brussels, onit Tarkish carpeta are all cleaned in this way. Good authorities recombitend a tea-cupfal of ox-gall to a pall of suaphsuds, rinstin with eleas water, (Nec No. 444.)
47. To Sweep Garpets. Before ap: plyiog the broout, fealler ofer the carpet the refuac tea-leaves fromet the tea pol Those should be sat aport and syyed in a pot kept for the purpose, squeerieg the water vat theroughly in the luand. First rub the leaver into thin carpet with the broom, and then sweop as asual. This will prevent duse and brighten the colors. Itslian menl is tecom: niended for this porpose by tuany experienced housekeapers.
448. To Clean Colored Silks, Moreens, Ohintzes, and Printed Cottons, Valored or tlack silks, moreens, priuted cottomia, und chintzes, may bo clealled, without injury to their colors, by potato liguor. Grato raw patatoes to a five pulp; ald water to the proportion of 1 pint to 1 pound of potatocs; pass the liquid through a conarse sieve intan vessel, and allow it to remain till the fine rhite atarch subsides to the bottom. Pour off the elear liquor, which is to he used for eleating. Spread the article to be cleaned upoin a talile,
which should ba covored witie a linem cloth; dip a spongo in the liquor, and apply it until tho dirt is romoved. Then rinse tho articlo in clean cold water severnl tines.
449. To Clean Old Tapestry on the Wall Old tapestry is cleaned on the wall, beginuing at the opp. Melt a bar of good comman soap in a gallon of water, and put 1 quart of it in a gullen of cold water. A clothes brash of finc browin stras or long bristles is best to dast with; is soft brush, piece of wash-leather, some thanels, and dry sheots ara also needed. Brash all dust from the tapestry first, eleaning the corners well. Dip a flawnel in the suds, squeeze it slightly, rab the tapestry to a lather, und Lrush well with a soft brash. Wring tho flamel out of tho moap, and rub the tapestry dry with it and wash-leather; lostly wiping the whole as dry as possible with a cheot, as it must not bo rimsed. Moll 4 ounces of tartaric acid in a pint of boiling water, and add to it 2 gallons of olean water. Squeexo a clean sponge in this acid, and rob it well lato the place just eleaned nad dried; then finish with the dry sheot at obce beforo golug to tho next yart of burfice. Fenew tho midi and rinsing water frequabtly, as well as tho towels, tlanmels, etc., for ovarything must ba used clean, \& good fire shoold be kegt in tha roen when tepestry is eleaned. When dry, rub a Juap of piperelay well joto it, and brash it out with is gond clothes lraalh. This thkes the soap out und brightens the colors. Worsted Fork may be clested in thia wby,
450. To Clean Sulls and Cotton, or Silk and Worated Damask, Terry, or Brocatello Curtatis. Silk atd cotton, or silk and worsted damaik, terry; or brocatello curtaina, wre aleaned over a bound by sarub. wing with $\frac{t}{2}$ gallon eswiphene and a lorush, Firat dipping the custain into tho eamphene, then elcaning on the wrong side, and lastly on the right. Dip it agatn into the canipheno juat ceed, nud rimo in the same ampunt of fresh sabophene. Let it drain a minnte, then wipe is oit with 4 linen or. cothon bhoet till all the moistare possitite is absortied, and brush if eith a dry brush of solt liair. Llang themr in the air a few hoters to take away tho stivell of caupheac. 1 gatlon is enough for each curtais width. Next rull the cuptains in balc-dey sherets to damp them; tako them oul; lirush and rabl them; then fron, with a Garbp cloth laid nger Cbent, und they will look liku paw.
451. To Clean Worsted Reps. Woratel rep sofas, abd worated furniture of any hitid, are fresbehed by dusting damp Indian moal uver them, and rubling off with a stiff bristh. Dry bran is guid to answer the same purpose, or very liftht, dry show, not suffered to medt or the surface. A large shect should Loo spread nuter easel piece of fieniture, as it is clemenal, to catub the fallime litter.
452. To Clesn Table-Covers of Cotton and Worsted, silk and Worsted, or Printed Cloth. Dissolvo 1 bat of the hest thoulted soas in 4 gallons of scalditg water, wilh 1 pound of peathash in it. Have 3 tubs ready, and pot if the fist, 1 paill of cold water and if gallons of boapliguors bit thesecond, I pail of cold water and de cullons of soup lif quor; ant in the thifs, 2 pails of cold water tal 1 gallon of soap ligtor. Itl avether tub Iase 6 patis of cold water, with a table-spoonful of ol of ritrial in it. If the eover is cottom nul worsted, wash and wring it through the threy somp-waters; rinse it five minutesin the vitriol taht, and wriug out of cold, clear water; fold it ap smnothly to drain, und hang it to dry without wringing.
Fur a silk and worsted cover use tiree soapwaters; fub it well, and, instoud of the vit-
riol, put a pound of common salt in 2 pails of water, and wurk the clothwell in this. Rinso it in 2 cold waters after the salted one, and hang it to dry in a warm room.

A printed eloth wash through three sospliguors; if one has a pariety of table-cloths, of different mixtures, they may be put through the same suds in tho order given in these direotions, using different rinses for each. Give the printed cloth , after the last soap-liquor, two cald waters, with a table-spoonfit of vitriol in each; after these, a cold, eleiar vater. Fold and druin it, und dry quickly in a warm room, or tha colors will runinto ono another. To presa table-eloths, liny them under a damp sheet, and iron with a heavy irous.
453. To Clean White Jean Boots. If yuu beve not beot-wreas, stutf the loot as frll as possible trith commott cotton wadding or old rags, to prevent any ereases; then mix some pipu-clay with water to rather is stifl paite, whah tha jem boots with suap and water and is nail brush, using as little water as porsiblo to get the dirt off, When they look wlerably clean, rub the pipe-clay with a flannel well over them and haug them to dry. When dry, beat out the suporiluous clay with the hand and ruly them till they look amooth. Flake white may also bo ued.
454. To Clean White Kid Boota. If the kid bouts wro not very soiled they may be deansed in the following ominner: Put $\frac{1}{\text { onnce }}$ of hartshom into is saucer, dip a bit of elean flannel in it and rub it on a piece of white curd soap; rub the loota with this, and as pach pieco of flannel becomes soiled, take a reasa pleco; the boot3 will look liko new.
455, To Clean White Satin Shoes. Whito nutio shoos may le cleaned by rubliog them with etone blue and flaznel, and after. warde oleaning thent with breal,
456. To Clean Black, and Other Silks, with old Ktd Gloves. Cut up a black kid glovo in small pinces and pour a pint of boiling water over it. Cover it and let it atand allyight where the water will keep warm if possible In the morning let it loof up, Btrain ib, tund sudd 1 deshert-spoonful of alcohol. Koep it warm while eponging the silk on tho right side and iron immediately on the terong side. For light silka use white or light kid gloves. It will do without the al cohol, but is better with it.
457. To Clean Black Silka. Steep a fow hours in cold wator. Thou put $\frac{1}{2}$ a pint of tho Black Heviter in it a gallon of water, and a cupfal of ox yall. Mako hot, end apongo the silk, Dry and smooth with an irob. (See next receipt).
Rusty lilack silk may bo eleaned in the Bame way. Somo pere mas elean black sill by rubbing it with a thannel dipped in gir.
458, Black Reviver, to Reatore the Color of Black Silk, Cloth or Leather. Tako of blue galls, hruisci, 4 otnces; logwoed, copperas, iton filings free from grease, and sumach leayes, each 1 oumec. Pat all but the iron filings and copperas into 1 quart good visegar, and set the vessel containing them in in warm water bath for twenty-four bours, then odd the fron filings nod copperas and thake ocensionally for a week. It shouhd be kept in a well-corked buttle. It may bo applied to fuded spots with a sof sponge. It is good also to restore the black color of leather when it turns red, the leather locing proviously well cleaned with soap and water.
459. To Restore Black Sill. To oxgall, add boiling water sufficieat to make it Warm, and with a clean spouge rub the silk well on both sides; squeczo it well oat, and proceed again in like mantacr. Rinse it in spring water, and changa the water till perfeetly eleum; dry it in the air, then dip the
sponge in glue-water, and rab it on the wrong sflep, pin it out an a tolle, and dry before a fire. 460. To Clean Silks, Satins, Colored Woolen Dresses, \&c. 4 ounces of soft soap, 4 ounees of honcy, the white of an egg, and a witu-glassful of pin; mix well together, and soour the articla (whirb mast be uupickes, and laid in widths on a kitcher tallo) with a rather hard brush, thorougbly; afterwards rinse it in cold water, leave to drain, and iron whilst quite damp, with a piece of thin mualin between it and the iron, or it will bo marked on the ironed side. The silk, when laid on the table, must bo kept quite smopth, 50 that svery part may come uader the brush. White silk requires a little blue in the watec, This receipt is an excellent une.
481. To Raise the Nap on Cloth. Soak in cold water for $\frac{t}{4}$ an hour, then put on is board, and rub the threadluare parts with a half-worn hatter's eard, filled with flocke, or with a prickly thistle, mutil a nap is raisod. Hang np to dry, and with a hard lorush lay the nap the right way.
462. To Renovato Black Crape, 8kim milk and water, with a little bit of glee is it made scalding hot, will restore old rasty Llack Itaநian erape. If elapped and pulled dry, like fine maslin, it will look as grod es new.
463. To Raise the Pile on Velvet or Plush. Hold tlie wroug side of the velvet ovor the stoan ariaing frou boiling water, until the pile risto-or daupen lightly the wromg sila of the velset nud hold it over a pretty hotirun, not hot enough to seoreh, bowever: $0 r$, make a eloan lriek hot, place upon it a wel cloth, and bold the velvet over it, and tho atears will rike tho planh.
464. To Restore Greased Ribbons, Creased riblons may to reatered by laging them cvenly on a bosnd, and with a very clean apongo dauphing them avenly all ovor. Then roll them ktroothly and tigbly on a ribbon block, of greater lireath than the ribbon, and let thein remato rutil dry. Afterwards tranafer to a elenn dry block. Then wrap in brown payer, and keep ostil wanted.
485. To Wash China Crape Scarfs. If the falrio log good, theso articleo of Arosa can bo washed as frequoully as may be required, and no diminntion or their theaty will bo disooverable, even when tho varions zliades of green have leen emplojed among other colors in tho patterns. In eleaning them, tmake a atrougg lather of toiling water, puffer it to cool; when cold, of nearly wo, wouh the scaff quiekly sumd thorongbly, dip it itumedintely in cold liard wotet in which a littlo salt has leen thrusn (to prexerve the colurs); rinse, equecae, abd hang it out to dry it tho open afr: piu it at itse extrenio odgo to the ling, so that it may not in enj part bo folded toggether. The noro rapidly it drieg tho elearer it wall lie.
466. To Wash a Black Lace Veil Mix Intlock'y gall with sullicimb but water to make it as tram as you can lear yoar hand fu , ated pasa the refl through it it mush ba sifuecsed, nol rublied; дum it wit bo well to perfuuse the kall vith a litulo mnso, Iinse the rell throligh two coll vaters, tinging the last with if litule blite. After insing put it into Eome stiflening puple by porritg boilitg Wuter on a very kmall pieco of gloe; Bqueero it out, streteh it, amil clap it. Aferwards, pin it out oun a linen cloth to dey, laying it very straight eud cven, end tubing caro to open and pin the edge very nicely. Wbendry, iron it ph the wrong sides, haring lail a finers eloth over tho ironing llauket.
Any article of Llack lace tway be washod in this matuer.
467. To Wash White Silk Stockings. Heat somo rail or soft water, and while on
the fire cut into it slices of good yellow rosp, to make a lather; put the stockings in while the lather is warm, but not sealding, and wash them in two such waters sa wine-glassful of gin in the first water is an improsement); rinee them well in lukewsin water, having ready a second rinsing water, in which is mixed a little blue (not the common kind, but such as is nsed for muslins and laces), or rose punk, which can be procured at tho chomist's, and is used in the same way as the blue, by tying it up in a piece of dannel and squeezing it into tho water. After rinsing, pat the stockings between towels and let then get almost dry; place them on a small sheet, lay them out quite flat, as they are when first purchased, tuek thom to the sheot with a needlo and thread, turn the abeet over thom, and have them mangled. If it is not convenient to have them mangled (rua between weighted rollers), the next host plan is to put four or six stoekings one upon the other between a piece of muslim, lay them on a stono doorstep, aud beat them with tho rolling pin. They mast not be mangled or Lenten in towels, as the puttern of the towela would be impreased on them. If the stookinga have lace fronts they will more particularly require the tacking mentioned above to mako thom look niee. No soda or washing powder of any kind must ba put to them, and they trust bo done quiekly, and not left lying sbout.
488. To Clean Soiled Bed Ticka, Apply intarch by rubling it in thick with a wot eloth, then put the tick in the sum. When dry, rab it with the hands. If necosiary, repeat the procens, and the eoiled part will bo as cleas as bew.
469. To Restore the Gloss Finish on Woolon Goods, removed by Washing. Brush the eloth over, the way of the cloth, with a brash wetted with rery weak gum. water; lay ovor it a shect of paper or a piece of eloth, and put it under a weight or in a scrow-pross until dry. This will restoro the original gloss tu tho dull spot often loft after washing out a stain.
470. To Remove Stains from Black Crape and Mourning Dresses, Boil is handful of fig-leaves in $\dot{\sim}$ quarts of water, until reduesd to a piot. Squeeze the leaves, strain the liquor, and put it into a bottle for use. Rombasines, erapo, eloth; \&c., should be rabbed with a ppongo dipped iu this liguor, and most staina will bo instanily removed.
471. To Clean a White Lace Veil. Boil tho veil gently for 15 mitutas in a solation of white soap; put it into a basin holding Warm water and aoap, and keep gently squeesing it (do not rab it) till it is olean, and then rinso it from tho soap. Then take a vessel of cold water, into which put a drop or two of chemic (see No. 162) or liquilblue; rinso the veil in it. Havo realy some very clear gom arabio water, or some thin rice-water. Pass the veil through it. Then stretch it out evon, and pin it to dry on a linen cloth, making tho edga as straight as possible; opening oat ail the scallops, and fastening each with pins. When dry, lay a piece of thin muslin emoothly over it, and iron it on tho wrong side.
472. To Wash White Sill Lace or Blond. Take a black bottle covered with cloan linen or muslin, and wind the blond round it (securing the ends with a zeedle and thread), not leaving the edge outward, but sovering it as you proceed. Set the bottle upright in a strong cold lather of whitesoap and very clear soft water, and place it in tho sun, baving gently with your hand rubbed tho suds up and down on the lave., Keep it in the sunevery day for is woek, changing the lather
daily, and always rubbing it slightly whem you ronew the suds. At the end of the woek, tako the blour off the bottle, and (without rinsing) pin it backward and forward on a largo pillow covered with a clean tight case. Every scallop must have a sepurate pin; or more, if the scallops are not very small. Tho plain edgo must be pinned down also, so us to make it straight and even. The pius should bo of the smallest aize. When quito dry, tako it off, but do not starch, iron, or press it. Lay it in long loosu folds, and put it isway in a pasteboard box.

Thread laco may bo washed in tho samo manner.
473. To Clean Thread Lace, Thread lace may bo cleased in the same manner as in last receipt. Or, when the thread lace bus been tacked to tho bottle, take some of the beat sweet oil and saturate the lace thoronghly. IIave ready in a wash-kettle, is strong cold lather of clear water nad white Castile soap. Fill the bottle with cold water, to preveut ita bursting, eark it well and stand it upright in the suds, with a string round the neek secured to the eara or handle of the kotthe, to prevont its shifting about and breaking while over the firg. Let it hoil in the Bads for un bour or more, till the lace is clean and white all through. Drain uII the suds and dry it os tha bottle in the sum. When dry, remove the laee from the lenttlo and roll it round a whito ribbot-block; or lay it in loog folds, place ft withis a shent of ksmoths while paper, and preas it in a large boole for a fove days.
In wathing lacea, pht. 12 drops aqua atmo. nia in warm kads.
474. To Prepare Silks for Waahing. Most colora are really improved by the followiag methoil, espectally red, parplo, orange, blue, olive, puce, so. The more deliento greens aro bot impruved, neither ato thoy is jured. This is likewiso the caso with laversder. If tho silk is to bo whumed in is dross, tho scams of the akirt do not requiro to be ripped apart, though it must he removed from the band at the waint, and the lining taken from tho bottom. Trimmitiga, or finitaro whero thero aro deep folds, the bottom of which is very difficult to reach, abould be undove 80 as to remein lat.
475. To Wash silica. The artiele whould be laid tures is ofens smooth tahle. A flamel should be well boaped, being mado just wet with lukewann water, and cha surface of tho silk rubled one way, being carnfil that this rubling is quite even. When the dirs bas disappeared, tho soap nust bo washed off with a spooge, aud plenty of cill water, of which the spenge must be mate to imbitie as much as possible when the washing is done. As soot as one side is finished, the other must bo washed preeisely in the same manacr. Let it be understood that not more of either surface must be done at a time than can be spread perfectly flat upou the table, and the hand can conveniently reach; likewise tho soap must be quite sponged off one portion, before the soaped flannel is applied to another portion. The treatment of silks, after they have been thus washed, will be described hereafter. (See next recoipt.)
Satin ribbons, both white and colored, and even satin dresses, may be cleaused with good effect by this process, which is likewise very effective in renovating all kinds of silk ribbons and trimmings.
476. To Stiffen silk for Trimmings. Sponge the surface of the silk with a weal solution of gum arabic, or with equal parts of ale and water, and iron, while damp, on tho wrong side. This is uxcellent when old silk is to be used for trimming, and it is ne-
cessury lo keap it stiff,
477. To Wash Silk Pocket Handkerchiefs. Silk pocket haudkerchiefs require to be washed by themsolves, and those containing snuff shoulh be put to soak in separate lnkewarm water. Two or three hours after, they should be rixsed out and pat to sosk with the others in cold water for un hour or two. They should then be washed out in lukewarm water, heing suaped ns they are washed. If all the stains are not out of them, they must be whished through a second water of the same description. When finished, they हhould be rinsual in cold soft wister, in which a handful of comwon salt has been dissolved. They may be rinsed all togother, being thrown, as fast is thoy are washed, into a ilry luls, whence, when all are done, they are triusfermed to the rinsing tub.
478. To Wash Point Lace, By following the diroctions luid down in thisreceipt, lalies may wash and finish their awn point laco as thoroughly us wy Fronch landiess. Mix a teas poonfat powdered borax in a lusin! of atrong while Castile smap-suds. Taste the lace to be washes, very earefully, with fine cotton, apon two thicknossion of flamel. Soak the lace, thas arragged, in the soap-stude minturo for 24 hours, or loager if very dirty, changiag the suds twe or tbree tizes. Then let it lio for 2 or 3 hours in clean water to rinas, changity tha wator bice. Squecse it wut (do not wring it), and, when partially dry, place the flanel with the lace on it, tuese dowuwarde on two thiolinesans of dry flanisel laid oa a tahle, and ntanoth it with a foet from. Duriag the whole procpow, the lave muat icmaia batod on the flamel; aral whet it is prosied, tuast lio sandwiclied batween the dry and datap flasmel, smil prewied upon the latuer. Whem the face is perfectly dry, rip it off.
479. Twelvetree'n Washing Fluid for White Iimen and Cotton Articles. Set auble Lhe flamelx atul colored thingigy as they must not lia wathed in thin way, then peleet from the clothes to bo woubed, alt the cowrse and dirticat pieces from the fise; then put them in aryurate tutbs of moft whiter to kiak over pight (the night previots fo washung) Them propare in a separate vessel, the jiquid for a large washing, tamely, $\frac{1}{2}$ potand of good Lrowa soap, eat in sonall piecos, 4 pound soda, and 3 ounces frosb, unilucked lime, misod in 1 gallon of boiliog loft water. Stir well up, no as to mix the ingrediente, and ler it etand uitil morning. Then strain off the liquid, being oareful to leape alf sediment bohind. Having ready about 10 gallotas of boiling soft water in tho boiler, pour in the prepared tiquid (keeping out all settlings that may yet be remsining) thea throw in your clotbes and boil them twenty minutes or half nut hour. Previotas to which, put ans earthen plate at the bottom of the boiler, to prevent the clothes from barning. After bothing the approinted time, take them out: woald then, blue them, and rinse them in clean salt water, warm or cold, and the clothes will be as clean and white as snow. By this method, the finest linens. laces, cambries, eto, can be readily and easily cleansed with very little trouble.

Should there be only a simall washing, and less than 10 gallons of water required to boil them in, less of the liquid of lime, soap, and soda, can be used in proportion. When thero is any dillieulty in prowning fresh lime, a guantity of the liquor may be mado et once from the lime, which will keep for years, corked in bottles, and really for use.
480. Bingham's Patent Wash Mixture. Trake 5 pounds of harsuap, shase fine, add I quart of lye, $\frac{7}{2}$ otince pearlash, dissolved over a slow fire. When dissolved, pat
unto a vessel prepared for it to stand in; then add $\frac{1}{2}$ pat thrpentine, 1 gill hartshorn; stir well, and it is ready for usc.
481. To Make Washing Fluid. To 1 gallon of eommon soft soup, (such as is mado by the usual method of bsiling the lye of wood aslues and fat fogether), take 4 ounces bal-soda, 2 gallon rain or soft water, and $\frac{1}{}$ gill spirits of tarpentine; place them all in a pot over the fire, and allow the mixture to bini a few minutes; it is then ready for uke, and can be kopt in any earthen or stoneware vessel.
482. Washing Made Easy. The washerwomen of IIolland and Ielgiam, so proverbially elean, and who get their linen 8 lenentifally white, ased refined borax as washing powder instead of soda, in the proportion of ta pernd of borax powder to 10 gatlour of water. They save soap nearly one half. All the Jargo vashing establishments adopt tho same mode. Por laces, cambrics, ete., an estra quantity of powder is used; and for criuolises (roquiring to be made atiff) a stromger solution is necessary, Borax, being n nentral salt, deres not in the elightest degree injure the lesture of tho linen. Its effect is to soften the hardest water, and therefore it should be kept on the toilet' table.
483. White Lye for Washing. This is atade by poaring a puilof of hoiling water over 4 or G quaris of ashics. Let it stand a while to infuse; thea pour in cold water to settle it, when you can pur it off clear. This is yery good to buil dirty clothes in. When made nice, bs equul to roda, and does not, unless made extremely strong, injura tho olotbes.
484. To Weah Linen in Salt Water. Drop inte soa water a sultation of seda or jotash. It will becouno ioilky, fo corsequenco of the decomposition of the carthy matbi, and the precipitathon of the eartis. This addition rondern it soft, and capablo of washiug. Its milkincau will havo no injturions effect.

485. To Wash an Alpaca, Mounse-

 line-de-Laine, or Lama Dress that has Bright or Delicate Colors. Boil I pound best rice in 1 gallou water for throg houre Whea boiled, pour off what will be sufficient to atarch the dress; wash the dress well in the remainder, fico and all, using tho rice for moap; rinse it in eleas cold witw, wring it woll, then starch it with the rice water that was kept for that purpose, and haug it beforo the firo to dry. When dry enomgh, frou with a enol iron, as it is liable to scorch. If some parts of the dress get tho dey, they must bo damped with is wet cloth whilst ironing. No soap must be naed. The best way is to hoil the rica on tho previous day, and merely warn it up the next morning, for then you have the day beforo you to completo tho whole, as thet dress must on no account lio dimp, esen for an hasut, or the culors will ho sure to ran. This recoipt will be found equally well suited to delicato painted mustina and piquós as to lama and alpana dresses.486. To Wash Colored Musling, In whething colored muslins and linens, thero are several very essential points to bo olsaerved, whereby the colors aro preserved from injury, In the first plice, they should not be somped or soakel oyer night, as the more delicate of the hues would bo deteriorated by such process, When reldy for whshing, they should, if not too dirty, he put into cold water and washed up very speedily; if very dirty, the water muy be lukewarm and no more. But above all, lie careful not to use the smallest particle of soda. Tho best moap for washing articles made of this materinl is the common yellow. It is much better than tho mottled, because it is less hursh, and removes the dirt in a shorter period. Λ small
piece of alum should be boiled in the water in which tho lather is made. The soap should not bo allowed to romain any time on the finen; the latter should besoaped and washed as rapidly us possible, and not lie in the water any length of time. Owe article should therefore bo washed at a time, and immediately rinsed through two cold waters, the others remaining in a dry state by the side of the tub until they are taken to he washed each in its torn. The liquid in which the artieles are to bo rinsed in succession immediately as they aro wasbed, shonld consist of 3 or 4 gallons of cold boft water, with a handful of table Galt dissolycd in it. Should alum not be added to tho lather, then is tea-spoonful of vinegar should be stirred into the water for each riasjog; this will help to fix nud brighten the colors. Tho moment an article is taken from the rinsing tub, it should be wrung very gently, being twisted ay little as can be helped. Afor rinsing, they should he hung out immedintely to dry.
487. To Preserve the Colors of Merino, Mousselines-do-Laine, Gingharn, Chintz, and Printed Lawns, Before washing almost any colored Gabies, it in recommended to noak then for some time in water to overy gallon of which is ulded a spoonfal of ox-gall. A tea-cap of jye in a pail of water is said to improye the color of black goods, when it is necesaury to whele them. A atroug olean tess of common hay will proserve the color of Frunch linens. Vinegar in the rinsing water, for pink or green, will brighten those colors, and soda answern the same end for both purple and blue.

The colora of the above fabrios may be preserved by using a strong milk-warm lather of white goap, and putting the dross into it, inatead of rubbing it onthe material, and atirring into a firat and recond tub of wator a large table-spoonful of ox-gall. (Sce No. 489.)
488. Hints for Waihing Colored Clothes. No colored articles shuald ever be boited or scalded. Neitber should they be al. lowed to freeze, or the coloris will bo irreparably injured. They abould be ironed imuediately they are dry enough, and not bo allowed to lie damp over night, nor bo spriskled. They should nut bo anouthed with a kef iron. Pink and green calors, thougb they may withetand the wahioge, will frequently chango as soon as a hot iron of put over theuk.
489. To Prepare Ox-gall for Waahing Colored Articles. Eupty the gall in a bottlo, put in it a handful of salt, and keep it closely corked. A tem-cupful to 5 gallons of water will prevent colored articles from fruding.
490. The French Method of Washing Colored Muslins, Piques, \&c. Preparo some rather warm (vot hot) lather, mata with soft water and the best white boap; Wash the dresses one at a time, but do not soak them. As soon as the first lather looks soiled, *queeze the dress from it, and at once wash it again in a freah lather. When thoroughly clean, rinse in pure cold water, lastly in water slightly blued; squeeze (not wring) the water completely from the dress, and bang it in a sbaded place to dry; if wet weather, dry it by the fire. The best prints will fade if hung in the sunshine.
491. To Render the Colors of Cotton Fabrics Permanent. Dissolve 3 gills of sult in 4 quarts of water; pat the calico in while hot, and leave it tifl cold, and in this way the colors are rendered permanent, and will not fade by subseruent washing.
492. To Wash Chintz, so as to Preserve its Gloss and Color. Take 2 pounds of rice and boil it in 2 gallons of water, till
soff; when done, pour the whole into a tub; let it stand and cool till sbout the nsual warmith for colored linens; put the chintz in, and use the rice instend of soap; wheh it in this till the dirt appears to be out; then boil the eame quantity as above, but strsin the rice from the water, and mix it in warm water. Wash it in this till quite clean; afterwards rinse it in the water the rice was boiled in; this will answer the end of starch, and no dow will sffect it, as it will be stiff while it is worn. If a dress, it must be taken ta pieces, und when dried, hang it as rmooth as possible; when dry, rab it with s smooth stone, butuse no iron.
493. To Wash Flannels or other Woolen Articles. Have the buds ready jirepared by builing ap some good white sosp in soft water, but do not use the suils when boiling; let them be as hot es the hand will bear when the articles are put in. The fannels should not be rubbed with soap, nor should the material itself be robbed, as in washing linem, te., rabling knots the fibres of the wool together; hence the thickening of the fabrio and consequent shrinking in ita dimensions. Sluice the artioles up and down in plenty of suds, which afterwardn squeeso (not wring) out. The pstent clotbes-wringere are a great faprovenent upon haud labor, as, without injary to the fabric, they squecze out the water so thoroughly that the article dries in considernbly less tume than it would do even after the most thorough hind wrigging. After rinsing, squecze out the water, and dry in the open alr, if the weather is such as w admit of the articles drying quiekly; if not, dry in a warm rooin, but avoid too close prosimity to a fire. tiet uny dust or mud be bestou out or lirusbed off prior to washing.

All fannels mhonh lie poaked before they are made up, first is cold and thes in hot wator, in order to nlirink them.
494. To Shrink Flannel. Flannel should too pooked in cold bard water before making, aud hueg ap to drain and dry withoat any bquecring or lianiling is tho water. Ather this it will wot abriuk fis washing Fill is tub with apring water, place the flatuel in it. und take out as som as itsinks to the bottom. 1 does not lose the appearanes of new flannel wheu dry.
495. To Wash Red Flannel. To wash red or searlet flatisel when soiled, mix a haudfal of flour in a quart of cold water, and boil ten minates. Add thif to some ware mult, and what the flannel gently; rinsing rather than rubbing it (see No. 493), rinse it in three or four warm waters, and the brightest searlet will pever lose its color. Soft soap or olive soap should bo vaed for woolen goods ix preference to bar soap.
490. Scotch Method of Washing Woolen Shawla. Scrape I pound Buap boil it down in sufficient water. When cooling, best it with the band; it will be a sort of jelly. Add 3 table spoonfuls spirit of turpentine, and 1 of spirit of hart-hom. Wash the artioles well in it, then rimse in cold water until al tha soap is taken off, then in salt and water. Fold betweea two sheets, thking carc not to allow two folds of the artiels washed to lio togother. Iron with a very cool iron. Shawls done in this way luok like new. Only nse the palt where there aro delicate colors that may run.
497. To Make Starch for Iinen, Cotton, \&e. To 1 uunce of the best starch add just etiough soft colld water to make it (by rulbing and atirring) into a thick paste, carcfully breaking alt the lumps and particles. When rubbed perfectly smooth, add nearly or quite a pint of boiling water (with bining to
suit the taste), and boil for at least half an hour, taking eare to stir it well all the time, to prevent its burning. When not stining, keop it covered, bo as to protect it from dust, otc. Also keep it covered when removed from the fire, to prevent a scum from rising upoa it. To give the linen a fine, smooth, glossy appearance, and prevent the iron from sticking, add a littlo spermaceti (a pieco as large as a nutmeg) to tho starch, when boiling, and $\frac{1}{2}$ a tea-spoonful of the finest tablesalt. If you have no spermaceti, take a piece of the purest, whitest hog's lard, or tallow (mutton is the best), about as large as a nutmeg, or twice this quantity of the best rofined loaf bugar, and boil with the atarch. In ironing linen oollary, rhirt bosoms, etc., their appearance will bo much improved loy rubbity tham, before ironing, with a clean white towel, iampaned in sof water. The bosom of a shirt should be the last part ironed, as this will prevent its being soiled. All starct should bo stralined before using.
498. Gum Arabic Starch for Making Shirt-Bosoms Glossy. Vrucure 2 ounces of fine white gum arathic, and pound it to powder. Next put it into a pitehor, and pour on it a pint or troro of boiling water, according to the degree of strength you desiro, and then, having covered it, let it set all night, In the morning, pour it carefally from tho drega into a clean loottle, cork it, and keep it fort ise. A table-spoonful of gun wator stirred into a pint of stareh that bis been mado is the restal manucr, will give a leautifal glosi to shirt-bosomet, and to lawne (eithor white or printed) a look of newness to which nothing elac can restore them after washing. It in also good (unach diluted) for thin white muslin and bobbinet.
499. To Make Starch for Colored Articles. For starching mustins, ginghams, und calievos, dissolve aud add to every piat of ntarch, a piece of alum the size of a shallbark. lly ku doimg, the colora will keep laright for at long thme, which is vary desirable when drusex mant bo oflon washed, and tho cost is bit a trifle.
500. To Starch Muslins and Piquéa. It goting op mustins ated pigues, the failuro is not generally in the wislling, but in tho sparching. A good-sized pinful of starch should be uesd, in which 3 or 4 inches of spermaceti candie has been molted whitst hot. The articles should bo thorougbly equeezed from the stareb, and folded whilst wet, hetweon follds of old sheeting or table linem. They should then bo passed through a wring. ing machine. All Jumps of starch aro thus removed.
Piqués should bo ironed as lightly as possible, and the fron onght never to come into contact with the outside surface of the pique. An old cambric handkerchief ia tho beat thing to use under tho iron where absolutely necessary to iron on the right side.
601. To Clear-starch Lace, Cambric and Book Muslin. Starch for luces ehoutd be thicker and used hotter than for linens. After the laces have been well wabed and dried, dip them into the thick hot starch in such a way us to haso every part properly starched. Then wring all the starch out of tbem, spread then out smooth on a piece of linen, roll them up together, and let them re: main for about half on bour, when they will be dry enough to iroo. Laces should never bo clapped between the bands, as it injures them. Cambries do not require so thick starch as net or lace. Some peoplo prefer cold or raw starch for look-muslin, as some of this kind of muslin has a thick, clammy appearance if starched in boiled starch. Fine laces nre sometimes woned romod a glass bottle to
dry, which prevents them from shriuking-
502. To Fold Clothes after Drying on the Line. Fold the tine articles and rofl them in a towel, and then fold the rest, turning them all the right side outward. Lay the colored articles separate from the rest. They thould not remnin damp loug, as tho colors might los injured, and starched fabries are apt to mildew. Sheets and table linen shoold be shaken and folded.
503. To Iron Clothes. In ironing a shirt, first da the back, thets the sleeves, then the collar and besom, and then the front. Ironcalicoes gunerally on theright side, as they thas keep elean for a longer time, In ironing a frock, finst to the waist, then tho sleuves, then the stairt. Keep the sikirt rolled while jroning the other parts, aud wet a dinir to hoht the sleever white ironimg the skirt, unlest a skirt-brawd ba hsed. Silk chould be ironed on tha wrong aide, when quita damp, with an iron which is not very hat, as light enlocsaro apt to change and fade. In irouiny velvet, tarn up the face of the irou, thel after dimpening the troong sido of tha velvet, drav it over the faco of the iron, holding it straight; always from lace mad noudlework on tho sroog mide, and put thom oway at sonn as they are dry,
504. To Restore Scorched Linen. It is atmast needless to premfse that ir the tissua of linen is mo mith burnt that no atrength is lof, it ia nseless to apply tho fotlowing compositioni; for nothing coald prevent a hole from boing formed, alluough the componition by tio means tenda to lyjure the fabrie. But if the seorchung is nut guite through, and tho threads not astailly conbumad, then the नpptieatiom of this composition, followved by two or threog gool wathatigh will reatore the linen to its originul color; the marka of tho acorthing will bo ber totally offived as to bo inepereeplible, and tho place will soem as whito tand perfoct as suy other part of tho linem. Mis well together id onnces hiller's earth redinced to a powder; I ounee hou's dung; f vunese of cake snap, soraped; and tho juice of 2 largo onions, ohbafnel by the onions boing cnt np, beaten in a mortar, and prossed. Boil thas ruass in t pint atrong vingor, atirrisg it fron time to time, until it forms a thick biguit compound. Spread this composition thickly over the eatiro surfice of the soorchel payt, nud let titrenail on 24 hours. If the acorching was light, this will prove sufficient, with the nasistance of two subsequant washings, to take out the stait. If howover, tho serarching was string, a secoud coating of the composition abould be pat on nfter romoving tho tirst; and this khmuld also remaio ou for 24 hours. II, after the linen has been washed twiec or thrice, the stain lias not wholly dissapperared, the composition may bo used again, in proportion to the intensity of the discoloration remaining, when a complete curo will seldom fail to be effected. It has scarcely over happened that a thind application was found necessary. Tho remainder of the composition thould be kept for use in a gallipot tied uver with bladder.
505. To Remove the Stain of Perspiration. For removing the stain of perspiration a strong solution of sodat is first to be applied, with a subsequent rinsing with water.
506. To Bleach Yellow Linen. Linen that bas aequired a yollow or bad color hy careless washing, may be restored to its former whiteness by working it weil in water containing a clear solution of chlorido of lime, riusing it well iu elean water, both beforo and after using the bleaching liquor. Nover attempt to bleach unwashed limen, and avoid using the liguor too stroug, as in that ease the linen will be rendered rotten.
507. To Bleach Yellow Flannel. Phaunel which has becone yellow with uno may be whitened by paiting it for some timo in a solution of hani soap, to which strong unumpia has been added. The proportions are if pounds hard curd zoap, 50 pounds of salt water and $\frac{7}{2}$ pousd strong ammonia. Tho same object may be attaineal in a sborter time by placing the ganieents for a quarter of an hour in a weak solution of Lsisulphite of suda to which a little bydrochloric acid has been adlled.
508. How to Whiten Flannel and Woolen Hose. Wel tho flannel yari of Luso (whatever you wish to whiteat) in weak suds; wripg out. Then hang on sticks or corda acrosa a harrel with 2 table-ipoonfols of palserized briustone of sulpi.st Duruing muder it; eover the larrel tightly. If they are hot white enough, repeat the process ; laag in the open air a day, then wash and finse in bluing water. Be carefif not to lave the sulphir blaze and scarch the gar-

509. To Bleach Brown Sheeting. Having souked the cloth if luaus in atrong woap-swde, tahe $\frac{1}{2}$ ponnet shloride of liznc for every 12 yards of aheeting, and dixsolve it in enongh boiling water to cover the cloth swien dipped fito th. As mson us the lime fis dissolved, strain the solntlou throngh a flaumel or other coarne eloth, then put the brown aheeting in the strainest hime-water, stirring constantly, mud after it hat romained thus in this lignor for ahout balf an hones, take sut the eloth athl rinse it woll in para water, si na to be sive to remove all tho lime witer; and then boil it up in ntrong bap-whed, and hamg ont to dry, alld the woik of weaks will jueve been nesomplished in a day or two.
510. Bleaching by Oil of Turpenting. A German anthority resummender the usd uf oif of turpentins in meachieg white gonde Dissolvo I part oil of turpentine in "I parta strumg alenlow, plave a table-spoosfits of tha mixtare in the water used for tion last riosing. The elothes are to bo inwiersel in this, well wrung ont, and placed in the open air to dry. The fleaching action of the oil contidets in fits ebanking oxygon into vzote when exposed to the IIght, and in this process tho thrpentive disappears, leaving uo trace behinut.
611. To Clean Straw Bonnets. Firnt brush theus with soap atid water; then with a bolntion of oxalie netd.
512. To Clean Door-Plates, To clean silver door-platos, pese a weak satution of ammonis in water, applied with w wet rag. This Fash is equally uschit for silver plate und jewelry.
613. To Clean Plated-Ware, Make a pasto with whiting aud alcolmol, upply it ta tha plated articles, and after it is slry, ruls it off with a linash (if rovigh), wr a soff rag, if smooth.
514. To Remove Rust Spols from Marble. Rust spots can be umate to disappear by treatment with a weak sulution counposed of 1 part oitries acis and 25 of water, aud afterward rinaing with waterand ammonia.
615. To Remove Ink Spots from Marble. Ink spots may be remioved by first washing with pure water, and then with a Weak aolation of oxalic acid. Sulsoquent polishing, howerer, will be necesmary, as the fustro of the etome may become dimmed. This can be best secured by tery fitiely powdered suft athite murble, upplied with a finen eloth first dipped in water and tben into the powder. If tho place be subaequentdy rableed with a dry cloth the lustre will be restored.
516. To Remove Copper Spots from Marble. Copper spots nuy be removed by
diluteil snlphuric acid and ummonia, and sultsequently with water and anmonis.
517. To Remove Match Stains from Marble. Spota from kulphurand phosphorns, caused by lucifer-matehes, can be extrueted from marble by sulphide of carbon.

The Art of Soap-Making. fatty sulastance with canatic lye, the bnse of which is either putash of gorla; the former produejag zoft, nul the later, hard sompl.
519. To Make Soap-makers' Lye, To I part of quickline, slateked by epriukfing on it sulfeient water to crumble in, whit is sulation of 3 parts sula in 5 parts water. Fur soin-soap Sya, an ofual guantity of petash in mbistituted for the sida. Stir tho mixture nud allow it tir mithes; the eleser lignid is thm proured off, and constitutess the first lyc, umit in of whitrengeth of 250 to 300 Baniof the necemil, thired and fourth lyo is egich oblaineat by add. big sancosssively 5 parts whetr, stircing tho roughty, allowing it to settle, and purning of Ohe clear Fopmid; producios reaprestively aly
 गаиme.
620. To Make Soap, Having thus preparal the lye. the lifsh, necond and thivd yes boing ruffegot fir gomeal propuses, lake 20 pomula of pure greans, and unelt it ntonvly in an irao vedsel; heop it it at incilerate beat, and utir fim, a litele at a time, 10 pommds
 the mixture get oy os is berling lest, wint then atir fit, by depover, 10 primda sccunelt tge; then will complote the firmb riago of the prococh, whinh to ternicd sumpouffication. The nexi rump, catled cutlugg un the pan, in to sedd, by degrees, a mixtiro of roda and bo with from 2 to 3 pounels cometmot salt; tois separatis tho excoss of water from tho coml, leaving is knapy pasto; linil aud vitr fir tome lime, thon fot it soitles and draw off the water. The thind operatifit, (lear loiliog, has mosy to bo porforated; atir intur tho phato, by degrees. 5 pounds first lye; sinl, when jerfivelly mixed aut emsoth, biot the whoto for two houns: Fhould doe eomp, daring the intaryate, beemoue too liquid, which sury happon whon too weak
 coniainiug walt, motet bro added. The hoilinge is terminated whon Jarge, tegutar, dey fealics sppesar on tho kurlice: ; when thin is the cuse let it settle, and daw alt the flath which fomains. 1'ut the sonp into frames lined with enttor eloth whieो has leem well powdered with a mixture of time ami starch, fuid as heou as tho suap has tecome fimo, lay it ont to dry.
521. Hard and Soft Soap. Soups are thus of two kinds, hard nod noft, this conditioni being intluenced buth lyy the fot and nalkati employed. The firmer and tarder the fat, the volider will tee the resulting soag. With the saum alkadi, therefore, Lallaw will make a batater soap than patir ar nilive eil, ant stearie ned than uleie neid. Itw tho conasistence of soars ilejeruls far more apon the alkali emplayed. I'otanh is very deliques. cont, that iz, has a strong attraction for water, 4a that when expobel it will nbsurb it from the air and rom down inte a flois or semi-Jloid state. The jotasb retains this water in tho conditiont of soap, so that pootash beeps aro ulverys liqniel and firf. The hard Ronps, therefose, all contain soda, those with tallow or stenrio neid heing the hardent. Potnsh soaps will not try, hut retain their soft, jollylites condition, while sonce linds of suda koup liscome so bard by drging that at last they
can he pulverized. The admistore of a very small quantity of sulphate of soda hardens saap and also ebecks wasto from too rapid golubility in bot water. When soda and potash alkalies are used in coublination, n proportion of from 10 to 20 per cent, of the latter is employed, aceording to the degreo of hardness the enap is desired to poskers.
522. Common Yellow Soap. Common yellow havel soap consiets of kode, with oil or fat and resin. Resiu is a fectle acid, carpable of combining with alkali, but nettralizing it loss eompletely than wil, so that the compounal or soap formed is too powerfully alkaline. But when resin is wotked with an equal or larger propertion of vil, it makess an excellent soap fire many purposes.
523. Beef Tallow. This fat, on aceount of its abundaut supply, is the most used by soap and candle makers. It is not as whito ns many othar unimal fats, abd tho liest yonfi$t y$, the North American, containg alhout 70 per cent, of stearine. It dees yot melt below 111° Valir., bat maty afterwards bo cooled down to 1020 without solidifying and when cold, is firm, and oven brithe.
524. Mutton Suet, This in gonerally firm, white, and very rich in stearne; this latter quality gives it a teadency to produco a noap of tho bard nod britule a mature for gencral use, wbich in obvisted by mixing aboat one-fifh or one-sixth part of lard, of soma other moro oleagrious fat; thum molified it is specially adapted for stook for toilet noaps.
525, Lard. The leant quality of lard melts at 81° vahri, and contuilus ubout 60 par ceat. of oily fat, known as lard oil, and about 30 jer cont. nuld atearine. $1 t$ makea a pure, whito soasp, band is frequently combined with tallow or other kilonaccous fat.
526, Bone Fat, obtuined by beiling freah bones, spllt open tengthwayn, is very well adapted for making sapps, but generally undurgoes a process of yarification before bojug thas euployed. (Sec No. 634.)
527. Cocoanut Oil passesses two prominent qualities which specially recommend it as an fugredient in soap-making. It imparts a great degree of firmmess to the maep, probably owing to the solid form of the fatty neids fomnd in it. It will also unite permanently wilh soda lyes in any proportios; and, in combination with other fat substances, imparts whitoness and emollient propertiea to them; it also froths as well in cold as in hot water, which is not the caso with talluw soap3 worked with sodn.
628. Palm Oil. This substanco is used in tho maunfieturo of bsap. Its esonine quality is easily tested by its solubitity in nootio ether, tho imitations sonctimes sold under tho same tamo being insolablo in it. It is used in its natural kente, but its distinotive gualitios aud whito color aro greatly inoreased by bleachiug. (Sce No. 537.)
529. To Clarify Fat Used in Making Fine or Toilet Soaps. II aat tho fat in a cloan iron or copper bettle, opplying just heat enough to melt it thoroughly ; then filter it through fine lineu or musiin.
530. To Deodorize Fat for Making Perfumed Soap. Boil for 10 mivutus 10 w pounds of the fat with about 35 puunds water containing G ounces common salt and 3 ounces powdored alum; strain the water off, und lot tho fat rest for kome hours beforc using.
531. To Prevent Fatty Substances from Turning Rancid, Boil for about 10 minutes with the salt and alum solution, as in last receipt; strain tha water off, aud then gontly simuncr the clarified fat with 4 ounces bonzoin and 1 gallon rose water; skim off and let it cool. Fat thns trented will keep for years.
632. To Grain or Granulate Tallow. Melt tho tallow and stir it with triee its yuantity of water at a blood beat until it is cold; strain the fat from the water, and dry by esposing it to a current of dry nir. Tallow in this gramulated form combines unoro readily with ly' for soap-making purposes. (See No. 535.)
533. To Purify Tallow and Other Fats. Tallow und other fats are commonly purified by melting them along with water, passing tho mised Guilds through a sieve, nud loting tho whele cool slowly, when a cake of cleansed fat is oltained. Another plan is to keep the tallow melted for some timu, along with nbout 2 per cent, of oll of vitriol largoly willated with water, cunploying constant agitrtion, and allowing tho wholo to cuol slowty; then to re-melt tho calke with a lorgo quantity of hot water, and to wash it well. Another methol is totlow steam for some time through the melted fat. By eithur this or the preceding process a whito hard tallow may bo obtaited. Souno persond add a bittle nitro to the melted fat, and aftorwards a little dilute nitric or sulphuric acid, or a molution of bisulphate of potash. Others boll the fat elong with water and a littlo dilate nitric or chromic acid, and afterrarda wash it well with water
534. To Purify Bono Fat. Melt the lat with a sanall qumatity of wallyetre (uitrute of potasia); then add sulficient sulphuric acid to decomposo tho waltyetro. The maw, afor the seum is romoved, becomes a light yollowy color, and is complecely deprivel of all offeasivo manell and amimal luppuritus.
535. To Keep Tallow from Turning Rancid. Oat 50 poraids tallow inta slices, and boilit in about 24 gallows water containiog z pances alimi and 4 ousces ralt; striain the fat from the liguid, and wanh it in olean water; pat into a clewn berrel twico as much water at a blood heat an thero is grease, and disiolse in the water abont 1 part of clean soap to 10 parts of the grease; next warm tho grease to a llood beat and pour it isto tha barrel of water, stiming it together mutil cold; let it rest until the hat has risen to tho wutface, wheu tho water naat ba drawn nway througha a bolo ia the battona of tho barrel, bitberte tightly corliced. Tho fat in a granulated stato must to tharouptly dried by exposure to a earrent of dry air; und, when perreetly dry, packed in barrebi sor other rerels. Tho praining of the fat at the ecemo titmo greatly facilitates its combination will tyo for the priposes of suap-matiog.
536. To Preserve Grease, Boil all the scraps, rimils, and bones, to a weal I le, and tho purer grease in clear water. Lot the misture cool, take off the calio of grease, and struin it. It is well to do this occusomally, An you zave it; for when kepta lang timo im. pure grease lecones offendive. You mast bo carefill to dry off all the water liefore laying it away in the greawe tub, if yon wiel it to keep sweet. The best plan to collect dripping is to put it while warm into water vearly cold. Auy impurities it may contain will sinls to tho bottom.
637. To Bleach Palm Oil. Diseolve it pound powiderel red chromate of potassa in about a quart hot water. 100 popais palm vil are beated in a wooden tank, by steam, to a temperature of $1: 200$ Fahr. Tho stcam is then tursed off und a portion of the ctrome solution is stirred in, followed by a propartional quantity of 1 pound strong marriatic ncid. After the whole of the solution und of tho acid has been thoroughly nixed with tho palm oill, stir in $\frac{1}{2}$ pound buiphuric scid. Tho oil beeomes black, then dark green, and finally light green, with a thick froth on the surface.

If, when the mixture has settled, the vil isnot sufficiently bleached, tho operation hats to bo repeated, using less propurtion of chromo and acids. When tho bleaching is complete, the oil is allowed to stand for au hour toctcar; it is then run into a wonden tauk with somo water, and bented aguin, to wash out auy salts that may remain in it, aud after a time drown of ready for use. Palu wit is usually combined with from 3 to 5 tunes its weight of tallow to make sorp, and is terviceable in resin soap to brighten its color and disguiso tho resin.
538. Filled Soap. Hard woaps ero usually made according to tho process hefuro deseribed (sec No. $5 \% 0$), tho excessas of water heing separated from the paste by the uso of falt: thif class of soap is terned graincel soap. Bnt thero are some kinds-cocounut oul and sodas somp, for instance-that are en bard in their nataro that the operation of salting, or grainiug, is peedless, tho water remainilig jucorporated in the pasto; soups of this class aro culled fitcel soaps.
539. To Make Tallow Soap. The French Method. Melt in a boilcr, by a nuoderato beat, frio poundas tallows ; stir ju, by degrees, 35 to 40 gallons caustic soda lyo of 10° to 120 Runue, and let it hoil gently for heveral hours; then aid, gradually, 18 to 20 pallons canstio soda lyu of 15° ti 180 Baumed, aud mis antil the whale hecomes a homageneous mase of a prayists color; keep tho mixture boiling gently for some hourio nuldiag to it evory hour 3 to 4 gallons caustic moda lye of 200 Boumb. This will nectily 10 of 12 Lours. The enlting proces thou follows, and is conductod nas deseribed it No. W20. After tho eoparation or graining is finished the posto is nlowed to stand fir a fow humes, aud the lye is drawn of Lbrmigh if fateet inserted for tho parpoca in the sido of thia baifer, vear the bottons. The samse is ngris hoilod for neme hourn, adding evory liour 24 galloms हollalye of 25° Baume , tulit the haved weales rive to the zurface. (Sico No. ©50.) Tho firo alould then bo estiuguished, and nfer an hour the undoc-lye is to be drawn off: Then binil ngain for 1) to 2 huars with abuit 25 gallons zodo lyo of 4° Baune stirring flom timio to time The fire shousla thea bo removed, nut tho pain covered up; tbe Enap will rize to the top of the lye and may bo poimed into the framos, care being tathen that no lyo gets mised with the seap. This should sichd aloout $e 50$ pound of soap.
540. Tallow Resin Soap. About 15 per cent. of resin can bo mixol with tallow witbout injuring the color and firmuess of the soap A larger propartion deterionates the quality and produces un inferior soaj. Subic zoap-makers melt the resiu and tallow togethor lefore saponifying; but it is bettor to mako a soanp of each in separata boilerg, mand then mix and hoil them togethor thoroughly for balf an hour, and strain through is sicve beforo filling the frames.
541. To Make Resin Soap. Boil 12 gallons eaustic soda lye of 30° Buamo in a Fettle, and add 100 pounds well palverized resin, 10 or 15 pounds at a timo, stirting constantly aud tboroughly, the licat being kept up to or nearly at boiling point. Saponification will be efficeted in alvout. 2 hours. The lightest resin je the best for somp.
542. Cocoanut Oil Soap. Put 100 pounds corennut oil and 100 pounds caustic sola lyo of 27° Baminé into a sonp kettle; boil nud mix thoroughly for 1 or 2 hours, mutil the pasto gradually thickens; then diminish the heat, butt continue stirring till tho couling paste assumes a white, hall-solid mass; then transfer quickly to the frames. A misture of equal parts of cocoannt oil and tallow will
mako a very fine filled suapr. (See No. 538.) Coconnut oil mised with almost any fats, if they are not in too largo proportions, will produco filled soaps.
543. Palm Oil Soap. Palm oil is seldom used alone as a Eaponaceous fat, but is employed in conjunction with other fats, and with regin; thia latter being usually saponifich ocparately and mixed afterwards. (Seo No, (40.) Tho directions for making tallow tioap apply equally well to palm oil. The following are among the lest mixtures and proportions of palm oil for soaps:
30 pounds palun oil, 20 prouuds tallors, and 2 pounda resin.
30 pounds pahm oil, 50 pounds tallow, and 20 pounds resin.
90 pounds paim oil mad 10 pounds cocoanut oil.
15 pounds palm oil, 55 pounds lard, 5 pounds cocomitt oil, and 5 pounds elaritied resin.
544. To Make Sloap from Grained Tallow. Mix 6 poundls caustio sods and 2 pounds canetio potash with 17 to 20 gallons bot water; pat a portions of this lyc iuto a elean burrel; stír in by degrees 25 pounda grained tallow: add the reat of the Ise and stir it briakly for at leait an bour; then let it rest, and bofore it is cold pour it into a frame or bors, and findish acconfling to No. 520.
545. Dawson's Patent Composita Soap. Strong protach Iso, 75 poundis ; tattow 75 phanda; encranme nil, 25 purnuls. Boil until the compenmet is saponified in tho untal matines:
To matie 30 pounls of the new compostLion, tako 9 gallons boiling eoft water in a ketthe, ahl z pormd rat zoth, gemese boras, a talile-spoomfila fpirits of turpontibe, and 1 tearspomitill limseed oil. Scir thismixture untif the borux and wodia aroilisonlvesl; then add 15 pounds of the ahova soap, mate from lye, tallos, athe cocoabib, oilf had continas the boflity with atirting for 15 minntes, vetil tho wholo is incorporited rund dissolved. Now tald 2 ounces nyirils of hartshorn, and stir. It mag loo Beented with bily essedial ail, or nelor, and colured, if dodired; then ran off and molded into caltes fit for tollet mee. It is a gond sonp for elapped landy, and is freo from nuy dikagroenlile odor.
546. Chemical Soap. Powdered fullor's earth, 1 omnce; jnst mioisten with spirits of turpentine; adet salt ef tarlar, I ounce; best potash, 1 ounce; work the whole into a paste with a fietle scal. It is axcellent for removiug groaka spits.
547. To Make Hard White Tallow Soap. Dissolvo 2 pomsthtal asda it 1 gallon chiling sof, water; mix intu it 2 poundo frew alacked lime btiering tecestonally for a liww hourn; then let it settle, pour off the clear lipuid, and hoil 22 pounds tallow in it untit all tho tallow is thamelyed. Cuol it inaslat bos, and ent it into tsara nt cakes. It can bo secnted by stirring in the desired perfame when cool.
548. To Make Home-made Caustic Soda. Dissolve 6 pounts common washing soda in 4 gallous warm water; slack 6 pounds clean frush quicklimo in a tub, using ouly as much water ns is needed to crumblo it perfectly ; add tho slaeked lime to the solntion of soda; stir the two together, adding 4 gallons boiling water'; stir thorouglily and let it settle; then pour off the clear lyo for use.
549. To Make Domestic Soap. Put tho cnustio soda lye, preprared in the manner and quantity given in tho last receipt, into a cleasiron kettle, and add, during contintal stirring, 12 pounds clarificd grease, dusting in, a little at a time, 4 ounces fincly pondered borax; let it himil gently for 10 or 15 minutes,
until it thickens anal becomesropy; then hare in readiness a fight box, theel rith a piece of muslin largo cnough to bang well over the siluce, to allow of the contcuts being afterward conveniently lifted ont; pour the mix. ture from the kettlo into the bos, and let it stand for a few daya to landen; when fufficiently finm, turu it out unto a table, and cut it into bars with athin wire. Scap thus made, and left to harden is a dry room, will bo fit for neo in a month,
550. To Make Home-mado Caustic Lye from Ashes. Provida a box whoso sides terminate in a point, and having an orifioe at the lower end (zee illustration); this should be mounted high onough to allow of a rossel being placed underncath it, to receive the liquid that rons out of the bothou. The box is thes well lined with straw (see No. 607), upon which fresh wood asbes are placed, adding to the ashes about one twen-

tieth the quantity of freab slacked lime (see No. 519); thes pour hot water upon it, and the lyo will filter throagh joto the vessel below. Por the parposes of somp-making, this lye must be cobecatrated by boiling until a sound potato will not sink lielow the surfice.
651. To Make Home-made Soap. Fill an irou kettle two-thinds full of the conceatrated lye prepared necording to the last receipt; add to it meltal fat, a failefal at a tifue, stirring eonstaudly until the mass becomos creany; hust add small quantitios of ealt at a time slifring vithout intermission uotil a porfeet ring cas be mide on the surface with a stiek; thear let the fire go out and the noap will rise to the nurfiee anil barden as it cools; the lye can leo drawn flom muler it by tilting the kottle, or the soap may be liftel oif and laid oat to dry until harl elomegh to cat it into lars. (Sce No, 549.)
552. Ox-gall Soap. Gall somp, for the trashing of fine silken cloths hud riblons, is prepared in the fullowing tamper: In a vessel of eupper 1 prond corccanut oil is hented to 60° Palir, ani t pround caustic sodet is alded, wilh constant stirring. $1 / 1$ another vassel $\frac{1}{2}$ ponnil white Venethins torpantine is heated, and whes quite hot, stirred intir the copper hotule. This koule is theu eurerval and leh for 4 hours, being gently heated, afler Whieh the firc is increased until the contents are perfeetly elear; then 1 pount ox-pall is addel. Aftar thes, sutfiemt perfectly dry Castila soap is stirred iato the mixtare to cause the whole to yield but littlo ander the prosaure of the fingor; for which purpose, frum 1 to 2 pounis of soap are regaired for the above quantity. After cooling, the sonp is cut into pieces. It is excellent, wad will not injure the finest colors.

Toilet Soaps. To this chess be long the finer kinds of scented soaps, which have emollient properties. They nre rarely made direct by the perfumer, the body or basis being a well-sulected white sonp, subsequently cleaned and puritied. For the ehoie-
est grades, the body should te made of a mixture of olive and eweet-almond oil, as the fat stook. Land and beef tallow makis the nest best stock; and for pulan soup is small quantity of bleached palm oil is to be added to them. Cocoa oil and pale yellow resin saponaceous matters also enter into the comprisition of corthin toilet suaps. These lody kanps way be obtained as wanted from any well-conducter soap factory. To be edapted to the parpurse; of perfamery they mast be perfectly meptra, firm, free from unpleasast odor and itl tenden. cy to crast in cold, or soceat 3 damp weather. They should, moreover, pive a rieh hathor withont wasting too rapilly in the water. Soaps, generally, in their original cumdition, are usnally deficient in many of thoso pointi; and nunal, for the purposes of parfapuery, undergo a refining process, which is os follows:
554. To Refine Soap for Making Toilet Soap. The soup, as purchased in bave or blocki, being piled upout the sthelf of the rasping machitw, is next placed is tho hopper, and as the whes rowolvas, haivea cone arainst the soap and cent it inte meal, which falls isto the reception lox lemeath. It is now in a state fit to leo melted readily, for which purpose it is twanferrell to is ntean bath, and mixed with ruse mad orampl-flower wators, euch half a gallon, the every houdied pounds of suap. The shenm loving fot on, and the containiag kettle covervil, it comtents hecome gradually fluid, and in this mate unst lic atirred with a crutch-whielt is a long giek having the Form of the anvertol 't-amal thos paste Lecomes wisformly conshasest and sanosth throupheni, It is theyt athwed to cool, sgain tastted, hat withent fragraut water, and sutehal as lentire. When the contents of' the vesed comprise severnt labde of snap, great eare anst hio olvarvest test Lit pot In all at ones bit bo wh mind melt vech suecossively, and ta prateh vasutintly, te0 the to offet an intimate mixtire, W lees the jasto begins to cool, coloring meptay is may toe slesired is them ablited, athe metbetrpunaty the porfoune, which is ruserved to the lait, to atveid auy unuecessary loss by evaphration timn tho hot paste.
555. To Perfame, Cut and Stamp Toilet Soap. When uxtricts of hanpueta nee Heed, Licy must te mbleal th the cinnpomed in meal, suil ineorporatied with tho mus lyy focafline it with the bmods; for the app plication of hent would impair the detigegy of the odor, as well ad ocedsioil loges liy its eymp. trationt. In largo establislmenta thars is fume fy passing tho tucal regrestedly lotwoen marblo rollers,

The Bonp is now ready to he put inten the conling frames, which of a restingutar well, sunuler of a series of wosalen frames, restimg suecessively uno upon the other. In inday or two it is suffitiently lamb to lee cat, into fablets of the size of the sections of encti frames they are set up edgewise, ful left lint neveral days th dry, and are thon barmod by means of a wire. The sections of lefis of the Tomers regulate the width of the brure, mit the gauges aifust their lreadth-thess latter leatpg mado $s 0$ as to cut bars or equares of totur, kix, eight or any roquired muaber to the promit of roop. The bars are further subdivided into thblets. and subjected to oressure fin the plappise of imparting solidity, and ornumenting the exterior with some appropriate device, or impressing upon the maker's name; the shape of the tablet being deterninied by the form of tho mould or die-box in which it is pressed. Tho press is of ordiuary construction, with spiral springs to throw out the soap tablet from the die-box as sthon as it is pressed. In sone factories the pressure is mure effectually necomplished by means of a steam bamuer, which is
made to give three blows, direetly vertical, to each tablet of soap. Savonettes or soap-balls arc shaped by rotating bloeks of soap upon a soap seoop made of brass, with sharp edges.
556. To Marble Soap. The mottled or marblo appearance is usually given to soap, on the large senle, by watering the nearly finiabed soap with a stroug lye of crude soda (preforally one rich in sulpharets), by means of a watering-pot furuished with a rose-spout. In Castile soap it is given with a solution of sulphate of iran, used in the same way. On the small scale, with toilet soaps, the mottle is either given in the way notieed nuder "Mottled Soap Balls" (seo No. 576), or, in alike manner, by comlining some of the soap, colored at the time of seenting it, with the remaining uncoloret portion.
557. Almond Soap. This in is very white Roap. Whicb, when gennise, is made by the cold process (see Nos, 583 and 583), and frout puro uit of sweet ahmods. The kind, h.swevar, gonerally met with. is made as follows: White curd aonp, 100 pounds; coenanut oil, 15 pounds; puritied as before directed (sec No, 554), and perfunied witb a mistare of attar of bitter almouds, $1 \frac{1}{2}$ pounds; and attars of cloves and caraway, each B onuces.
558. White Windsor Soap. The genulue old white Wiadsor is made from a boaly of which a mixture of lard and olive oil is the fat stock; and attars of carioway, lavender, and toacuary, constitute the perfune.
Tho modorn Whadsur sopp is male from fine whito ourd noap, 115 pounds; cocpanntoil soap, 20 pound $;$ p perfumed with a mistare of attar of chrawny, it pounds; uttars of thyme and rosepuary, each'8 ounces; and attars of casin and claves, each 4 onnces.
559. Brown Windsor Soap. Ourl soap, 100 pounds; cocraunt oll smap, and palo yollow resin snup, eneh 25 puands; color with caramel (seo No. 604), 8 minces; and perthme with a mistare of attard of caraway, cloves, thyme, cassia, pesit-grain, and lareader, each 8 ounces. Morfit's oleio snap, of firat grade, is pecalinerly melapted as a luody for brown Wiadsor soap, as it pives a rich lather, and is very amouth and bighly emollicat. Moreover, it eontains its normal motsturo for a great lengtb of time.

560: Honey Soap. White curd soap, 49 pounds; inelted nad crutebed with white honcy, 10 pountis; fitorax, 2 pounds; and powdored henzuin, 1 pound.
561. Imitation Honey Soap. An imitation honoy waps is loade by mefting togetber pala yellow soay, 100 prouds; soft soap, 14 pounds; and perlinniag with attar of citronella, $1 \frac{1}{2}$ posuds.
562. Frangipani Soap. Ourd anap, colored brown with caramel. 7 pounds; perfomed with a mixture of attars of neroli and vilivert, each 4 ouseos; attar of roses, 2 drachms; attar of saptal, $1 \frac{1}{2}$ onnces; and eivet, 2 drachms. The. lattor is to be previoumly triturated with the attara.
583. Rose Soap. This is made from is mixture of olive oil soap, 60 pounds; and curd soap, 40 pounds; colored with 1 pound of finely bolted vermilion. The purfume consisting of attar of rose, 6 ounces; attars of santuf and geraninm, each 1 ounce; and tincture of musk, 8 ounces; must bealded to tha cold snap is meal, und ineorporated by kneading. The oit soap may bo replaced by curd soap, but the quality of the rose seap will not then be so fine.
564. Savon au Bouquet. White soap, 60 pounds; perfumed in the cold with 8 ouncea of extract louquet; or in warm pasto with a mixture of attar of bergamot, 8 ounces; attars of cloves and sassafras, each $\frac{1}{2}$ ounce; attat of thyme, 1 ounce; attar of neroli, 1
ounce. The soap body must be previously colored brown with 1 pound of caramel. The soap acented with the attars is inferior to that perfumed with extract bouquet. The perfume, and with it the title of the soup, can bo varied aceording to the caprice of fashion.
565. Poncine Soap. Card scap, 50 pounds; cocoaunt oil bamp, the same quantity, melted to pasto and crutched with 10 or 20 pounds of finely bolted pamice-slone powder. The perfume is a mixture of attars of thyme, cassia, carawry, and lavender, each 1 pound.
566. Spermaceti Soap. The gennine spermaceti soap is stuperior to all others in emolliont properties; but it is rarely made from pure stock, owing to the difficalty in saponifying it. As gonerally vended it consists of white curd soap, 14 ponads; perfuned with a mixture of attar of tergansot, 2% ounces, and attar of lemon, 8 punces.
567. Palm Soap. Cund saap, mado of a mixture of $\frac{1}{2}$ lard, if bleached palm oil, and the remainder olive oil or spermaceti, ennstitutes the bodg of palm reap. Its natural odor is that of the violet, which is sometisess stimulated by the aidition of a littlo attar of portugal, with a leas portion of attar of elores.
568. Floating Soap. All the hard soaps inerense bull by mechanical batling of the paste; the luris of density thus produced gives them the property of fluatiog in water. The latting is beat accomplished by means of A churn-twind, rotaling of a pivot in the botthm of tho melting pran, and put in motion ly 4 bandle.
Expode 5 pound olive-oil of almond soap, and It pintrs sol waterio a hright copper pan, to a stean or water heat, and wodituoukly leat and agilate the misture entil it has more than double its volute; then prour it into a cold frame, cool it quiekly, aud, when hard, eut it into hase of cakea is inay be calored and scented at will. Floats un water, and lathers freely, but will not bear soakiug or much wet, as it rapidly volteus.
569. Transparent Soap. This nmberInoking soop is mado by dissolriog fard white moap, previously redaced to meal and thoroughly tried, in alcobol. A steam-bath, fitted with as stithead, makes is good contafuing reasel. The alcobol and soap aro taken in about equal proportions; avd,-as tho dolotion proceerls, any spirit which may distill over lanast be allowed to condenke in a worm, and collected in a receiver. Tho heat should not exceed 212°. After solution, the whole mast bo allowed time for settling; after which, the olest fluid is to be drawn off from the sedinnent into wooden frames; or globalar moulds of britannia metal, if it is desired to cast it in bail form. Previons to sottling it may ha colored as desirod-rel, with titicture of allabaet; yellow, with tinctare of Lurmerie; orangs, with a misture of tho two tinetures; gruen, with tinotara of chlorophylo; blue, with tinctaro of indigo carmine. Transparent soap is rather tranklwont then firat made, and does not elear uatil perfoetly dry. The perfimes aro the pamo as for the other soaps.
570. Glycerine Soap. Any mild toilet soap (ss tho basias of bouquet, rose, or TVind. sor asap) with whieh abont it to $\frac{1}{5}$ of its weight of Prico'a giyceribe has been intimately incorporated whilst in the melted state. It is generally tinged of a red ur rose color, writh a little tinctare of arebil or of dragon's blood; or orauge yellow, with a little nanatti. It is variously seented; but oil of bargamet, or rose-gerauium (ginger-grass), supported with a little oil of cassia, or cassia supported with essantial oil of almonds, appoar to bo ita favorito perfumes.
571. Musk Soap. Best tallow soap, 30 pounds; palin oil soap, 20 pounds; powdered cloves, pale roses and gilliflowers, of each $4 \frac{1}{8}$ onncos; essence of bergamot and ossence of masle, of oach $3 \frac{1}{2}$ ouncęs; Spanish brown, 4 onaces.
572. Orange Flower Soap. Best tallow soap, 30 pounds; pala oil soap, 20 pounds; ossenco of portugal and essonce of ambergris, each 74 ounces; yellowish green coloring, made of ochro and indigo, $8+$ ounces ; vermilion, $1 \ddagger$ ounces.
573. Cinnamon Soap. This is usually a misturo of tallow and oif soaps, liko that of "ravon an bouquet," colored with about \ddagger pound yollow ochro, and scented with 1 ounco oil of ctumamon (sapported with a littlo oil of bergamot and aessatras), to cach 7 pounds. Tha following is the form of a celebrated maker of this soap, and is very fine:
6 pounds finest whito ourd soap; 3i pounds finost palm oil soap; 1 pound olive of soap; $1 \frac{1}{2}$ ounce ofl of cimamon; $\frac{1}{2}$ ounce oil of bergamot; \ddagger ounce oil of bassafras; 1 drachm Loglish oil of lavender; and about \ddagger pound lovigated yellow vehre,

Oit of cassia is commonly substituted for the oil of cimamon and always so in socond and inferior qualities.
574. Glycorine Soap Balls. To any rocently made toilet soap, sliced, and meltod by a geotle heat, without water (if pogsible), add I'rieon glycerine, in tho proportion of 1 ounco to tho pound; , thoronghly incorporate them by vigorons btirring, whith ehould be continued until the mass has cooled considerably, when it abould bo at onco mado into balls.
575. Sand Soap Balls, Theso are proparod loy adding to the melted soap about half its weight of fire siliveous sand. Sifted sand is usually omployod. Some persons prefer the sholly soa-sand (sifted from the shells and well washod) for tho purpose. For tho fiager qualities, finely-powdered pumice-stone is now usaally employod. Unel to prevent roughness and thickouing of the skin in cold weather; also to olean the hands when dirty. The best yellow sonp, with or without the addition of + ita weight of white soft soap and a littlo sweet oil, is the least for these balls.
576. Mottled Soap Balls. Cut tho noap (recently prepared, and not too dry) into dice, or snall equarupicees, roll them in colored powder (see below), and thon mould them into batls by powerful pressure, olbserving to mix tho colors as littlo as possible.

Tho oolors astally employed, and which should be is very fine powder, are: Blueindigo, powder-blne, or smalts. Green-pow-der-hue and bright yollow-ochre, Orangeyellow deepened with a littlo rel. Redred bole sesquioxido of iron, or jeweler's rouge. Yellow-bright yellow-ochro, or Duteh pink.

By rarying tho shade of color, which is done by diluting it with a little farima or chalk, and by using aomp-dice separately coated with two or more colers, "mottlal savonettea" of any color, or mixturo of colors, may bo produced nt will.
577. Mercurial Soap. Take of corrosive sublimato (crushod small), 1 drachm; reetified spirit (to dissolvo, say) 1 fluid ounce; white Castile soap (in powder), 4 ounces; leeat them ta a uniform mass in a wedgwood-ware mortar, adding a few drops of attar of roses, or of a mixture of the oils of enssia and bitter almonds. Nothing motallic must touch it. This is tho "sapo hydrargyri bichloridi" of medical writers. The above has been recommended in various skin diseases, including itch; also as "Savon Antisjphilitique," under which name it is ofen
sold.
578. Sulphur Soap; Sulphuretted Soap. Take $\frac{1}{2}$ pound white curd or Castilo boap (recent); l wupeo best flowers of sulphis (levigated); 1 thidid ounco rectified spirit (strongly calored with alkanet); and safficient attar of roses to strougly scent tho mass. Beat the wholo together, to a smooth paste, in a marble or wedgwood ware mortar. This is Sir II. Marsh's formula. Recontmended in itch, and rarious other skin discasca. It is particularly serviceable as a common toilet siap, to persous troubled with slight cutaneous eruptions. Its daily uso tends to render the skin fair and smooth. Tha spinit and coloring may bo omitted nt will; and, at a toilet soap, ouly half tbe above quautity of sulphur is amply sufficient.
579. Caution in using Medicated
579. Gaution in using Medicated Soaps. Before using merciatial of sulphar soap, finger-rings, ear-rings, and bricalets of gold, sc., should to removed, and not replacel until some short time after tho haods havo become quite dry; as otherwise they will bo tarnished, nod even blisekened and corroded. The namo appliea to all othor cosmeties contaiaing tho same mineral ingredients.
580. Whale-oil Soap to Destroy Insects. Render common lye caustic, by boiliug it at full ntreagth ou quioklime ; then take the lye aud boil it with as much whaleoil fout ns it will saponify (chango to suap), poir off into moulda, and, vicat cold, it is tolerably hard. Whale-oil I t is the sediment produced in refining whale oil.
681. Carbolic Acid Soap. Take froshly propared cocoanut-oil soap, 150 parte, and fases then add a sotution of alcobol, 10 parts; carbolio acid, 6 parts; caustio potassa, 2 parls; oil of lomon, 1 part; and mix with atiering. To bo poured jnto moulds.

Soap by the Cold Process. Although the comnoner kiads of soap

 are watily made by boiling, boy can bo mado by tho cold process if desired; and the fatty substances employed mre enbostantialty the samo in hoth methods. The cold or litilepan process is, however, nimost exclusively adopted in tho manufacture of flasey or toilet Boaps, and for thoso purposes tho fat requires to bo parified and deotorized, ospecially where any dolieato seont is to be used iu perfuming it (Sco Nos. 533 and 530.) Tho lye cmsployed for saponification without boiling must ing process, and should be ontirely clear andcolorlass; n ktrength of about 36° Bautne is usually necessary.583. To Make Soap by the Gold Process. Incorporato by degrees 50 pounds concontrated caustio lyo of 36° Baumé, into 100 pounds fat at a temperature not higher than 1040 Fabr. (see NO. 643); continuo to stir thoroughly with a broud woaden puldele, until A completo ring can be drawn on its aurfaco with tho padile. In making scented soap, the perfaming ingredicnts must nowt ho stirred, in. Tho pesto is then run into frames limed with linen, flaps of which should boleft abovo the edges of cach frame, winle enough to admit of their being laid over the surface of the paste, with which tho framo must be ontirely filled. The paste being thas completely confined by the linen, the frames are closed with a woodon cover and left for 12 Lours. During this interval the temperature of the jaste in tho frames rises spoutaneonsly to a muach higher degree, producing eomplete saponification. Tho soap is afterwards taken out of the frames, cut, and dried. The bardness of the
soap will depend on the duseription of fats and lyes usel. (Sco No, Sin.)
584. Method of Testing Caustic Alkali. The strength and practical valite of courmereial canstio sosla or potast can only he ascertainod by aualysis. The methods given belove aro simple, and will deternine, with sufficient apcuracy, the percentage of Wuter, canstic alkali, and carbonated alkali contained in a given sample; and hence the quantity of impurity, if any.
585. To Find the Percentage of Water in a Caustic Soda or Potash, Wejgh caretully 100 grains of the alkali into a cappsule (s tlat evaporating dish of nuitable size, a watch plasa is a suall capsule), and dry them by heating over a flame; a cold glase held over the coutents of the capsule will show the slightest erapontion of water. Wheu no more moisture can bo detected, atlow thems to cool: then weigh the residue in
the capsule, and the difference of the weights the capsule, and the difference of the weights
before ippd after drying will be the number of before and afler drying will be the mumber of
graing of water contained in 100 grains of the alkali; that is, the percentago of water.
586. To Eatimate the Percentage of Caustic Alkali in a Canstio Soda or bo tented; put it jato A flask containing an ounce of 95° alcohol, and ahake thorvughly ; the aleohal dissolves the caustic alkali per fectly, bat will not take us any uthur ingredients. After standing for a few hours to settle, deenat the ctear higuid, and eveputute on a porcelain eapsale unial thoroughly dry ; the weight of the dry repidue will be the nuat ber of grains, f. C, the perecntage, of caustic alkali in 100 grains of the boda or jotash.
587. To Find the Percentage of Car bonated Alkali in a Caustic Soda or Pot nsh. Disolve 100 graita of the rample in 4 batnees prater in a lask; next wuigh out 100 grains finely powilered crystals of osalit acid; add sanall portions of this acid at a time to tho alkalf in Clos tlask, stimiog thoruogbly with a glass rod, aud apply heat; continue to aid the anid until tha bot mirture tiuges littuas paper slightly red; the raturation is then eomplete, and tha acid lana nieutralizel or combined with all the alkali, both carleopate and cuastie. Weigh the osalic acid which re. mains; and, by deducting from 100 , se know bow much wo have lised. Now every 7.57 gratins oxalio actil that fuve tieen nsed, linvo deutnticed 5 grains aoda or 7 grains pefash, accordiug as the kample comsista of cauntio suda or canstic potand; herico we fied tho totai number of graime of alkali is the 100 grains onder test. Ry the provious wethod
wecan find the percemtaro of cateric alleti we can find the percentage of calestic alkali in 100 grains of the rample; deductivg the gramin of this latter from the weight of tho whole alkali eliminated by the axalic acid, the balance or remainiter will bo dio percentuge of curbouated alkali.

By these three stops wo get the parcentago of waster, the percentage of caustie alliali, ind the percentage of eartonated nlkali; theso tidded together aud detacted from 100 givo the percentage of forcipn matter or impurily in the watter testel. (See Athatimetry)
588. To Mako Soap-makers' Concentrated Caustic Lye. Buil ks Fallohis water in a kettle cajuate of holling 150 pallests; stir in, a litule at a tiace, 100 pounds powdered soda (or potash, if for potash lyo), vutil it is all dissulved; thicit mix in pradnally, by stirringe, 48 potuds freshly slached lime of at
creamy consistency, the ludilisis must not bo creamy consistency, the leailige mast not bo allowed to slecken druing tho shole precess,
nutil completo causticity is obtaincel, which may be asecrtained by taking a Fittle in a teat glass, and, when cool, fidling to it a few drops of nitric anid; if this eanses effervescence, tho
caustieity is imperfict and the lowing imust be continned untif a test with nitric acid cankes no effervescence, When this is the rase, tho contents of the liettle should be allowed to cool atd settle for abaut 12 lowers. The chear lighor can then be drawn wif into to rat lined with lead-a syphom may be used for this parpose with adrantage. The lyo can be mado to any desired strength ly evaporation.
589. To Make Concentrated Caustio Soda Lye-Kurten's Method. The Jye tit for toilec abap nanst to cither made foom tho purest German soila at 95 degreess of strengeh, of (Ehich is better for the purpose) from crystallized sodn. English koda of E0 to 83 degrees, such as is gonerally found in com. merest, is not to bo used, as it prodnces a bad article,

When the lye for finer sonp is to be mado, 100 pounds lime aro added to 100 pounds German soda at 95 per cent, whereas 45 pounds lime to 100 pounds cryatallized soda is the goneral proportion,
The sods is dissolvod in the boiler with water, or with a weak lyo remaining from a former operation at 20 degrees of atrongth, and aftarwards alded to tho lime slacked to is state tike broth. Thia misture must boil 2 hours and bo lefc to deposit,
The next day, the lyo, which probably may bo at 12 dogreos (Beutné) must be talscis out, and the boiler filted afresh, tho lyo strawn from tho lina and at 8 degroos, is puthel int with it to evaporate. By thim method a lyo ia produced at a mediju of 0 or 10 degreces, but it must bo cvaporated till, nceording to Aroowsetor, it shows 34 degreos., Nfer the cooling it will woigh shif pound. This evaporation of the lye is to increaso its catusticicy, and in canso all tha dirt contained in it tis procipitato to the boltom, whichi cad bo dono Im a dny if it is sutficiontly stroag.
Tho clear lyo is then drawn off from the dirty deponit, and put either into vitriof bothes or into at iron vassol wall eovered. If vilriol bottlos ard used, they mast be filled with water in which souso lima has been dissolvod, Io take away any acid romuining in the bottle, which would, if thin procaution be twit takeo. nbsorb much of the cansticity of tho lye; mad this most be done soveral days before using the bottlos. The dirt and deposit from the sath remaining at the brottom nfter tho briting, can bo added to tho lime in the weak lyes.
Wa lisva not mado tho oxperiment of using the Iya strongor than 11 degrecs bofore evapt. oration, as we have Iearned frobs France that it mast not bo atronger than 11 degrees. Yet, afer mature experionce, it appents to in now that a lyo can bo olitanined quite ns good by adding more suila nui lime to the lye, mind thus inereasing tho stretugh to 18 or 20 degrees, by which the evapurntion is spared. In this caso moro vessels are wanted, which must not be of wood, but of jron, because the wood will color tho lyo, whish mast be especially ayoided for fine soap, for the only measa of obtaining a porfect suap, fiec from defect, is to use none oxcept the fincst and
whitast lye, and oil or grease of tho greatest purity.
500. To Test Lye. In testing the strength of $1 y c s$ with a hydrometer, an oxact rosult could bo obtained if the enustic allali employed by sonp-makers atad dyera were absolately pure; but as this is seldom, il ever, the caso, tho impleritics which exist in the lyes under examination, influences the specilio weight of the lye, and due allowance mast be mado for thia; thus, an indication by the hydrometer of 20 per cout, does not prove that the lyo contains 20 per cent. of pure Caustic althali, but includes tho foreign matter:
poratiec strength exaetly.
591. Whits Soap. Lard, 40 pounds; nul caustic sucha 1 ye , of 35° Baumé, 20 pounds. Meit tise fat by a heat not execeding 150^{3} Fahri; afd, during coustant stiming, 10 ponads of the lye. After one hour's stirring, tho heat boing continued all the time at a moderato dogree, the remaining 10 pounda of lyo are to be added. When the paste has become smooth and uniform throughont, it is transferred to a cooling frame, perfumed, and luft in a room of moderate temperaturo for a fow dnys to set sud ripen. It is then ready to be cut into tablets and pressed.
592. Almond Soap. Genuinc almond boap is nade from oil of sweet almonis, 50 puumels, and suda lyo of 30° Baume, 25 penndis, the hatter haing grodually added to the fintour at a tomperatare botween 125° to $150{ }^{\circ}$, and the whole stirred constantly until the Iulxtire is a bruooth paste. It is then transforreil to a cooling frame, perfamed with atiar of bitter aimionds, and then left for soveral days te sont and ripen.
593, Ordinary Cocoanut Oil Soap. 100 puands coculartit oil-or 90 pounds cosoasunt ofl and 10 pounds of cither tillow or paha off-siphonified by the cold process with 225 poand enuslie moda lye of 21° Baunot, and 75 ponnds of eatt water of 120 Bamad, will comhitid to form 400 puend-y of cocosnut oil soasp.
694. Cocoanut Oil Soap, 100 younds cocoantu int and 56 pormis canatio sodalyo of 30^{2} Bame truded necording to the cold process, will produce 153 pounds cocoanat of soab.
595. Paris Toilet Tablet Soap. 87 pounds of this soap eath be nado loy tho cold praeess loy ufing the following ingredients: 20 proumla tallow, 30 poundscocuanntoil, 8 pounds fard, 31 ponnda caustio aoda lyy of 30° Baemé, and 5 pounda cunatie potails tye of tho eana atrengeh.
590. Paris Toilet Round Soap. 25 pomads ebobathit off, 75 poands lero, 50 to 22 pounds canstice suda Jyo of 36° Paumó, will prealite $1: 00$ prunis of tha ruap.
597. Shuving Soap. Bither G6 pounda tullow sind 34 poumls coceanat oil-or 33 prouds of vallos, the sano ybantity of palm bii, cund 35 pomids enenasuc oil-treated by the cold procost with 120 pounds caustie hoda lyo of 27° Batrue, will make 214 prounda of klaviug sonp. Ais edditton of 12 pounds of sulle witer of 120 lBame to the pritit oil suixtuke, will nidd 12 pruinels to the yield of soap.
598. Washing Soup. A mixture of aither 60 postinds tallow-or 30 pemnds each of thllow and palro nit-with 40 pounds uf cocostant vil, treated by the cold procesa with 125 pontads caustic rocha lye of 97° Banme, and \% 5 pounds salt water of 12° Baumé, sill tura out 244 purnds weshing soup.
599. Cheap Washing Soap. 60 pounds coschanut of with 40 puonich of cither tallons of palm oil, treated enid with 135 pounds canstio soda lye of 27° Raunis, and 50 pounds salt water of 15° Baumé, will produco 278 pounds washing somp.

Soft Soaps, These diffor from the hatd soaps in having potash in place of soda as their alkaline base. They aro all nure or less pusty or gelatinona; and they noy be made either by the boiling or cold provess. of the soft sonps used in perfumery, that known 41 fig soap is the only one that is builed.
Bo1. Fip Soap. The fat stock is chieffy oil-generally olive wil-with the addition of a littlo tallow to give it the granular eppearance called fig.
602. Shaving Cream. This is mado by melting 20 pounsla of lard in a steam bath at a temperatare of 212°, and then letting 5 pounds of caustic potassa lye of 36° Baumé run in very slowly, during constant stirring with a wooden paddlo; when the pasto becomes thick, 5 pounds more of lyo are added in tho name manuer. After several hours' stirsing the pasto becomes firm, and is finished. It is theu transferred to a mortar and triturated until the soap becomes pericetly even throughout, and assomes a pearly appearance, Δ ttar of almonds is the perfume for almond cream; and attar of rose for rose cream. They are dissolved in a littlo alcohol, abd added daring the tritaration. The rose creaur is colored at the name time with tinctare of allanet.
603. Rypophagon Boap. This is a mixturo of equal parts of palo yellow rosin aoap and fig soff sonp, porfumed with nttars of anise and citronella.
604. Essence of Soap or Shaving Cream. Take \pm pound white suft suap (soce No. ©0§), 2 fluid drachus liguor of potassa; 1 piat rectified spirit, aud jicrfame ot will; put them into a atroug bottlo of glass or tin, cork it close, not it in warm water for a ahort time, sud oceasionally agitate it briskly until bolution bo complete. Aher repose, pour off the clean portion from the alrega (if any) into clean bottloa for une, and at once closely cork them. If the solation be not sumpiently transparont, a litto reetified spirit abould lis oulded to it beforo docentation. A littlo spirit (fully proof) may to sodied if it be desired to rondor it thinner. If much ersential oil le asod to perfinmo it, the transparency of the prodnet will be lessened.
605. Soft Olive Oil Soap; Medicinal or Toilet Soft Sonp is soap nude of olive oil and polash. It is yellowinh-white, jandorous, abd of the condistonce of thick honcy, It is the soft soap (sapo mollis) of the British Pharmincoprota.
606. White Soft Soap is soap made of lard and potash. Only used is cosmeties and as a trilet soops.
607. Fine Shaving Oream. Tako of clarifiod lard, 7 pounds (avairdupois) ; potash lye (26 per cent. of caustic potash), 32 pounds; rectifiod spirits, 3 onnces i oil of litter nimonde, 2 drachmas. Melt tha lard in a poreclain vosel, by a salt-water bath; then 7.3 h the lye, very slowly, agitating the thole time; when about half the lyo is in, tho mixturo begins to curdle; it will, bowure, bocome so firm that it camot bo stirreal. It vill assumen pearly sppearapes by triburating in a mertar, and slowly adding the alcobol, holding tho oil of almonds in Bolation. This furnishes a splendid shaving cream.
606. To Make Good Common Soft Soap. For a barrel of sosp talio 1:2 pounds of potash to 14 pounds of grease. Dissolve the potash over night is 2 pailfuls of hot soft water, in tho morning pour it bot over the greaso, which inust hasga beem previously rendered down and pat in tho laarrel, put more wator on tho potash that remnins undismolved; when hot, neld as bofore, and so oit until all tho potast is dissolvel; fill up the harrel more sfowly Fith cold water, finishing it the next day; stir it rery frequently daring the day and for several successive days. A1Low it to rest for three months is the cellar.
609. Shaker Method of Making Soft Soap. Place a shallow irms kettle, to hold from 4 to G barrels, jast out of the wash-room, under cover of a shed. Extend $\frac{1}{2}$ or 4 inch pipe for stean to the midale of the bottom, bending it to form of surface, and terminating with open ond. Take another pipe to dik
charge cold water over the top of the kettle. Use the best quality of first sorts of potash, in the proportion of 6 poumls of potash to 7 pounds of grease, for a barrel of 40 pallons. Break up the potash into small lumps, and dissolve it in fay 2 pails of hot water to 24 pounds. It dissolves rather slowly when the potash is good. Whes dissolved, put the sufution into tho kettle, ald the greaso quito warn, and stir tho mixturo together. Allow it to stand aver night, if convenient. In tho morning, apply a moderato jet of steam until the mistare eqpears ropy, or rather soapy. Shut off the steum ath open the cold water valve, stirring the mixtare as the water runs, until the kettle is full, or the required qquantity obtained for the materials used.
610. To Make Good Lye. Hickory ashes are the best for making common washing soft somp (whẹn it is not desirable to uso the potash iye), but those foom sound beceb, maple, or almost any kind of bard wood, execpt oak, will naswer well. A common barrel, set mpor au faclined platform, makes a very good lench, but one mado of loards set in a trough in V shape is to be preferrel, for the atrength of the ashes is better obtafined, and it may bo taken to pituces when not in une, and laid up. Finat, in the hottone of tho leach put a few sticks; over thom sprend a piece of carpst or woolest oloth, which is unch hother than straw: jut on a fow inchas of ashes, and from 4 ,to 8 quarta lime; fill with ashes, unistenced, nud tamp down welltamp the firnest $/ 0$ the centro. It is dimient to obtain the fall strength of ashes in a barrel without removing theur after a day's leaching, and mixing them up and roplaciug. The top should bo firit thrown off, and new ashes addod to make up the proper quantity. Ubo builing water for second leactisg. This Ige should be mufficiontly stroug to float is potata.
611. To Make Soft Soap. Tako about 4 gallons the above lye, atid boil up thoroughly with 12 pounds of clear grease, then add the lye as it is obtained, keeping a slow fire, and atirriug often, until you bavo a barrel of soap. After boillins tho greaso and 4 gallons ef lye togother, it may be put in a banel and the rest of tho lyo ndded there, which will form grood goan if frequently etirrod, bet the heating process is tho beet thea weather and time will permit tho work to le donc.
612. To Make Soft Soap. Break up 8 pounde potast inta sunat1 limples, and put it Into ari ivon pot rith shout 3 callons builing mater ; malt in auntler iron pot 8 pounds elarified fat; put th or 4 gallong hict water jnto a cloan bascl, and aidd to it a bullefot cach of the lyo and tho fat; stir thoroughts, nad add the lyo and tho fat, n aingic laxilonel of enth at a time, until Cho wholo is choroughly mixed; then stir in is ladlefal of hot water at a time until the barrel is full, aud stir till the mixtare becomes a creany masa; put it away for 3 montha in a muderately cool place and it will be ready for use.
613. To Make Turpentine Soap. Cat up 3 pounds brown abap and melt it in 7 quart' water, then put it in a stoue pot aud ald 9 table-spoonfuls spirits of turpentine and 6 of alcohol.
614. To Use Turpentino Soap. Make very hat suds with some of the soup (sec last recsipt), and let the clathea remain in it balt an hour Thea wash thom ont and rinse as other clothes aro done. It is particularly nice for blankets and quilts, as it renoves the dirt and rajuices very little rubling.
615. To Make Soft Soap Hard, Put into a kettle A pailtuls of solt soap, and stir in it, by degress, about 1 quart of common salt,

Boil until all the water is soparated from the curd, yemove the firc from the kettle, aud draw off the water with as syphom (a yard or so of india rubber hose will answer). Then pour tho soap into a wooden form in which inualia hus beum placed, (Sce No. 540,) Por this purposo, a wooden box, sufficiently large nad tight, may loe amployed. When the suap is firm, turn it out to dery, cut into barswith is brass wirg and let it hadien. A little powdorod rosin will assist the saap to harden, and give it a yollow color: If the sofe soap is vory thin, mure malt must be usem.
616. Zabor-saving Soap.

Trke 2 poundr anal noda, 2 pounhla yelluw lar soap, and 10 quarts water. Out the soap in thon slías, anil buil tugethert ${ }^{2}$ hours; sitrain, and It will ho fit for uso. Pat the clother is anak tho night Leotorg yum wash, ind to every pail of wator in which yout boil thems, add a pound of anap. Thog will nesil no rubling; merely riaso thom ont, and they will bo purfectly olean and white.
617. To Estimate the Quality of Soap. Tho grabity of namp naty bo property estimatad from tho amount of fiatty achos which any givet spocimen contains The following siaplo ountysis pay be porforneal by any one, and nay bo relied opou as giving good rosults tho hoap to bo examined abratd ho dissolyod in water. If distilled wator cannob ba readily obtamed, raia watar will answar well crough, When a perfect sulution is obtainod, add hydsueblork neil. Anar a little while dae fitey netids will he found to bo tepparated from tho other consutitasats of tas roap. Thesse shoald bo enlloakal, and their rolative weight for any given guantity estionated. Tho rolintivo woight thas found will to waticiently just indication of too quablity.
618. To Test Soap. The ruadieat way to finit whether noap whil injuro the delicate fkin of womes or challron in to toat is with tha tungie. Guod snuy, it which tho censtie alkalt is neutratixed ly thorvogls combimation with tho fist, will not have at maip tave. Tho boap used in bredicito, suat the trauspareat aoap i, are mentral and goost. Many toflet soapg, mid oipucially the muitation marbled castilo roap, Ro absodant in the trale, comtain too much free athalt, They lases soth been thoroughly hioled, wai are very sharp. It is not aulvizable to uac such soaps upon delicato ckras, as thoy induce redneso of appearazeo, and give tho akin a leudnnoy to ronghen or chap, eapecially whes expmet to the wind.
819. To Pulverize Hard Soap. Hard bar suap strmad lie kercipul af pleseat into fina sbaviugs, dried it the sum, or lyy heat, tharotithly, and then pontuded or crushed. After this, it should he placed in a bows or kettlo, and ramall enimen ball shoukd be nsed to pimberixe it: when thameghly pulverized it may to sifted throughat very fino sieve.
620. To Analyzs Soap, Tako a small purtion of the senp, plate it in a nuitable vessel (a beaker glass), add other to it, and next nestic ncid ill asomewhat matler quantity. The liquil will separate, after a while, into two distinet layers, tha mppor of which contains in solotion the fouthy beches, while tha lower layer coutains the dilkalies and solts, and such kubstances ats might liappen to bo insoluble in the two flaids just mamed. By means of a pipette, the fluids aro separated fiom earh ntber. The ethereal solutiou is pourcd into a previously weighed beaker glass, and the ether evaporated upos a water loath, nud next again weighed with fio fatty acids it conturins. The squeots pectio acid is evaporated to dryness, fanl the quantity of alkali determined aecording to well-known melhods, (Sec No. 5e6).
621. Analysis of Soda and Potassa Lyes. The folluwink tables will show at a glanee all the practical information necessary fir aualyzing or testiog the strength of lyeg, cither simple or caastic, as well ns affording thorough Fuilance it mixing or nadjusting tho strongth of lye for any specific purpaie.
622. Lorm's Tables. The folloring tables atre usel ta transform strouger lyos into weaker of a definite degree of strungth, and are by Mr. Eugiue Iormé.
The first colimis at the keft of each tablo shows the eqnastity and the degree of the lyo tey ho dilatel.
The secemil indicates the quantity of water to ho added to the lye
Tho third gives tho amonut of tho Tya obtained by the sitmistare of both liquids,
Tho fourth exhilits the degrees of Banmér arcouneter of the lye.
623. Table showing the different Areometric Degrees resulting from a mixtare of 10 gallons of sodalye, of 38 degrees Baume, with quantities of water varying from 10 to 90 gallons.

Niumbor of of of nillos of deve of degreen	$\begin{aligned} & \text { Number of } \\ & \text { fof } 1 \begin{array}{l} \text { Nons } \\ \text { of } \end{array} \text {. } \end{aligned}$	$\begin{aligned} & \text { Namber of } \\ & \text { of gilloug } \\ & \text { otsiaed } \\ & \text { Iqe. } \end{aligned}$	$\begin{aligned} & \text { Dogroen of } \\ & \text { Houmi of } \\ & \text { hoo militure } \end{aligned}$
10	10	20	23°
10	20	30	17
10	30	40	14
10	10	50	12
$\begin{aligned} & 10 \\ & 10 \end{aligned}$	50	${ }_{70}$	$\begin{array}{r} 10 \\ 0 \end{array}$
10	70	80	8
${ }_{10}^{10}$	80 80	90 100	7

10 gallons of lyc, of 20 degroos Baumb, weigh 1194 llo.
624. Table ahowing thedifferent Areometric Degrees resulting from a mixture of 10 pounds of soda lye, of 36 degrees Baumb, with quantities of water varying from 10 to 90 pounds.

Namber of prosinia of thy ef 16 decre0s.	$\begin{aligned} & \text { Number of } \\ & \text { pousis of } \\ & \text { Weter to be } \\ & \text { emploged } \\ & \hline \end{aligned}$	Namber of posude of I.je obtained.	Dogreen of Dantue of the misture
	10	90	21°
10	20	30	14.
10	30	40	$11 \frac{1}{1}$
10	40	50	10
10	50	60	9
10	60	70	8
10	70	80	64
10	80	90	5
10	90	100	5 newe

8.8 gallons of lyc, of 30 degrees Baumb, weigh 100 pormds.
625. Tablo showing the different Areometric Degrees resulting from a mixture of 10 gallons of soda lye, of 30 degrees Baumé, with quantities of water varying from 10 to 90 gallons,

Number of callons of Lyo of 30 dogrees.	Number of ealloes of Water to bo emplayed.	Kumber of Galloza of Lye obtalieed.	Degrete of Daumd of the misture.
10	10	20	19°
10	20	30	-exty 14
10	30	40	11
10	40	50	,

$$
\begin{array}{c|c|c|c}
10 & 50 & 60 & 8 \\
10 & 90 & 70 & 7 \\
10 & 70 & 80 & 6 \\
10 & 80 & 90 & 5 \\
10 & 90 & 100 & 4 \frac{1}{2} \\
\hline
\end{array}
$$

10 gallons cf toila lye, of : 30 degrees, weigh 104 pounds; 75 gilloms of this lye and 25 gatlons of srater give 100 gullons of lyo of ' 25 dogrees Baume. There aro $23+$ pounds of caustic noda wantel fur making io gallons of
lyo cf 30 degrees Bauné.
626. Table showing the different Areometric Degrees resulting from a mixture of 10 pounds of sodalye, of 30 degrees Baumé, with quantities of water varying from 10 to 90 pounds.

Number of pounds of Lyo of 50 degrees.	Number of poueds of Water to bo employed.	Number of poundo of 1yo obtained.	Degreea of naumú of the mixture
10	10	20	170
10	20	30	
10	30	40	9
10	40	50	71
10	50	60	01
10	∞	70	54
10 10	${ }_{60}^{70}$	80 90	5 or6t
10	180 00	90 100	

627. Gerlach'm Table, showing the percentage of Carbonate of Soda contained in ita Solutiona.

Per cent.	Specibe Weright.	Percent	Specifo Woight.
1	1.00014	27	1.26787
2	1.01829	98	1.27898
3	1.02743	29	1.28099
4	1.03658	30	1.30106
5	1.04552	31	1.31261
0	1.05513	32	1.322417
7	1,06454	33	1,33573
B	1.07396	31	1.34729
9	1.08:377	3	1.35885
10	1.09278	36	1.37082
11	1.10258	37	1,38279
12	1.11238	38	1.39476
13	1.12219	39	1.40673
14	1.13199	40	1.41870
15	1.14179	41	1.43104
16	1.15200	42	1.444338
17	1.16222	43	1,45573
18	1.17243	44	1.46807
19	1.18265	45	1.48041
20	1.19286	46	1.49314
21	1.20344	47	1.50588
22	1.21402	48	1.51861
23	1.422459	49	1.53135
24	1.233517	50	1.54408
25	1.24575	51	1.55728
26	1.256 ml	52	1.57048

628. Schiff's Table, showing the percentage of Crystallized and Anhydrous Sode in Solutions of Carbonate of Soda.

Specific Weight	Per vent of frystallized Soda.	Per cent. of Abhydroum Soda.
$1.0 t 238$	1	0.370
1.0076	2	0.741
1.0114	3	1.119
1.01535	4	1.442
1.0192	5	1.853
1.0231	6	2.223
$1.02 \pi 0$	7	2.594
1.0309	8	2.965

1.0348	9	3.335
1.0388	10	3.706
1.0528	11	4.076
1.0468	12	4.447
1.0508	13	4.817
1.0548	14	5.188
1.0584	15	5.586
1.0628	16	5.929
1.0664	17	6.299
1.0708	18	6.670
1.074日	19	7.041
1.0789	20	7.412
1.0830	21	7.782
1.0871	2.2	8. 153
1.0912	23	8.593
1,0953	24	8.604
1.0994	25	9.20 .4
1.1035	2 i	9.685
1.1076	97	10.005
1,1117	28	10.376
1.1158	49	10.746
1.1900	30	11.118
1.1242	31	11. 488
1.1284	32	11.859
1.1326	35	12. 280
1.1308	34	12.600

Schilf's Table (Continued).

Sperdaa Weight.	Por conth, of Cryatallizad Bods.	For cent. of Anbydroua Eoda.
1. 1410	35	19, 971
1.1459	36	13.151
1.1494	37	13.718
1.1533	33	14.082
1.1528	39	14.483
1.1620	40	14.824
1.1303	41	15.190
1.1704	49	15.563
1.1746	43	15.033
1.1788	41	10.307
1.1830	4.5	13.077
1.1873	46	17,015
1. 1016	47	17.413
1. 19.9	48	17.789
1.2002	49	18.150
1.8045	60	18.890

629. Tablo showing the percentago of Anhydrous Potassa in Caustic Potassa Lyo.

Hpeaifo Gravily.	Potuma in 10.1.	Bpuelino Oravity.	Potana la 100.
1.3300	28.900	1.1557	11.146
1.3131	27. 158	1.1808	12.4 .013
1. 2933	26.027	1.1184	11.883
1.2805	84.895	1. 1039	10.75
1.2648	23.764	1.0838	9.619
1.2493	92. 638	1.0819	B. 137
1.2318	21.500	1.0703	7.250
1.2939	20.935	1.05e9	6.224
1.212\%	19.e03	1.0478	5.002
1.1979	18.671	1.0369	3.031
1.1839	17.540	1.0300	2.839
1.1702	16.403	1.0153	1.607
1.1568	15.977	1.0050	0.5603 A

630. Table showing the percentage of Caustic Soda in Soda Lye.

Spacife Gravity.	Per cont.	Specifc. Giravity.	Fer cont.
1.4335	30.230	1.2392	15.110
1.4193	29.616	1.293	14.503
1.4101	29.011	1.2178	13.901
1.4011	28.407	1.2058	13.297
1.3923	27.602	1.1948	12.692
1,3936	27.200	1. 1841	12.083
1.3751	25.094	1.1734	11.484
1.3739	25.935	1.1630	10.879
1.3583	25.365	1.1588	10.275
1.3505	24.780	1.1428	9.670
1.3126	24.176	1.1330	9.033

1.3345	23.573	1,1233	8.462
1.3273	22.967	1.1137	7.857
1.3193	23.363	1.1092	7.233
1.3143	21.884	1.0948	6.648
1.3125	21.894	1.0855	6,694
1.3053	21.154	1.0764	5.540
1.2932	20.550	1.0075	4.835
1.2912	19.945	1.0587	4.231
1.2813	19.341	1.0500	3.620
1.2775	18.730	1.0414	3.032
1.2708	18.132	1.0330	2.418
1. 2342	17.528	1.0246	1.813
1.2578	16.923	1.0163	1.209
1.2515	16.319	1.0081	. 004
1.2453	15.814	1.0040	. 302

Imitation Liquors. The if quora geacrally wet with for zalo and consumption are, it is well known, rarely gemuine; and even if gevuine, are often adulterated with water and varions deloterious compounds. The initations of liquor iunocently jmbibed by the msuspeoting as wholesomo stimulants, contain, too fregently, combinations that are most hartful, if sot aetually poisonous. Receipts aro bero given for making imitation Iliguors, which are at least as wholesome as geauine spirits, and contain no ingredient that can hurt tho system more than alcobol itself does. They are the receipts furnished by a practical Frevel chemist, who has mado this busimest a nipecialty for somo thirty years.
684. Prune Flavoring for Liquore, Mash 25 pounds proncs, imiuse [or 15 days with 6 gallons proof epirit, atirring it every day; press and ifter.

665, Raisin Flavoring for Liquorn. Subject of poumbs mashed rakina to tho nome procers as tho promos in the last recelpt.

66Є. St. John's Bread Flavoring for Liquors. Cut 50 pounde St. Johis'a bread into small piecos. Iufuso fir 15 daya with 12 gallona proof spirits, ntirring eyery day; fitter.
667. Orange Peel Flavoring for Liquora Steep 1 poand orango peel in 1 gallou 06 per cent. alcobol for 15 days; filter.
668. Vanilla Flavoring for Liquors. Slies 1 Jrachm raailla in small picees; infuse for 20 days in 1 pint 95 per cont, alcobol; filter.
669. Orris Root Flavoring for Liguors. Infuse 2 ounces powdered omis roat for 20 daga is 1 quart 95 per cent, alenhal, and filter.
670. Susanfras Flavoring for Liquora. Granulate i pound saesafras bark, and infuse it in \ddagger gallon 95 per cent, alcohol for 20 digs; filter.
671. Hickory Nut Elavoring for Liquors. Crush 1 bushel hickory mutk, and infiase for I month is 12 gallons 95 per cent. aleohol; strais and filter.
672. Flavoring Compound for Brandy. Mash 25 pornds raisins, 12 pounds prones, 6 pounds fips, and I pineapple reliced; fuftre for 15 days in 20 gallons proof spirita, stirting every hay, and then filter.
673. Coffee Flavoring for Liquors. Infuse 1 pound ground roastod coffee in 1 gallon 95 per cent. alcohol. This isused in comlination with other flavors for lorandy.
674. Peach Flavoring for Whiskey. Stecp for 1 month, 10 gallons diried peaches, 10 gallons opls faw-dust, and 5 pounds blacic tea in 40 gallons proof Evirits; strain aud filtes.
675. How to Prepare Essence of Cognac. Take 1 ounce oill cognac-the green oil is the hest; pat it in $\frac{1}{2}$ gallou 95 per cent. spirits. Cerk it up tight, fhako it frequently
for ahmit 3 days; then add 9 ounces strong animouia Let it stand 3 days longer; then place in a stone jar that, will contain abront 3 gallons, 1 pound fino black ten, 2 pounds prumes, boving first mashed the prunes and broken the keruels. Pout on thein 1 gallon spirits 20 abore proof. Cover it close, nud let it stand 8 dayz. Filter tho liquor, and mix with that containing the oil and ammonia. Rottle it for use. This makes tho best flavor. Ine known for manufacturing brandies, or for oulding to such cordials, byrups, \&c., as regquire a tine brandy flavor, (Sonzert.)
676. To Imitate Brandy with Ebsence of Cognac. Taku 1 pint essence of engnac (sec No. 675), 15 gallons pure fpifits (very fine) 20 per cent, alove proof, $\frac{1}{2}$ pint plain white kyrup. Color with carmmel.
677. Simple Test for Alcohol in OiI of Cognac. Take a lialf cunce phial or tert tube, and fill it cxactly half full of oil of cog. nac; then fill up tho remaining space with water, and shake it well. The alcohol, if there be any present, baving a much greater aflinity for water than for the oit, will leave the oil and combine with tho water; denoting, by the decrease in the bulk of tho oil, or the increase in that of the water, tho gunntity of aleohol present. Other testa for essential oils will bo found under ita lieading. (Sco Index.)
678. Highly Flavored Domeatic Brandy. Ta 40 gallons French prout ppirita, מedd 2 quarts ruisin flavoriug (seo No. (i) 5), 2 quarts prino flavorisig (sec No, (i64), 2 quarta SL. Jolin's lreail flayoriug (yco No, ©e 0), 1 gallon best cherry wine, 2 drachmes oif of eompane and 20 dropa oil of hitter nlmondef both dissolved in a litlo 95 per cent, nlechan! 1 gallen Jaumiea fum (or $\frac{1}{2}$ ounco Jamaien rum essace), and 2 pints wine vinefar, Ten gallons of this mixture, mixecl with 30 gnllons Freveh 戶piriti, mako on oxcellent domestio brasuly, nul 1 juntal if jelycoreine givea it ago, 679. Imitation Cognac Brandy. To 36 pallona Bronch proof ypirite, add 4 gallona Pellevoisin ar Marette cognac, $\frac{1}{}$ galloh best sherry or Modcirn wine, and 20 drops oil of cograc, dissolved in a litile 95 per cont. alcohol. Then pour 2 quarts boiling water over 2 ounces black tea; when cold, filter through flanuri, und add a lithe maraschimo; mix this with the other ingredients, and color the whole to anit, with cazamel. (See No, G91.)

Another excellent formula is nas fotlown: Disgalve 20 drops oil of coganc and 15 dropa oil of bittor almonds in a little 95 por cent. sleshol; atd it to 40 gallons 60 per cent. Frensh spirit, with 2 pints tincture of raixin, 52 pints tinctarcoo pruess, 3 pints best. Jamaica rum, 3 piats best sherry wine, and $\frac{1}{\frac{1}{3}}$ ounce asolie other. Color with raramel.
680. Initation Brandy, Take 40 gallonu French spirit; auld to it 1 pint tincture of raising (see No. G6.), 1 quart prane flavoring (seo No. 654), $\frac{1}{\frac{1}{2}}$ gallon best sherry or Madeira wine, and 1 pint wine vinegar. Then add 1 drachm oit of cognac, 12 drops oil of bitter slmoads, it to $\frac{8}{8}$ drachm tanniu powder each dissolved separatoly in 95 per cent. alcohol. Color to suit with caramel. (Sec No, 694.)
681. Imitation French Brandy. To 40 galions Fronch pronf spirit, aill 1 quart tincture of orris root ($50 c$ No. 669), 1 pint vanilla flavoriug (sec No. 668), \& gallon hest eherry or Madeira wiue, nad 1 pint wine vinegar. Dissolve separately, 1 drachm oil of cognag and 12 drops oil of hitter almonds, each in a littlo 95 pur cent. alcobol, nud add then to tha misture, coloriag tho whole to buit with caramel. (Soc No. 694.)
682. Imitstion Pale Brandy. Infuse 1 drachin star-anise (breating the star only) for 8 hours in + pint 95 par ecut, nleohol, and
filter; uld thi t to 40 gallons proof spirits; thon add $\frac{1}{2}$ gallom best Jamaicat rum, nud i piat of tho lost raipleorry syrnp. Dissolve 1 drachum oil of cognace, and 1:2 dropa oil of bitter alnouls, soparately, in a littlo 95 per cont. alcohnd, and this thom with the whole.

633, Imitation Bourbon Whiskey. Mix tugether 40 galloms proof spirits, 4 pallum paan flavozing (sec No. 674), $\frac{1}{2}$ gallon hickio-
ry nut flavoriag (sce No. 671), galloa higbly ry nut flavoriag (see No, 671), $\frac{1}{\text { galltor higbly }}$ flavored brauly (see No, Giod), 1 pint wine Finegar, and 1 pint whito glycerine. Add to thessa 13 drops oil of einguac dissolved in 95 por cont, alcobul, and color with caramel. (See No. 694.)
Or: 36 gallons proof spirits, 4 gallous highly flavored proof rya whiskey, 1 galloa domestic braudy (sea No. 680), together with the anme proportions of vinagar, glycerise, and oit if cogaae, ws before.
684. Imitation Bourbon Whiskey. To 33 gallond proof zpirits, ndil it galloy. higaly flavored proof Boarthon, 1 giallom New Ehgland rum, of gallon sweet Catawha wiue (or 1 quart bherry whes), and 1 pound white glycerine. Color to suit with caramel. (See
No, 694.)
885. Imitation Bourbon Whiskey. 36 galtons proof spirit, 4 gallons highly fa. vored proof Bourbon, 1 gallon malt whiskey, 1 pint wiac einegar, 1 pint syrap, and 12 drops oil of cognace dissolved in 95 per cent. aloohol. Color with caramel, (See No, 024.) 888. Initation Bourbon Whiskey. To 40 gallons proof upirit, add i gallon hiek-
ory flavor (sco No, 671) 1 pallon domostic ory flavor (sco No, 671), 1 gallon domestic brady (seo No, dso), i piat wine vinegar, and 1 pound whito glycenne, with 12 dripi
oil of cogruco digsolved in 95 per cont oleuhit, oil of cognano dissolved in 95 per ennt. alcuhal, and caramol (seo No, 604) suffiotent to color.

68\%. Imitation Copper-Distilled Bourbon Whiskey. Dasiopve 1 drachu ablphate of copper in + pint water, bitter, and and it to 40 galtone peoot spuit, with L gallun peach flavor (see N_{p}. 624), I galloa brabdy llawar (see No, 672), 1 pint wine vitegat, 1 pound whit glyconine, and 12 drona oit of eognac disasilyed in 55 jor cone. alceboul. Color with carmme). (Son Nu, 695.)
688. Imitation Rye Whiskey. To 40 galloms proot spirit, whd 2 jablons peach flavoring (Seo No. 674), 1 pint white ribegar, nut 11 drops oil of cugrase in 9 a per eent. Beolut. (Sultr with curamel. (Soc No, 695.)
689. Imitation Sweet Rye Whiskey. 30 fallons proof spirit, 10 gallous proor 59 whiskey, and 1 galon raisin flaroy (see No. 665), colored with sufficient caramel. (Sed No. 604).
600. Imitation Iriah Whiskey. 38 gallont French spirits 20 above prool, i gallows Seoteh (kinnay) whiskey, in pints best sherry wite, 2 pints sy rup, and 10 drops sassafras flaver. (See No, Gż0.)
691. Imitation Scotch Whiskey. 36 fallons French spirits 20 alove proof, 4 gallons Seoteh whiskey, and 1 puart syrup.
692. To Impart a Smoky flavor to Whiskey. The simpleat way to impart this peculinar tlavor to whiskey is by proparing tho batrol. Ensert securely a liarga theetiron finnel ints the buge-bole of a dry 40 -gallon barrel ; provide a small opes furnace, containing a charconl fire; put 1 pound of bireh bark on the fire, and support the larrel, with its hunuel downwards, over the furnace, so that tho fumbel, whieh should boconsiderably wider than the furnawe, will receivo tha smoke from tho burk, When the hark ceases smoking, remove the funael anil bumg the barrel up tight. After it has stood 24 hours, put the spirit in the barrel, aud keep it thero for 36 hours, frequently rolling the barrel, in order that the spirits baty be thoroughly impreg-
mated with the smoke and stuoky deposit on the inside of the laare!. The spirits will then be found to lise acquired the desired flovor, Creosnte, Jifated with alcehol, is sometimes aserl to impart the smoky flavor to spirits
693. To Give the Appearance of Ago to Brandy Barrels. Dissolre in 3 gallons water, 3 pounds sulpluric acid nal 1 pound sulphate of iron. Wash the barrels with it on the outside.
694. To Make Caramel. Dissolve 7 pounds crushed sagar in 1 pint watier; boil it m a 5 -gallon copper kettle, stirriag oceasionally pitil it gets lirown; thon redace the firo and let the sugar thint until the smoke makes the eyes water. Whea a few drops, let fall inton tumbler of cold water, sink to the botlom anal barden sufficiently to crack, it is done. Then pour on it, by ilogrees, about 9 guarts waray water, sliming all the timu, Wbea well mixed, filter it lot through a coarao flamnel filter. Suno usn lime-water to dissolve tho burnt nugar. Care mist bo taken not to overbarn it, ast greator qu.natity is thereby readered insoluble. Tho heat thould bint exceed 430°, hor be usder 400° Fahr. Tho process for niec experiments is beat condunted in a bath of molted tiv, to which a little biamnth hat beon added, to reduce its molting point ta about 435°; a little powdered resin or charoobl, or a little oil, being put apoa the saffuce of tho metal, to provert oziduthon.
695. To Plaster Brandy Pipes. Firat notels over the bottom of the casks with a batchet or adian; theit, for the botton of $;$ it pipo mix $\frac{1}{2}$ gallon plasler with I galloas waios, nad your it ols; while the plaster is selting. tap the eask pently with a maller, is order that tho plaster may penotrate into every crevice. When the plater is fully set, wash it over with a wel spomge. If you wiph to color the plaster, midd a listle Venice red.

696, Wax Putty for Leaky Casics, Bunga, dec. Mele b poanda yellotr was and 12 pounds solid turpoetine over a How firs; add 4 pounds tallow; and, wheir thecoughty mized, remofo the whole to a distance from the fire aid stir is 2 pounds spirits of torpenthes, and let it cool.
697. Imitation Schiedam Gin. Dissolve 3is titachers wif of junipur in safficient 95 per cent. atcobol to make n relear liutuid; add it to 40 gailons Fronels spirits 10 absece proof, with of ounces ornoge peel llasuribg
 of imed fentel.
698. Imitation Ola Tom London Gin, Dissolve in 1 piart 95 pee sebl akobol, 1 drachm of of crimalen teracios oit of eedar, $\frac{1}{4}$ Itrubom oil of Iftter almonits, \mid Arachan oil
 ndd it ts 40 gations French gpirit 10 alasso 1roof, wilh I phit orange-flower vater, i quari kyrup, and 1 dracher oil of jusiper dissulved in Enffiont 95 per cent, nicuhol th be clear.
699. Imítation Santa Cruz Rum. 35 gallons New Bygfatul rem, 5 pallons Nanta Onaz rum, asd I trachai vamilla Ilavoring(Sec No. G68.)
700. Imitation Batavia Arrack. 31 gallows Franch spirit (rice kpirill is profernhle), 5 gollonis Batavia zertick, if dence lakleant of toln, and $\frac{1}{2}$ onnce tineturc if Ilowers of Wenr zuib.
701. Imitation Batavia Arrack. To
 benzuin, $1 \frac{1}{3}$ numes laksan of toln, 1 slices pineapple Digort with oceasional atfitation for a monsth then aild $\frac{1}{2}$ pint paw milk. Agitato well for 15 mimmtes, nud rack in a week. A fine imitations.
702. Imitation Jamaica Rum, 20 gallons हpirit 10 abrise proof, 20 pallums New Eugland rau 10 above proof, $\frac{1}{8}$ pound Ja-
maica rum essenew, 1 fallan St. Juhu't bread Alavoring (scc No. Gib), aud 1 poumd white glycerime, Coler ts suit with carame). (Sce Ao. 691.) Or: -10 gatlons spirit 10 above
proof, 1 pousd Jamaica rum csscuse, 10 drops oil of cloves, 1 gatlon SL Juha's bread favoring (sec No. Giot), and 1 pound white glycerine. If desired, there may be puldeil 1 ounce gmm lino and if drachm oil of caraway, ench dis. solved in 2 nunces 96 per cent. nleohol.

703, To Make Spirit Finings. Pulverize 1 pound orditary erystals of alom, divide into 12 equal portions, and put up in bluo papers marked No 1. Next tise Gonitees carbowate (tho ordjuary sosquicarbowate) of soda, divide it into 12 parts and put them up In white papers marked No. 2. In place of the 8 ouneca carbonate of noda, 4 ocnices dry salt of tartar may bo subsitituted, but the white papers containing this latter substance mast be kept in is dry, well corked bottle or jar.
704. To Clarify Gin or Cordials, To clicify from 50 to ith gatlons gin, dinsolve the contents of wise of che bline papers, as prepared in No 703, in atount an pint of hot water, and suir it into tho liquor tbaroughly. Then dis? nolve the contepts of one of the white papera in abme \& pint hot water, and stir well into the lijuor: Thum the cask clase, and lot tha whole remmin till the hest das:
705. To Blanch Gin or other White Liquor, By naitg slamble tho gubutity of finimge, that is 2 of varts of tha powdure, ns laid dowes in Wie Aregroing recoipt, the Jigutor gill be blagebod us woil as charfied. It is sell to recalloct, however, that the moro fininga are employed, the gicator tha risto of injuring tho figuor, which may layo at tendency to leorone flat wheu "os draught."
706. Fininga for Gin. To 100 gallona gin, Aake 4 wopcus rocbec dian, aud phat itinto 1 phat of puro water: tholl it hutal it is dias. polved, thotigradually ned 4 antices faits of Larlar; when nearly oold pat it into tho gin, aud stir it woll with a miafl for 10 mimiten. The liquar must nut har covered until it is fine; what this is pecouppliabed, cover it up

707. To Remove the Blackness from Gin. Some gin has a parliedar blackness i Io vethove whel, fake 1 onice ptilerized chalk aml 2 or 3 onnees bainglas, dissolved; pat this inth the fill and It will lyocome trane. pareth. The ntrove is sumigh for t 0 pallons. The black by coming in cnutact wats trou, thay also bo cartied dasth by puttiog a solution of gomes isituglask and I quart stimused milli into ltio spirih. When the eutor is very black, which sill limppeat by mercly an itom bail having Falleg inta the lignar, ilsure is m reuredy lont to hare the licuor thstilled over acaiu.
708. To Clarify Stained Gin. When Itin lins onee hasone much staned, the only rebiesly is ta cealistiil it; when it is only slightity stamed tho additioa of a fow poundis arebio acid to as pipo or bitt, 1 or 2 spoonfula to a galton, or in few fropls to a decanterfut, will nstally decelar if.
709. Brandy Filter. When necessary to filter ant iamtation trandy, in excellent ittensil may le nsed for that purpose which lias already lieen deseribed. (See No, 17, fig. 5.) If will, however, be necessary to splisti. tule cottom walding in plaee of thos chareonl.
710. To Make Rum Puinch, Dissolvo in 1 pint 95 per cent. alcohol, 3 drachuss oil of lemon, and $\frac{1}{2}$ draclum on of cloves ; jafues 3 ormees ground allspive for 10 clays in I quatt 95 per cent, alcolnol, and filter it. Mix theso with 18 gallons sporit 30 aluve proof, 2 gal lons Jamaira rum, and 1 pound Jnmaica rum esscues (or 20 gallons New England rum 30
aver proof and $\&$ pound Jamaicar rum essenee). Next ndd $2 \downarrow$ pounds tartaric acid dissolved in 2t pallons water and 18 gallons syrup made if 108 posudls white sugar. Color with caramel. (Sec No. 694.)
711. To Make Wine Punch, Dissolro 2t drachms wit of temons and d drachm nit of cloves in 95 per cent. alcohol; make an infusion of 3 ounces ground allspice, as in lest receipt; add these to 10 gallous proof spirit, 10 gallons Marsala or Catalonia wine, 10 gallogis syrup malo of 33 pounds whito Eutist, na 13 prouad tatario noid. If not rel enough, adil a fittlo chary jaice. Pilter.
712. To Milse Wino Punch. To 10 gallosis proof spirit, nda 10 gallons Marsala or Catalopia wine. Take 10 gallons syrap malo of 3 s pounds sugar; peel therind, thinly, of 120 lo:nons; bring tho syrup to a boil, unil Einumer tho lomon rinds in it for \ddagger hour of mpro, thon strain it through of fine flamel. Mixall thonbore with the juice of the lemons. Inateas of bailing the lemos peel in the syrup, it may bo intused for 5 or 6 days in 95 per coat. alcohol. Tha color ear bo deepened with chorry juico. Brasdy, rum, whiakey nad arrazk punch may bo made as above, substltuting ihe liquor for the wine and apirits.

Champagne. The process of ma. king A maricha ant imitation Frenab ohampagac is ono requiring greal eare, capocialty in producing as nat ouly clour, but brigat wino. Foll diroations are given below for making tho neeussary syrup, misiag the ingrodients, fining, fltering nut gaviug, iocluding a numboc of reecepts for differont kiads of champagte. A carofial altention to tho instructionas fuid tlown will protuee wing which will eomparo havorally sith tho best growhs jmportationt.
714. To Makg a Filtor for Filtering Wiags. A filter fot what if mandry mafle
 vithout may seale aro the berit. A linitg or papar pulp is propared is the following mannor: Toar from o to 4 dheote ittering paper foto amall proces aud put it futo on paff; puir orer it in littlo boiling water, salficient, by charongh bastitug, $\omega \frac{0}{}$ form a fine menolh pasto; then afd kuffieient water th fill the filtor. Pour this quickly into tho filter, and, 5 minutes after tho water has draved tirmugho. fill up with tho whio to bo filterol, talifig cara tif koop tho fitter alwaya foll.
715. To Mako Syrup for Champagne Wine. To 25 pounds white nutar, aill 2 gallon, water and tha whitus of 4 erisi ntif natil tho sugar is dissolved. Let tho whole Etinmor to the candy degrees? them strain it throuth alag mate of fine fannuel.
716. To Prepare Isinglass for Fining Wines. Cut tup wne iknillius (it nust lag of tho very lestl quatity), smil put it ion a jat, with just euougli wito or water to cover it; ndid daity as much of the wino or water as hat hasa absorbed by the isiumelnss. In 6 or 8 days it slowld bo completely dissolved, forming a thick Andid mass. Squeimo it through a liucu clath and put it into a bottle, ulding 4 ir 5 per cont. of 95 pur cont. aleothol to make it koap. For 40 gatlons wing to bo fined, this 1 wine-ghasfal of dissolved isinelass, add A littlo wino nuld a pinch of salt, and beat to a froth with a whisk, adding by degrees sufficiont wino to mako the mistore up to 1 gallon. When foaming, pour it slowly into the
wine, stirring till all the fining is incorporated with tho wine. Isinglass thus prepareal and usod will precipitate completely; and, after a fars days, tho wino will be lright. Ton much cara carnot bo taken in the preparation of
fring, as even the finest isinglass contains fabrons matter waich disolvea with difiliculty; this is very apt to remain suspended in tho wine, and ls hat sisible watil deroloped, after botthing, by the pas with which the wine is afterwarls chargeci.
717. To Propare Champagne Wins for Charging. Fat the wino usel to mako the champague into a cast, add the loramy spirit, the aroma or Alavoring and the Eyryp, nand atir for 10 minntes. Every day for 4 days draw off 15 or 20 gallons of tha anistare atid pour it in agnin', let it mat 4 daya mure, then padd the fining, otir for 10 mimites, and bung mp the cask. In 3 mf 4 days, if bripht, dratir off Blowly, to as not to distarb tho locs, Fiter (ond No. 714), and it is ready for tha fountain of the casoing apparalus.
718. To Charge Champagne with Gas. Mathewn' apporatns is thio ono uswally allopted in the Unitad Statid for gonerating the gas nud charging champagne wine. Tha fountains, tules, ound valves aro zilverlined and tho muchinet aro gulaptad for pint and guart bottles. The fullowing is a proper chargo far a No. 2 npparatas wift 2 fountains: Chargo the guocratir with 9 gallons water, 6 galloma gromul marbics and 3 g pillozq kallpharic aceif ; put 2 gallona water iu the gar wathor, and 20 gallons wine in carls of tho fountuins, For a wrorul elimate, is presapre of 70 poand to tho square jact is sulicient. Whon tha whe is mate in winter for immaliato sale, the prosuary muy bo iocreaned to to pounds: Gomaine champagno hats an averago prosaro of 50 poonds.
719. Catawba Champague. Tulko 40
 brandy ; and 4 gillons fyrup wale of 30 ponnda kuyrar and 2 gallons water aceonligg to $\mathrm{No}, 715$;-mi, 13 palluas Catawhas winc; : pathas Auggilen wine, and 4 gotheas byrup as aloose A very little bucture sanilla added to either of thnid makeca fl ee bouquel.
780. Califorala Champagne. 40 gal toas Ciflifonia wime; 1 ynath ruybery syray (nec.3i. E272); 4 gallons nyrop wiade of en poandy bugar and ${ }^{2}$ gallows water (see No. 7(a); and 4 gallon water. Or: 20 palloma Catifornia wine; 20 gillans Sastornio or wtito Borleave wina; ; gatlon nid eopatac brandy; wifch 4 gallout Ky yitip as beffre. Adil to thesa 10 per comL of water
721. Scuppernong Champagae. 40 pallons Bcupperwoak wife; 4 fallon olid cog. tue beasaly; ant la gallons syrup uado of 20 poumdx sugar (see No. 7 F) and 3 gallons water.
722. Imitation French Champagne. 40 guilons white Borlears winc; 1 gallum russeat winn; $\&$ palton whl corgnes tratuly; and 4 grillons syrat muic of as pounds sugar and 2 gallons water. (Sice So, 215). Jo thits receipt a little tiocturg of vauilla, or a emall hottlo of bouquet renatiquo, may ba usel insteuil of the mnseat shous. Thicy may lo omitter altogethers if noma ks nut desired.
723. Cheap Champagne. 13 gallous Californian wine; th gatlons white Bordenux wine: 13 pallom water; 1 gallon 95 per eent. Preact spitit; 1 quant nuppherry Eyrup (sco NW. 1372); nuid 4 gallone fyrap made of 25 pornils bugar and 2 pallons water. (Seo No. 715.) Or: 20 galloas Catawba wino; 20 gal. lons water; 2 gallons Δ ugalica vine; 2 gallous 95 per cent. Froach sprit, and 4 gallons syrup as before.
724. Cheap Champagne. 20 gallons white Bordearx wine; 20 gallons Geryum or Hangarian winc; 20 gallons water; 2 gatlons 95 per cont Preach spirit; and 6 gallons syrup mado of 35 poumds sugar and 3 gallons water. (Sce No, 715 .)
725. The Use of Glycerine in Wine.

Glycerine differs from sugarin not fermenting or taking any active part in the process of fermentation. It can, therefore, bo made usc of atter fernentation, to impart any required degres of sweetness to wine, without tho risk of further fermentation, as is the case with eagar whon used for this purpose; it is said that it can be ouldel with perfect sufoty to even a young or now wine, as soon as it has become clear. It is absolutely necessary that the glycerino should be chemically pure; care is consequently to be taken in purebasing it, as there are few erticles in the market which are liable to contain so nuay impurties. (Sce No. 1151.) The proportion of Rlycerine should lo from 1 to 3 gallons for 100 gallons of vine, actording to the quality of the latter. If tho wine is perfoctly clear beforo alding the glycerine it will be ready for bottling at once. It is lest to mix tho glycerine first with an agual quantity of the wine, and then add the misture to the remainder of the wine.
726. Electricity as an Agent for improving Whiskey and Wines. From axperiments made on a large scale, it has lreen found that electricity in any forni, either as a regalar currant or a succession of discharges, renders wine or whinkey mellow and matiro. It is sapposed that the bitartrate of potangs is decomposed, settiog froo polash and tartanie neid: the former tending to neotralize the soids of the wine ; and the tartario acid, reaoting upou the fatty mattora present, favors the forniation of the ethera which constituto the benguet of the wine It is probnble, alio, that a simall quantity of the water is decomposed, selting free exjgen, which forme, with Bome of the constituents of the wide, new compounds peouliar to old wines. (Sco No. 6295.)

H ome-Made Wines, The various procenses in domastio wine- rescmble those employed for foreigu

 makiog rescmble those employed for foreiguwine, and depeud opon tho sans principlos, Tho frait abould be proferably gathered in fino weather, and not till it hasarived at a propor state of matarity, as crinced by its flavor when tasted; for if it be employed whilo unripe, the wine will bo darsh, disagreenble, and unsbolesome, and a larger quantity of sugar and Epirit will bo required to render it palatable. Tho common practice of omploy; ing untipe goosoberries for tho manufacturo of wino aribes from a total ignorranco of the scientific principles of wine-making. On tho other hand, if fruit hio employed too ripe, the wine is apt to bo ioferior, and deficient in the finvor of the fruit. The fruit being gathered, it next undergoos tho operation of pieling, for the purpose of romoving the atalks and uoripo or damaged portion. It is next placed in a tub, and well bruised. Raisins aro commonly permitted to Eask about 24 houra previously to bruising them, or they may be advantageously bruised or minced in the dry state. The bruised fiuit is then put into n vat or ressel with apurd or stranner placed over the tap-hole, to keep back the hukks and seeds of the fruit when thie must or juice is drawn off. The wnter is now ndded, ond the whble wacerated for 30 or 40 hiours, more or Jess; during which time it is frequently etired np with a suitable wooden stirrer. The liquid prortion is nest drakn of, nud the residuary palp is placel in hair hags and undergoes the operation of pressing, to expel the fluid it contains, The sugat, tartar, \&c. (in very fine puwdet, or in solution), are now added to tho mised liquor, and the whole is well stirred. The temperature being suitable (generally
from 75° to 85° Falir.), the vinous fermentation soon commences, then the liquor is frequently skimmed (if necessury) and well stirred up, and, after 3 or 4 days of this treatment, it is run into casks, which shonld bo quito filled, and lef open at the bung-hole. In about a week the gavoring iogredients, ja the atate of coarse powler, are ermmonly ndded, and weil stirred in, and in about moother week, depending upon the state of the fermentation and tho fttenuation of the must, the brandy of zpirit is ndded, and the cask filled up, and huuged down close. In 4 or 5 weeks mare the cask is again filled up, ond, after somes weeks- the longer the betterit is "peggel" or "rpiled," to nscertain if it be fino or transparent; if no, it under goes tho operation of racking; but if, on the controry, it still continues muddy, it must preciousty pass through the proeess of fuing. Its future treatment is similar to that of foreign wine. Tho must of many of the strong-flavored fruits, as black eurrante, for ibstance, is improved by being boifed lieforo lieing made into wine; lut the flavor and batenet of the moro delicate fruits are climinished, if not destroyed, by boiliug.
728. General Fecelpt for the Preparation of Home-Mnde Wine from Ripe Saccharine Fruits, I. Hipe fruit, 4 pmunde elear soft water, 1 gallon; sugar, 3 prunda; cream of tartar, diesolveil in boillug water, if ounces; lrandy, 2 to 3 per ceut. Flavoring as required, Makns a good finily wine, II. As the last, bing I pound moro each of fruit and Eugar. Λ Emperior wine.
 find sugar. Very strong. It good whlont brandy, lout better mith it. If pounda of raisins may bo mathituted for cach pount of sugar above. In the atiavo why may he maile the following wibes:-gnoseleery wine, fint rant wine (red, white or black); miked frnis with (cumants and gooselurries; or black, red, and whito cunanth, ripo blael(-heart choer. riok, and raspleerrics, equal parta). This is a good family wine. Oberty wine; Culepress'a wine, (from apples and malherries, equal parts) ; elder wino ; strawberry wino; rappberty wine ; inulberry wine (when flarned makes port); whorthebery (somotimes called bnekloborry) wino; makes n mond factitious port; blackberry wine; morella wino ; apricot wino; applo wino grape wine, de.
729. General Receipt for Making Wine from Dry Saccharine Fruit, I. Dry fruit, 44 pounds; soft water, 1 gallon; crean of tartar (dissolred), 1 pound; brandy, $1 \frac{1}{3}$ to 2 per cent., weak.
II. As tho last, hut using $5 \frac{1}{3}$ pounds dried frnit. A buporior family winc.
III, As tho last, 7 f poands fruit, and bratsdy 3 per cent. A strong wiuc. Should tho dried frutt omployed bo at all deficient in naecharine matter, 1 to 3 poumis may los omitted, and bulf that quantity of sugar, or two thirds of raisins, ndded. In tho above manner may lo mado raisin wiuc, fig wino, te.
730. Imitation Champagre. Stoued raikins, 7 pounds; loaf sugar, 21 pounds; water, 9 gallons; orystallized tartaric aedd, 1 onuco; honey, $\frac{1}{2}$ pound; ferment with sweet yeast 1 pound or loss; skim frequently, and when the fermontation is nearly over, wid coarso-powdered orris root, 1 drachm, mud cau de flegrs d'orange, 3 ouncos; Iemon juice, $\frac{1}{2}$ pint. Rack it, bung close, and in 3 months tino it down with isinglass, $\frac{+}{q}$ ounce; in 1 month more, if not sparkling, again fino it down, and in 2 weeks bottlo it, olserving to put a piece of doublo-refined sugar, the sizo of a pea, into
cach bottle. Tho bottlesshould be wired, and the corks covered with tin foil.
731. To Make Blackberry Wine. To
make 10 gallons of this cheap and excellent wing, press the juice out of sufficjent fresh ripo blackberries to mako 4t gallons; wash tho pomacs in $4 \frac{g}{\text { gallons soth spring water, }}$ and thoroughly dissolvo in it 6 pounda whito sagar to each galloin of water (lorown sugar will do for ma inferior wine); strain the juice into this syrup, and mir them. Fill a cask with it portectly fall, and lay a cloth lowsely over the bung-bole, placing the cask where it will ba perfectly tudisturbed. In two or three lays fermentation will commence, and tho impurities num over at the bung. Look at it eyery day, and if it does not run oser, with soma of tho misturo which you havo reserved in another vessel fill it ip to the bring. In about three wroks. formentation will havo ceasel, and the wing be still; fill it agrilh, driva in tha loug tight, nail a tir over it, and lat it ramain andistarbell until the following March. Then draw it off, withaut shaking the cask, put it into bottles, oofk tighdly and seal over. Soote pertoas add xpirit to the wion, bat insteat of doiag good, it is orly an iajary. The mory earefulty the juico is strnined, the lootter the gquality of tho nogar, anit tho mare cerapolously clowitho utensils and easks, tho parer and better veill bo the wine.
732, Cider Wine, Let the now ciler from sour apples (ripe, hasual freit proforred) ferment froin 1 to 3 weoks, al tho westher is varm or cool. When it las attaipef to a lively formeatation, idd to pach pallon, acound-
 croshed augar, aid lot the wholo fasnuent matil is posseases precisely the tasto which it t doared ahould bo permanent. In this condition pour ont a goart of Dho eller absl add for eash gallou + onime of colptrite (not nulphate) of lime. Stir the popter and cider tritiliati. mately inixed, and retarn the enmision to the formenting liquil. Agitate lrisilly aus Usoroughly for a lew moments, and theu lot tho ctlor settle. Fermentation witl ceaso at once. When, after a few daye, tho cider bas become clear, drasv off catronily, to nvoid tho nediment, and lootle. If locoely corked for a short time, it will leccome a aparkling cider wino, nad may be kopt indelinitoly long.
733. Honey or Mead Wine, lioney, 90 puruds; eider, 13 gallomes; forment, then atd ruun, t gallon; lirande, $\frac{t}{2}$ callon; real or white tartar (dissolrai), 6 ninces bitter armondes and cloves of enchi $\frac{1}{2}$ onnce. Tho procest of Pernumting, clearing ami bintling,这 similar to the last reecipt.
734. Specimen Process to Mako Unripe Grape, Gurrant, Gooseberry and Rhubarb Wine, acomling to the process of $1 /$. MoCfulloelis. Ganther tho fruit when it is mently fill growo, but before it Elows tha least aign of ripestiog, Any hind trill do, but it is mulvisable to nvoid choosing those which, when ripe, would bo bighty 0acured. All unsotud und bruisol frit thoald bo rejected, and tho stalks and reaminis of blowsonn renuved by pickiug or rubbing. Thic following receipt is one of the lest on the eubject: 40 pounds fruit are tw be lenised in small puantities, in a tob which will hold 15 or 20 galLoas, sufficient pressuro onty being tused to burst the leerries, without breakiug tho seeds or math emmpreseing the skins. 4 gallons water are then to bo poured on tho fruit, which is to be earefully stimod, and squeced with the hands until the whole of the juico and pulp are separated fome the solid matter. It is then to rest for a fers bours, when it must Lo pressed and etrained through a coarse canVas bag with considerable furce 1 pallon grater may afterwards be passed through the residuc, to remote any soluble matter that may be Ief, and then adiled to tho jutice. 30
pounds loaf sugar aro now ta be dissolved in the Juice, and the total grantity of lipuid mado uT with water to $10 \frac{1}{2}$ gallons. Tho liguor is now to bo put into a tub, over which spread a blanket, corcred by a board, and phace in a Lemperatare of frum sio to 60° Fahr, for from 24 to $\$ 8$ loans, according to tho sigus which it may show of fermentation, when it is to be put into a cask to ferment. The cask mnst be of ench size that the liquer will nearly reach to the butug-hole, fro that tho scum may sum out as it rises. As the fermentation poes on the Jiquns will decrease, and the cask must bo kept filled up nearly to tho buar-holo with a portion of the "must " which has been reserved for that purpose. When tho fermentation has become a little woaker, which muy bo known by the hiskitig noise docreasing, the bung is to be driven in, and a wooder peg, called a spile, minde of tough wond, put into a hole bored in tho top of the larrel. After a few daya this 1reg is to ho toosenerl to lot out any carlonic meil gas which las been gonerated. Tbid must bo doase from timo to tine, and when thero is no farlher sign of ges ganerating to the danger of the barrel, the efile may to made tight. Tho rise should be liept during the winter in a cool cellat, atul, if fiue, way bo bottled on A clear cold day at the end of Feliruary or tha liegtoning of Manch, witheet farther trouble. But to ensuro its finencos it is preferablo to draw it off at the end of December into n fremb oask, so as to clear it from tho lees. At thia time, alao, if it is found to be too sweet for the maker's taste, ho should etir up the lees bo at to renow the formentation, at the sume time raising tho temperature. When it is transforred to the fresli cask, it sliould be faed wilh isinglass. Sometmen it is desirnblo to rack it off a second time into a fresk cask, again fining it All theso removala zhould bo mado in clear, dry, and if poasible, colld weather. It must be bottled in Mareh. This wino will ustually bo brish, but ciremen. slances will ocesufonatly canso it to bo swoet and ntill, and somothues ilfy, If sweet, it may bo re-mndo tho following eeason, by ndeding to it juico from froks friat, according to the degreo of swoetnesm, fund formenting and treating it as before. But íf it be dry, brisknosa cun never bo restored, bad it munt be treated as a dey wine, ly drawing it off into a cask proviously fumigated with sulphur (sec No, 760), and finimf and bottling it in the usual manaer. Such dry wines somotimon tasto disagrecalily in tho first and second year, but inoproro much with ager. If the whole mate of luske, ote., if allowed to remain in tho juice duriog the Girst fornentationt, tho process will to more rapid, and tho winc ftrongernnd lass sweet; but it will haveanore Aavor. If tho wiuc is dosireg to bo verysweet na well ng lurisk, 10 pouvds of stugar may be used; loss sweet and less atrunp, 25 prounds, It will bo brisk, bat not to strong, and ought to be used willhin an year.
735. Ripe Gooseberry Wine. Put the ripe nat well picked red gooseberries into a tub or paty, loruise the fruit well, and feava it uncotered for 24 hours. Squeezo the juice from tho pulp through a hair or cativas bag. Pat tho residue of cuch squesering inta a vessol; pour upon it $\frac{3}{4}$ callon of boiling water for each tallon of fruit used, and stir well for a quarter of an hour, Let it stanul for 12 hours, nguecza tha pulp through tho loag, and add tho liquor to the juice of the fruit obtainod. Add 21 pounds eugar to ench gallon of tho liquon, and stir it well. Let it stand to forment. TV hen it has dono fermenting, draw it off and add $\frac{7}{2}$ pint brandy to each fallon. Iet it stand to settle for 4 or 5 weeks, then draw it of carefully into a cask that will just
hold it; keop it in a cool cellar for twelve months of more, when it may be bottled. Chouso a clear, dry, colid dey. It ought to be a splendid wine in 2 years.
736. Ginger Wine, Boil 20 pounds sngar in 7 gallons water for half au hour, skimming it well; then put 9 ounces bruised ginger in a portion of the liquer, and mix all together. When nearly cold, put 9 pounds rassins, chopped very small, intos thinc-gallon cask, ald 4 lemons sliced, after taking out the seeds, and pour tho liquor over all, with $\frac{1}{2}$ pint yeast. Leavo tho cask open for 3 weeks, lenping it filled up with zomo of the reserved liquor, and battle it in from 6 to 9 montbs.
737. Ginger Wine. Another Procees. Boil 25 pounds raw sugar in 7 gallons water for half an hour, skimming it well; then, if the syrap is quits clear frum feum, pour
it boilingupon 8 punces brused ginger and 10 it boiling upon 8 ounces brused ginger and 10
lomons uliced; when tho wholo has cooled down to about 750 , squeezo out the lemond and ginger through a siove, and add the yeast. Let it work for aboat 3 dayb, and then draw it off into a cask. Put half of the lemou and ginger residue in with it. Some tirst pare the lensous, and having rubbed the riads with loaf sugar, add the lattor when it is dome Working Bottlo in 3 monthes.
738. To Make Aromatic Ginger Wine. Reduce the following to coarse pow. der: 5 pounds Jamalea ginger root, 6 to 8 ounces oloves, 1 poturl nllspice, + pound oionemon, and i pourid mnge. Ibfuse these for 10 days in 10 gallons 05 per cent. \&pirit, stirring overy day, nut then fifter. Then dissolvo EO pounds whito sugar in 85 gollons water; mix tho whole together, and color with cherry Juico; then fittor.
739. To Maice Ten Gallons of Ginger Wine. Joil $\frac{4}{2}$ pound beat whito Jamaicagn. For, brused, in abmit 8 gallons water; add tho whites of 6 eggs to $\frac{1}{2}$ ounco isimethesp, 15 pounds loaf sugar, and the viods ef 6 lemonar boil tho compond $\frac{n}{2}$ of an hour, ant pkim it clean; when nearly cold put it inta an ressel that will admit of its being driwn off; set it to work with yeast, sul is is fow days afferwards draw it of into a ciaks; then add the juice of the G lemone, and $\$$ quarts ppirits; in a week or tee days bung the cauk elovely, nid when thoroughly find, bottlo tha wine of. It will be fit to Urink in 4 months.
740. Simple Receipt for Making Grape Wine. Put so pounds of ripe, freshpicked, and well siclected grapes into a stono jar, and potir cat them 6 guarta bailing water; When the water has cooled enough, signcera tho grapes well with the band; cover the jar with a eloth, fud let it strud for 3 disa; then press out tho jujec, and odd 10 ponnlasermelhed sugar. After il har stood for a week, senm, strain, and bottle it, corkfig loosely. When tho fermentation is complete, strain it again and lottlo it, corking dightly. Lay tha bottles en theiresilo in a cont plice.
741. Fine Grapo Wine. In order to make good wine it is bueeseary to have a good cellar, clean caslis, press, ote. First of all, bavo your grapos woll ripened; gather them in dry weather, and piek ont carefully all the maripa berries, nnd all tho dried and damaged ones; then mash them; or, if you have a proper mill for the purpose, grind them. Bo careful not to zet tho mill zo closo as to mach tho seed, for they will giro a bad tasto to the winte. If you wish to haro wino of a rose color, let the grapes remain in is largo tub ofew hours before pressing. The longer time you learo the grapes beforo pressing, after they are minshed, tho moro color tha wine will kove. For pressing tho grapes, nny press will answer, procided it is leept clean
and sweet. After ycu have collected tho must in a clean tub from tho press, tranefer it into a eask in the cellar. Fill the cask within 10 inches of tho burg; then place cno end of a syphen, mado for that parpose, in tho bung, and fix it alr-light; tho other cnd mast be submerged fully 4 inches in a lucket of cold water. Tho gas thus passes cff frem the cask, but the air is prevented frem coming incontact with the wine, which would destroy that fine grape flavor which makes Catawba wine so celebrated. Whea properly made, the must will undergo fermentation. When it has fermented, which will be in 15 lays, fill the cask with the same kind of wino and bong it loosely for 1 week $;$ thom make it tight. Nothing moro is needed till it is clear, which, if all is right, will bo in tho January or Foliruary following. Thes, if perfectly olear, rack it offints gunther clean cask, and bang it up tightly mutil wanted. If tho wine ramains ia tha cask till about November, it will Improve ly raeking it again. Bo oure to havo bweot, elean carts. Do bot bura tra mapt brimstago in tha cask (see No. 736); muly wino is injured lyg excessiva uso of briestiono-a mistako gencrally made by new boginners. Difforont qualities of wine can bo mado with tha tamo grapo ly segarating the difforeot runz of the pame pressing. The find rise is tho finest to make usp of the firit nospon; bat it will not keep loug without losing its fine qualitics. To mako good Eotult tvino, that wat ingrose by ago, the plas is to uix all up togatber. Tho vory lant run will male it rough, bat it will bave better body a:3d bottor flavor whan 2 ve 3 years old, and will haprove for a mamber of yeard, The first ran will not lio good after 2 ar 3 years.
742. To Fino Wins Dificult to Clarj$\mathrm{f} y$; or Thick in Conseguence of an Imperfost Formontation. To elarify ox patfoas, tako 1 ounco of tho opocies of Droic of 1 luanes phath, called Faliepes rool, which lioil is I guaris watert. Whea cola, filter, athd ald 1 ounco common solt, then 1 glant skeopis blood. Beat all tho isgrelients woll togother with a broon totit the mixture figus op woll, then add is gradually b Llo wing, etijrisg coatitualty while popriog it is, mil for IS minuter nfterwande. It a fow taya tha wing will lio clear.
743. To Fino Madoira or any kind of Wine with Isinglase. Tu fino go gallous wiae, stecp 1 ouped isiughas in 1 pint of pure colid whter over night, wat then welt it over a gantle clinersoal firb, tatil is unifurm gelatioous mass in formel. Whwe cool, mix with it 3 piota wioce, end let it repode is boura tha moderntely varas mom. Then ald 1 gallons Wina and mis tho vhole is a wooden yoesel; whisk itwilh acleas brooun cutil it foamsap Pour thls mixturo gradanlly ia the wrino you dosiro to finc, being earefal to stir the whole continually during the process Bung up the cast, and in the currio of 48 benrs tho wins will appear perfectly clear avd lright. Isinglass prepared in this why will procipitate perfectly, and leave no partieles inspended is the wine.
744. To Fine White Wine with Egga. To fine so gallons whita wine, take tho whites of 5 or 6 fresh epgs, 1 egg shall nearly redmeed to pawder, and a brail bandful of common salt. Beat the wholo tugetber in is litzlo of tho wiac, with is stall clean broom, intil it foams, then pour it iata the wino gradually, convtantly stirring it all the while.
745. To Fine Red Wine, This is elarified in tho same wuy. When you bave Roussillon, or the dark wines called vin du midi, which aro ustully of a doep color, and wish to make it of a lighter color, nuld 5 or G
eggs, yollows, whites, and shells together, with is small handful of salt.
746. To Fine a Pipe of Port Wine. Take the whites and shelld of ten good egge, and beat them uy to a froth in a wooden bueket; add 1 gallon of Port and whisk is well up to a froth with a clean browm; draw off 4 galloas, and put the finings in it; stir it up well, leaving out the bung ono day; then lung it up, atd in ten daye it will bo fit to loottle. If the weadher be warm, mix up 1 pint silver sand and add to tho fininga.
747. To Fine Wine, Cider, Ale, or Porter. Take 1 pound linely shredded isinglass, and macerato it in wino, sour beer, cider, or vinegar; ald moro of the liquid as the isiuglass swells, until about a gallon has been used, ugitation with a whisk being oceasjoually hal recourse to, for tha purpose of promoting the sulution, Δs boas as tho whole of tha isinglass is dissolved, tho misture is reduced to the consintence of thin kyFup, with wied of the liguid that the finitge atro intembed for. Tho whole is next strained throngh a cloth or hair siove, and at onco reduced to a groyer stata of dilution, by the addition of more liguor. A pound of good isinglass will make 10 to 12 gallons of finingos i us if pints is tho usual quantity for a barral of ale $\begin{gathered}\text { m porter; } \\ \text { and } \\ 1\end{gathered}$ quart for a bughead of wine or cider.
748. To Decolor Wine, The color of wlie is nubjoct to change; nuturally it is pracepitated ly atro amt oxposare to the light: artificially it is romoved by the action of fime-waun, shtimmed milk, mitk of lime, nud panetionea froab-burnt clareoial. Winos that have açuired a hrown solor from tho cask, of rell thines that have hecone "pricked" (sea No. 752), of tarli witas of my kind, may easily be tarned futo whito wine by employing eitber of the above rubstancis. In thia way brown Sherry is commonly changed to pale Sherfy: for thite parpusco 2 or 3 pints of tokiamed wik are genmally suflicient to alecolor is cuald of whe; but when it is found necessacy to changet tho color of red whine, 2 or 3 quarts or more will be required. Charcoal in not oftem ased, is it affects tho flaver is well as color of wine. A litto milk of lime may sometimes be mbstituted for milk, especiblly when tho wise to bo decalored is Very aeld, asd reil wines may be rendered grite colorless by it.
749. To Remedy Ropiness in Wine. The peendiar elouly, atriugy, oily uppearanco in sime, called by the Frenels "graisse," and by tho Americans "ropiness," is occasioned by the presence of a glutinus sabstanco, and is gencrably olsoryed in those white wines which do not contain much tannin. M. Francois, in chermist, first discovered tho cause, and pointed out tho proper remedy, in the addition of tarnin. Ho recommended tho uso of 1 poind of the bruised berries of tho monutain ash in 4 somewhat unripo state, well stirred in creh barrel of tho wine to bo improred. After agitation, tho wine is to bo left to repose a day or two, and then racked off. The tannin in tho berries by this time will have soparated ind procipitated tho glutinous matter from the liquid, nind removed the ropiness. Wines thus affected cannot bo fined in tho regular way, as they do not contain sufficiont of tho astringent principlo to canse the cuagolation or precipitation of the finings; this principle must therefore bo supplied, and for pale white wines, which aro the kind chiefly attacked with ropiness, nothing equala a little pure tannin or tamnio acid dissolved in proof spirit. Red wines contain 80 much tamic acid that they are never troubled by ropiness. Wine, after laving been cured of ropiness, should immediately be
fined and bottled.
750. To Ripen Wine. Dealers adopt various ways to hasten the ripening of wine. One of the safest and best plans for this purpose, especially for atrong wines, is to let them remain on the lees 15 to 18 months before racking off, or, whether "eruda" or "racked," keeping them at a temperature rauging letween 50° to $60^{\circ} \mathrm{Fah}$., in a vellar free from draughts, and not too dry. Dealers sometimes remove tho bungs or corks, and stastituto bladders fastened air-tight. Bottled wino treated in this way, and kept at aloont 70° Pab. ripens very rapidly. 4 or 5 dropa of acetic aeid added to a bottle of some kinds of now wine, immediately gives it the appearance of being 2 or 3 years old.
751. To Remedy Sour Wine, The bouring of wine is produced by varions circumatances, sometimes from its having been kopt in a warm cellar wherg it has lieen exposed to draughts of air, often by the vibration oecasionod by tho rolling of heavy bodies over the cellar; but most frequently it originatos from the wine having been inperfectly formented. Tha only sate remedy for the soaring of wine is tho cautious addition of a litule neutral tartrate of potash; it may also bo mixed with a larger quantity of rich wine of its kind, at the same time adding as little good brandy, Wine treated in this way aluould bo fined after having stood 9 of 3 weeks, and then immediately bottled, und oonsumed us noon as podible, for it will never prove a goent keeping wine. (Sce No. 761.)
752. To Restore Pricked or Decaying Wine. If the wing is only thiek, whld 2 pints of milk to every 30 gallons of wins, and atir 10 minutes. But if tho wine has antiferior tasto, or is partly or entirely spoiled, treat it as follows: Put the 30 gallons wine into a cleun cask, then take 2 pints spirit of wioe, 96 per cent.; 3 ounces comvion Enlt; 1 pound white sugar: Dissolve the salt and sugar in $\frac{1}{8}$ gallon of the wioe, and ailh the apirit. Then poar the whole graulually into tho wine, beipg carefut to atir it continually with astiok during the operation. Afer the misture is all poured in the wine, stir the whole for 10 minutes longer. Then aid 2 pints milk aud continne stirring 10 minuted more. Afer nome days the wine will bocompletely elstified and reatored, "Pricked" wine signifies wine which has been elightly boured.
753. To Remedy Excessive Acidity in German Wine. Simply add is litte chalk. This mode of correcting the sourness of wine is perfectly hanoless, whercas the pornicions practice of using white and vitrified lead for this purpose cannot be too much condemped. Leed in any form it a poison.
754. To Restore Sour Wine with Potash. To 25 gallons wine, add 4 outces potash dissolved 10 a littlo water, and stir well with a stick for 10 minutes.
755. To Test Wines Beginning to Decompose, Many persons are unaware of the difference between a wine that is beginning to decompose (called in French the Poux), and that in which the acetous fermentation has commenced. The Poux appeara at the bottom of the barrel, while acetification begins at the top. For the first stage of the Poux the wine becomesthick, and bas a peenliar taste termed flat. For the second stago the wine lecomes still more tronbled, and has the tasto of stagnant water. Finally, in tho last stage, when tho decomposition leas reached its maximum, the wine becomes grayish and appears like muddy water. If some of the wine is put into a champogno glass and a pinch of tartaric ncid is added, a
red color will bo prodoced, which will not be the ease if tho virino is in a state of ucotons fermentation.
756. Remedy for Decomposition in Wines. As soon ss uliscovered add tartario acid is the proportion of $1 \frac{1}{2}$ ounces to orery 20 gallons of the wine, amil lot it rost for a few days, when, if the wiag has not regained its natural color, a little more tartaric acid must be added.
757. Sweating In and Fretting In Wine. The technical terms "sweating in " and "fretting in" are applied to tho partial prodnetion of a second lormentation, for tho purpose of mellowing down the ilavor of foreign ingredients (chiedy brandy) added to wine. For this purpose 4 or 5 pounde engar or hopey, with a littlocrude tartar (diasolved), aro commonly adidel per Logshend; and when the wine is wanted it haste, 1 or 2 apoonfula of yeast, or a fow bruised vine Jeaves are also mixed in, the eask loing placed in a moderately warn uituation mulf the new fermentstiou is estallished, when it is removed to the wine-cellar, and, ofter a few flays, fined dows.
758. To Remove Mustiness from Wine. The diagreeshlo tuste in wine, Feperally knowf as muztiness, is ocrasicmed by the presence of an esocitinl oil. This thay bo remavei by adding a littlenwect or alawnd sill, and then violently stirring the wine for sumo time. The fised oil uttiacts and seizes on the ossential oil, and rises wits it to the purfece. whem it is casily shimmed off, or tha liguid under it draws off: A fuw dices of barut or toasted tread, or a litte liruired mostard peed or coarsely powdered charkoal, will often have the banie eflect.
759. Pasteur'a Mrethod of Preserving Wines. M. Pastear sumpoced srane timo ${ }^{\text {a }}$ gu that wiaes lecame apoilet in consequenco of the presenco of mifroscopic ofgatisme, which curfed ho destroyed by expoting tho whe, for s fow montents only, to a temperature of 131° Feler. A comamited of experta Was appointed to make a congrative caminatior of whes whiols hat and which had not boen sulijectel to luent; M. Lappiarent treing Pretilept, ond M. Dunns and M. Pusteur assiating. They coneluded that the prenerration of wine in betules is greatly improved lyy beating; that the destrortion of the germo is perfert, without the least impairment of the taste, color, of linipidity of the wines.
760. To Determine the Nature of Acidity in Wize, If wine has mudergone the weetous formentation, thes convert it at once into tinegar by one of the usual modes. But if its acidity proceds from an excess of tartario acid, this dofect may bo remedied by shaking the wine with a conecentratod solutiou of noalral tartrate of potassa, which, with tho aurplus of tartaric acid, will form bitartrate of pota3as, and precipitate as sich. To discover tho haturg of the acidity, beutraliza an ounce or so of the wino with some carbonato of suds, then adid a small quantity of sulpburic acid, and boil ap; if acetie acid or vinegar bo prosent, it will be perceptille by its odor. (Sce No. 751.)
781. Parent's Method of Preserving Wine. This eoursists is the ouldition of a small quantity of tamin or tannic acill to the wine, whiek perkaps aets in a simbilar way, by destroying the vilality of the spores of the fungus, since a microsoupie examination of wino known to contain these geruls, within a fow wutks nfler leing treated with tho tannin, has failed to detect the slightest trace. Indeed, wing which has already begun to change, and becomo tarbid, can be restored to its prinitive clearnoss, and with a great improvemont in its taste. Care must lio taken,
howover, to use only tamin which has been prepared from the constituents of the grape, kinee tho slightest proportion of the extract of nut-gall, although necouplishing the general object of destroying the fungus, will inpart a peenliar taste, which never disappears.
762. Antiferments. Substances used in smatl quantities for arrosting fermentation in cider, winc, and malt liguors. The follow. ing formulre aro offective, and have the advautago of being harmless, ($\mathrm{Scos}^{\mathrm{No}}, 8 \%$,
763. Antiferments for Cider. Sulphite (not sulphats) of lime in fieo powder, and as newly prepared as possible. Or, 2 parts sulphite of lime and 3 parts ground black mustard seed.
764. Antiferments for Cider, Wine, Malt Liquors, \&c. Griad or bruise togethor 13 pounda now mustard seed and 1 potund eloves. This mixture may be tised with or withont the audlitiom of 10 ounces ground capsierm.
765. To Induce Fermentation. If formontation does not begin within a reasonablo time, ralse the teajerature by covering the versel wits blanketr, and moving it noar to a fire. Or, warn a portion of the must and suld it to the reat. A kinall quantity of yenst, previonsly well mised with nome of the ligur, pronly stiryed in, will have tho same effoct. Or, the inust shoy to warmed by placing largo ntous bottles, filled with boiling water and well oorked, in the lignor.
766. To Arrest Fermentation. Dip a strip of Jinon or cuttom, n m inch wide nad terven inehod loug, into mollesidnalphar. Fas. tea a wire inte the buag of a 60 -rallon cask, so that the end will hang nhent the midale of the insile of the eask, bend the ond up to form a hook, phace the smiphar tape on the hopls, igoite it, and insert it in the cask, bonging lessiely. In about an hour the eask will bo iuproguateal with sulpharvas ncid; then withdraw the match, hasi fill int with wine, and busg up Lipht. This will stop forther formontation. This is a gionl plan for white wiucs, but not for red whos, al sulphur injares their colot- Sulphite (not sulphate) of lime ts also sometimes employod to arrast formentation. (Soe No, 535,)

Cordials or Liqueurs. The naterials etmployed tin the preparation of

 cordiuls ure rain or distilled water, wbito sugar, uad elcaa, perfectly flayerless spirit. To these may be auded tho substances from which the tlavor and arons are estracted, which distiognish and give charactor to tho particular corilial to be made, and also the articles enployed as "finiogs" when artificial clarfification is hud meourse to. In the preparation or comproutuling of cordials, one of the first oljects which engages the operator's attention is the productions of aft aleoholio solution of the aronatic principles which aro to give then their pesuliar aroma and flavor. (Soc No. B12.) This is done either by simplo infusion or maceration, or by maceration and subsequent distillation, or by flavoritg tho spirit with exsential oils. In the preparation if liqueurs, glycerinc has been fonud to bo adnuirably adapted for preserving the charadteristic flayors of those compounds, and it has consequently lueome the grat favorite of this class of mannfactures. (Sec No. 725.)768. Cordials Made by Maceration, or with Essential Oils, When essential oils are employed to convey the Iluvor, they are first dissolvet in a little of tho strongest rectified spirit of wine, aud when added to tho spirit they are mixed up with the whole mass as rapidly and us perfectly as possible by labo-
rious and long continaed agitation. The strouger spirit may be reduced to the desired strength by means of clear soft water, or tho clarified syrap ased for sweetening. The surar employed should be of the finest quality, and is preferably made into syrup before adding it to the aromatized spirit; and this should not be added until the latter has been rendered perfeetly fine ly fittering or fining. Some spirits, as anize seed, etc., frequently require this treatment, which is best performed by ruming them through a fine and elean filter, having previously mixed them with a spoonful or troo of magraesia. By good management, cordials thus made will be perfectly clear aud transparent; but should this not be the case, they may befined with the whites of nbout 12 or 40 eggs to the hogshead, or by alding a little alum, either alone or followed by a fittle carbonate of soda or potasza, both dissolved in water. In a week or a fortuight the liguor will be clear.
769, To Make Doppelt Kummel or Caraway. Dissolve separately, each in a littla 95 per cent. alcohol, I drachm vil of anise, and 5 drops each of the oils of calamus, bittor ulmonds, and coriander; dissolvealso 1 to 1f ounces ofl of caraway in kufficient alcohol ($\% 0$ per cont.) to make a clear nolution. Incorporate these with 40 gallons Erench proof spirit; and ald 10 pomuls sugar dissolved in 5 gallons water.
769. To Make Anisette. To 30 gallons Freach proot' spirit nid 4 ounces ensence of star anise diasolved in 95 per cent, uleohol, and 105 gallons byrap of 10° Bamué. Stir for t an hour, settlo and filter.
770. To Make Curaço. Slico tho nutside peel very thin froun 60 bitter orangas: infuno for 15° days with 4 drachms lornised cimumon, and 2 drachins bruised mace, in 5 gallong 05 por enat. Freneh spirit, stirriog overy day. Then add 25 pounds whito augar alisoolved in 2 gallong water; colot with raramel (sec No. 624); stir thoroughly, and filter.
771. To Make Maraschino. Dinsolve in 14 gallons 95 per cent, alcohol, 13 intites essenco of maraschine, 14 drachums essenee of rose, bdrachm nssenen of noyat, 5 drops essenee of cloves, and 8drops assenco of cimnamon ; adil of gallon orris root flavoring. (Sce No. 6 ige.) Mix tho above with 12 gailony 95 per cent alcohol and 26 gallons syrap of 30 Bgmued. Stir thoraughly and fitter.
772. Superfine Maraschino. 4 ounces essonec of noyan; 1 ounce essence of rose: 1 ounce essence of neroll (gerutine); 4 dracbms of mace, infused in 95 per cent. alcohol; $\frac{1}{2}$ pound cinnamon, infused in 1 guart of water $;$ 2 ounces cloves, intused in 1 pint of water; 2 pounds orris root (powdersd), tufused in 2 gallons 95 per cent. alcohol for 15 days. Dis solve the essences in 2 gallons 95 per cent. alcohol. Mix, put into n barrel 41 gallons Bs per cent. alcoliol, ald the arumas, in 4 gallons 95 per cent. alcohol; sugar syrup, 90 gallons 32° Baumé, Stir all the iugredients well togother for at least half au liour, and let the inixture stand two weeks; then filter and put in the filter two or three sheets of filtering paper. (See No. 811.)
773. Maraschino. $1 \frac{1}{4}$ ounces essence of maraschino, $1 \frac{1}{2}$ drachms essence of rose, $\frac{1}{3}$ drachm essence of noyan, 8 drops essence of ciunamon, 5 drops essenco of eloves, $\frac{1}{2}$ pound orris root (powdored), infused in $\frac{1}{2}$ gislon 95 per cent. alcohol for 15 days. Dissolve the essences in 1 gallon 95 per cent, alcohol. Mix, put in a larrel 12 gallons 80 per cent. aleohol and add 2 gallons 95 per cent. perfiumed alcohol (as doscribed alove); sugar syrup, 26 gallona 25° Baume's saccharometer. Mix and filter as directed in the last receipt.
774. Maraschino. 31 vuuces essence of noyan, 6 drachats issenve of rose. Dissolye the alrove in if gallon 95 per cent, alcohol, and add 4 spooufuls of inggacsia, 1 gallon orange flower water, $\frac{2}{2}$ pound cirmanon (bruised) infusel in $\frac{1}{2}$ gallon water, $\frac{1}{2}$ pound eloves (bruised), infuseal in $\frac{1}{2}$ gallon of water. 4 drachma mace infunsid in nleobol, 2 pounds orris root (powdered) infissel in 2 gatlons 96 per cent, aleohol for 15 days. Mix 41 gallons 80 per cent. alcohol, 90 gallons syrup 25 degrees Baume, sad nidd 4 gallons perfumed spirits, as described above. Stir and filtor as alrealy directed.
775. Curaços d'Hollande, 2 pounds Curagoa orange peel, f pound Coylon cinnamon. Let them walk in water; hail them for 5 minutes with tho juico of 32 oranges and 14 gailons of white plain byrap; then add 6 gnt. lons of 95 per cont alcolool; straio, filter; color dark yellow with rapar culoring. This roceipt will make a splendif curacena.
776. Caracao. 2 unnces each cssobec of bitter ormages and nerult; $\frac{4}{2}$ outbee essatben of cimnamon; 3 drachme mace inforsed is aleohol. Dissolvo tho alovo essences in 1 gaillon 95 per cont, aleobol, then pat in a clean barrel 13 gallons 85 per cent, alconbul, 26 galloas sugar syrap 30 degrees Banué, nud add 1 gatlon perfumed spirit, as aliove. Culur with Balfron or turmario.
777. Champion Anisette, Putinto a barrel 30 gallons es per cent, alcobol. Add 4 ounces essence of anise send, which dissolve if 2 gallons 15 per cent, alcohol. Add 103 gallotas suigar nyrap 100 Beamé, Stir 15 minutes and let is rest 4 or 6 days, then filtor. Alld 2 or 3 hheets of filtecing papier. (Soc No. 811.)
778. Anisette. Mat in a loarrel 13 gal . lunis 95 per cent aleohol. Dissolvo 34 onnces bespetce of greeb anbee seed io I gallou 95 per cent. alcohol, asd ould 5 gallon orango flower water, 8 of 10 drupi Infovion of mace. and 5 drops essunce of emnanou. Theu put in the larret 90 gallons sugir syrup 35° Bnames, Stir and fitter as difocted in the last recelint.
779. Aniso Seed Cordial, Dipsotve 3 Arochims of ad if autise sead in $\frac{25}{3}$ gallons of 95 per cent alecthol; then addi 24 pations of fine white syrap, mised with $4 \frac{1}{7}$ gallons of water. Stir and filtor.
780. Malliorce d'Espagne, 40 gallons 55 jer cent, ulcolol, 5 thtices canenoc green anise soesl and fo motrees estetice of star seed diswolved is 95 per vent, ntcohol, I drachen ether (to gire the cordial age), Stir and filter.
781. Blackberry Brandy. To 10 gal lons hheklerry juice, and was gallone spirits 40 alove pronf, add 1 drasbss each of oit of eloyes and oit of cinnamon dissolyed in 93 per cent, alcohol, anil 12 joupds white sugar dinsolvel in 0 gallons water. Dissolve the uils separately in \& pint 95 per cent, alcohol; mix both together, and aso whe half the quan. Lity; of the cordial is nut sufficiently flavorent, tse tho Vulater.
782. Blackberry Brandy. $亠$ ounce each of cimaamorn, eloves, and nace, I drachm cardamon. Grind to a coarse ploweder; add to 16 pormds of btacklyerries, mashel, and 3 gallons of 95 per cent. atcohil. Macerato for two weehs: press it; then pild 10 pounds of sugar, dissolven is 3 galluas of water. Filter.
783. Cherry Brandy. Mnsh 16 ponods of black cherries with their stones; 5 gatlons 95 per cent. alonhol. Macerate for tro wenk; press it; then add 10 pounis of sugar, dissolved in 34 gallons of vater. Filter.
784. Peach Brandy. Mash 18 pounds of peaches, with their stoues; macerate them

Sor 24 bours with $4 \frac{9}{4}$ gallons of 95 per cent. alcohol and 4 gallons water. Strain, press, and filter; sald 5 pints white plain syrup. Color dark yellow with thurnt sugar coloring.
786. Imperial Peach Brandy. Tako 4 h omees powdered litter ulmonds, is fallons of 95 per cent, aleohol, et gallons of water. Mis together, and macerate for 24 bours; then add a straiued syrop, made of 3 f pounds of sugar, 1 pint of peach jelly, 24 ounces preserved ginger, 1 lemon ent in slices, 1 drachm of grated nutanegs, 1 drachm of allspice in powder, and 5 pints of water boiled for 2 minutes. Mix the whole, and filter.
787. Peppermint Brandy. To 40 gallons proof spint add 4 nubces ossenco of peppormint, dissolved in 95 per cent. alcohol. Cblor with $\frac{1}{2}$ pound powder of turmerio infused in 1 gallon spirit 95 per cent. Uso this infurion in such quantity as to got tho proper shate,
788. Kirschenwasser. 100 gallons proof alcobol, 5 ounces essence of noyan, 2 druchme essenca of roso. Dissolve tho latter ingrodient in some 95 par cent, alcohol and ald a spoonfal of maguosia, 2 pounds orris yoot (powdered), infased 15 days in 2 gallons 05 per cent, alcobol, $1 \frac{1}{2}$ gallons sagar syrap. Stir, and filtor if necestary.
789. Caraway Cordial. Dissolvo G drachess oil of carmway in 3 gallons 25 por cont. alonhel; add a syrug made of 42 pounda of sumar anit $4 \frac{4}{2}$ gallons of wates. pilter.
790. Ratafia. Thin word isderived foun tho Latin pax ratafiat (let peace bo ratified). The Latins used to drink cratalia onslgning their treaties of peace. Ratafia may bo mado with the juico of any fruit. Take 3 gallons chorry jutiee, 4 pounds butgar, dissolved in tho eloory jaice. Stees in $2 t$ gallous brandy 10 daya 2 drachns cimanuon, 24 eloves, 13 ouncos peach leavoy, 8 ounces bruined chorry kernols. Vilter; inix both liquors, aud filter again.
791. To Prepare Cherry Juice by Infasion for making Cherry Bounce and Brandy. Pat the cherries foto harrels and cover thorm with 95 par cent. spirit, let them stoop for 1 momth, nad stir thous well overy 8 days, Uas the juieg that runs of first, and repast this operation 2 or 3 times. Tho last time, you may brnise tho cherrios nud stones, and atoep them all together to mako chorry brandy.
792. To Preparo Cherry Juice for Boiling. Put tho oberries in a ketula tinuad invide, eovor then with witer, and boil them at a gentlo heat for 1 homr. When euld put thom into barrels and add 1 gallon 95 per cent. apirit to each 10 rallons of the jnice.
793. To Make Chorry Bounce (Superfine). To 15 tallons cherry juice, add 15 gallons 80 per cent epirit; 30 gallous Cntalonia or Marscilles wino; $1 \frac{1}{2}$ ouncus essenco of hoyau; 3 ounces mace infusod in 1 quart 95 per cont, alcohol; $\frac{1}{2}$ pound cinnatnon infused in $\frac{d}{b}$ gallon water; $\frac{1}{4}$ pound cloves ground and infasod in 1 guart of water. Put all tho above ingredients ia a clean barrel ayd add GO galloas sugar syrap 25° Buane. Stir up the ingredients well, and filtor afAr 4 or 5 days. If the color is not deep cnough add a little sugar coloring. Tho abovo receipt is to make 120 gallons, lut a innel smaller quartity may bo modo by reducing the quantity of each ingredient and observing thesamo proportion in all.
794. To make Cherry Bounce (Second Quality). To 12 gallons cherry juice, add 30 gallous 80 per cent, spirit; 30 gallons Catalonia or Marscilles wine; 3 ounces osseuce of Hoyau; $\frac{1}{2}$ pound cimnmon ground and infased in $\frac{1}{6}$ gallon water; 音 pound cloves ground and infused in 1 gallon water; 1f
ounce mace infuseal in 1 pint 95 per cent. alcobol. Mir all the abore ingredients in a clean barrel, and add 60 gallons sugar syrup 13° Baumé. Stir up all the ingredients well tngether, and filter after 4 or 5 days. Make the colot a littlo darker with sugar coloring (see No. G94), and to give a good shaile aild a littlo archil.
795. To Make Guignolet, or French Cherry Bounce. To 20 gallons cherry juice add 74 gallons 05 per cent. spirit; $7 \frac{1}{2}$ gallons Catalonas or Marseilles wine; $\frac{4}{2}$ ounce powdared orris root (infured in 11 gallons 05 per cent. alcohol); 1 gallon cimamon wator (male as in last receipt) ; $\frac{1}{2}$ gallon elove water (made ng in last receipt); 1i onnces mace infused in 95 per cent. Alcohol. Mis all the nboso ingredicats in a elean barrel, and and ti3 gallonas sugat symup 25° Banmé, Stir up the mixture and let it rest B dnys; then strail.
788. Cordials by Distillation. Tho solid ingrediasts shouht le coariely poanded of brulsed hetore digestion in the spirit, and thisabould ho done jimuodiately befura putting then into the enalk or vat; as, aftor they aro bruised, they rapilly lose theik arometio properties by exposure to the nir. Tha practico of drying the iugredients before pounding them, mupted by some workmen for tho mero nalke of letsening the labon canvot be too unch apoided, as the least esposure to heat tends, to lessen their aromatio propertios, which are very volatifo. The tength of timo tho ingrodients should bo digosted in tho epirit should never bo less than 3 ir 4 days, bit a langer perfoil fo preforable when diatil. lation is not employed. In either case tho timg nllowed for diecestion may be advantagoously oxtendod to 10 ar 15 daya, tod frequent agitation should lie hal recourso to. In managiag tho still, the fire should bo proportioneil to tho ponderosity of the ofl or flavoring, and tho rocuiver should lie chasaged leforo tho fainta come over, as tho latter ere unfit to bo thixed with tho corvial. Tho stronger spirit may be reshesed ta tho degired streagth by meaus of clear noft water, or tho clarified kyrup nsed for Rwenteriug.
797. To Make Absinthe by Distillation. Put the fitlowing ingredients into a eask $:-1 \frac{1}{2}$ poonds large absinthe, 2 pnuads smatl absiathe, $2 f$ potnds long formel, 21 poumds star uasise (breakiog the star only), 21 pumds greon aniso seed, 6 outuces coritaulor sed, and 1 pound hyssop; mpisten the whold with a litto water, nllowing it timo to soflen and awell; then ald 12 gallons 90 per cent. alcuhul, aucl steep for 2 or 3 days; next rudd 10 gallons water, nud tet tho whole steep for 1 day toorc. The water will reduce tho alcohol to about 23 gallons of proof spirit. Distill it, rand it will produco iearly 15 gallons absinthe of 65 to 70 per eent. streagth. Change the receiver as sonn as tho spirit, as it enmes from the worm, legins to assume as redlish tinge. Color the distilled product, by stecping in it for 10 or 15 daya $\frac{1}{2}$ pound mint leaves, $\frac{1}{2}$ pound melissa leaves, $\frac{1}{2}$ pound small nhasiuthe, 2 ounces citron peel, and $\frac{1}{2}$ pound bruised liquorice root. Struin nud filter.
798. Absinthe by Distillation. This is made in the same mazner as in the former receipt, with the following ingredients: -40 gallons 75 per cent. spirits, 20 pounds fennel, 20 pounds green anise, 16 pounds large absinthe, 1 pound coriander, and 20 gallons water. This is colored, ufter distillation, by alding 4 pounds small absinthe, and beating it again until as hot as the hand can bear; then extinguish the fire, let it conel, settle, and filter it.
799. Superfine Curaçoa. Chargo of tho still: 35 pounts green orango pecl, or 60 pounds
yellow; 25 gailons 95 per cont, alcubol; add 4 gallons water, making in all 29 gallons, at 90 per cent. Digest for 10 days, and stir duily. In making the above, the following directions must bo earefally observed:-1. Distill very carefolly. II. When you have drawn off 20 gal . lous, ald 10 gallons water, to draw of the faints, which may bo diatilled again in the isest distil. lation. III. To niake sujerfise Camepoa, distill over again in a water-hath, alding 5 gallous water. IV. To kiow wheu the faints are couning off, take a little in a glase as it flaks, and aild $\frac{5}{2}$ water, as if for absintho. When It no longar turns milky, the faintsare coming offr reserto them for the nest distillations Reduce the Curagoa abovo distilled to \& per cent, Tra! ${ }^{\prime}$'s which will fivo 96 gallons, Add 12 galloms 82 per cent. spirit, 7 gallons coloring (as given below), 90 gallons syrup 31° Baumés.
800. Coloring for Curacoa. IS pounds Braxil wood; $1 \frac{14}{7}$ puunds each Catupeachy and yollow wood, 7 gallons 90 per cent, alcolsol. Mix the aloove and heat in s water-bath, putting on the head. When the head logins to got bot, rake out tho firo and let tho whole cool together in tho bath.
801. Superfine Maraschino, Charge of the still With water-hath: Take 70 pounds peach or apricot stones, wush with tepid water, and pat them into a barred, maling a equare liolo 4 or 5 finches, in tho head, for thit parpose Cover thens with tib gallons 05 per cent, aloobol, atal let them steep for ono nouth. Then distill the whole.

Noto the following oluservations.-I. Beforo distilling, sdd 4 pounds of peach flowers, II. Keep the fire at tho same degree of hent, of tho Maraschino will liaro aid wily taste. III. Whea nearly futwi-hed, nild 10 gallonas water, to draw off the fihuts, whicli vill do for arother distitlation. Reduce the spirit above diatilled to 88 per cent, and yon will got 45 gallouas. If yom bave not that qquantity, aill spirit of tho samo strength to malke it up. Thea add 90 gallons sigar syruy tigo Baumé, When yon lay not nsed peach flowers in the dittillation, tako 2 poopule urris root powder,
and stern il in 2 gallons alcoliol $9 \overline{\mathrm{~F}}$ per eent. and eterp it in 2 gallons alcoliot 95 per cent. for 15 days) thea filter, and uld it to tho mix. ing, not to tho distillation.
802. Boitard's Anisette. Cluargo of the stili, water-bath : 20 poumils gicen noia (wasbed in river water), 3 pousuls slar nuiea (boing carefint to break tho stars only), 1 pound coriander seed (Dentiexi). 40 gallmis 95 per ecut. alcohol. Put the alorve inta the water-bath with 4 gallotis water, and divetll. Δ fer distilling 35 grillons, mild 10 gallons of wator to bring of the faints, whicle may be distilled again. Tlu first 5 malluns of faints may bo mulded to the distilled spirit, whiek will give 40 gallons ntouatised atcohol. Reduce this to 80 por cent. by addhys, say 5 gallons divtilled sater, and thon neld 90 pal. lons fino white sugarnyrup, 31° Bomone, This will give 135 gallons fime maiscte.
803. Chauvet's Anisette. Charga of the still, water-beth: 90 potinis green anise, 1f poumls coriquder sceil, 2 druclmis nerolf, 74 poumds star anise (breal chostars oally), 1 ? pounds orris ront powderell, 40 gallons 26 per cent, akcobol. Treat precisely es in the last receipt. Reduce the pieriumed alcohol to 89 por cent by alding 4 galloas water, and furthor sdd $1+$ gallons double orumgo flomer water, and 90 gallons white syrup 31° Raumé. Stir well and let it rest 5 to 8 dajse, then flther through blotting paper. This till givo 135 gallons superfine auisette.
804. Marasquino di Zara. Charge of the still, water-lath: 18 pounds raspberries, G pounds ozaggo illawers, 12 potinds sour red
with stones, thenecrate 24 hours with 7 gallons 95 per cent, alcobol aud 7 gallons of water. Distill from off the water, 6 gallons flavored alcohol, and adid 14 grallons of the whitest plain syrup about 34° Baumé.
805. Malliorca d'Espagne, Charga of the still, water-kath: 40 gallons 55 por cent. aleohol, 18 ponads grom tuise seed, 6 galluns river water. Put into tha water-bath only 20 gallons of the alcohsi, and 5 gallons siver water. When 18 gallons are distilled off, add the remaining 20 galtons of alcobul, and eontimne the distillation until 18 gallons more aro obtainecl, which mis with the 18 gallons provionsly ohtnined, and ndd ono drachan of other to give it nge.
806. Elixir Vegetal de la Grande Chartreuse. Maccrate 640 parts by weight, each, of the fresth herb of sweet lahn and leysiop, $\$ 20$ parts of fresh ront if angelica, 100 of camellis, and 40 eash of Spanish sattron aul buce, in 10,000 parts of nicoliol, for eight days. Then diatill it noto a certain guontity (vbleh varies aceording to the color desired) of freah balm and hyssop; afor a time theso are expressed, the liquor awootened with 1250 parts of kugar, and filtered.
807. Fining with Iainglass for Cordials. Take hid' an wunce of tho best isinglass, and dissolvo it over a gentle fire, in a piat of water slightly seasonest with good xinegar, or three tea-spooaliha of lemon joice. Beat if from time to thene, itlding is litite of the seasined water. When youbhtain a complete solution, grabually nild the fouming liguit to the cusdial, theringe all the while. Then titir for 15 minintes affer is is all added, aud lel it rest for 3 days ; by that time tho condial will be liright nime eloak, The abova quablity is zufferent to Alatify 25 gallons of cordial.
808. Fining with Egga for Cordials. Takn the whiter of 4 egese, luat then to at stiff Froth, add a litule alcobol, tume mix it pradually wids 20 gallona of condial, etirrisg all tho while, aur it will seme clarify the ligutor.
809. Fining with Potash for Cordials. 2 onisers of curbormato of potach (nalts of tartar), disoblyed is a çuath of water, is sufficioat to wethle 80 gallens ef cordial; mid and utir as directed nibore.
810. Fining with Alam for Cordials. G drachtua of powdered calcinated aluar, dis: solved ins alcolool, is sofficient to clarify 20 gallons of eardial ; add andivectednanes.
811. Filter Baga for Cordials. Tho filter liags neded far rondering cordials trans. parent ano inato of ©abnel, fel, Cantou flantiol, and other materiak, nceordiag to the thicknesa or density of the liguor, and are gencrally of a conical alapes, In order to perform the eperation of fittering eordials thoroughly, it is neecsatry that thero sboutd bo placell insido of each bag 1 or 2 sbicets of fifteriug paper preparel as sollows: Itats ench sheet of puper until it becomes sisf and limsy, liko as pieco of eloth, Lhen tear it in small pieces and place it iu a pail, pour pres it a little bosiling water, and rub and beat. it up antil it beconics as soff palp; afterwards add nore water, and continue tho same as if gon wero lpating up eggs. When the palp rasumes the appearmae of at fine pate, fill ip the pail with water and Lhenw the conteats inten the filter; ns tiedmas Lhe water has ress through, fill up the filter again so tat to keep it futh, When the lipaid rans clear and liuphit tes it all man thrangh, atad comathence fittering the cordint, being earerul to keep the ilter always full. If the liguor deos not rum elear, add about 2 ounces of granulated animal clareoal (sifted and fannod from the dast) to cacls filter. The chareoal rhould lee washed with a little muxiatie acid before being used.
812. The Aroma of Cordials, It tequires in great deal of experience to combine diffaront perfomer to produce any certain required aroma, a knowledgo is necessary of tho offect prodaced by perfumes in comatanation. The mere fact: laid down in receipts will ant bo sufficient for a liquer manafacturer ; he must know just whit, and buw mech of it to use, to conuterset what is otyjectimable, and produce or inerease the cosrect arouat. He will freynently find that a single aromatic perfumo fails to give the effect he anticipated: anll yot the addition of a mere atom of some other perfine may ba all that is reguireel. Thus, the flaver of star-aniso is aceompaniel by a slight, but objectionable oilor of beilbuge; a vory small addition of greem anise and femuel counterncts this. Ambergris alone, gives scateely any perfinac, lme tansk bring it out. The quince bas a peentiar tasto which is corrected by closes; the inter tasto of cianamon is also destroyed bs cloves: zanilla has more flavor if poutuifed with sugar thas whon ground with it Ahsinthe rempins the eeste of tho lemon to take away its natarally bitter taster. Thuse examples Fill show that conaiderable experience is needeal to he able to blend perfunes with any degrea of ancedsa. (Seo No. 767.)
813. Imftation Peach Brandy. Take $\frac{1}{2}$ gallow honey disiotyet in watery Sy gidlona alcohol; i gallon Jamaies rum; I nunce catectu, bruisod to a paste; 1 untice neetic ethor. Add water to wake 10 gallons, fla. Fored with 4 ounces of bitter almonds. No coloring required.

Cider, To make good cider the apples should bo allowed to havg on tho tres as long as the wind and fruaty nigbla will let them. The riper they are, the better the cider. They itre picked op and placed in a large heap, oither in the orchard or at tho cider mill, and aro allowed to liẹ a few daya to completo the ripening proceas, in which the starch if cubverted jnto sugus, and if any are foumd bruised or rotten, put them in a heap by theinselves, for an inferior cider to mako tinegar. They are then rasped or ground into pulp. If tho weather is cool and the apples are not quite rips, it is better to let the pulp remaia it tho rat a few days before pressfigg out the juice. This gives tho cider a higher culor, makes it sweoter, and of better flasor.
833. To Pross the Apples. The procoss of pressing is nimple, lat requires sumo cess of pressing is Ruple, hat requiren kumo nailed together in a square, tho size it id desired to make the cheese, kay from 4 to 5 fect. This is placed on the bottom of the preas, and a little clean Tyo or wheat ktraw, pulled nut straigbt into tundles, is pot inside. with the ends extending abont a foot all around. Tho pulp is then put into this rim, forming a layer alont 6 inches thick; the straw is then turved on it, and a little pulp placed on the straw to keep it down. Tho rim fa then lifted and as stiek is plnced at cuch corner on the layer of pulp added, and the straw turned over it as hefore, This procers is repentel until the cheeso is as large ns desired, using say from 75 to 100 bushels of apples. When they can be obtained ure hair eloths instead of straw, to placo between tho layera of ponace. Tha straw, when heated, gives a disagrecable taste to the cider.
834. Sweet or Unfermented Cider. The cider will commence to flow at once, and it is better to let the cheeso settle down eumewhat before turning the serew. If pressed too much at first, the pulp may burst ont at
the sides, As the cider runs from the prees, let it pass throngh a hair-siove into a largo open vessel, that will hold as monch juice as can be expressed in ota day. The cheere is generally allowed to remain uniler the press all night, and befora leaviug it in the cvening, the serets is tomed as tight as possible. In the morning additional pressure is giren, and when the cider lass ceased to flow, the serew is turued Lack, the bounls taken off, and tha coruerd of the cheese arc cut off with o hay kuife and the pomace laid ont the top. Tho pressure is again applied, and the cider will llow frecly. As som as it ceases, remove the pressuru and cat ofl 4 or 5 inehes of pernaco from tha sides of the chense, place it on top, and epply the prossure again as long as any cider will flow, 8 lushels of good apples will make a laarred of cider. III a day, or sometimes less, the ponawe will rise to the top, and in a short time grow very thick; when little white bahbles lreak thruugh it, draw off the liguor by a spigot placed about' 3 inched from the bottom, so that the lees may be left grietly bebind. The cidar is asually put in liarrela at onco, and sold while bweet.
835. To Preserve Cider. Strictly speaking, we suppose the sweet jaice of thu applo fa not sider, any more than the sweet juice of the grape is wisc. It is converted into edder by Cermentations. Thusie who prefor aweet chlor resort to varions methods for arreating this process, meb as puting a lapudfill of powderat elay hido cach larrel, or 2 or 3 pruals of well burned clarcout. Ohiers aid a fiula nuastard seal, almat a gill of seed to ouith harrel. Somntimes a Sese gallous of ciler use plaved fo the tarzel, aud then a rag dippot in letusalona is nttactied to a lomg Lipering bang: this is ugnited and tho linug luosely inerted. After the lifimstono is enasomed, the larrol ia rollod until the eider has absorbol the sulphurouts nefd gas. The harrel is then itiled up with eider. The sulphuroun soid gas acting on the albamibohs unttor in the ciler arrests fermentatiots. The oljection to this muthod is that, if tuo moch fas habsorbed, it may prove unpleasant, if not injurionse Th oliviate this, sulplite of limg is now ased, whioh bas tho property of ebocking fermentation, makiag the elaler porfectly clear, fond japarliag an agreoable 1aste. Wo have tasted cider proserved in this way that was excetlent, and wo hase aloo tasted some that was oscorablo; but Chis may bave liean more the fault of tho matetiat than of the methent. When the cider in the barec) is in a lively fotmentation, auld as wuch whito sugar by will be equal to $\frac{1}{}$ or 4 powes to earla galloa of cider (according as the npples aro aweet or sour), lat the fermentation proeced witil the liguifi has the taste fo suit, then suld $\frac{1}{2}$ ounce of sulphito (mut salglente) of Jime to cach gallou of eiter; shate well, nul let it aland 3 diny i, anil bottle fof mien The sulphite should firt bo dismired in a quart or 50 of eider befora iatrofluciog it into the barrel of cider. Agitato briskly and thoronghly for a fow monants, aud then lat the ciler bettie. The ferthentation will cerase at ouse. When, ufer in for days, the cider has becomp elear, draw off ant hottlo carefully, or remove thasedimont ayd raturu to tho original vessel. If loosely cortad, of kept th a barrel on draught, it will rotain its tasto as a still cider. If preservel in bottles carefully corked, which is Dottor, it will hacome a kparkling cider, and may bo kept indefnitely long- (Sice Nos. 762 fo.) Somo thiak that eider, when treated by this mathod, is liable to induce cramps aud loss of appotite, but we hare never experieneed any such uupleasant results from its use. Atwother plan, which, bowever, wa baro hot trien, bat is strongly recommenuled, is to mix

1 pint of lrad-wood ashes (aiekory is bost) zad I piat fresh slaked lime with 1 guart of new miliz; this mixture is to be stirice inko eash open barrel of cider; after remaining quiet for about 10 howrs the pothace will riso to the surface, aad may be skimmed off; the cleat cider can be drawn of by means of afatacet inserted near tho lsottom of the barrel; it is aivisable to strain it the it is drawn off, to separate any bardened yomaco that may romain in it. (Sco Nos, 8is, and 853.) Whatever method te adopted, the efler must bo drawn off into very elean, swoet casks, and closely watcheel. Tho moment whits bahbles are pereeiveal rising at the lung hole, rack it agaip. Then the fermentation is completely at an end, fill up tho eask with cider in all respecta liko that alrealy contained in it, and bung it up tight. Tho most perfect plan fot excluding alf action of the air from tho gur. face of thu cider, thed presserving it bweet, it the addition of a tumbler of swuat oif beforo finally cluaing the tatag-boles. It is not an casy matter to leop cider ascet and purs for any leingth of tine expecially if tho wenther is warli. If the cider is but anade matil jest beforo wintor sets in, sud can afterwands lo leept at or mear the heceing poits, it will remain sweet and axcellens.
836. Fules for Making Good Pure Cider, Alwaya choosu pertectly rpe und suand friit.

Dick the mpplen from tho trae by lund. Apples that bave been on the gromel any length of time contract an varthy flaver, which will always be found in the einder.
Aner aweatiug, nod berase being ground, wipo thean dry, ant if nay urat fonut Lruisod or rotteti, put them in a hesap by themselves, from which to tualio tul inferior eider for vinegar.
As favt ait the apples aro ground, the pomaco ehould lis placed in inpreviously prepared open vat, of entuble zize, atad with a fatso botem, strainer, or cleanetraw aboutit. Iedthepromaco remain about one day, then dew off, retira the first, ruil continno to sho so notil it ruts clear. Lat the juiec persolato or filter for ono or more daye The cider thus extracted will comparo closely with nuty ctear, rich syrup, bud is alono deserving tho name of temperanee cider, atul inay lic drank, of used for many parposes, bs a choiee and fupprior artiele. In this way, about one third of tha cider will separato; tha hafanea may then loo expreased by the nse if the press.
To prese ont the juice, ute it elean otrainer cloth luside the eurb, with some clean strav fotormised in thin layers with the pomaed, und ryply the porer maderately.
As the eder cuns frou the sat or press, place it in a clean, gweet casle or open tab, which ahould be closely watched, and as soun as the little bubbles commence to tise nt tho leang-hole or top, it should he racked of by a spignt or faucot placel nhout 2 inches frout the bottom, so that the lees or vediment may be len quietly behiud.

The vinous fermentation will commence somer or later, dejemting chicily upon tho temperature of the aparturent where tho cider is kept; in most cases, duridg the first 3 or 4 days If the feruscutation begies early aud procecds rapidly, the liquar must bo rackel or drawn off mad put into frestr casks in 1 or 2 days; leat if this does not takic placo at an carly period, bat proeceds slowly, threa or four days inay elapse lieforeit is racked. In general, it is necessary to ruck the liguon at least twicc. If, notwithatanding, the formentation continutes briskly, the racking mast bo repeatel, otherwise tho vinons fermentation, by proceeding too far, may torminate in acetons fermentation, wien vinegar will he the result.

In racking off tho liquor, it is necessary to keep it freo from sediment, and the scim or geast produced by the fermentation. When the fermentation is completely at an end, fill up the cask with cider in all respect. like that contained in it, and bung it up tight, preriens to which a tumbler of sweet oit may bo poured into the bung-hole, which will cxelude the oxygen and prevent tho oxidation of the surfacd of tho wine.
Sound, well made cider, that has been produced as abuve directed, and withont shy foreiga mixtures, is a pleasmat, cooling and wholesome beyerage; while, on the contrary, tho acids and drugs adited to atready imphre liquor, vetard fermentation, thasadding poisnts to puison, producing colic, and not unfreygently iucurable obstructions.
837. To Make Good Fermented Cider. To malie grond fermented ciler that wiil kow, a year or mone withoul tarnimg too spar to be used for angthing but vimegar, is net a difficult mettirf. Tho first thing is to exclude att deenyed fruit, but it shonld toe quite ripe. Not a droy of water should be usel in the process of manufictove. Tho sweoter the Juico, the strongey had ciller, and tho better it will kecp. Put tha harrel inumediately in a cool collap-tho cooler the better. Thio fermeatation may go nu slowly or rapilly, pramtico differing in this respoct. In tho former case the liquid is treated in all respeets fike wine. Tho cask lias a bung in which is lised, nir-Light, a tid turic bent at riglte angles, of a piece of india-rubber talos. The frea cud of tho tuba in eithor ense dip3 into a vessel of wator. Thia arrangonient allows the pares liberated in formentation to pass out, and the cad of the tube being coyered with water, air cannot pats ins. Thes bubbliug of the gas through tho water shows low the formentation is progressing. When this han ceaved, tho cider is ruekod off iuto clean caski, which aro to bo full and bunged tiphtly. Much of the excellence of cider deponils tipou the temperature at which the fermentation is conducted; a point interly overlooked by the manufaeturers of thia liquor. Insteal of the applo juice, as soon is it is expressed from tho fruit, being placed in a cool iftuation, where tho toniporatura shobld not exceol c00 or 52° Fahr., it is frequently lelt esposed to the fatt beat of auturun. In this way much of the alcobol formed by the flecomposition of the angar is converteif into finegar, by the absorption of atmospheric oxygen, and thus the liquor acquires that pecular and suwwolesomo acidity knowis as "hardness" of "rouglness," When, on tho contrary, the formentation is conducted at a low temperaturo, nearly the whole of the sugar is conrorted into alcolocl, ant this remains in the liquor, insteal of andergoing the prucess of acetification.
838. To Mako Fine Cider by Another Process. Afer obtaining the juico a3 already directed (see No. 836), strain it througha a coarso hair-siero into open rals or close easks. When the liquor has undergone tho proper formentation in theso eloso vescels, which may bo best effected in a temperature of fom 40° to 55° Fahr., and which may be known by itsappenringtolerably clear, and liaring in rinous sharpness upon the tooguc, ang further fermentation must be stopped by racking off tho pure part into open vessels, expused for a day or two in a cool situation. After this the liquor must again pe pat into casks and kept in a cool place dumg winter. The proper time for racking niay always he trnown by the brighttess of the liquor, the discharge of the fixed air, and the appearance of a thick crust formed of fragments of the reducelpulp. Tho liquor slanuld always bo rackel off anew, as otten as a hissing hoise is heard,
or as it extimenishes a lighted mateh held to the bung-bule. Whea i favorable rinous fermentation has fecen phtaincl, nothing moro is requirel than to fill up the vessels every two or three weeks, to supply the waste by fermentation. Dy the Leginning of March the liquon wit to bright ant pure, and fit for final meking, which shonld be done in fair Wrathec. Wher tho bottles ars filled they Ntothdioset by, nticorked, till merning, when the corks mest liedriven in tightly, speured by wire of twine and melted resin, or any dintilar sulestatice.
839. To Prepare Casks for Cider. Ciler shonht never be pit into now casks Withont preqinusly rending thets with water containugialt, or with water is which pomaco las been boiled. Beer casks should never bo ased for ejder, tir cider casks for beer. Wino and brandy caslin will keep cider well, if the tartar alluering to theirsides is first carcfully scrapen off and the easka be well ecalited. Buming a litule sulphar ín a eask will effectually rembre binat.
840. Canned Cider. Cider may be proaerved sweet fire gears, ly putting it up in air-tight rans niter the mamer of preserving frait. The ciner shoith lo first settled and racked uff from the dregs, bat fermentation shorld not be allowed to commence lefore canning
841. To Cleanse Cider Barrels. Tako Time water and a trace chain and put them in the larrel throngh the luag-hole, fint secaring a ptrong twine to the chain to draw it out with. Then stake the barrel about until tho clanin wears or scourt off alt mould of pomace remaining in the parrel. Then risse well with water; after throwing out the rinsing water pat in a little whisker, turning tho barrel to lring it in contact with every part, and pour ont all you cas.
842. To Clarify and Improve Cider. Clder shomld too stored in a coul place, and sbould not he drank before it becomes sufficiently matured. To improse the favor of a hogebical of ciller, 14 gaflons of good brandy os rum aro fropmently adiled, vith 2 ounces potidered eatechn (dissolved in water), 7 poutuls good inoist sugar or bones, $\frac{1}{\$}$ ounco each lritter almonds and cloves, ard 4 ounces whatard seed. These nust be well stirred in, anil occasionally stirred up for a fortnight, after whin'b it untst be alkered to reporo for 3 or 4 months, when it will maily be found as lifight as wine. Slinilit teig not bo tho case it must be fined with a pint of isiuglats finingt, or a dozen eget, and in 2 recks moro it sill be fit for use. If the eider bia preferred pale, ount the catecho, and insteal of theisinglass, fine with 1 yuart of skimused milh. If wanted of a light reddish or roed tint, use \ddagger ounce coebjumat, and omit tbe cateckt,
843. To Bottle Cider. Preparatory to bottling citlor it should be cxamined to reo whether it is elear aud sparliling; if not, it should be elarified agnin, and teft for two wreeks. The nicht leffore it is intended to bo pat ruto bottles, the boing shotila be left cut of the cask, and left so until the next day, when it inay be bottled, but not corked dowa until tho day afler, as, if this be done at once. many of the bottles will burst by keeping. The best corks and chanpague botules should be used, and it is usual to wiro and cover the corks with tia-fuil, after the mamoer of chaumpagne. A fer bottles may lo kopt in a warm place to ripen, or 4 sumall piece of lump sugar may ba put into each bottle before corking, if wanted for immediate use, or for cuasumption during the cooler portion of the year; bint for warm weather aud for long keeping this is inadmissable. The bottled stock should be stored in a cool cellar, where the quality will
be greatly improved loy nge.
844. Champagne Cider. Good cider, pale, 1 hogshead'; spirit, 3 gallons; honey or bugar, 20 pounds. Mix null let them rest for 2 weeks, then fine with skimmed milk, $\frac{1}{2}$ gallon. This will bo very pale; and a similar article, whea bottled in chanpagne bottles, and silvered and labeled, has been ofen sold to the ignorant for champagne. It opens very brisk if manatged proyerly,
845. Fine Champagne Cider is male as fillows:-To 100 gallous of good cider put 3 gatlons of strained honey, or 24 pomeds of good whito sugat, Stir well and set it aside for a weok. Olarify the cider with half a gallon of skimmed milk, or $\frac{1}{}$ jound of dissolvel isinglosis, and adit 4 gallons of puro spirits. After 2 or 3 daya bottic tho elear cider, and it will become sparkling. It onder to prodice a slow feruentation, the easks containing the Ferimenting liquor must be bunged up tight. It is a great objert to rotain much of the carhomie gas in the eider, sin as to develop itself after being bottled.

846, Champagne Cider. (Anotherveocipt.) 10 gallots of eldor, old and elear. Put it in a strong iron-hound eask, phethed fisstude (Jike beev-casks); whl 21 puts clarifiod white plainayrup; thes dissolvo in its ontaces tartariencill; keep tho hung ready in hand, then uill 7 f omees of hearbonate of putuses; bupr it aspuickly ausd as wall ns possible.
847. To Imitato Champagno Cider, Cider will resemble chatipiagae if you put a tea-spoonfal carlomate of mota, 2 tea-spuos. fuls finu susar, and a tabla-spumfit broudy in a tumbler, and fill it up with slurp cider.
848. How to Imitate Cider. 1 very fhir jmilation cider may be ponlaceil by using tho following recuipt:-25 galloas ath water; ${ }_{2}^{2}$ pounds Lurtarie acid; 25 pounds New Or: loans sugar; 1 putht yeast. Put all the fogredients futo a wlean cisk and stir thern tj) well affor btanding is bours with the bump out. Then buug tha cask op tight, add 3 gallons spirits, and let it stand 48 bours, after which time it will bo ready for use.
849. To Imitate Sweet Cider, Take water, 100 gallons; boney, 5 galluns; entechu powilered, 3 ounces ; alum, 5 omnces; yeast, 2 pints. Ferment fir' 15 days in a warm place (in itso sime if passible); then add litter samonds, if patali; cloces, $\frac{1}{}$ pound; burnt sugar, 2 panta; whiskey, 3 gallons. If acid lse in excess, currect by adding boney or sugar. If tuo eweet, adid sulpharic ach to suit tho taste. We should prefer to add cider vingear for meivulating whes uecesiafy,
850. Cheap Imitation Cider. Take water, 35 gallons; sulphuric acid, enough to mako tho wator pleasautly sour; browa augar; 50 pounds; nlum, 4 ounces ; ginger, 5 ounces; cloves, 5 ounces; bitter almonds, 6 bunces. Boil the last 4 ingredients in 2 gallons of tho water for 2 hours, strain, and oudd this decoction to the other water. Burbt sugar may bo added. to color, if wished. From 3 to 4 gatlons of whiskey, if mixed with it, will giro more body. It is generally known, wo suppose, that bisulphite of lime may be nelvantageously emplayed in fresh cider to stop its conversion to vincgat. (Seo No. 83is.)
851. Cheap-made Cider. Tako of good cider and water, 1 hogsalicat cach; notasses, 50 pounds; alan, dizsotves, $\frac{1}{2}$ pound. Brimstonematehes tostop fernentation, by buroing.
852. To Keep Cider Sweet. Allow the ciller to work until it bas reaehed the stato most desirable to the taste, then suht $1 \frac{1}{2}$ tatnMers grated borseradish to each harrel, and shanke up well. This arresta furtber fermentation. After remaining a few weeks, rack off and bung up closely in clean casks.
853. To Clear Cider. To clear and
improse eides peneratly, tako 2 quarts of gromal horseranidsh and 1 paund of thick gray filtering paper to the harral, and cither stake or stir mitil the papar hat beparated inta small slizeds, and lot if stand for 24 liotirs, when the pider may be drasa off loy thearsoff a syphon or a stup-cuet., Instead of Traper, 噱 preparation of wool miny bo takeo, which is to be liat in tho murket bere, and Which is preferable to paper, iss it has siesply to bo wisbed wilh water, when it may bo used дgaim,
854. To Clean a Foul, Sour Cask, and Restore the Taste of the Wood. In onder to necomplish this, dissolve about $1 \frac{1}{2}$ ponuds jimic inf gallous boning vater. Finss the cask to lie restored with this lignid, and afterwarls witl Luiling water. If the eask is very foul, it shamd afson loorinsot with very dilyto mbluherian neil aftor that lime vater, anil ifterwanks with linitigg vater, An a general thing, boweves, the lime water and bolliag water tre sulficient, Tu reqtorn the natirnd taste of the wouk, mush up in as mortar a handfid of junjper bettios and pitt theon in tho tuinted cask, then pur over then saveral gallons boiling water, yoll the enst fiolently, and sel it firet on 000 end, and then upous tho other.
855. To Make Barrels Tight Dissolvo in a watesthith 1 pound leqihur serapa and 1 outco oxalic acid, is 2 poapuls water, and dilute gradually with 3 pounds warin water: Apply thia solution to tho inside of the barrel, where, Ly osidatiun, it will asaumo a brown color and tweomg jusoliblo is aleohol. This cont clases all the pures of the wood, and does not crack or seato off.

Brewing. The art of brnwiog is simply tüd easily umberatood, cleanImosa and attention leing the prinefpal points the bo cousidered. It comsista of five operations, मamely: mashing, butliog, cooling formoutiag, ami closting. Tho first procoss is simply to ohtatio on infosion of tho arall. In the necond, this infusion of malt is farther impregiated with the flacor of tha hops in the boiligg, which is reguisito fes the preserFation of the beet. In tho third, this decoetioz or infusion fis cooled down to the necessary heat for formentation, which is excited with yeast, and which fills it with carbonic gas, giving to the liquor that mingent taste for which it is esteemed. Ancr this it is fined, ot cleansed, to ronder it fil for drinking.
857. Brewing Utensils. Theso vtonsils it is small way (say for a hogshend, or 54 Gallons of (beer), witl consist uffacoppercapablo of containing abont 70 gallons; and if the eovered with lead, it wilt prevent any wasto of the wort in tho boiling, A mash tub, with a false bottom abomt 3 inches abote tho other bottom, bored full of suall holes, to prevent tho malt stopping op tho hole of the faucel. In many eases, for the bake of economing, en old wors-ont biroh-broom is elenued and fastened before the hole of the feacet; and others again have two pieces of wood miled togother, and bored fill of holes, which is fitted to the side of the tub, so as to cover the fole of the fincot. Any ono of these contrivances is to prevent the malt or grains from flowing out with the wort, which would spoil its transparency. The tnb must be suffcieutly largo to hold 10 or 12 bushels of malt, with plenty of room for mushing of stirring. An underback, to receive the wort from the mash tub, Au oar, or rudder, to stir up the malt in the masly tab. Two or three coolers. Theso slould be brond aud flat, that the wort
may cool quickly; for if the wort is too long eooling, $5 t$ is likely to become Eouy in the coolers. Theso should also be raised a little at one cmd, that the wort miy be rum off at the lower end witbout lecing distarbed or shaken, and also that the sodiment which falls down may not he again mired with the worl. A formenting tum. The mash-tub, when emptied of the grains, will also serve for this purpose. Casks, nad oak stauds for the eashis nod tubs to bo placel on. The vhale of these articles should bo of a suitable size with the copper, which the conpur will always rerulate, or in proportion to tho quautity intented to be brewed.
858. Mashing. The purpose of mishing is to convert as muoli of the flour of the malt as prossible into sugar, es that the extruct drawn from it may contsin the greatest. entunt of eacehnine natfer which it is capmble of giving. To necomplixh this perfecily will depend upon miany cuntingencies-the beat of the wator osed in mashing, its quality, whether hard or coft, the noost perfect mixing of tho malt with the water, and the time of their reinaining together. High-dried malt does not jroduco no maeh saccharine matter as palo malt. On tho proper tomperature of the liquor used will dopend the goodnesa, flavor, and clearness of the extract dnawn. When too hight, or pear tho bolling point, the flour of the malt will be pet, forms ing a lifid of pasto or starch, and the extract obtained will bo little better than water. The sturface of the grains after the asashiug process Is concluded will be covercd sith ppecks of white ineal. The mamo appearmence aleo shows Itrolf when sumalted eom has lieen mixed with the malt. If the tamperntere be too low, the wort will be poor and decoid of strungth, because the hoat of the water is not sufficient to convert the flour of the malt into sugar, or to extract the saccharine matter from it. For jale malt the heat of the water muat bo bigher than for brown, and 80 mued the lower in proportion ns the malt is browner. Thus, for the pale malh the heat of the water for the first mash phould be 176° Fahr.f for the geond, 1829 . Pale and amber mixed, or pale mialt appronebing to smber. 172° for the first mash; veennd, 178°. All amber, the first 170°; second, 176°. For very brown, ot brown malt, such as is ueed for porter, 154° for the fibst ; Fecond, 164°.
When hard water is used, the heat in each When hard water is used, the heat in each case should be about 20 less, An equal pertion of pule, uinler, and lrows, or balf pale aul half lrown-first beat, 1 coo ; eecund, 1600. Tho time for the Randitig of the nuach fa from an bour end a balf to two bours. In the summer months the wiash should not stand 30 long by a quarter of an hour as it does in the vinter. Heat the water in the copper to the regnired degreo by Fahrenheit's thermometer. In taking tho beat in the copper, if it is too loot, add cold liquor to liring it to the desired degrea; lat be carefol to stir the hot end cold well together and mix it intimately, becouso tho coll wafer, being hearler than the Lot, sinks to tho bottcm. The heat of the water being now reduced to the proper degree in tho com, the malt must be stirred fr grailually. It is liest for ene pereon to throw it in whilst snother mixes it well and thoronghly by means of the oar, eo thet there may bo no lumps or elota of malt left in it. The remainder of tho water rhould bo auldel by degrees, mas the mash becumes too stiff to stir, until the whole is veed. Rescrye about $\frac{1}{2}$ bustel of the malt to throw arer the top whea the mashing is finizhed. Cover the top of the tun with malt-sacks or clothe, to keep in the beat, and let it stand the required time. Tum the tap portially; to allow the
wort to ran ont slowly, and draw off seme in a pait or backet. As the first rumning will not be clear, it nust bo put gently Lack into the ttm; rand if the second runing is mot sufficiently clear, turn the tap again, and let it remain a few minntes befouo diaw ing it off: then tum the tap partially ns luffice, and draw it off into the noderback, which must bo placed anderneath to receive it. As the wart runs ont more klowly, the tap must te tuined more fully, until tho whole is nearly ren out, and the bed of the gruins looks alsy; then turn the tap, to prevent any more maning off. White the mash is standing, the copper should be ogais filled with water, and hented to the reguired degrea for the eveond math; thia should be ready by the the the firt wort is drawn off; then, with a bowl or ladle, pour over the tap of the graina, ats gently as pofstle, about bulf as much water as Jor the first; cover the mastr tun, Jet it remain ale ot ten minutes or a quarter of an homr, and draw it off as before, pourize thek tho firtst 10 ning until it is fine. The wort from the first meshing is alway tho best aud fichest in sneclarine or aweet matter. The proportion of wort to bo olstained from cach lushel of malt depends entirely on tho proponed ptroogth of the liquor required. To ale or beer of a superior kiad the produce only of the first mashing should the used. For ordinary or nemal drinking ale, tako the produce of the first and seeund mashans, thix them well, aud ascertain the gravity by a saccharomator: This ia nas iatrument umal ly breten for as ecrtaining the etrength of wort; it if simifar in pribciple ta the hydroractov, hat its ecale depotes the poimd yoer harret as uxcesy of tho weight of a barret of water. The bartol of 36 gallons of whter weight 300 poundy; and, in oxamitutg a mpabity of wort, if tho Nas: shambuctore inarlan 60 , it menns that a burpel (as sallous) of tha wort woild treigh 60 painidn
 It is a part of sprectio gravity, in whied 300 is the unit inateat of 1000 ; frose which it can bo seen that a saccharontetor gravity of 490, as compared with 350, woulet lot the sime as 1 tuity tron sperifio gravily ascompareil with 1000. Some brewars aspress the strenget ol their wort by tho wholo weight of a barrol, othera uso only the excoss of weight; thas, it the example above, some would call it wort of 420 prands, others would say 60 porauls either way is plain; the fignves alowints which plan is aulupted. The nsual limit fir ale or beer is from to to (ia pmuds, and fior a very strong ate from 90 to 120 pounds por barrel. That male at the first provity will bo a brisk, lively and sparkliug trink: but the last will bo toro beafy and glutinous, and can ouly be imperfectly fermentas.
859. Boiling. $A \pm s 000$ as the water is tahen from the copper for the table-beer, damp tho fire with ashes or cinders, and put in the wort. For every bushel of malt ased, allow 1 perad lops, previonsty suaked in wa. ter taken from tho finst mash at 160° of lueat; sud balf of them at first ued the other half nifor the wort has boiked half an hour. 2 pounds of hops by this method arc comsid. ered to bo equal to 3 pounds used in tho ordinary why. The water in which they are stepred is strained oil and pat into the tun insteal of the copper which preserves the flavor of the hops, Let the wort buil as
briskly as possible, for the quicker it is boiled the soouer it will break, Try it occasionally in a glass, nnd sec it it has separated intio large Dakies; if it las not, boil it a little longer; when nearly rendy, it will appeers to be broken into fiue partieles. The extremes of under and over-builing uast be wovided,
ugnin in the casks.
860. Cooling. When the wort is realy, damp the fire, and latra it off into the explers, keeping the hops well stifred to prevent their heing burat to the bottom; strain it through is hair-siove to take off the hops The coelers should be as khallow is possible, that the wort may not be too long in cooling, or it way chance to got kour, and should bu of equaly. Whem thic first worl is drawn uff, return the trops again itho the boller, with the wort for the table-beek, and let it boil quickly for one hoser and a batif; und if 1 poumil cmatao fagar or molasass, and 1 ounco salt, the udded tan every 10 gallons wort it the boling, it will be much improred. Whon the wort bas been coonled down to 75 of BO degrees of heat by the thermometer (this vill tepend on the state of the atmosphero, for when the weather ia warn it abould bo coolae), drav it off into tho fermenting tun, withunt diaturbing the sedimont at tho bothom, which gires tho ylo or beer at diaagrecable tastc. "This is alwnya obacrved by tho Scotch brewers, but othem consider that It ferils the beer, which it certainly does, and always nse it; for whether it it the oleagit. ane guality of tho hops, or tho gluten axby the boiling, it cantof bo of ouy injury to the wort. If it is the first, it, is of emsontie! farvieo to plown tho futl flayor if tho hops. In each cake it will be thrown off in lbo wnikging.
881. Fermentation. 3 pints gool whito Greah yeast will lieatuate tho quanticy required
to wowk a houshaid) of liepte buti in larger
 thers is in a body, tho gravity, ama beat of the aturogphere--Lion, dio lowns the gravity, the greater tho lmik, and the warmer tho weather, the dose reage nust bo ased in proportion to work it, aud urce tarka. 3 plath beiog putbeiment fur a bogshead, a gailon will work 4 or 5 hogithand in a body of the kamo gravity, First mis the yeast with a gullon it two of tho wort, and a handfut or cwo of liean or wheat flour in tho fermenting tuas; when the formontation in brisk, pour over another pertiob, abil as sona as thin wort is as the proper dogrea of temperatura mis is inta the tan, roserving onit abmo of the fermeat, to fred the beee asporcasion may require. Whon it lecountes languid, or if there la stifficient yenst th, it may ho left out nttogether. Tho formentation sthoold ba grulual at birst; for if it goes on wo quickly tho beer is likely to become foxed, that is, to liave i ranti and disagroeable taste. Tho next morning tho boer sbould bare a thin white erramy bead; then, with a bowl or laule, weil ronse and mix it tagether. If, howeser, the fermentation bas ont been farsurable, adid spmo of tho ferment; and if rather cold, wrap somo sacks or old mapet round the tun, nad place somo moro sucks over the top: also keep the door and Windows closed. Or take a clean cask (tho simo accorling to thn quantity of tho gylo, or browing), aud fill it full of boiling liquor; bang it close, and pat in tho tom. Iu tho evening rouso the head well is again; the pext morruing tho Deer spould have what is termed a cauliflower head, remove with tho skimmor any patches of dark-brown jeast, and mix it welf ap together agnin. After the yeast has tisen to the top, it rill forma a thick yeusty appearance, which should bo skimmed off as soun as it is icaclined to full. A portion should then bo tuken oat, tried with the saccharometer, and noted, If not sufficiently fermented, it should ba tried every two hours until it is so, and the head may we ekimmed off tut the same time. When safficientily reduced, clemse it into the casks.
862. Cleansing. In elcansing alo or leer, the yeast shoald be skimmed from tho top, and the liquor drawn off gently, so as nut to disturl the bottoms. Tho casks should be plageed a little on nua side, that the yenst may work and discharge itself at the longe hole. A tub or pan must be placed underneath to receive the yeast as it worke over. The greatest attention should be paid to the filling up of the casks with the wort Chst is leff, which should be done every half hour at first, and as the working becomes moro alow, overy 3 or 4 hours, that tho yeast may continuo to dischargo itself, otherviso it will fall to tho bottom, and render tho beer harsh and uupleasant, nad liablo to bo eseited on cyery cbango of the weather; bat by attending to theso precautions, this will bo avoided, and the working of tho boer will bo sooner over. Then tho yeast has ceased to dischargo itself, plug the easks upright, mir a pound of tha best hops with some old alo or beor, and seald themin in it over the fire. If the alo or beer is required to bo drunk soon, thif mixturo should bo alded warn, otherriso add it when cold. Mix it well into the cask by means of a long stick, and bung the cask closo; make a spile-liole near tho bung, and pat in a spilo rathor lonsely at first, and affer two or throo daya linock it in firmly.
863. Important Hinta on Brewing. Smull beer wht require rather moro yeast to work it chan strong beer or ale. A portion of the wort at the lemporatare of 85 dogreas nhould bo mixed at first with tho yoast. When the formentation has ormmenced, tho reat of tho wort may bo rua jinto tho tun at the heat of 75 degmees. It will not work so tong nor so stoongly as ale, and may bo caatiod the uest day. Atcend to tho filling of the cusk as directed for alo. In about tivo days the formentation vill havo subsided, and the cask abould then bo buyged closo. Tho fermoatation will always show whother tho degreen of hont have boen woll taken, and the ox lract well made. If too bigbt, tho nir-bladders no tho beal will bo nbout as largo is a dollar pives. Ir too low, there will bo fow or no hidadidore, or very small oncs; but when well taken they will bo in size alout that of a 2 cent piece. The proportions of liops used for beer shonald bo in occerdance with the time if is to lo keph. If for inmediate use, 3 pounds will lo sulficient for a coombt of walt (4 bushels). From 1 to 2 years, 4 pounds; old beer, 5 or 6 pounds. Tho zamo if the wort is very fich; or in proportion to its gravity uso more hops, becauso beer or ale joade from rich wort is always fatended for loug keeping. In geveral, 4 or 5 pounds of hops per coomb (4 bnshols) is usod for ales; but for portcr, 5 or 6 pounds, nad for vittor ole, about 8 or 10 puunds; but in all cases carc slouvid bo taked that the hops aro of the best quality. The private bremer will find nbout $\frac{1}{2}$ pound of respings of quassia equiraIent to 6 pounda of hops for preserving alo and Imparting a picasant bitter. Beer browed for immediste uso may bo made from all pale malt, na it is moro readily fermented than that from tho lirowace sorts. It will not heep so well, and may bo browed aluost in tho bort. 70 test weather, as it need not bo cooled below 70 or 75 degrees. A pixturo of pole and amber malt should alvass bo used for hoeping beer, and the wort couled down to co or $\bar{\circ} 0$ degrees before it is put into a stato of fermentatiun; lonec, from Autumn to Spring, or the mosths of October to March, havo erer been deemed the most farorable moaths for browing the best malt liquor, tho former being considered the most fitted, as the beer bas so many cold months mmedistely succeeding, for it 10 ripen and grow fine in; besides, it
tho March beer does, in putting in and taking out the spile or peg on every change of tho weather. The proportion of wort to bo obtained from every bushel of mall will depend entirely on the proposed strength of tho liquor required. Fur ale or beer of a superior kind, the proluce of tha first mashing only should bo used; but if the ordinary or nsual driking ale is wanted, take the produce of tho first and sceond mashings, nnd uso the third for table beer.
864. Flavoring Beer. There aro keveral simple nad inuuxipus articles which can bo used for this parpose by theprivate lirewernamely, Spanish liquorice, liquorico yoot, cardamom and caraway seeds, and dricd ornnge peel powdered; theso are vory excellent when used judicionsly. Honey is also un exceltent nasistant to beer and alo; about 2 pounds to A quarter (8 bushols) of malt beang put into the ecpper just beforo the wort is turued out, or long onough to melt and incorporate with tho mass. Tho kano plan should be udopted with overything used for this parpose- that is, throwing it il when the wort is at the full boiling point, for then it will not fall to the bottom without mising. When, however, Spanish liquorico is used, it will loo necesfary to tio it in a net bag atul rugyend it. Saltand ground gingor, or salt and any other spice, aro oxcelient for cleansjur lieer.
885. Porter Brewing for Families. To make this lieveraps, thereo vorta of malt are required, manely : pale, trown, and blewn malt. Tho pecaliar haver of this liquor is givan hy tho brown and bown malt, nnd yo other matarial or ingredient whatever is reguired differunt from other sorts of beer. The mixtare of mait may be ecmpored of hale pale or nuber, and half brom n nate; or, tako for a liogstocad, 4 buyliels of falo or nember malt, 2 of Lrown, and 14 proueds of patent blown malt, and G pounda of tho lest Lrown hops. Thuso moportions wili moko excellent purter, but tho fiflowing may to neod for a hecond-rate quality :-2ఫ Lumbels of nuber, 1 f bushels of brown malt, nod 4 pounds of hops, wilh Eufficient bunt zugar (300 No. 024) to give the desired color; ar it may be browed with all amber walt, uking blown malt, or mugar coloring, issicad of tho brown walt. Tho water for wathing must bo lower than for beer or ale, ard to reduoed to 164 or 106 degrees for tho first mash, necorditif to the instructions nlecody laid down. All tho proceesea aro ceribucted tho saino as for beer or ate with this exooption, that blown maft is builed wifh tho wort in a coppor, and the pecend malt, if boited separatu, bhould be boiled vielently for 2 or 3 hours; and as there is gecectally but one quality of porter, the two laedis of wort aro ran together into tho tun. 28 gal . lons of cold water may bo min moto tho iun for table porter, which thould be managed as tablo beer. If tho calor is not fufficiently high it may bo heightened by using a pound of Spanish liquenco with the wort in ths boiler, or by the addition of bumt sugar (Caramel, see No. 694.)
88e. Hints on Fermentation. Tho fermentation of beer or alo is a very importaut part of the process of brewing. The grantity of extract obtained from tho malt depends greatly upon tho heat of the water
nsed for mashing, and on the mashing process being properly conducted; but whetber that extract be rich or poor, the flavor of the beer or ale, and its altimato success in the cellar, depends upan tho wort being properly and sumciently fermented in tho tum nad casks. Fermentation increases tho heat and docreases tho gravity of tho wort, altering altogether its original cbaracter by a decom-
position of its parts, or a conversion of its Gaccharine prineiplo into aleobol, which gives to it that vinous pungency for whiels it is esteomel. If the fermentation is not carried far enongb, the abundant sweet priueiple of tho wort will not be sulficiently changed to give it tho neecssary vinous teste, and it will bo sickly and cloying, defieiont of strepgth, and linble to become ropy. When the formentation is carried tou far in the tun, the vinons flavor is partly lost; and if still lower, the yeast bocoues, ps it were, fixed in it. from tho alo or beer haying lost its natural earegy to throw it off, and it will have a flat, stale, and ilisagreeable taste. Fretting (sec No. 757) then ensues in the casts, and from being deficient of body it soon becomes sour, unless spoedily trunk, All beek for keaping should be fermented in tho tun to about onefourth its origimal gravity, in a temperature of tho gyle not esceoding 70 degrees. Light. or beer nbout one-thifil ; but in no case shouk it to allowed to reachso far as me. balf. In wiater, tho fermentation of weali beer mast not be carrind quite so firns in the summet, as thora difermenteil mutter must be left to nourish it in the eask dariag the cold weather, which will counteraet its ripening. Sout allowanco shoald istro be minde for tho time zte ale or beer is intendeat to le kept. Strong wort will bear a groater proportionate fermentation than weak wort, ind conscquently be stromger avil more nparkling Beer of thiskiud, jutended to lo kept, sbould be formested so low as to ensmre tranapareney and sintnesk, with a proper dogree nif strepgth, for it will havo timo to bring feelf ruand. Still, care bust to taken to leare a sutficient quantity of unformented natter for tho supply of tho gradual decomposition, the quantity lon being proportionato to tho tima the beer is intunded to le lept. Wort of 50 or 60 degrees gravity (see No, 85s) will keep vell fir 3 or 3 years, if reduced to two-fiflas, or at least one-fourth. Alo is not formented so much it beer, therefore a considerable portion of the sacoharino matter still remains in the liquil), apparoutly unaltored. In ennduotiog this procoss, both the thermometer aut saccharometor mast be tho guide;-the last is indisponsablo. The tesults given by these shoutd bo carefilty moted int a buok kept for the purpose, with tho beat of the atrowphere at the time the observatiots are mallo, which will servo nis a gride for any fiture breving As boon in the head firms a brown, thief. yoasty eppenrance, and fo igelitest to fail, it
 attention must be paid to this point. It is at asl times better' to skint it before it begins to drop, than allovy it to pass agzain through the beer, which will give it n rank, disagreeable tasto, termed "ycast bitten " $^{\text {Hieither will it }}$ fino well in tho cask. Afer tho heal is skimmet off, a portion should then be taken out, triel by tho saccharumeter, and noted: mut if it is rot sufficiently fermentel it should be ronsed weil op, and blimmed evecy two hours until the requirso gravity is nearly attained, when it shoula be watchod with tho greatost attention, and cleansel with a littlo falt and bean-flour, anisl any other flavoring imgredient may then be addel, such the gromid
 wefl unzel with it immediately it is reduced to the desiret print.
867. The Acetous Fermentation may arise fiom pemature formentation, through the mashimg heat being taken too low, when it may eammence in the tus, moderback, or coblers. If in tho mash tun, the wort will ferment verg rapidly, aud produce is large guantily of yeast; but of course tha liquor will be sonved, therefore less yeast will bo
requirel to ferment it. When the first mash is affected, ull tho subsequent ones will share toc shmefate, and no extra quantity of hops or boiling that may he giren to it will restoro it to a somd condition, It may also arise from the mashing heat licing taken too tigh. When this is the caso, the fermentation is languid, the yeast huad is very low, and appears browa or fiery, accompanied with a hising noise, anil necasimally it will appear asi if hoiling. A larger quantity of yeast than usual is thecessary to lo added to wort of this deseriptime, to furee the fernentation, and to disehargo the jest freely, in orier that os little as possible may remain in the liquor, which would othersise fret and become soum The ncetoms ferwentation may also arise from prematore fermuntation, cither it the usderback or coolera; benco, frettitg ensues, and tho lignor continsally generates acidity.
868. To Correct Acidity in Beer. Aeidity in loeer may to deatralued by chalk. lime, alkalises se., lut it carnot be totally destroged vithuot spoilinog the liquar.
869. Bittern. This is an allulteratiog naisture employed ly lirewera to Tupart a halso bittor nind streogth to their liguord. Boil 4 parts Spanks ligtorice in sufficient water until digsolved, and evapurate to the consistence of crean. Thes add to it 1 part extract of quasela, 1 part powalered sulphate of iron, 9 ports extriet of cocculus indicus, and 8 parto mulases.

8\%O. Bitter Balls. These are uned as a Fraudulent salatilute for hopp 10 makiue beet, abll aro differcnt in composition, to stit dif. forent kishor of mall tiquor,

For alo: 2 pounds powdered gontian, and 1 pound extract of geotinn, pifxesl with sufficiest molasoss to mako a paide. Diride into $\frac{1}{2}$ posend rolls.

For pale ale: 1 pound crvide pierie aeid, 31 prouts truend clannountes, and ! pound grains of Parailso, mixel with syreq.

For porter of staist: ether of the nbove, with the midition of 16 porods Sparaish bigoorice snfteried with a little boiling water.
871. Fining for Ale or Beer. It fro-goentis- liapperts that tuath liquor, especially porter, wilh all the care bestowed topoan it in brewing will mit tura out nufficiendy fine to neet the tasto asad eye of tbe congmoner. ia which easn it is nusually suljected to the oporation of clarifying. For this purposel ounco isinglass is put into 1 quart weak swegar, or atill letter, hard boer, bud whea disoolyed, a sufficiont quantity of gool beer may bo nddoil to make it measure 1 gullow. Thas mixtore is calleel fining., 1 to 2 pints of which is tho proper quantity for a barrel. The hiethon of using it, is to pat tho sininges into a backet. and to gradually nod some of the beer, until the backet is threa parts full, during which time it fa violently agitated with A whisk, atol this is continued until a grood frothy head is raised upon it, when it is thrown into the barrel of heer, mid the whole well stimel np, by means of a large stick shoved in at thio bung-holo. In a few daya the beor will nsually becomo fine.
872. To Ascertain Whether Malt Liquor may be Clarified by Fining. In somis bad sorts of beer, ivinglass will bayo me effect. This may be ascertained beforchand, by trying some in a loug glinss tube, or vinl, with a littlo of the finings. These should be well shalken together, nod then set aside for a short time, when it will be fonm that the finings trill rise to the top, leaving the central portion of the beer clear, if it lo in a proper condition for elarifying; thet if, on the contrary, they sink to the hottom, and the lignor still keeps foul, no quantity of finings, bowever great, will ever clarify it.
873. To Clarify Obstinate Ale. This latter defest may bo remedied by proceeding to fine it aftet the manner abovo deseribed, and then alding, afer the fining have been well rommaged up, either 1 spoonful oil of vitriol or gum catechu, dissolved in $\frac{1}{2}$ piut warm water, atain stirring well for a quarter of an hour. Or 1 or 2 ounces tincture of cateehu may be used instend, mixed with a littlo water. Eitber of these additions acts chemically on the finiugs, is the kame way as good beer does, procipitating them along with the foulness, and thas brightening the fiquor: The addition of a handful of hops, previonsly boiled for 5 minutes in a little of tho beer, and then added to the barrel, and the wholo allowed to stand for a few days, beforo proceeding to clarify it, will generally havo tho same eifect.
874. To Ripen Beer. The addition of a small lunp of white sugar to cach bottle of ale or beer, and a tea-spoonful of moist sugay to each botele of porter at the time of corkiag, will render it fit for driaking in a fow days in ordinary weather. A raisin or lump of sugar candy is ofen added to each botilo with a like intention. Tho Parisians bottle their beer one dey, and sell it the next. For thia parpose, in addition to tho sugar as aboce, thoy add 2 or 3 drups of yeast. Stels bottled liquor must, lawever, bo drunk witbin a weel, or elso stored in a very cold place, as it will otherwiec burst the bottles, or blow out the cartes.
875. To Give Beor the Appearance of Age. The addition of a vory hittle diluted sulphurio ncid to new beer will givo it the appearance of being 1 or 2 years old. Oppperas, alum, aliced lemous, orangos, and cucumbers, are also frequently employed by browers for the same purpose.
876. Beer Heading. Alum and green copperas equal parts, both in fino powder; mix. Or, nlum, copperas, and common salt of each oqual parts; mix. Used by brewers to make their boer leoop its head.
877. To Remedy Mustiness in Beer. To ench luggshend fuld 1 pound new hops boiled in a gallont of tho liquor, along with 7 pounds nowly-lurnt clarcoal coarsely bruised, and a 4 prouth loaf of bread ent inter slices and toasted rather black; ronso well every day for ono week, then stir $3 n$ moist kugar 3 or 4 pounds, and bung down for 2 weeks.
878. To Remedy Flatness in Beor. Stir a fow pounds of moist sugar into each longsliend; fenmentation will onstic in a few days, and the liquor become brisk. On tho small scale, tho addition of a fow grains carbonatso of soda ar prepared chall to each glass will wiake tho lignor brisk noil carry o hend; lut it mast bo drank withio a for minutes, elso it becomos again flat. This is an oxeollont methnd when bome-hrewed beer hecomes sour and vavid.
879. To Recover Frosted Beer. Frosted beer fo best recovered by the addition of a focy hops beiled in a little saveet wort; or by adding a little moist sugar or molasses to indnce a fresh fermentatiou.
880. Foxing or Bucking Beer. Add some fresh hopk, along with some bruised mustard seed, to the heer. Somo persona add a little made mastard, or solation of alam or catechu, or a little diluted sulphuric acid, and stir it well; and in a week or 10 days afterwards, further add tome bean-flour, molessecs, or moist sugar.
881. To Remedy Ropiness in Beer. Adil a litule infusion of catechu and somo fresh hops to the beer, and in a fortnight stir well, mind the next day fine it down.
88\%. German Beer Bouquet, Aecording to Dr. Bocttger, this ligum consists of a
solution of the essential oil of Jemons in Jight petroleum oil, and a cuarse fusel oil, containing spirit colored by tarmeric.
883. Spring Beer. Boil down 3 amall bunches each of sweet fern, sarsaparilla, wiutergreen, sassafras, prince pies, spice wood, in 8 gallons water to 6 gallons of decoction or extract; strain ; 4 gallons of water boiled down to 3 gallons of decoction, with $\frac{1}{2}$ pound Lops; stran; mix the two extracts or deenctions together; dissolve ill them 1 gallon of molasses, and, when cooled to 80° heat, $1 \frac{1}{4}$ pound of roasted bread suaked in fresh brewers' yeast; fill up a 10 -gallon keg; when fermentation is over mis with it tho white of 1 egg benten to froth; bung it, moll bottlo when elear.
884. Spruce Beer. Thoil 92 gullons of water; lot it cool down to 800 Fahr, and then dissolyo 9 pounds of sugar is it, hoving previously mixed with it 1 nume of essence of spruce; then ald I piot of gond btewers yeast, and pour it in a la gallon lieg umtir fermentation is over; then aidd a landful of brick powder and tho white of 2 cgga beaten to a froth; mix with the beer, and let it stand till clear, thea bottle.
885. To Make White Spruce Beer. Dissulye 10 pemuds loaf sugar in 10 galfond boiling water, tud 4 ouncesossenco of epruce; when nearly cold add ip piat yeast. Keep ia a warm place. Next day strain through flannel, put into bottles and wiro the corks.
886. To Make Wood't Spruce Beer. Boil f pint esewee of spoweo, $\hat{5}$ owncen ewh of braisenl pirmato and giager, tuit 5 of 15 ounces hops in 3 gallons watar for 10 mbmotes. Then adh 3 quarts puolusseg and 11 gillows warm water. When lukewarm nild 1 pint yeast; forment for 24 lonaes asul lomtle. In is last vectipt. This will also make in white beer by mibutituting mi equivilebt of laif sugar msteal of the molasses.
887. To Mako Spruce Beer. Take 2 onnecs each hopis ant chips of snasafions root, 10 gallons whter; lioil twenty minuter, strafn, and turn on, while hot, 1 gatlon gund molasses, and atd 2 tatile-spinnmals sach essonca of gingor nat easonce of eproce; 1 table-gpoenfol protintal allspice- Pit into a cask, and when coll enough nid I puart yeast; lot it staud 24 hours; doas it oft or bottle it.
888. Eesence of Sprace. Take of the young branthes of Lack sprnce (abiea ujgra), make in decoetion with water (sed No. W4) atal evaporate to the consiatence of mohusies. This is used for faimicating spruca boce-i right pleasant drink when it is Iresh.
889. Root Beer. Tako sarsaparilla (American). 2 pounds; ypico wood, $\frac{1}{2}$ panil; guaiacum chips, I pound ; birch bark, i pound
 ash bark, $\frac{1}{2}$ onnce; hops, 1 ounce. Bhal Jor 12 houts over a moderato fire, with sulficianl water, 80 that the rematrider slrall inemsure 5 gallons, to which mid tincture of ginger, 8 ounces; oil of wintergreen, 1 aunce; alcolsol, 1 quart. This prerents formentation. To make root beer, tako of this, decoction 1 quart molasses, 8 ounces; water, $2 \frac{1}{5}$ gallons; yeasl, 4 ounces. This will hoon ferment and produce a good drinkiablo boverage. The root beer should bo mixed, in waren wenther, the evoning leforg it is uyed, and cont los kept for use either hottled or dinwu by a common beer-purop. Most people prefer a small addition of wild ehecry bitters or bot drops to the aboyo beer. (Sce Nos. 821 ant 891.)
890. Puffer's Root Beer. Prinee's pine, 2 ounces; wild cherry, 2 onnces; hemfock bark, 2 ounces; wintergreen, 4 ounces; sassafras lark, 4 onnces; birch bark, 4 ounces; spico lark, 4 ounces; Jamaiea ginger, 2 ounces;

White mastani sped, 1 oance. l'ut in a percolator and cover with bohling water; Lit it stand till cold, them strain; add to it enongh builing water to make 4 gallous. Take 1 galloa of this, widd 1 gallon of molassas, or the Eame amount of syrup; to this ndd B gallons of water and about 1 pipt of yeast. 1 pint of alcohol added will minch juprove its linvor, and it will keep longer,
891. Hot Drops. Take of tinetare of myrrl, 1 otanee; tincture of eapsioum, 2 оипесs.
892. To Make Ottawa Root Beer. Take 1 ounce cach sassafras, allspice, yellow dock, and wintergreen; 1 ounce each wild cherry lork and curinnder; $\frac{1}{2}$ oumce hopss and 3 quarts molasses, Pour boiling vater on thens; macerste for 24 hours; then filter and add 4 pint yeast. Add abuat 6 gallons water, or to taste. In 24 hours it is ready for use.
893. To Make Superior Ginger Beer. Take 10 pounda of eugar, 9 onneer lemon Jaioe, I pounil bonog, 11 vonces lraised
ginger root, 9 pallons water, 3 pints yeast.
Boil the eingor tualf an tran m I pallan Boil the giager thalf an toan in 1 gallon water; then aid the reet of the water mod tho uthor fugredients, mad strain it wheo cold. AWl the white of aif esp beaten, and $\frac{1}{\frac{1}{a} \text { an }}$ outuce conence of Lemon. Lot it itand 4 days theim loatte, ninl it will keep many mopths
894. To Make Gingor Beer. ThinLn 1 gillon billing watog I prupul trung sagin 1 ornce fort mubleacthal Janiaica finger well loruleal, \& mothe reatim of harlat and ty lemumesficed: Alir the inerediense fos. qumbly in as coswent veosel ount lakewarm: thent uid 16 or '2 ounces yoat, whil hirep it is a mublerately warin phace so as to exwite at hrisk Fermentation; the rext tay mack and
 or Iwo, then strain it agnin nud tettlo, witing dowa the carks.
895. Ginger Beer Without Yeant, Boal If jumthle troiasl giteger in 3 palluns water hater no. hemer; then atd 20 pounds whift sugar, 1 pith townots or line Juife, 1 pound hones, nimi 17 palfons water; strais through woloth. TV lien entd add the white of I chas find 4 Bein thence ewonce of lemon: ater somandige 3 no 4 days, lontle.
896. To Make Ginger Pop. Take 5t gallota wafer. I patad ghinger rom bratseal, if move tartarie asut. if poinds white sugat,
 fill lamos oil, 1 pill yease; boil the reot fur $\$ 0$ winoter in I pallont of the water, strain off, sink jute the oil in while but; mis. Make over gight: in the mortaing shim and bottle, kexpfies vent sedimusts
897. To Make Ginger Pop. Take 2 ownes thest white Jrmaita fioger root, frnised; water, fittlarts; lui! 9) mithites, strain, wind bald I onnee criam laxlar, I pound whito sugar; pot on the firc wait stir waty all tha ragar is ditsulves, anei metion an earthen jar; now. puts in \ddagger nouce tartaric ucid, and the rimi of 1 lemsa; fet it stami until 70^{3} Fahr., or until gou can licar your laul iat it with cotsforl; then whid it table-spuonfits of yenst, stir esell, Lottle for inse and tio the corros. Mabo a few days lefore it is wanted for use.
898. Wahoo Beer. Hoil for 6 lowrs in 4 gallons water, I werecench sarsaparilla, Solouron's seal, betule rowh, abd sissafras; 2 ounces cach lurdock root, comfrey rout, and Privee's putie; 2 aunces sweet ferm, $\frac{1}{3}$ ouneo wintergreen, and 4 raw protatoes cut up finc. Strain, and aitl 1 quart molasses fur each 3 galloma of the strineal bquur, and a hrowueal foaf of lisead. Whem cool, put in 1 pint of good yeast, antll lot it ferment for 24 hours. It wilf then bo ready to be put in bottles or a keg.
899. Lemon Beer, Put into a kcg 1
gallon water, 1 slieed Iemon, 1 table xpoonful ginger, 1 pint poud syrup, and 4 pint yeast. lu 24 huirs it will be realy for use. If hotthel the corks must be tied down.
900. Imperial Pop. Gream of tartar, a ounces; ginger, 1 onance; white singar, 24 omeces; fentan juiec, 1 othece; boiling water, It gallons; when conl, strain, and ferment with 1 aunce of yeast, mul loutho.
901. Girambing, or Limoniated Ginger Beer. Boil $4 \frac{1}{6}$ whees of ginger with 11 quarts water ; beat up 4 eggs to a froth, and add them with 9 puunda sugar to tho preceding. Take 9 lempns, peel them carofully, and aild the rind and juice to the foregoing. Put the whole into a larrel, add 3 spoonfulx of yeast, bung down the Larrel, and in about 12 days bottle it ofl. In 15 days it will be fit for drinking, but tt improver liy keeping.
902. Ginger Beer Powders, Jinepowder of Jamaica gingor, 4 or 5 drachms; hicarthanato of kolla, it ounces; refined nagor in puwder, 14 vances; expence of Junom, 30 Aropas; mis, aud divide into forloxen powders. (Or 4 Lo 5 grains of ginger, 2se of bicurbouate of soda, 112 of kugar, and $\frac{t}{}$ drop of essence of lemon, in cath powdef.) in the other powdor put 32 graise of tartaric acile ot 35 grains if a mure decidedly neidulated bever. ago is required. Or from 50 to 33 grahnd of citric acid.
903. Spruce Beer Powders. In eaph blee paper put 5 saruplea if powdored suzar. 28 graims of Dicurbenats of sula, und 10 gratis essebee of eprices In ench white puper 30 grains of tartario nojd.
904. Sherbet. 'Take 8 outices carbogate of mada, 6 obsuces tarturie ncid, 2 patuda haif bugar (Gnoly powdered), 3 dractums msenco of Jemon. Lat the powters be vory dry. Mix tham jotituately, and heep then for ung in a wide monthed lettle, closely sorked. PuL 2 gool-sized tea spruifula into a tumbler ; pour in $\frac{f}{}$ pinh of cold wator, atir lariskly, and drink off.
905. Raspberry Shrub. 1 thart vinc: gar, 3 quarts ripo raspberries, After manding a day, atrain it, addiug to each pint a pound of sugbr, and nidim it clear, white builing about hatf un bour. Pit a wine-glase of linundy to each pint of the slirab, when bueb, Two spernfuls of this, mixed with a tambler of water, in an escellent drink in warm weather nad in fevorn.
906. Aerated or Effervescing Lemonade. This may be made liy puthint intio eakh bottlo (xala wator hattla) 1 coniee or it chuces syrup of Jemons, und filling it up, with simpla acrateat vister from tho numine. (The syrup is mado by diswolving t 30 onmees lampesagar iu 16 ounces ut' frosh Tethon juice, ly a gonelo heat. It may le aromatizeal by adding 30 or 40 drogns of cssence of temon to the sugar; or by rabling part of the samar on the peel of 2 lemons; on by malding to the syrup an ounce of a strong tincturo of fresh Jenon fred, or of the distilled spirit of tho عame.)
907. Effervescing Lemonade, without a Machine. I'nt into crell hothle 2 druchtos of sugar, 2 depps of essence of icm6n, $\frac{1}{2}$ draphon bicarbunates of pestash, and wator to fill the bottle; then drop in 35 or 40 grainas of citric or tartarie acidin erystals, mud cork immoliately, placing the buttes in a cool plase, ar preferahlily, in icsel water.
908. Plain Lemonade in Powder. (For ung rallons.) $\frac{1}{2}$ pomal tartaric acid in powder, 16 paunds sagar in poweler, if druchans oid of lemons. Ruh and mix well. 1 wunce
ouade.
909. To Make Superior Lemonade. Take tho rind of 2 lemons, juice of 3 larro
lemons, $\frac{1}{2}$ pound foat sugar, 1 quart boiling Water, Rubsome of the sugar, in lumps, on two of the lemons until thoy haveimbibed all the oil from them, and pnt it with the remainder of the sugar into a jug; aidd the lemon juico (but no pips), and pour over the whola a quart builing water, When the sugar is dissolved, strain the lemmade thromgh a piece of muslin, nad, when cool, it will be ready for ure. The lemonade will be much improyed by haring tho whito of an egg beaten np with it.
910. To Make Orangeade. Take of diluto kulphuric acid, empentrated infusion of orange poel, cach 12 drachass; syrup of orunge veel, 5 fluid ounces. This quantity is udded to 2 imperial gallons of water. Δ largo wine-glassful is taken for it draught, mixed with more or less spater, according to taste. This yefreshing drink not only arsaages tho flinst, but has, moreover, strong antiseptio and anti-diarrhcea puperties.
911. Imitation Lemon Juice. This in an oxsellent kulstituted for Iemon juice, and keeps well in a cool place. Dissolve $1 \frac{1}{2}$ ounces citric acid, 45 grains earbonate of potassa, and $2 f$ ounces white sugur in 1 pint cold Wator; add the yellow peel of a lemon, and, in 24 hours, strain throngls muslin or is hair wiove. Instend of the lezion peel, 15 or 16 drops of oil of lemon may tho used to flavor.
912. Imitation Lemon Juice. CStrio or tartario acid. $2 \frac{1}{2}$ ouncea; gom, $\frac{1}{p}$ ounce; pieces of fresh lempu peel, 4 uunco; loaf augar, 2 ounces; boiling water, 1 quart; macer. ato with occasional agitation till cold, and straiv. Fiscellent.
913. Imitation Orange Juice. Dieholvo 1 vance citrie acid and 1 drachan carbonute of potnsas in 1 quart water, and digest in the solutiou the peel of half an orango until sufficiently flavored; then sweeton with honcy or white algar, Instead of tho orango peel, 5 or 6 drops of oil of orange peel, with thef ounce timetare of orango peel, may bo used.
914. To Keep Lemon Juice, Buy lemons when chesp anal licep them in a cool place two or thred days; roll them to mako them squeeze casily. Squerze the juice in a bowl, and straits it through mashas whicb will not permit a porticlo of the pulp tin pabs through. Havo venly $\frac{4}{2}$ and $\frac{1}{2}$ ounee phials, perfectly dry, Will them with tho juice kn near the top as only to adhit $\frac{1}{2}$ tea-kporiful of sweet oil in oach,or a little moro if for largor bottles. Cork them tight, and put them in is conl dark place, When you want the juice, open such a rized bottlo as you will use in a fer days. Wind some clean cotton on a skewer, atod dip it in, to absorb all the oil. When the oil is vemoved the juico will be is fine as when first bottled.

915, Portable Lemonade. Take 1 pound finely-powdered loar sugar, 1 ounce tartaric or citric acid, and 20 drops essence of lemon. Mix, aud keep rery dry, 2 or 3 tesspoonfuls of this stirred briskly in a tumbler of water will make a very pleasant glass of lemonade. if efferveseent lemonade bo desired, 1 ounce carbonate of soda must bo added to thenbove.
916. Lemonade Powders. Pound and mix together $\frac{1}{\text { p }}$ pund loal kugar, 1 ounce carbonate of soda, and 3 drops oil of lemon. Divide the mixture into 16 portions, wrapped in white paper. Then take 1 ounce of tartarlo ecid, and divido into 16 portions, wrapping them in bluc paper. Dissolvo ono of each kind in half n tumbler of water, mix the two solutious together and drink while effervescing.
917. Lemon Soda Nectar. Juice of 1 lemon, is tamblerful of water, powlerel white
sugar to taste, $\frac{1}{2}$ sinall tea-spoonful of earbonate of soda. Strain the juice of the lemos, and add to it the water, with suffieient white sugar to swecten the whole nicely. Whes well mixed, put in the soda, stir well, and drink whild in an offorvescing state.
918. Milk Punch. Take 1 table-spoonful whito sugar, 2 tsble-spooonfuls water, I wino-glass cognae brandy, $\frac{1}{2}$ wine-glass Sants Cruz rum, $\frac{1}{}$ tumbleral shaved fice. Fill with milk, shako tho ingredients well together, und grato a littlo nutmeg on top.
919. Brandy Punch. Take 1 tablespoonful rasplberry syrup, 2 table-spoonfuls white augar, I wine-glass water, 11 wine-glass Drandy, frnall sized lemon, 2stices of orange, 1 picee of pinespple. Fill the tumbler with shaved ice, shake well, and dreas the tup with berries in season; sip through a straw.
920. Whiskey Punch. Take 1 winsglass whiskey (Irish or Seoteh), 2 wipe-glassos boiling water, eugar to taste. Disaulve the sugar well with i wine-glass of the water, then pour in the whiakey, and add the loalance of the water, swouten to toste, anil pat is a amall piece of lamon rind, of a thin whics of lemon.
921. Claret Punch. Tako 11 table. spooufals of sugar, 1 sliec of lemon, $\$$ or 3 alicoa of orange. Filt the tumbler with shaved iec, ani then poar in tho elaret, slake woll, and ornament with borries is gason. Place astravy in the glans,
922. Sherry Cobbler. Taku 2 wineglacyes of sherry, 1 tablerppoonfil of sugar, 9 or 3 alices of orange. Eit a tumblor with shaval ico, shako well, ami ormanent with berries in neason.
923. Egg Nogg. Take 1 table-4poonful of fina sugar, distolved with 1 table-spomfil cold water; 1 ega, 1 wine-glass Cograc brauly. 1 wiue-glass Santa Crus rom, + tumblerfut of milk. Fill the tombler $\frac{1}{2}$ fill with sbaved ice. sbako the ingrodients nutil thoy are thoroughIy pised togotber, and grate a littlo miting on top.
024. Bottle Coc'rtail. To make a dslicious botelo of braudy cocktail, use the following ingredicots: i brandy, to water, 1 pony-glass of Bogart'a bitters i wiue-glass of gum syrap, 1 poay-glass of Curagna. Whaskey and gin cocklaile, in bottles may bo mailo by using the abovo receipt, and bulostituting those iliguors instead of Srandy
925. Brandy Smash. it table-spoonful of white sagar, 1 table spoonfol water, 1 wine-glass of trandy. Filla full of thared ice, uso two sprigs of mint, tho samo as in the recoipt for mint jutep. Lay two emall picces of orango on top, and ormametit with bertics in beason.
926. Santa Crita Sour. 1 talle-spoonful fino sugar, 1 wine-glass Santa Crux rumt, juico of it a lemon. Put tho ingredients in a small tumbler if full of shavalice, stir, and strain into a clarot glass, anil dress with thin slices of lime or lemos, and fruit in season.
927. Malled Wine with Eggs. 1 guart of wine, 1 pint of water, 1 talic-spoonfal of allspice, and natmer to tusto; boil them together a few minutes; beat up 6 eggs with sugar to your taste; poar the looiling wine on the eggs, stirring it all the timo. Bo careful not to pour the eggs into the wine, or they will curde.
928. Regent Punch. 14 each lemons and oranges, tho rimds ouly, 18 drachms ground cimamon, f druchm ground eloves, 2 drachmis ground ranilla. Cut, macerate for 24 hours with 2 gallons pare Cogaac, and 2 gallous pure Jamaica rum. Strain, press, and add 12 pounds of sugar, boilel with 6 gallons water; skim, and ndd to the syrap 2 ruaces green tea; let it cool, and sedd the
juice of 60 lemuns and 14 oranges, Filter throwgh Cantom Ilannel.
929. Bottle Wax. Shelluc, 2 pounds; reain, 4 pomuls; Vemice tarpeatinc, $1 \frac{1}{}$ pounds; red iead, $1 \frac{1}{2}$ poonds. Fuse tho shoilos and restin cautiously in at bright copper pan, over a elear charcual fire. When melted ald tho turpentine, and lastly, mix in the red lead. Pour foto monlds, of fersu sticks of the dosired size mia warm marible plate. The glosa may be protuoed by polisting the etichas with a rag until they are cold.
930. Corking. Litule can bo said with

Fig. 1. regand to tho corkingofbuttles, beyond station the fact thatcou. puon, cheap corky, mo at. Ways doar;
the hest corks are soft, velsoty, and freo from largo pares; if squoezed thoy theomo muro elastio and fit moro closely, If good corks aro used, of sufliciently largis sixo to be extracted withotet the eorhecrew, they may be enaployed many times in suecosalion, especially if they afe suatied in hoiling wator, which reatores them to their arizinal itape, and ropews Cheirclasticity, The poost comonon mode of fasteming down eirks is with tho
 Fiugerbeer knot, which F) thas made. First tho loog is focmed as in Figg. 1, theas that purt of tho striog whet pasbes neross tho toon is placed on the tuip of the cork, asd the loop itself pasest down aroand tho neck of the leathe, mind by petbint the ottda of tho cord is mado tight Gotath the rim; tho

Fig. 3.
ends of the string ne timatly brought ap, and tied either in a double knot or in a bow on tho top of the eorlis. When ginger-beet is inado at home it will be fouml most advantageous to usu the lest corks, and to tin themt down with a bow, when buth coths nad etringa may bo mode usa of repuatedly. For effervescent wions, such as banmpaghe, poovelerse, Eft,

are more craluaile, a secmer knot is desirable, which mey le suute thits: A loop, as in Fig. 2 , is first formet, and the lower end ts then turued npustrols atid carried behind the linop as show't in Pig. 3 ; it is then pulled tormugh the lont as in Fig. 4, and inthis stats is pul orer the sieck of the bottle; the part a befis oll owe side, atid tie Lwe parts of the Juep on the other; on pinlling the then cuds the whole beemmes tight round the neck, iand the ends, which shonld
he ruite opposite, are to be brought up over the cork, twice twisted, ns in Pig. 5, and then ties in a siugle knot.
981. Distillation of Whiskey and New England Rum, The process of dis tillation commences with the fermentation of grain or molarses by the presente of geast, fund this is called masling, or preparing the mash. Strietly speaking indeed, the spirits are not produeed loy distillation; that is dome by the previons step of formentation, and distillation merely separates the spirits from the mixtare in which they alrendy exist. The object of ferbentation is to eomvert, the starely prineiple of the grain into supar, or to suc. charity 31 . Aflerledng agituted tory or 3 house, the saecharime inh ion, called wort, is dratu off from the grains and conlet. To this wort is now wided a eertain quantity of yoast or louyen, wrieh thelures tha vipons fermentation, and rosolyes the sacchavine natter intó alonhol mud surtorie tod, meconpranied by a pige of temperaturic. The atenhollo misture which results is called the wash, and is now rexuly for distillation,
032. How to Prepare Yeast for Rye Whiskey or New England Rum. In preprave jemst for 80 gablons mash, take g promds of whent ateal aind dilute it with suthcient watu watec 4r make a thin juste. Then trof $\$$ pmeer of bopa in a quate of witers abil whot cold take wel the hapes nem throw them awiy: Them dilhte 1 quate of malt iot a graet if' water Mix, wold, the hop water, parte and nait well tugether, shid atd halr a puokel of tenyet. Cover the far comtainsigg the mixture with a pieec of cloth, and keep it 3 or 4 hotes in some warm place mutif it rises. Thin fermentation will lie perfeeb after the whate bas arisen mind then muk down. Then aht 2 gatlons of the nash, atir the whole, mix it with 80 pullous of the mash, and loggin the forntentallone This recerpt is flu rery best fot ry whidkey,
933. To Prepure Yeast for New England Rum. To 0 gatlons mash, udd 1 gatlou brewers' yemt nuid $\frac{1}{2}$ pand curbonate of athmumio dissulyeal in if piont of Woter. Silir woll, and begin the fermestations. (ined for Sow Fughoud nus.
934. To Preparo Yeast for Rye Whiskey. Tu sot puilums of mush, aut 1
 of molassus. Ditate the mult withe equate of Water, and aild the malassor. Kerptan whole ith (1) wrm place rull it kises, astesurituot in No. 931. Add the yeart to the mistrumil stir: nfterwards nded tho melasaes atel patt asme ktir geain. Then begis the fermentation. Coned. liur rya a liskes.
935. How to Prepare Mash for New England Rum. Pot still by alean nclim. To prepare E0 galtors mesh, Fintue the malassos do degrees by the racelnusmutor, shit yeash No, 432, put stit woll. Let it ferment at a tenpmature of 20° Fahronlesit, until the miakls fa reduced tor 0 . Ihin ast it is very ditficult to got sueh a reduction, the operator nay logia to dist'll when the thesh maths? or 3 degrees by the sacehurompter. Charge three-teurths of the still, מinl liegin distillimg. 936. How to Prepare Mash for RyE Whiskey. Nor a still by steam or fire. To prepare bo pallons mash, grims the rge into coatso prwder, then charge the ferinenting tubs in the propertion of 110 pounts of ryeto 80 gallons of water, and mix yenst Ne 931 or 938. Let it cement at a terpperatare of 750 or 80° Fabse, until the fermentation is completed. The fermentation will le perfiect after the mish rimes ald siliks, When this is
done, elurge thres-furths of the still and hegin distilliug. In 1 reparing the masd, the opcrator may pese all rg e, as dirceteal ahove-this makes the hest quality of whickey-or uise three-fifthe rye and two-finhs cont, of thresfifles ewra and two-fifths rye.
937. Distillation with or without a Heater, Distillers usuatly exupley is hestier to hastex the proees of distillation. Whest the heater is emplered, the mady posabs froum the fermenting tillis into the beater. Buriug the time nceupied in distilling orer the chargh of the stilt, it is necessary to heop a luest of 125 degrees in the heater. The mash passion difectly form tho leatert into bee slill by means of a pipe of gutter, weonling to tha geberal arrangoment of the agpatather. Distill until the spifit which rans from the worm gatho 10 , tragres lelow jown. This fisst rus is fulled high wise. Then regore thereociver that eoptaind tlow hifh wine, and sulestinte another. Custime to distill until the low wine eraves to blake whost it is thown bi tre firm. Wheneter this occurs, shop the operatim, ant keyp the low whe FIf the nest tio tillation. Then elean the ntili and clarge it with froh mash. Whes the ogesitor diwe not employ the heater, the madi $14 \mathrm{ea} \%$ Iron the fensenting tule inumediately intor hen stitl. No mbifnem illaposition Is weseseary for the fromentiog tulis or heaters all dejpemas sumol the golleral ammigeneent of fbe apparotats The difilter teed ant le feffornowl tast the
 bur. If the tash tules are abave the saliof. combert themliy a gutter of piper; if ons lesif sith the still, vaphay a hem jump.
938. How to Pack a Rectifying Tub. To reciffy from 10 lelow preof to 50 ubose proof. 30 bashels of maple charcoal are regqaired for a tals seven feet bigh aud four foel in diameter; a tub of thia size will gire a elear bed of 14 inches. At two inehes from the bottom of the tulh place a falve bottom perforated with 1 -finch holes, und cover thin buttons with sailcloth or blanket. Then paek In the charcoal regularly and very tightly *ith a wooden pestle. Grent attentionshould be givon to this part of the operation, in order to prevent the occairence of holes of crevices in the charconl during the process of filtration. Pack the siden of the tutb thoroughly. Cover the eharceal with saileloth, place lathas over the eloth, and hee licavy stonea to keep the charcoal dowi.

Perfumery, The receipts in this departbenet embince is great variaty of odorous essences, extracts, tinctures, pils, pomades, cosmetics, dentifrices, and other urticles of the toilet, and are all derived frou the lateat and lest authorities.
940. How to Prepare Essences and Perfamed Epirita. The scentel kpirits of the perfumer are merely alcoholic polations of the aromatio and odorous principles of the subatances they represent, ohtained fic one ur other of the following waysi-By simply edd ing essential oil or other odorferous mitter to the spirit, abd agitating them topether until solation is complete. Opeasionaliy the resulting alcoholic solution is distilled. By maceratiog ordigesting the ingredients (previously bruised or pulverized) in the spirit, with frequent agitatimi, for s few days, when the resulting tincture is either decanted and filtered (if necessary), or the whole is thrown into a still, aud submitted to distillation ly is gentle hent. In the former case, the zpirit retained in the pores of the solid iugredieste, and which, cansequently, cannot be drawn off, is ohtained by
powerful pressure, (Seo Nos, 39 and 40.) By digeating the spirit, with frequent agitation on highly scented pomale or oil, in a close vessel, at a gentle heat for some luturs, and the vext day decanting the perlumel spirit. (See No. 40.) Distillation is only applicable to snbstances of which the fragrant prineiples are volatile, and renlily pass over with the spirit doring the process. Thas, Howers, flowering tops, herls, sesids, \&c., may, in general, be so treated; but not musk, wutbergris, vauilla, and a fow other sulbstanees, of which the odor is of a mote fixed mature. (See No. 13.) In procpeding loy distillation, otie of the first points to le attended to is, to see that the still, condensing-worm, of refrigurator, and the recejver, he perfictly clean and sweet, and absolutely free fromt the bitur of any presious diatilation. The Jnte ctinployed to necure the stil-head or capital to the still must aleo be of a simple chariater, iscapable of conreying miy taint to tho hot vapor that comes in contact with it. (Linsectmeal or equal weights of limsed-neul und whiting, made into a stite pasto or dungh with water, is a good lute for the purpose. Sweet almond-cake moal fa atill better.) The most couvoniont and managuables souree of leat is high-presaure stamm supplied from un adjacent boiler, the body of tho ntill being unclused in a atonan-jacket for tho pirpose. A water-hafl. the beilligg-pmat of whath shouth he rulaed by the addthent of aboul + ite wepht of fornt. mon salt, comes maxt in polit of componione mad effect. Whon the suil in exponat to the loeat of a nakeal live of that wh iby llawea a little water munt be pat interif atonge wibl the
 reuma; imil the greategt cate wout lat Lukion to step the procecan, and to romese the nes ceiver, Aa som in tho progrer quantily of dine tillate is obtaised. It then lec isegterebed the oder of the whole may loe ritialail. Mfonlopntels rapid dintillation in farurabior of the
 of the boding-point in the tiguit egseratasd on. Spirit dialllem from aromatean dioquases hi ollor with the looiling point of the ingredientis in the still. To roise the latter, Hew addition of 1 to 1t pounda of comumom hale per gallon is oflesa adyantagemisly bande. (Sce Now 5, 6 und 7.) By one of other of the blate
 pentern, preyared at the "eats," "cesputh," and "eshents, of the performers Δx itmis, extraits and esecturet atre peliored th chat and esprile os the basis of goul perfumery, whes the color is zoit objectionolife Whatever procese is udepted, the selusest care monst lie takes in the selection of the spirit used.
 and keentlesy jutst be employed, if the diseiro the praduct te be of fine poadity Math-apirit or con-spurit cantaniatesl, evert br the very slyghtest ilegree, with liseel-ail ar corn-oil, or a whiskey-odot, is utterly mufil fir the jumpose. So also the refince motlylated girit nive te commonly asid frandulevitly stind as spindt if wine. Tha extreme purity of the spinit cill. Tlogred by thee Freadhatainas Inciuypurfamers -it being nethally zpisit of wine, whit not merely son in intule-is mite of the тwitathe why their odorifurnos spirits ate kar meth satperiur to those of the A neriean lomses. Geat eare zust alsi) lee taken in the splection) of then nosential oils intested to he emplosed it thaking perfumst spirits. These should ine jaire ir gerpine, and should toe pale atad recent. we of the late scasom's slistilation. If they lie old, or have been turch repposici th the sif, they will eontain mare or leks resin, tail their ahodholic solution wall be doferive in fragrames, and be liable to peomaneutly stain delteate articles of clothiuf to which it suay los ap-
pled. The strengtls of the spirit nased for concentrated esselices, as a rulis should rout be lexs than 90 per cent., of of the specitic gravily S332. A few require aspint of even greater strength than this. Plee first iqualiy of axtrails, partientarly those proparoil from phandes and uils, and thany of the evis mind esprits, also reguire 90 per cent. spiril. The *wength of the spirit for the othors, and for secome qualitios (commonly zuid as the best in the stores), pmist be fully 75 per cent., or of the specific gravity . offos; that of the third quality fully 70 per eent., ot strecifie gravity .eove; and that of the fometh quality folly preof, or specific gravity $5: 30$. The hast is the lowest quality, tant the weakest of any kind made by respectable perfiturers: Iout the domble distilled lavender-water eati ile Cos logne, ind other ereuts, vondud in littlespowy pottes, by the trongints, and in figey-stures, aro commonly oven much weaker thas this, being uftes under proof, (See No, 14:5.) The capacity it apirit, at this strelogth, of dissolying essential oil nad other eilorous matter is, hotway, Fery litsle. The solvent power of spirit degreases with ity ntreagth, but mach mors rapidty. (Conley.)
941. Essences. The term casence is gonerally very tuesely appleed to a preparation of almost any kind, that is supposed to contain in a bigh degree the easential or distinctivo principle ur qualify of some substance. Thus, the essential or rolatile oils olitained from regetable substances by distillation; concentrnted infosions, decretions, agucons solutions, and tinctures, aro all often erroneously termed eskences.

In perfutacery the word "essence" is applied only to n stolation of an essential oil in deodorized aleoliol, in the proportion, usually, of 2 drachms to 2 ounces if the essential oil to 1 quart of rectified kpirits. Somethmes m essence, using the term in its currvet siense, is distibled, with the additions of a fittle water; it is, thon callet distitled aromatie spirsts.
842. Eysences of Flowers. The essonces of those dlowens which are nat separately given in this work, may be tuade by one or other of the following general liminule. Take of essential oil (of tho respective flowers), 1 ounco asoirdupois, and rectified spirit 90 per cent. I pint (Jumperial); dissolye ha directel for "Essence of Almoads." Or, take of the (respective) flowers, 3 to 5 pounds; proof spirit, 2 gallous; digest for a few days, and then draw over, by diatillation, 1 gallon of essence. For thuse flowers that aro nut atrougly Cramraut, the prodnet may be ilistilled a seoond and a thisd time, or eren oftener, from fresh flowerg, as noticed under " Eavenee of Roses," The products obtained by distilletion are always volorless; and hence flowers rich in color may, in feneral, ba adrantageously so treatel. The fluwers ahoull be select. ed when in their stato of bighest fragrance; and shothl bo picked to pieces. of erushed or brtised, is their maturo mag indicate. TVith many, the last is facilitated by the addition of eome clean saud or common salt. Or, proceed in the way described under "Fssence of Tuberose." This applies to most of those flowers that contain little frugrant oil, and of which the odor is extremely delieste. Δ small quantity of some other odorons essence or volatilo oil is commonly added to the simple essences of flowers, at will, to enrich or modify the fragranee, each manafacturer usually pursuing his own taste in the matter. In some cases, spirit is impregnated with a combination of essential vils and other odorous bubstances, so as to produce, artificially, an odor resembling or appreaching that of the particular flowers after which the products are named; although there may be none of the
respective flowers employed in their preparstion. Thisis particularly the case with flawers of which the odorous principle is difficult or troublesomo to extract, or which possess very littlo of it. So also of the essences of many flowers having strange or attractive vames, and no true fragrance. Hence arises the almost endless rariety of fragratat essences. esprits, and similar preparations, vended by the perfumera of the present day, mumbera of which are mere artificial combinationa of other perfiumes, (Cooley.)
943. Essence of Almonds; Essence of Bitter Almonds; Essence of Peachkernels Almond Flavor. Take of essential vil of almoshds, 1 fluid ounce; and rectifiel spirit (90 per cent.), 10 fluid ounces? inix, end agitato or shake them together until nnited.
944. Esaence of Roses. Take of purg otto of russe 1 if irachurs (Troy); and alcohol (96 per cent.) 1 pint (tmperial) ; mix, place the bottle in a ressel of warmi water ubtil ita contents acquire the temperature of abont 85° Fahr, then cork it elose, and asitate it smartIy mutil the whole is quite cold, Very fine.
945, Extra Essence of Roses. Take of potals of roses (fresh) 3 ponnds avoirdupois; fund reotified spirit (90 per cent.) 5 Imperial quarts; dipest the petals (picked to pieces) in tho ipint for 24 houns, then distill to dryness by the heat of a water-lath. Digest the distillate (product of distillation) on it from quanticy of rose petals, and re-distil), as before; and repeat the wholo process of manceration amd distillation a third. fourth, fints, and vixth time, or oftener, the last timo observing to conduet the illatilation rapidty, and to draw over only 1 gallon, which is tho esverace. Delicately and delightfally fragrant. It improves ly ngo. The prouluet of each of the abovo receptsts is very superior; but that of the last has it pecultar delieacy of flavor, which listingtishivs it from thofe prepared from tho oltn. Sowe makers add to each pent of the former 20 or 30 dropz acach of of jergarnot and verult, and 15 or 20 dropa ersence of mask; lut tho product of the last fornela is searcely fuiproved by nuy addition, unless it ler a very little weroli or extanco dambrecte, or botb, as the caso may indicato. The best roso teares to use are those of the row eentifolta (cabbago rose, damnsk-pype), or rusa sempervirens (muth soto), or mixtures of them.
946. Essence of Rondeletia; Extrait de Rondeletia. Varions formala aro carrent for this espuisito perfuse, of which scarecly any produce an article approaching in escelletece the proprietary one. The followiug is an exceptiva: Take of oil of lavender (Mitcham), \& ounce aroirdupois; oil of elores (fimost), 5 drachmes avoircupois: oil of bergaroot, 4 drachms: $\frac{1}{2}$ draclmm cach of tho finest casenco of ambergris and wask; rectified ejpirit (strungest), Imperial pist; agitato $t h a m$ together nitili compietely united. Soind persoss add + drachm of nerali, or of of of verbess (Indion Iemon-grass), with or Without 10 or 12 drops of otto of roses. Very fire.
947. Curious Essence. Tako of otto of roses 2 drachoms; oil of rose-geramam, 1 draclum; essence of must, 3 Imperial fluid drachms; essence of ambergris, 1 Imperial fluid drachm; rectified spirit (warm), 1 pint; mis, elosely cork the bottle, nind agitate fre. quently until cold, A powerfil, dnrable, sad very agrecable perimmo.
948. Essence de Frangipane; Extrait de Frangipane; Frangipanni. Take of neroli, 2 Imperial Indid drnebms; essenco royale, 3 fluid drachms; civet (powdered), 10 grains aroirdupois ; oil of lavendar,
ofl of eloves, oil of rhodium, of each, 5 or 6 drops; rectified spirit, 31 to 44 fluid ounces ; digest a week, and then decant tho clear portion. Powerfal, durable, and pleasant.
949. Essence of Violets; Essence of Orris; Factitious. Take of Florentine or-ris-root (cosarsily powdered), $1 \frac{1}{2}$ pounds ayoirdapois; rectified spirit, 1 Imporial quart; proceed by percolation or tho metherd of displacoment, so as to obtain 1 quart of essenco : or by digestion for two weeke, followed by powerful prossuro in a tincture-press. The former is tho best and most eeotomical mothod. This forms the best esseneo of violots of the wholesale druggists. It may be, but is rarely, distilled. (SOO No. 954.)
950. Essence of Cologne; CologneEssence; Concentrated Eau de Cologne. This is prepared from the siano oforous ingredionts as "Eau do Colopnc," but talking 7 or 8 times tho quantity, and using alcohol or the strongest rectifed spirit, without which a permanent solution of the whole of them enanot bo formed. Used as a condonsed and convenient sabstitute for ordinary "Ean de Cologao" by trayelers, being leas luilky. It is alse kept in stock by druggists and perfamers, to omable thein to preparo that articlo extomporancously, by simply dilating it with 8 times its bulk of apirit of the appropriato strougth.
951. Essence of Orange; Essence of Orange-peel. oit of mange-peel is popthar ly ko calted. Tho alcololic ossonco is made from this ail like easenco of alnonds. (Soes No. 943.)
952. Essence of Pimento; Essence of Allspice. Prepared from oil of pimsnto, as essence of almonds. Sometimos ased in oomprand porfarues and cosmetios, and for toothachos Lut chicfly as a favoritge essonce.
953. Easence of Pineapple. From pineapple oil (bntyrie ether), twe the last, BomoLimes Laken of sugar, by smokens; but ohiofly used by confectionern liqueur manufivatarers, \&e. (Sco No, 1000,)
954. Essence of Tuberose. The flowors ara placed in siternate layers with sheop's or cotton wool impregnated with the parest oil of ben or of olises, in matearthen ves. sel, eloscly covered, and kopt for 12 hours in a Water buth; the flowers aro then removod and fresh ones substituterl, and this is ropeated until tho oil is sufficiently seonted. The wool or cotton is then mixed with the purest spirit of wine, ond distilled in a water bath; or, it is first digested in a weli closed vessel for several daye in a warm situation, with frequont agitation. A similar plan is followed for the preparation of the essences of jasmine, violets, \&c. (Sce No, 1340.)
955. Essence of Lemons. Erom oil of lemon, as eseence of ahmonds, ($\$ c e \mathrm{No}$. 943.) For this parpose the oil should lave been recently oxpressed, aud pregorved from the air. A dash of essenco of musk improves it as a perfume, but not as a fayoring ossence. Oil of lamon is popularly called essenco of lemons.
956. Concentrated Essence of Musk. Take of grain-musk (Tonquin or Chinese), i ounco evoirdupois; boiling distilled water, i Imperial pint; digest them together in a elose vessel, with frequent agitation, until quite cold, then add 34 pints rectified spiril (95 per cent.), 1 thuid ounco liquor of ammonial (880 - 8 s specific gravity), aus, having closely corkied or stopped the vessel and securely tied it over with bladder, digest tha whole for 1 or 2 months, with frequent agita tion, in a room expused to the sun, in summer, or in an equally warm situation in vim. ter. Lastly, after repose, decant the cleat portion, and, if necessary, filter it. A littld

THE SURVIVOR VOI. 2
ossemese of ambergris is conmontly maldeal ta the filtrate, or, when this is not done, 1 to 2 drachms of ambergris are put into tho vessel lefore closing it, anul ofter alding thio spirit. Very fine. The residuum is treated with fresh spurit for an inferior guality.
957. Fine Essence of Musk. Take $\frac{1}{2}$ ounco tinest grain-unsk, civet and ambergria each 1 drachn, strongest essence d'aumbrette, $\frac{1}{3}$ pint. Insteal of the umbergris, 1 to $1 \frac{1}{2}$ flud ounces of essemes of ambergris may bo added after decrantation. The quantity of sivet ordered shauld on no account bo excecdel. This probluess the finest quality of the Paris Lsonses.
958. Common Essence of Musk, Take $\frac{3}{2}$ ounee (avoidupois) prain-musk, 1 quart (I mperial) rectified spirit (95 per cent.), and 2 Dhted wneces finest essicnecof ambergris; digest, Ec, athefore. Execllent; Lut greatly itforior to the others. Dasencer of musk is an agteenbland powerfol perfone, and is greatIy esteemed in the fastrionable world. Its rimor is so thenble that artielos seented tvith it will retain the fragranee for years. The protnet of cach of the ubove os of very find qually; but that of No. 997 is the very thatest that in made, and such ha is seltam subld, exenpt by the hifth-chasit pertimoers, who ohtain fir it is vage high priee. It is powerfilly aud delivinualy frogratt.
959. Best Way to Prepare the Essonce of Musle and Ambergris. Tha best vonsel fir yreparing essebuce of mask, of
 with a bicetly fommed sunth and neek. Greate cara stmuth lie tikien to cowls if perfeelIy elosio, mad, nfter this ho thom, the 150 it over necuesly with wot bhaddes. The bmble ahnald tuet bo det iot tho foll monobline, lat ouly in a popition varmod by it; and lis the case shook tho digestim thouf ihurteg dmation than threo if fout whelos, as otherwiso mueh fragrant matter vill escape soliction. The widition of It to I finta drucham, jer pitt, of liquer if notnunta, or of ligutor of potasea (the first is greatly prefemble), incromese tho solvent power of the spift mad rastly fincrenere tho flagrance of tho vasenter: A fues graths of sait ní turtar (catbetsate of posash) aro kenetiones added with tho prauic intention; bet this addicion is objectiomalile, as it lues not effoct the objeot in viek, whilst it prewsiots partial decmposition of the mixtures. In theifitate the action of the inotestritima, anal to mako the frost of the figredienty, it is best to mob down the musk, we., with it Litle powdered glask, sand, or Imup bugar, ha nutioed nuder "Ebsenco of Amberges." Nitrstiou and expenane to the nir sbould, if possibles, bo aroidel.
960. Essence Royale. Tako of ambergris, 40 grains avoirdapoia; groin-muak (pure), 20 grains; civet and carbonsts of potassa, of each 10 grains ; oil of cinnamon, 6 drops i oil of rhodium and otto of roses, of esch 4 drops; rectified spirit, 4 Imperial fluid ounces ; digeat, with agitation, for 10 or 12 days, or longer. Very fragrant. The above is a celebrated receipt, bnt wo thiak it would bo improved by substituting 12 drops liquor of ammonia for the earlionate of potassi. (See last receipt.)

日61. Essenco of Neroli; Essence of Orange Blossoms; or Essence de Fleurs d'Oranges, Dissolve t ounce avoirdupois puro seroli in reetified spirit, 1 Imperial pint. An ounce of essence of jasmine, jonquille, or violets, is often alded. A delicate and delicions perfume.
982. Essence of Storax (or Styrax); Extract of Storax. Take 1 ounce avoirdupois fuest gentine liquid storax and $\frac{1}{2}$ Impepial pint rectified spirit; digest, with agitation,
for a week, and then decant the clear portion.
963. Essence of Ambergris; or Concentrated Tincture of Ambergris. Tale 10 drachmis avvirdupois 95 per cent, ambergrisand 1 Imperial pintrectifiedspirit, putthem intoastrong bottle or tin cad, secure the mouth perfeetly and very firmly, and keep the vessel in a room exposed to the heat of tho sun, or equally warm, for a month or two, observing to briskly agitate it daily during the whole time. Lastly, after repase, decant the clear portion, and, if necessary, filter it rapidly through soft blotting papee Yery five. It forms the strongest and finest simple essence of ambergris of the Parid bouses. (Sce No. 950.) Thu common practice in making the essence is to cut the ainbergris up emal! heforo digesting it; but a much better plan is to ruls down the mabergris with a sufficient quantity of powderved glass, clean siljefous sand, of dry famp-sugar, observing afteriwards to rinieo the mortar out well two or three times, with poptions of the spirit, so thes pothing may be lost. A kncond guality may be mailo loy conploying half the equantity of ambergris to the same amount of oprit.
964. Essence of Ambergris. Ambergris 10 drawhmsavoindupoif, grin musk (Touquili or Cbinese pure), is strelums; rectified spirit, I quart. Proceed as in the last recuipt. The prolicts of the ahove two recelpts form a deligbtial perfune highly sstocmed is the fashionaile world. A very small quaitity of my une of them nilded to eart do Calogro, lavender-water, tooth-powder, hair-powder, pomides, waid-talls, de, comuruticates a dolicious fragrance. A few arops added to sweetscented sifintt, liqueurs, wibet, se. Improve their flavor and aromn. 1 or $1 \frac{1}{f}$ flud drachros added to o hogsthed of clanot, injorts a flavor and bougret to the wine which in regantod ly many as ilelichout,
965. Fine Easence of Vanilla. Take I pothel avairduputs finest varilla, and rectified spirit, 1 mporial quart; procesd bu for essetice of mukle (Sec No. 959,) lantly, presa and decunt or filter. Very superior. It formis the best quality vended ly the wholesale druggints, und is mold at oxorfitant priced. This, as wel! as the preceding, ts chiefly wised for flavoring, and as an ingredient in compound perfumes and cosmetics. Essence of vanilla is a favorito and useful addition to tooth-cosmetios, pomades, ic. In preparing it, the vanilla, \&c, zhould be ont small with a sharp knife; or what is better, rubbed down with a little powdered glass, nand, or lumpsigat.
966. Essence of Patchouli; Essenco de Patchoulie; or Essence de Pouchapat. Tuko 3 pounds avoirdupuia Indian patch. oull (leaves or folinceous (njp), and rectified spirit 9 Imperial pinta; tligest for in week in a close reasel, addl I orinco oil of lisvender (Mitcham) atad promoto solution ly agitation. Nest throw the whole into a still, nud forther add 1 gallon water asil 2 or 3 pounds common salt. A gitate the whole briskly together, tute on thestill-bead, and distill orer (rapidly) 1 gallon. To the distillate add 1 fluid onnco finest essence of must; and after 10 dayd repose, bottle it. A very fushionable perfume, particularly for personal nse.
967. Common Essence of Patchouli. $1 \frac{1}{4}$ oumees otto of patchocit, $\frac{1}{2}$ onnce otte of rose, and 1 gallon rectified spirit.
968. Easence d'Ambrette; or Essence of Musk-seed. 'Take 14 pounds aveirdupuis filest musk-seed; primd it in a clean peppermill, and digest it for 3 or 4 weeks in 3 puls Imperial rectified spirit; the vessel being closely stopped or corked, and kept in a warm room all the time. Lastly decant, press and filter.
969. Essence of Bergamot. The popnlar name of oil of berganot. A spiritauts essence may be made in in similar way to that of uluonds. (Sec No. 943.)
970. Essence of Cassia. From oil of cassia, as cassence of almonds. (Seo No. 943.) Uses, dee, the हame.
971. Essence of Cinnamon. Drom oil of cibnamot, as essenco of almonds. (Sec No, 943,) Essence of enssia is commonly and froudulently sold for it.
972. Essence of Civet, Tako 1 ounco (avoirdupois) civet cut very small, and 1 pint (Imperial) reetified spirit; proced as for essence of ambergris or musk. Its odor is only agreeable when fuint and combined with that of other substanees, which it sustains and inereases. It is hences seldom or never used alose.
973. Essence of Lavender. Tako 1 ouuco avoindupois oil of lavender (Mitelium) and \& Jmperial pint stromgest rectified spirit; mix with agitation; a few dropa of the os. sences of mask and ambergrix Loing added at will. Very fine.
974. To Extract the Essence from any Flower, Tako any flowera you chouse; ploce a layer in a clean eartheo pot, and over them a layer of fino salt. Repent the procesa until the pot is filled, cover closely, and placo in tho collar. Forty days aftervards, Etrain tho essence from the whole through a crapo Ly prosare- Put the essenee thu oxpressed in a clear bottle, and expose for six weeks in the rays of the ann and evening dow to purify. Ono drop of this casences will oommunicato its cilor to a juint of water.
975. To Make Attar, or Otto of Roaes. Gather the flowers of the bundredleaved rose (roba contifolia), put them in a largo jar or cosk, with just sufficiont water to cover them, then put tho ressel to stand in tho sum, and in about a week nfterwarde the attar-a batyracoous oil-will form as seum on the suriace, which shouk bo romosed by tho ail of a y piecu at cotton.

Cologne Water and Perfumed Spirits. In prepariog

 the pirrest atescription, behth tastelesand adentless, and that the bilt be nut mimly genuine, but recently vistilled; as old wila, especially if they have been exposest to the ait, are lest odorows, and contain a comsidernblo quantity of tesith nud eamphor, which wroll prove injuriotts French spirit of 90 fer eemh. shonhth bo used is the zannufacture of cate de Cologne, and when a wenker spirit is employed, the essem. tial aits tanast be dissolved ia a small guantity of 90 or 95 per cont. spivit. Should the mix. ture afterwande jrowu twhid, fittor it through paper with a iittle carbmate of magnesia. (Sec Nos 1080 and LOb1.) To prodnco an frticle of the fivest ipnatits, distillation should be hal recourse to; but a rery exentlent cau de Cologue may be producat his siluplo solution or macerntion if the ingrodients in the spirit, provided all the essences loe nest, palecolored, and pure.The uiass of the cnit de Colngto prepared in America, smme of shiuh possesses the most delieate frugrance, and is uearly cqual to the best imported, is male without distillation.
977. Piesse's Best Quality Eau de Cologne. Mix with agitation 3 ounces attat of acroli pectale; 1 outice attar of nevali bigarade: 2 onnees altar of roscmury; 5 ounces attar of orange zest: 5 ounces attar of citron zest; and 2 ounees attar of bergampt, with 6 gallons 95 per cent grape spirit. Let it stand perfoctly quiet for fiev days. Ahthough
very find can de Cologne is often made by merely mixiog the ingredients, it is Jetter first to mix all the citrine attars with spirit, then distill the mixture, and afterwards add the rosemary and nerolies. This method is adopted by the mtost popular hituse iu Cologne.
978. Eau de Cologne. To 3 pints alcohol of 95° add $12 \pm$ druethins oil of lemwn, 1f draphms oif of orange, 2t drachus oil of cedrat, 14 drachms oil of vervain, 2, drachms oil of bergamat, $2 f$ drachims oil of mint, 5 drachms oit of lavender, 14 drachms oil of white thyne, 2 drachrus of of Portugal, 14 drachma oil of rosemary, 8 ounces tinezure of ambrotta, and 1 porml oha de melisse; (can dos carmcs); mix well in a bottle, and after standing six hours ald 21 druchms tinctare of ambergis; then filter until clear. This is greatly improved by distilling.
979. Eau de Cologne-Extra.-Put I quast 13 per cent. alcoloot into a bothle \ddagger add 60 it 1 drachuns oil of cedrat, I drachms oil of thyine, 6 drachms cach oill of bergamot abd oil of lemon, 4 drachus oif of Portugal, 2 drachms each oil of neroli, oil of vervidu ani oil of rosomary, 27 drachms oil of mint, a pints can do melisse ant 24 drops thetare of musk; mis thoroughly, and uher standing for 12 bours, filter till clem.
980. Durockereau's Cologne Water. To 7 quarts French tasteless alcohol, ald 11 drachms essence of Portugal, 13 druching essence of berganat, 1 otmce essence of lemon, 10 drachms essenco of nerolj, 1 ounce easence of rosemary, 1 ounce essenco of lavender, 14 dractums rose water, 13 drachms jainio water, is drachms orange-flower water. Mix the whale together, let it stand 34 hours, and diutill over a wator-bath.
981. Gouffe's Eau do Cologne. Talo $\frac{1}{7}$ ounco each bivences of leumb, bergamot, bud citron; 1 sance cossence of rosemary; $\frac{1}{1}$ oumee estence of nerofi. Infure for 8 daya in 1 yuntt 95 per cent, alerbol. Fiter, and bottlo for thes.
982. Farina's Ean de Cologne. Toke of ungelicarreot, 10 graits; cauplaor, 15 grains; cassia-ligoea, cloves, bithe, natmege, wormwood tops, of each 20 grains; caldims aromatieds, sarge, thyme, of each foldrachm (Troy) ; orango tlowers, t drachm (Troy); Io pender flowers, 18 drachms (Troy); roso petals, fiolets of each, 3 drachus (Troy); baim. miot aud xpear-trint of each 1 ounce (Troy); 2 Bliced lemuns; 2 Hiceil orauges, and 5 gallona rectified Colugtte spivits. Brube or blice cho rolids, aud direst them in the spirit, with frequent agitation, for 2 or 3 days, then distill of 3 Entling. To this add, of ofl of bergatoit, essential oif of jasmin, I fltid ounce each; vit of tonlm-mint, oif of cedirat, oil of lavender. oil of tenos, 1 fuit traclm each; puro neroh aul oil of anthos-seed, of each 20 drops Agitaus until solution is cotmplete, and the next day, if neeessary, filter. Thie formula, many ycars sinec, was eonfidentially given by the celebrated origimal Jeau Maria Farina, who lived opposite the Juilicbs Platz, in Cologte, to a professional gentleman, now deceased, with a solemm assurance that it was the one used by the former in his laloratory. After keeping the secret some years, this getitleman disclosed it. It scema unnecessarily complicated. Some of the artictes, is tho herbs wormwood and mint, are cither useless or better omitted. The version given above differs from the original simply in being inteaded for only 5 giallons instead of twelvo times the quantity. Dr. Cooley says he personally tried it, and found the quality of the pruduct splendid.
983. Parrish's Best Cologne Water. Mix together 2 fluid onbees oil or bergamot, 2 fuid drachins oil of nembi, $\frac{1}{2}$ flidit ounce oil
of jasmio, 2 fluid drachms ail of garden lavender, 1 minim oil of cimnamiun, 3 Aluid ounces benzoated tineture, $\frac{1}{}$ fluid ounce oil of musk, 1 gallom deodonzod aleohol, and 2 pints rose-water. The misture should stand a long time before filtering for use.
984. Parrish's Common Cologne Water. A mach cheaper preyaration than the foregoing can be male by mixing $1 \notin$ fluid omess oil of laveruler, it flrid ounce oil of rosemury, 1 fluid otmea oil of lemon, and 20 dropai uil of cimamon, with 1 gallon alcohol.
985. Genuine Cologne Water. Tho following formala was publialied hy one of the Furibas in the journal of tho North Gerroan A polhecarios Asspintion. Dissolve 2 onnces by woight parified bemxoin, 4 ouncea oil of lavender, and 2 uunces oil of rosemary. in 9 gallons 95 per cont. fine Cologne spirits. To this sullation auld successively, 101 ounces each of the wils of neroli, neroli petit grain. and lemon; 201 nutices each of the oils of aweet orango peel, limes, and bergamot; togother with tinctarg of rose-geranium flowers, eufficient to auit the tarte, Macerate for some weeks, then fill into daskrs
986. Fine Cologne Water. Talve of pure 05 percent. Cologee apirits, 6 gallows; oil of neroli, 4 nances; off of roscmary, 2 ounces; oil of orange, 5 ounces; oil of citron, 5 ousces; oil of berpanot, $\%$ vinees; bis with agitatiot; then ullow it to atand for a few days perfertly quiet lefore bottliag.
987. Cologne Water, Scond Quality. Pure 95 por cent alcobol, 6 gallons: oil of noroli, 9 I obaces; ofl of forwinry, 2 oupees: oit of oragoe ped, 4 ounces; oil of Jemon; 4 ounces; oil of berpamot, 4 ounces. Treat in the same tray as the last.
988. Eau des Carmes; Eau do Melisso; Compound Spirit of Balm. Fresh tlowaring bisw, i4 ollwes; jellow rind of lomon, out fine, 4 ouncer; einnamor, clowen, and tetineg (lomisied) of esch 2 ounces; corianter aced (Jruined), 1 ounce; dried as: golica root, 1 otisicit, rectified spirit, 1 gatlon. Macerate for 4 days, and distill in a saterbath.
989. Fins Lavender Water; or Eau de Lavande. Tasotzontices (avoirdupois) finest oil of lavender (Mifeligut), essence of musk (tinest), I Imperial fluid ounce; essence of ambergris(finest), uad ait of lecrgannot(recent), of cach $\frac{1}{2}$ outtice: rectified apint (90 per cent., genatless), $\frac{1}{2}$ grillow; pix by agitation. Very fino trithout distillation; lat better for it, in which cnse the essences shonld be added to the distillate. Delightfolly and powerfally fragramt. (Cooley.)
990. Smith's Lavender Water. Tala $\frac{1}{2}$ ounce (aveinlupois) oil of lavender
 cau de Cologne (fibest), $\frac{1}{}$ Imperial pint; rectified spirits $\frac{1}{2}$ punt; mix by agitation. Very fragrupt, ame mitel' estectied. Tha ordinary lavender water is usually male with spirit at proof, or etven monch wraker; lsence its in ferion quality to thint of the highoer ctass of perfomers: 1 ounce of true English oil of favender is all that will perfectly combane with 1 pallon of prour spirit (or 1 drachom to the pint); rany excess rendering it milky or cloudy.
991. Common Lavender Water. English oif of Lavender, 3 oumees; rectified spirit (00 per cent.), 1 gallon. Dissolve Cordial, and fragrant.
992. Eau de Bouquet. Take of spirit of rosemary, essence of violets, and orangeflower wator, of caels 1 Inpperial fluill oumes; oil of bergamot and oil of jasanin, of each 1 fluid drachm; oil of lareader and nil of rerbena, of each $\frac{1}{2}$ flutid drachm; cau de rose, $\frac{4}{2}$
pint; rectified spirit, 14 pints; mix. Λ de. fightial perfome. Various other similar formula are emploged.
093. Eau de Maréchale. Take of esscace of violets, 1 Inperial fluid ourace; cil of bergainot and oil of cloves, of each t oturee (aroirdupois); oragge-flower water, $\frac{1}{2}$ pibt; rectified spint, 1 pint; mis. An agreeable and foverito perfume.
994. Eau d'Ambre Royale ; Eau Royale. Take of essence of ambergnis and essence of musk, of each 1 Imperial flnid drachm; cau d'Ambretto and call do fleurs d'oranges, of each 21 fuid ounces; reetified spirit, 5 flnid ounces; mix. Very agroeable and durable.
995. Eau d'Ambrette; or Esprit d'Ambrette. Take 1 pound (avoirdupois) grains d'Ambrette (mudk-uablow need, bruised); rectified spirit, 1 Imperial quart; water, $\frac{8}{s}$ pint; dizest for 7 or 8 days, and distill off i quart. Very five. Commonly nold as "Es. sence d'Ambrette. Whan osed alane, a very few drops of essebee of ambergria and erprit do rase mprove it.
996. Fine Hungary Water. Tako 2 pounuls (avmindspuis) romemary teps (in blos. soms); \ddagger pound vage (fresh); rectitied spirit, a Jmperinl quarts, waler, 1 quart ; digest for 10 days, throw the whole into a witil, add 11 pounds conmots salt, and draw oyer 6 pints. To the dintiltate add i nunce bruised Jonatica ginger, digest a fow dags and either decant or filter. The old plan of mediage the ginger hefore alistillation fa wroge, as the arematio prisejple of the root does not paes over with the vajor of aleoltol.
997. Common Hungary Water. Take if to 2 Imporial flutd dmehms puro oil of rosemary; of of lavender (Englizis), i Ifuid drachus; oratge-dower water 1 plat; reeticed spirits, 11 pints; mix, No. 996 is the penibe formula. This is tho perfume usinally sold by the perfimers. Spirit of rosimary is now commonly sold for it by tho drmytistis.
998. Simple Perfumed Spirits-Esprits. The simple perfumed spirits (osprits) atad odorifurnus tinctnres aro, principally used in making compouad caus, esprits, de. Their common strength, per phit, is, of-
Attar of roses, 1 fluid tinchim; peroll, esssence do petit grain, of each $1 \frac{1}{2}$ to 2 fluid dractoms; essential oils (owlisary), \& thid ounco; concentrated esscucen, 12 to 23 fluid ounces. The spinit of wine emploged for thems phould in no case be weaker than 75 per cent., and for spirit of rosest (epprit do roso), it shoutd be, at the least, 50, or elso litule of the attar will be dissolred. These proportivus may be adopted for all the simplo spisits of the perfumer for which separato [ormale are pot given in thits work, and eren in place of those so given, at the convenience of the operator, swhen intended for the niso just montioned. When flowers, leaves, sceds, Ec., aro employed, the proportions may be $1 \frac{1}{2}$ to 3, or even 5 pomis to the gallon of tha distillate or product, according to their nature; and, with certain flowers, the process must be repentel with fresh flowere, as often as necessary. To mature and Lring out the full fragranco of distilest spitite, they abould be liept for some time in a cellar, or other cool situation, previously to being used or offered for sale. The same applies, though in a less degrees, to perfiamed spirits prepared by the other metliods.
999. Esprit de Bergamotte. Tako 5 Imperial flad drachams of cf hergemot (finest, recent); vil of rose-geranium and oil of verbeno, each if fluid drachun; cssence of ambergris, 2 fluid drachuns; essenco of musk, of fluil drachm; rectified epirit, 1 pint; mix.

Fery finc. Fur a second quality (urually callet best), 1 quart of spirit (70 per cent.) is used; for a third quality, 3 to 4 pints at proof.
1000. Eaude Lavande de Millefleurs. Trake 1 quart ena de larande; vil of elures. 12 fluid drachma; oil of cassia and essence of ambergris, each f fluid drachm; mix.
1001. Esprit de Rose. The compound perfuma bold under this name is commonaly made as follows: Take 1 luperial pint finest simple esprit de roso (sco No. 998); essence of ambergris and oil of rose-geraninin, each $\frac{1}{2}$ flaid drachm; mis. Delicately fragrant.
1002. Esprit de Bouquet, Take 4 Im poriat flud drachms oil of lavender; oil of bergamot and oil of cloves, each it flilil drachms; essenco of musk and oil of verbena, eaoh f fuid drachm; attar of roses, 5 to 6 drops; and rectified apitih, 1 pint; mix, and agitate froquently for a day or two. A very powarful aidd agrecable yeent.
1003. EaudHéliotrope, Take eisenee of amborgras, eoarsely powdered, I Imperial flud draclim; ranilla, $\frac{2}{2}$ ounces aveiruupois ; or anga-flower water, $\frac{f}{2}$ pint; rectified spirit, I quart; digest fur a week, and thon decant or filter. 5 or 0 drupt exch uf oil of litter al. monds and cassia aro eometimes aldeil. Used both as a cosmotic nad perfurse.
1004, Esprit de Jasmin Odorant. Tako extrait do jasmin, and rectified sparit, each + Imperial plat; ossonce of ambergris, $\frac{1}{2}$ fluid drachm; noroli (finest), 8 or 10 drop-1; mix. A delionte aud favorite foreign scont.
1005. Millefleur Water. Vory pure rectilied apirit, 9 pines; balsan of Pern (Renuino) and ossence of elores each 1 opnco; esseuces of burgamiot and musk, exch 2 nunees: ossences of neroll and thyme, ench $\frac{1}{2}$ nnuco; eau do fleurd d'rianges, 1 quart; mix woll. Very finc.
1008. Honey Water (Eau de Miel). Ructilied spirit, a piuts (tamprial); oit of elavos, oil of Invenler, of of borgambet, of each \& ounoo avoirdupois; musk, 15 Brans; yellow-saulers kliavings, 4 ounte i; dig? it for 8 days, and add 2 pints each of oraygo-flowier and rowo waters.
1007. Honey Water. (With Inonoy.) White honuy, 8 ounseon Ayoinlupols; cosianilor soed, 8 ouncer; fresh lamon-peot, 1 utnes; clovos, $\frac{\pi}{4}$ ounco; bitmeg, bonzoin, styrax calautita, of each 1 ounce; rose aud nraugeflower water, of eacls 4 onnees; rectifieal spirit, 3 Imperial pinti; digest fir a fove dyys, auil filtor. Some roceipts add 3 drachms ol vauilla, and direct only b ounco of nutmeg, storax, and lienzoin.
1008. Rose Water. The ordinary best rose-water of tho stored, partieularly if the Wholazalo draggists who deut largoly in the articto, is genofally moulo as follows:-Dissolve attar of roses, Gdraclems avoirdupois, in strongest reatified spirit (hot), 1 Itnperiul pint; throv tho solution iuto a 12 -gallom carboy, and add 10 gallons pure distilled water, at 180° to 180° Fahr; at onee corls the earboy (at first loosoly), aul agitato the whole briskly (at first cautionsly), until quito cold. The produet is really suporior to much of tien trazh carelessly distiflod from a scanty quadtity of rose-leaver, and sold us rose water. (Sce Nos. 1071 and 1079).
1009. Orange-Flower Water. Tho gonuine impurted article is one of the most delightfally tragrant of all the odoriferons distilled wators. An imitation may be mado as follows:-Take of orange-flowers, 7 pounds avoirdupois; fresh thin jellow-peel of bitter oranges, fis to 8 ounces; water, 8 Imperisl pallons; macerate 24 hours, and then distill 1 gallon.
1010. Orange-Flower Water. An-
other methoul is as follows-Orauge-Dlowers, 12 pounds 4rainlupois; water, ik pounds; distall 24 paunds for danble orango-flower water; this, with ma equal quantity of distilled water, forms the single. The flowers should not be put into the still till aho water nearly lowils
1011. Florida Water. Dissolva in 5 galton 90 per cent, alculad, 1 ounce cach oil of lavender, oit of bergamot, and sil of leanor; and of oil of cloves and cintammo 1 drachm saels; add 1 gallon water, und filtes.
1012. Florida Water. Oil of bergamot, 3 onnces; nil of cianaton, 4 drachus; tiueture of benzotu, 2 onuees; 75 per cent. alcobol, 1 galloui. Mix and tilter. (Sec No. 97 c.$)$
1013. Fine Florida Water. Take 2 drwhons eauk of the oils of lavetuler, berganot, and letions i 1 draplion cach of theturo of turnuerio and vil af neroli; 30 dropa oil of latim and 10 drops nil of rose; mix the aboryo wilh 9 pints dendorised sleothot. (See No. 976.)
1014. Tincture of Coriander. Powder bratracly 4 oumees onkawier feed, mud maeerale for 15 slays in I pint 90° aleotiol; striin and filer.
1015. Tinctire of Nutmega, Bruiso well 6 omerer nisturger in It pilis 98° alcohal; lot it romnis for a cooples of woeke, stirvisgocravionally; thea proco Ufough acuarno cloth, and biter. Timelant of gimgor, maec, and other apiees ane propared by tho muno mothend.
1016. Tinctare of Storax, Macerata
 dissolved, them filter.
1017. Alcoholate of Roses, Macerato
 pat 1 pint sater for 12 homes; Lheas slintill ly incase of is watertath. If a falpertion articlo is roquirenl, Lhe aleubentain thus prepmorod may bo usid to maecrate 2 poinds inore fotes, und then distittel as befory.
1018. Tincture of Vanilla. Steep 2 onnees tanillo, rat into umall pioces, in 1 pint aleolinf, for aluat is month, stir frequently; and filter.
1019. Tincture of Bonzoin. In $2 f$ qुuats aloohnl of 9.5 , thaperste 8 uunces postelerat benmin until disolves, then filter it and bottle corli elonedr.
1020. Tinctura of Balsam of Peru. Mreenato 8 © obtuces listtil Lakain of Pent in 3 pint, $g^{\prime \prime}$ alcolonf; wher divalvol, filter.
1021. Tincturg of Grain of Paradise. Mfuserate 4 vususs conarely, powdered grain of paradise for 15 days in 1 piet alcoliol of 03°, thea pres; through neloils and fitter.
1022. Tincture of Balsam of Tole. Dissotive 5 muces indsam of Toln in at pinta alcolsol, absl filter.
1023. Tincture of Cardamoms. Bruisc 4 butices carilathonrs, and manecrato 2 weeks in alcohol of $9 J^{\circ}$; press throughb an eloth nad filter.
1024. Tincture of Ambergris. Powder thoroughly 1 ounce ambergris and $\frac{1}{3}$ ounco sugar ith a wana wortar; then disbolve it nunco earkotate of patarh is 14 ousces nleoholato of reens, and alld tu it $3 \frac{1}{2}$ popees timeture of musk (soc Na. 105); macerate the wholo for about 1 twontl, and filter.
1025. Tincture of Musk. Rub $\frac{1}{2}$ outace musk in a worm murtar trith 4 itule sugar; macernte for is mobtli in 7 oursees aleobol contaiting I ounce eack timetrire of nimbergris and tineteres of vavilla. Filter thoroughly and then nevid a fow dreps of attar of roses.
1026. Economical Perfumes. The cheap perfumes which are offereal for sald in small fancy bottles, nro of the simplest kitul,
and from the natura of the case, made of the least expensive materinls. Tho following are the leading mixtures, which are sold nuder the names decmed tha most likely to prove attractive:

Mix 1 ounce essence of Lergarnot, or attar of santal, with 1 pint spirits of wine.

Mix f ounce each of the attans of lavender and berganol, and 1 drachm attar of cloves, with 1 pint spirit of wine.

Mix + nunce attar of lemon grass, and 1 ounce essence of lemons, with 1 piut spirit of wine.

Mix $\frac{3}{\frac{1}{2}}$ ounce attar of petit-grain, and $\frac{1}{7}$ ounce attar of orange peel, with 1 pint spirits of wine.
These mixtures aro filterod through blotting paper with the addition of a bitte magnesia to make them bright. It woukd be well if all the eheap perfumes put up iu attractive bottlas were as good as these inixtures. A large proportion of them are far inferion, and froquently littlo uere than weak perfumed waters.
1027. To Make Imitation Bay Rum, The gounine lay run is mude by digesting the leaves of the Bay plant (an promatic plant which growa in the West Indies), in rum, rad subsequent distilation. Tho imitatim in prepareal frum the essential oil obtajped from the Hay plat. Mix 1 ounco of oil of Bay (or $\frac{7}{2}$ uthea ail of Bas, nud $\frac{1}{2}$ ounce of elibor oil if pisaento, allspices, or closes), with 4 gailoun 95 por coul. alcuhol; thon ndd grailually 4 gallons of water, shaking tho anisture eonetantly. If the juixture fhonld becone tnilky, the aldition of a little alcohol will make it clear. Prolably the best imitatiots is as follows: 10 Dufid denclums oil of Bay, 1 Infid drachm of of pimento, 2 flurid ounces ncetic ether, 3 gatlons alcohol, and 20 gallous water. Mix, nad nftor 2 woeles repase, filter.
1028. West India Bay Rum. Takio 9 ponnds of leavea of tho myrlas aeris, of pound eardamoun, 2 otinces cassia, 14 ounces cloves, und 9 quurtis rum, Distill $1 \frac{1}{2}$ gallons, Bay ruin may bo colored with tiacturo of saffron, or wills a mixture of equal parts caramel (nco No. 694) bad tiucture of turmeric.
1029. Cheap Bay Rum. Satarato o $\frac{1}{4}$ pound block of carbouate of magnesia with oil of Bay; pulyerizs tho maguesin, placo it in a filter, sind pour water through it nutil tho desired quantity is obtained, then add ut. cohol. Tho quantity of water ated of alcobol employed depends on tho desired strength and quality of the Bay rum.

To Prepare Flavoring Ex-

 receipts, talien from the "American Journal of Pbarmacy," are by Prof. W. Procter, Jr.1031. Lemon Extract, Expose 4 ounces of the exturior rind of lemous in the air until partially dry; then braise in a wedgewood motar ; add to it 2 quarts dedorized nleohol of 95°, aut agitate uutit the color is extracted; then ald 6 ounces recent oil of femon. If it does not become clear immediately, let it stand for a day or two, agitating oceasionally. Then filter.
1032. Orange Extract. Follow the sante method as for lomos cxtract, using 4 ounces exterior rind of oranges, 1 quart of deodorized alcohol of 95°, and 2 ounces recent oil of orange.
1033. Extract of Bitter Almonds. Mix logether 4 ounces oil of bitter almonds, 1 ounec tineture of turmeric, and 1 quart 95° alcolenl.
1034. To Neutralize the Poison in

Extract of Bitter Almonds. As this ex. tract is poisonums in a quantity, it is letter to deprivo it of its hydrocyanie neilas follows:Dissolve 2 pances sulphate of iron is a pint of water; it another pint of water blake 1 obnce lime recently liumel; mix them togother, und shake the mistnre with 4 ounces oil of bitter atmonds. Distill in a glass retert until the whale of the oil has passed ofer; and after filtowing the oil tiate to separato from the wator, rerugve it for use.
1035. Extract of Rose. Truise 2 oumess of humdree -feaves rose-leaves; mako in extract from them by macernting in 1 guart deodorized ateotonl ; press the giart of alenhol out, ant add to it 1 drachar oil of rose, and filter through papers. If there are no rel rose leares, a fiulo tinetero of eachineal will givo a pale rose thit.
1036. Extract of Cimnamon. Dissolyo 2 denstuns oit ef cianamun in I pint decelorfacd alcohol; mid gradually 1 piat of water, and then xtit in by degrees 4 batees powdered Coyton cinnamon; agitate Neveral bours, and filtar throught japer.
1037. Extract of Nutmega, Mis 2 drawhms oil of mitmegis will 1 nutneo powdered unare; macorate for 12 houns in 1 quart deadorized atcohol, nal fitter.
1038. Extract of Ginger, Pack 4 ounces powderod ginger is a perculator, brobeten it evith a litele aleoliol, then powr mo nleobol until $1 \frac{1}{2}$ pints of tincture luve pusped thougb. Mix this with, 8 punces syrup.
1030. Extract of Black Pepper. This is prapared from powderel popper in tho
 os alenhol until a quart has pasied through, tuil onitting tho syrmp.
1040. Extract of Capsicum. Propared From powilered cappietan, in tho uano manser as luack pesper,
1041. Extract of Coriander, Mix 4 sumees powiteret coriander with I drnchm oif of cerrandee; add the inixbare to 14 pints af. colsul of 95°, and t pint water; macerate for 21 luwrs, decant the liquid; pat the matter that has settled into a percolator, asd pour ou it the decunted lifuid, addiag aleobol until a quart has rum through.
1042. Extract of Vanilla. Cat 1 oance vanilla into amall pieces, and triturato with 2 ouness sugar to a coarse powder; pat it into a pervolator, pour on it difuted alcohol until 1 pint has run through-then mix with 1 pint byrup.
1043. Extract of Colery. Bruise 2 ounces celery seeds, and pat into a percolator; pour on 1 piat dcodorized alcohol, then pour on water till a pint of extraet has peased through; triturate with 1 drachm cartionato of magnosin, and filter.
1044. Extract of Soup-herbs. Put into a percolator 1 ounce each of thyme, sweet marjoram, sweet basil, and sunamer savory, and 1 drachun celery seeds. Pour on them sufficient diluted alcohol to make 1 piat of extract.

A^{r}rtificial Fruit Essences, Thes are composed chiefly of com-

 pound ethers, which possess the odor and flavot of certain fruits. In some of the following receipts, whero tartario, osalic, saccinio or benzoic acid enters into the composition of an ossence, it must be nuderstond that these acids are not to loe used in their pure state, but in the form of saturated solations (see No. 27) in cold tulcohol. Glycerine will bo found as an ingredient in nearly all these artificiul esseneos; it seoms to blend and harmorize the different odors.1018. Peach Essence, This is a mixture of 5 parts glycerine, 2 parts aldehyde, 5 parts acetate of ethyl, 5 parts forminte of ethyl, 5 parts butyrate of ethyl, 5 parts valerianato of ethyl, 5 parts annnthylate of ethy], 1 part sebacie ether, and 2 parts salicylate of methyl.
1019. Apricot Essence. To 4 parts glyeeriue ould 1 part chloroform, 10 parts Gutyrate of ethyl, 5 parts salerianate of ethyl, 1 part couanthylato of ethyl, 2 parts salicylate of mathyl, 1 part batyrate of arayl, and 1 part saturated solation of ozalic acid in aleohol. (Sce No. 1045.)
1020. Plum Essence. To 8 parts glyceriae, ald 5 parts of aldehyde, 5 parts acetate of ethyl, 1 part forminte of ethyl, 2 parts butyrate of ethyl, and 4 parts mananthylate of ethyl.
1021. Cherry Essence. Take 3 parta glycerine, 5 parts acetate of cthyl, 5 parts benanate of ethyl, 1 jart cananthylate of ethyl. and 1 part saturated solution (sec No. 1045) of bensale acid in alenhol.
1022. Black Cherry Essence. Mix 10 parts nootate of ethyl with 5 parts benzoate of ethyl, 2 parts cumanthylate of ethyl, 1 part saturated solation of oxaic acid, and 2 parts solution of benzoic neid. (See No, 1045.)
1023. Lomon Bssence. To Dparts glyenrine, 1 part chlorofura and 1 part nitrie other, add 2 parts aldehyde, 10 parts acetate of ethyl, 10 parts valerianite of amyl, 10 parts solatios of tartario andil, and 1 part saturated solation of succiuic acial. (Sce No, 1045)
1024. Pear Essence. To 10 parts gly. serive sdd 5 parts acetate of ethyl and 10 party acetate of amyl.
1025. Orange Eesence. With 10 parts glycorine, mix 2 parts chlonoform, 2 parts aldehyde, 5 parts acetate of ethyl, 1 part each of formiate, batyrate anil busizoate of ethyl, 1 part salicylate of methyl, 10 parts acetate of amyl, 10 parts essence of oraage, and 1 part katurated solution of tartarie wedi. (See No. 1045.)
1026. Apple Easonce. To 4 parts plyeeringe, 1 part eblofoforus, and 1 part of nitrio ether, add 2 parts aldehyde, 1 part acetate of ethyl, 10 parts valerianate of anyl, and 1 part xaturatod solution of oxalic acid. (Sco No. 1045.)
1027. Grape Easence. To 10 parts glycerins and 2 parts chlarofort, aild 2 pirts aldehyde, 2 parts formiate and 10 parts menarithylate of ellyy, 1 part salicylate of tnethyl, and 5 parts lartaric and 5 partes succivic acida in satarated solution. (Soe No, I045.)
1028. Gooseberry Easence. Th 1 part aldehyde auld 5 parts agetato, 1 part bonxoato and I part cenanthylate of ethyl, and 5 parts saturated solutiont of tartaric, and 1 part each of tha kamo of kaceluic and benzoic acids. (Sce No. 1045.)
1029. Raspberry Easence. To 4 parta glycerine and 1 part nitric other, ould 1 purt aldechyde, 5 parts meetate of ethy, and 1 part each of fonnate, butyrale, bemxate and ceatatthylate of ethyl, 1 part seluscic ether, 1 part salicylate of methyl, 1 part each acetata und lutynute of amyl, 5 parts tartaric and 1 part staccinic acid in saturated solution. (See No. 1045.)
1030. Strawberry Bssence. To 2 parts glycerino and 1 part titric other add 5 parts acetate, 1 part formiate uad 5 parts butsrate of ethyl, 1 part salicglate of utethyl, and 3 parts acetato and 2 parts butyrate of amyl.
1031. Melon Essence, Take 3 parts glycerine, 2 parts abdelyde, 1 part formiate, 4 parts butyrate and 5 parts valerianate of ethyl, and 10 parts sebacie ether.
1032. Pineapple Essence. To 3 parts
glycerine and 1 part chlotolorm add 1 part aldehyde, 5 parts butyrate of ethyl and 10 parts butyrate of amyl.

Extraits; Extracts. In French perfumery these are, appropriately, strong spiritaous solutions, either simple or compound, of the essential oils and odorous prineiples of planta and other substanees, obtained by infusion or digestion, 14 distivgnished from those that are obitained by distillation and direet solution. Duder tho term, however, ure often classed many jorfumes prepared with rectified spirit by tho latter methods, and which are highly charged with the fragrant matter, or mathers, which they represent. Tho preparation of most of the extraits is simplo enough, the eluief earo necersary being that the spiric bo ubsolutely scentless and of sullicient strength, and that the oils and other materials be reeent and perfectly pure.
1062. Extrict de Rondeletia. Tako 12 drachms avoirdapois oil of lavender (Mitch. am); oil of cloves 5 drachus; oil of bergamot, 4 drachma ; oil of verhena (or neroli), 1 drachm; essenee of ambergris and esaenoe of munk, of each if Imperini fluid drachm; rectifiel spirit (90 per cent.), 1 pint; bix. A rich and highly estecincel perfunte.
1063. Extrait do Millefleurs. Trko 4 grains finest grain musk; finest ambergria, 0 grains; oil of lemes, 6 drachms; oil of haven. der (Knglidu), and of of cloyes, each 4 drachus; liquid storax (gapuine), 1 drachm; oil of vorbenn, ofl of pitnento and neroli, of each 19 drops (nininis); rectified spirit, 1 Imporial phit; maecrate lu a warm coom, with Ireguent agitation, for 9 or 3 weeks, Very fine. The cuntasion of the storax vendors it jater, and thus preferable Lo soluo perbons.
1004. Jockey Club Bouquet. Mix 1 pint extract of rone, 1 pint extruct of tuborose. 3 piat extract of cassia, 4 sunces extract of jasmin, sud 3 ounces tincture of civet. Filtor the mixture.
1065. Bouquet de Millefleurs. Mix 1 pint extruct of rose; if pint cach of the extructs of tplerose, Jasmin, ornoce flower, cassia, and violot: 4 ounces essence of celar, 2 ounces ench of the tixctures of yarilln, am: bergris, and musk ; i pint essenco uf rose, 1 ounce attar of bergamot, and 10 drops czols of the attars of alimonts, neroli, and cleves. Let the mixture stand for a weok, atd then filter.
1068. Bouquet de Rondeletia. Mix 2 ounces attar of lavender, 1 coneo sttar of eloves, 1 ounce attar of bergamet, 3 drachma athar of rosos, 4 ounces enef of the tinctures of tuesh, vanilla, and pumbergris, with 1 gallon doodorized aleohol. After a month's reprose, filter.
1067. Imitation Lily of the Valley. This much udmired perfume is made by imxing together of pint extract of tuberuse, 1 ounco extract of jusmin, 2 ourses extract of orange-flower, 3 onnees extract of vanilla, $\frac{1}{4}$ pint uxtrnet of cassiat, $\frac{1}{2}$ pint extract of rose, and 3 drops attar of ahmonds. Keep this mixture for 1 n month funl then nse.
1068. Imitation Essence of Myrtle. Bix together and allow to staud for $\$$ weeks, t pint extraet of vamilla, 1 pint catract of roses, $\frac{1}{2}$ pint extract of orange-flower, $\frac{1}{2}$ pint estract of tuberose, and 2 ounces extract of jasmin.
1069. Extract of Patchouli. Mix $1 \ddagger$ ounces attar of patchouli, and $\frac{1}{2}$ nouee attar of rose, with 1 gallon rectified spinits.

Aromatic, Odoriferous, or Perfumed Waters, \&c.
 These are atrietly pure water charged by dis.

 tillation with the volatile, aromatie, and oblorous principles of plants; or they are eoJutions of these principles, chiefly the essential oils, in distilled water. The simple fragrant waters of the perfunters are of the former kind; those of the wholesale draggists and of pharmaey belong to either class, according to tho mode of their preparation.1071. Proportions of Aromatics Submitted to Distillation for Making Porfumed Waters. The vegetable matter (bruised, if necessary), in the quantity ordered, is to be put into the still along with 2 gallons of pure water, but only 1 gallon drawn over. In this way the finest fragrant diatilled waters may be produced from all flowers, and other aromatio vegetable substances. The points requisite to be attended to are, that the flowera be fresh, gathered after tho san has risen and the dew exbaled, and that kufficient water bo used to prevent the flowers being lurned, but not mach more than is sufficient for this purpose. The quantities nsually dirceted are: Roses, 4 pounds (avoiriupoik) ; water, 2 gallons (Imperial); distill 1 gallon for aingle, and the seus water with 8 pounda of fresh roses for double roso water. The uspal quantities of aromatio material roguired in proportion to the amount of disfilled water to be obtafued, bato given in classified form in the Journat do 'harmacie as follows: Fresh aromatio plants, such at wormwood, black-cherry, beury: :Cass, hyssop, charry-laurel, lavender, balm, inint, peach- leaved, toses, aed sage, require 1 part of tho plant for each part distilled product desired. Presh and dry aromaticy, as bitter almonds, oramge-Slowers, bielilot, borseradish, elder, and tansy, requiro 1 part of tho pl=yt to 2 parta of diatilled produet. Dry and very aromatic planta, as angelics, green anise, junipar berriea, camonile, canella, catcarills, feunel, nassafras, litiden-flowers, and valerian, reguire 1 part of the plant tir ench 4 parts of distillate. Thee propertions will bo aome guide both in respect of the distilled waters reforrod to, and others not fueluded in the lint. In general, dragpists dine orer 9 gallons of water from the respectiva quantities of flowers, herbs, bark, of seedg, ondered in the pharmucopocins, quantity rather thau quality being their objeot. At anufactaring perfomers, on tho contravy, other use an excens of flowers for their finer olioriferous waters, or they preserve only the fitst and strunger portion of the water that distills oter; the remainder being separately collected and usel for is second distillation with fresh flowers. In sonto cases, where a very muperior quality is desired, they re-distill the water of the first distillation nul preserve ouly the first f, or even only the first half, that passes wver.
1072. Elder-flower Water, Acaciaflower Water, and Bean-flower Water, aro prepared it the samomanger as rose water. (Sce Nos. 1071 and 1079.)
1073. Directions for Distilling Perfumed Waters. The followitig direetions are, in the main, those giren by tho thoroughly practical ehemist, Mr. Armold J. Cooley. In the distillation of odoriferous waters, manufactaring perfumers employ their utmost care, in order to produce a bighly fragrant article, free from ang contamination that can vitiate the purity of their odor, or lessen their keeping qualities. Tho still may be of copper, bat the beed and worm should be formed of solid tin. It shwald leo
furnisbed with a lighs and narrotr neck to prevent the liqupr in it epirting over into the neek and condensing-wonin. Astill furnisbed with as steau-jacket fa the most convenient for the purpose, as tho heat of steam, or of a salt-water bath, cam alone be safely employed. The common plan is to reject the first 2 or 3 fluid ounces that pass oyer, end wo collect the remainder of the rumings until the preper quantity be obtained. The whole product is then agitated together, and stored, loosely soverod, in a cool cellar for zome weeks, or even months, in order that it may lose its herbaconus odor and the rawness from receat atillage. It is a common practico to separate any volatilo oll flosting on waters after distillation, but Mr. Haselden, of Eagland, recommenda the ereost of oil to be well shation with tho water ond tho whole transforred to thin stock vessel, whero tho oil will heparuts; It keeps better thus treated, pull fall strength is ensurcd. Ho profors the fotock veanel to be of stoneware, firaished with a tap about 9 Inches from, tho bottom, whereby tho water ean bo drasis oat elaar, tho oil either rising to tho top or sinking to the bottow, acoording to ita gpoeifie gravity. Aa koon as it hasi bequired fts full oclor, or reached matarity, it is earefilly decapted iuto bottles, which aro thes well corkod or stoppod, and stored io a woderately cool place. Sotne of the leading masitfacturing parfumers korp a noparate still for each of thoir more delicato distilled waters, and thorooghly elean them wut aut dry theor aftor each distillation, as it is extremely diffecute to remove any nelor or talint thrt andheres to the still, $6 t i l t h e n d$, ond worm. Eren blowigg atean chrough them for some horura will not always sufficiently parify them for this apecicr of distillation. In tho preparation of distilled wation fir medicipal purposes, a cleati, street stil, atill-bead, mill wornh, mitut also bo varployod. The tro last shomid bo of tid or glazod slozewaro; sull the roceivors shonsla be of glass or asonesware. The titmont earo whould botalen to pretent eontaminations of distilled waters by combet viltb coppert lead or zinc, kinee they slowly osidiace assil dissolvo thoso thetals. In nilupet all cave4, ralted os picklod nowers, horla, \&e, are greatly euperior to tho fiest rogotubles for tbe proparations of frugraut distitlet watere. Fhen the former are emploged the prouluct hat littlo of note of the horbocenas aid raw odor wbict is alsrays prosent when the latier aro used, beaides which thog keep lietler, and reach materity, of the full devolopment of thair odor, in a innels shorter tittc (Sco No. 1349.) Oarefalty prepared distiited waters leop well, bul fire not tiable tw any chaugo, but when the reverse is the case, pirticalarly when tho Jiquor in the still has spirtell over the neek of the still head ints the condousiog worm, they are apt ta deolify, and evan to becomo ropy and viscill. A common, bat fery objectionablo plan, in snech eases, i/ tu ugitate them with a liulo carbomato of ing gocsia, nud to filtar them llarough paper. The only sano romody is to re-distill them on the first ivdication of sach chaoge, for magnesis wealecns them. Indeed, all their essontinal ofl and fragrance may bo remored ly jucreasing the quiantity of it. If maguesia, fin any forin, be used for filtering distilled waters, it slomid lo tho earbonste bat a littlo of eveat that will bo dissolved if tho water ba derer so slighty swidalons
1074. To Remove the Burnt Smell of Freshly Distilled Waters. The funt smoll of waters, Crequently urisisg from careless stilling, is usually lont, or greatly lessened, by freezing, or by exposure to is temperature approsching tha freezing point; but if the Water be highly ebargod with easentinal oil,
part of the latter will separate, and thus tho water will lose some of its fragrance. (Sea No. 107G.)
1075. To Prevent Distilled Waters from Souring. To prevent carclessly prepared distilled waters acetifying or taming sour, and to recover thoso which Inava begua to spoil, a common plan is to shake them up with a littlo calcines matmesin, of to dissolyo in ench pint of them 1 grain ench of powdered borax aud nlum. This, howeyer, is yot to bo recommended, as it unfits the whters for uss as vellicles. Whenever it is unayoidably had recoursa to, the best plan is to re-distifl tho water a fow dayn afterwards.
1076. Practical Suggestions for Making Distilled Waters. Thero aro certain geberal rules or points to be albered to in distilling perfonved waters: Dry, lard, or fibrons substanees should be mechunically divided, and macorated in water heforo undergoing dis: tillation. Too preat a gruntity of materiala should not ho jutrodued at one time inte tho body of the still; if this preceation bo peglocted, thero is a sisk of tho liquid boiling over or kpirting into the reeciver Ebullition should be attnined as quickly as possible, and bo continuous, Fumpient water sbould bo left tumbistilled to cover cho mattor in the still, to guard against its coming in contact with the fider of the vearol. Ia this easo tho mattue mould be decompased Ly the heat, and Field empyrenmatio prouluela; Losidom, if tho diatilation ia earifed too for, a biliny formations is apt to adbera to the nides of tho gtill, whels rewald alto bo decomposed by tho lient, and liavo an femitar offect on tho proshect? Those sidas angy bo grealily leasoned, if uot antiroly avoidod, toy applytals lueat by menta of at cif-lnth, regulated by a thermonder: and btill hotter by a matheontainhiga solutiont of efloride of calcher (itiminto of finc). Any
 may bo ubtainol athl onstained by regulatiog tho strength of tho tolation. (Soc No. 7.) Aunther omvonient anethad is by stean). (Seo No. 1077) Watera distillad frum plants aro apt ts have on walny oilor at first, even when the grestest earo nal procaution lave lseon obnaryed in theirelistilntion; osposure for ashort time to the air will remova thin, nfter which thoy slowuld bo lept in elosely stapprored botthes, and proferably in buttles conttinitig oitly sufficient for probablo use at ono time; they sbould be entirely filled and elosed ait-tight.
1077. Soubeiran's Steam Apparatua for Distilled Waters, Thoillustralumg given is a vortiend sections of' Soubciran's apparatus lased io France for obtainitg distilled waters. A cyltautical tumed-enpper or iron boiter, A, of consenient size, say 31 feet high und 9 fuet in diameter, is stramonted by thespanded hiead ot capital, B, which is furmistued with on inater lodge, formiug a kiod of gatter, to reeciro the liquil enndensed on Litolzuersmiaco

of tho eapital, and opening into tha esit tabe, c. About 6 inches from the bathon of tho cylinder is placed afatro botzom or diaploragm, c, plereed with small holos, A steaum pipe, $d_{\text {, }}$ Laring a stop-enck, a, is introdnced in tho eglisder in the manney shown, terminating ia ai espausion, b, perforated liko tha ruse of a wateringspot, and located a littlo Lelow the diabhyagm.
Tho material to be distilled, after proper preparation, is placed apon tho diapliragm, tho capital, B, is applied and luted with doxtrino pasto; steam ia passed through tho tube, and issuing from b, passes through the matorial, becomes londed with the volatifo matter, rises intos the enpitnl, conlenses, and passes through f, into a worm or bther Enilablo condenser.
1078. Vanilla Water, Macenato 1 poum ranilla in euarse puwder, tuul a pumdls thalt in $2+$ gallons water for 24 bours. Then distill over rapidy I gullon.
1079. Rose Water. Take 48 Troy ounces palo yose, and 16 pints wator. Mis theas and distal a pints. When it is desirable to kecp the rose fie nome time before diatill. ing, it uay be proserved by belng welf mixed with its weient ot chlorde of sodius (table valy) U. S. Wh. (Sice No. 1008.)
1080. To Preparo Mromatic Waters from Essential Oils. Tha United States
 guther the proests of diatilatios in the prepar ration of aromado pater, direets, in preforenen, that water khoald ho imprognatod with the yolatile eil by trítiration with carbotate of magnesin, and bubsurpently filtered. Thit bi the hash pingle and easy proesto. Tho water is ohtaineil pure and trangurent, the magnosia belag Eoparatol hy the filtration. The object of tha nuegnosia is siupply to eanblo the ofl to be hryaghat to a inioute state of adalf. vislon, and thas present the largest posaible surfaco to the water; bit ita thels open to the objection that it is alightly solahle in water, and is apt to prodece, under ceftain cireumptances, a illigatly lloceulent preeipitate. It has been recommended to uile purcelain clay, finely powdered glans, or punice stome, inBteat of magnesia, as these substancer are Wholly insotuble. (See No. 1073 and 1031.)
1081. Aromatic or Perfumed Waters. Tako 2 fluid drachats of the essential ofl of tho plant, tetturato with 2 drachuns levigated powitered kilox; thes udd rery gratually, with constant trituration, 8 pints distilled water. After brisk agitation for some time, filter tho splation through filtering paper wetted with pura water. This is a conveuient method for the estemparaneons preparation of perfumed watere, lat, without great care in manipulating, the products aro inferior instreagth to those obtained by distillation. Finely pow-
dered or lovigated glass may bo used when etdered or lovigated glasa may bo used when st-
lex (quarta) is unobtainable. Magnesia and sugar were each formetly used for the purpose, but are objectionable. (Sce No. 1000 .
1082. Aromatic or Perfamed Waters, Instead of prephring the waters directly from the essential ofts, thn easetnco may be wade by diasolving 1 Tmperinl fluid ounce of the essential oil in 9 fluid ounces rectified spirit; 21 m perial fluid drachms of the essence agitated briskly for sume time with 1 Iuperial pint distilled water, and filtered through wet filtet ing paper, will make a good perfimed water.
Cooley says this is un oxcellent formula for Cooley says this is un excelfent formula for extomporabeous waters; but the U. S. Dis. pronounces them feeble for medicated purpuses, in the properties of their respective essential oils. (Sce No. 1008.)

Rouges, Powters for the hair and shin have almust goue uut of nse The Lasis of perfimed pawileta is cithar orrle, or fine pearl starch. The perfume of then finest kindsis imparted by altemating layers nf starel atud fresh ilowers, the latter lieing afterwarils separated by Eifing. This simple perfutaed powders thus obtained, by jolicioas adinistire, form compound oc binynot puwders The tuliousueas and expense if thir perpeess provent its feticral eapplograost, The cantunas sunde is tu feent lig the dizect addition of estract or esbential vils, or eloc 50 mis in puwslered fragrant prateriol injth tho orior wo tarch.
1100. Violet Powder. What alsrels, 12 yourads; jawherest orric 2 poumble Mis togoilor, thit wht attar if lemun, fomey; attur of beremat nuat cloves, carti2 frachams.
1101. Poudve dIris Poselved suris mot, 1:2 pumbla: powdered berpannot pert, and neseis flowers, vach \& wimess; powdered claves, 4 otawe, Slix und sifi.
1109. Prepared Bran for the Hair. Pomalered whest bran, 1 pusid, powdered orris, g oinect, Mix atal ain.
1103. Poladre Noir for the Hair, Stareh and ocrix in ting powdor, exch os ounces; chareaal wad irwey black, in line powiler, etarh 1 ornce. Mix and sift.
1104. Poudra Blonde for the Eair, Finely powidered atarch and viris 8 oturea each: is in the preceding, bitt with y̧ellow ochirn for the coloring tasken
1105. Poulre ia la Vanilio Brune for the Skin or for Sachets. 1ubelercal vanilla, soes leoves, lomp tegras, lewionin, fhollmin, palliandre and ebong woods, cach I prand; pawderad clores, 2 entiens; powdered mank, 2 trachms. Mix uprothor wilh 3 prouthe of starch; sin, and ahl a fow drogs of extracte of tuherose anal jaunin.
1106. Poudre a J'Gzillet CompoaEefor the Skin or Sachots. Puwdered robe leaves and inria roof, ench 3 pounda; pont: dered bergamot jeed, 1 pound; pawdered cloven and cinnamon, carli 6 ommend pros: dered acacia abd ntango flowers, each H onnecs; starch, 3 pounsir.
1107. Painta or Rouges for the Skin, r'aints of rouges are clee mems by which the watural coloe of the $15 i=1$ way lee leightenod or cbasged. Thary ate bowevor, ubjectimubla preparations, and the way of them exteods very litele lecyond the theatres, wberu tbey ero omployed to prodnect stago effiect.
1108. French White. Thas is tbesaiaeral take, or Vrencticlralk, finoly powilered and tolted. It formis the lasie of the mote harmless fougos Perfanm is atided thas may be desired.
1109. Pearl Whitc. Pure uxile or smbnitrate of bianuth in powiter. This pietmest dathens in alaxegheres confaining sulphile of hydrogen. 1 oungs triturated with 4 ofmeed of orabge-flower witer malies ligoid white fir toeatrumil war.
1110. Pearl Powder, Prempitated ehath findy luited and performes. The Frescla cutt oxidies of zinc athd biswatli, each 1 outuer to the prosol of chalk.
1111. Cantion rgainst Bismuth as a Cosmetic. Tha contioued use of lismuthwhite injures the shis, band ultinately ymduces poralysis of its mimote seseole, remuering is jellow and teather-like-as effect which, nibfortumately, those who exaploy it gemerally sttempt $u s$ evaceal ty its frocer mult Howo foe quent application.
1112. Carmine Rouge, Finely boitel tale, 4 ounces; varwing z itrachms. Mix together with a litdu trarm and dilute solution of grom tragacanthi. For lighter shoules the propurtion of camino unst bodiminisbed. Fir comamoner pastes, rose-pink replaces tho
carnome asculoring matter. It may be made int: a prutade.
1113. Bloom of Roses. Powdered samize of the lest ipuatity, \& atrachme, di. pested with strong numonia, 4 ounces, in a tiently stoppered loutle for 2 days, at tho anlinary temperature of tho atmosphere. Thes aull trase water, 1 pint; and eseence of ruse, 4 nimees, After standing for a week to sartle, the clear liquid may ba poured off Fronn the sediment, and botcled.
1114. Azure Paste. Tule and ultramaribe, finely brituel, equal parts, triturnted with A solution of gam tragacanth into a stiff praste.
1115. Enamel Powder. Take equal partr findy zrraped tale or French chalk, and [uarl-white: sufficient rouge or camine to slichtly tinge it; mix. Tised to conceal dis. colorations; and, withont the coloring, to whiten the bkin,

Cosmetios for the Skin and Complexion. The pro-

 parationd upder this luewil pro dasigned to noiten the shin and beankify the eomplexion. We atmes recripts for the unore important. The beating medim in the mannfincture of them must be either a water ur steam buth.1117. To Make Amandine. Put into 3 largo morble morta 2 empecs gum arabic, and 6 ounces white honcy; triturate, sund when the mistare has been rubled into a dhtek paste, odd 3 omeco porfectly neutral almond shavitgerean. (Seo No. 602.) Then rontiguo tho teituration until the mixtarn has beeasin homageneults. 9 ponuds of freah coll-pressed sweet almond til aro noxt allowed tis Bory from th can above into tho nortar, but nuly us rapioly as it can bo ficorporated with the mass; otherwis, if it entera in tio lacgo quastities, Ite blemdisg is imporfect, and the amandine beeortes otly instead of jellyLike abel tromepareat, as its/bould too when tho manipulation has been shilloth. Ia nummer teuperathres it will be difilieutt to effiect a combinatinn of ath the ofl; and, therefure, tho flow slavald bo stopped as man as the mixturo becoms bright atad assumes a crystallite the. fre. Tho perfutha shoulh bo mixed with tho alumod oif, and sumists of $\frac{1}{2}$ elrachm attar of litter nlabands to ercy potend of paste. A litulo attar ef rowe mod bergmot may also bo added-nbutt 1 timelhts of cath. As soon ns Ginisheri it trinst lie put in clome puls.
1118. To Use Amandine. To preduce ansanding of fine quatity is a matter of sump difficnty nud labon, atd reguires experictree atal vonstaleable maniptlar skill. The details essential to kuceess aro nutieed truter "Entulaisis." (Sce No, 43.) A fmall duanlity, say a luap of filtuert bizo, gives with Warch water a nieh lather, which, when rubbed wor the hewe atd hazds, itnparts wofteres, and provents clatphing. It slastd bo wiped of while etill in huther, with a dry towel.
1119. Glycerine Amandize. As the preceeling, but uiding, with tho shaving cream, $\frac{4}{2}$ to 1 ounce of Price's glycerino for every pound of oil intended to be subsequently sidded.
1120. Colored Amandine. Amatudine may be colored green with spinach-leaves, and yellow and orange with palm oil or annotte, by digesting or dissolving the substances in the oil beloro adding the scents. A benatifil scarlet or crimson may be given to it by adding a little liguid rouge or carmine (ammoniacal), just before removing it from the mortar. Olivine is a similar preparation to amaudine, but mado with olive-oil. It is often colored green.

THE SURVIVOR VOI
1121. Cosmetic Balsam of Honey. Take finest pale honey, 4 watiees (evoirdupois): glycerine (Price's), 1 ounce; unite by a gentle hea:; when cold, ndel reetified spirit, 1 lluid opnco (Imperial); essence of ambergris, 6 drops: aud at oneo bottle it. Used to soften and whiten the skin, provent chaps, \&e.
1122. Freckle Balsam. To the Lalam of honey prepared as dinected in the last recoipt, add pura eitric aeid, 3 drachnts. Usod to prevent and removo frecklos ant dizeolarstions.
1123. Almond Paste. Reduce banched slmpouds to a rery shooth paita by patiently pounding them in in mardo mortar, adding gralually, tuwarl the end, a Fittle rise-water, or orango-flower water, with is fow drops of attar of ruscs or nerolf, or a litblo gan do Cologne, of other porfone, fot will. Lasaly, pat tho pate iatr covered potcelain potsor jase

1124, Bitter Almond Paste. Take equal parts bilfer hlamots nul swe Lalmonde; and rose-water, in sufficient guantily ; and procead at before. No teent revil ho madol. Both the precoting oro ocoastomally diferaified by tho aiddition of cither jevederes nferenames in weight oqual to about क jart of that of the nluouds, of of h thit weight of white map.

1125. Cold Cream. Thke f onnec avoln dupai endy porb white wax atul nuermacet),
 pontr tha bixtmo inte is manble or weile wood-wate morker (or as probednin lasios)
 for thong time ion bollby watep; add, very gralually, of yowe water, 4 that owimes; and assidunuxly stir the mixturo matif an omblemm is formed, and ablerwarts lustil the wholo ia very hesily oold, Liatly, put it inty poreslain or siar thenware pans for wise or nalde.
1123. Hudson's Cold Cream. This is propacei in the name way ats the ahore, with tho addution of 1 fluid ontere orango-flowers water.
1127. Sultana Cold Cream. Tuke $\frac{2}{4}$ ounce avoirflup(a) cheb, pure spermaceti and whete wax; dhest-oil, and buther of cscas. each $\frac{1}{2}$ punul ; melt, ainl stir in of laskain of 1'gro, \& drachion. Aher repese, puor oft the clear portion, imid oriuge-llawer water, 2 Imperml luid draches, autil stir it loriskly ontil it colarntes. Limel tilie cuid eream, lip-salve, dee
1128. Cramedo Cathay. Mell Logetlicr over a water bath, white wax and spernanedt, ench y dyachme; then adil nil of sweet atmonds, 4 tunces, nul-Mecen lalsam, 3 dractums; next perfume with rose-trater, 6 drichlims: atie umtil colis.
1129. Glycerine Cream. This smperior oosmetio is tho woll-known cold-cream, (see No. 1125), with glycerine substituted for rosowater. Melt together spermaceti, 6 onnces; and white wax, 1 unnce, in 1 paund of sireet almond oil. Then remove frows the fire, and stir in Price's glyecrime, 4 outuces; minl whea congealing. pertime with attar of rose, 90 Arops. Other attars may le usest as desired, in place of tose.
1130 , Rose Glycerine Cream. Spermuceti, 1 ounce; oil of eweet almonds, 2 muees; whito was, 1 outwee; glycerine, 4 ounces: mis the spermaceti, whito was and oil of almonds together first; then add the glycerine and sitit the zuisture until coul. Perlitue with attar of rose.
1131. Snow Gream. Melt 3 ounces spermaceti, 2 ounces white was, and 12 ounces firosh oil of almonds, in a water-lath; pour it into a martbo mortas, and stir loriskly to prevent granulation; when of the consistetsco of butter, triturnte wotil the misture has a white, creamy appearance; then, daring eomtinued tritaratiom, ald by degrees a mixtara of 1 bunce double water of roses and 1 cupeo
adotless flycerine incorporate fore 0 minntes, and add 10 drops cessenco of roses; heat for ahout half an lyour, put into pots or jars, atul clase air-tight.
1132. Fine Camphor Ice. Melt together over at water-hatb, whito was and नperwaceti, cach I oubce; coulhihor,2 ounees; in aweet almand od, 1 prount. Next, tritarato in the manuer dirretesi for amandine, und pllow 1 poonil of meo-mater to llow in slowly during the openation. Thea perfumg with attar if rosemary, I drachan, An inferior ant eheaper guantity spay le mode as follaws:-
1133. Camphor Ice. Oif of Evect al-
 wax, \& outhees; Funplots, if ofpecs; melt them over is water-both, thi in mondels of proper size and firm.
1134. Pato d'Amondo au Miel. Tub toppotler 1 punin! trowey amit tho yolis. of 9 Ugigt; then groulually ahl sweet almonal oil, 1 prami, duriag existinnt trituration, asid work in bieter itamonds-blanched atd ground tu sueal, 8 potices; linally perfisue sith attars of herganot ary thovis, caeh 2 drachnos
1135. Pomado Rosat. Melt Logether white was, Y cancecs; oit of syceet atmimins, 4 ouncos; ailtanel, is travtras. Digast Fur soreqal boass, Atrin, nuel seld 19 drogs attar of nues; mad for tbo life.
1136, Cacao Pomade. Take of encan lineter, eil of alevonhs white wax (pure), equal jarts; mell them logether, and atir matil mearly cold. Neal as uremolfient shits-
 Sc. It la sumetimes eflored with is lillo mblan-ail. Seett may be afded at will. It is ligigly estecuped by hane pertions as a latir pumpite.
1137. Cròme de Psyche-for the Lips. White tras mil perruawelt, sach 1 nubect ofil of sweet almondi, 5 ounctas Melt uggether. and pour in Mcova halsain, I strachan; uad olif twitil the mase rongrall, thes auld 10 graine romidered arctate of lead.
1138. Last Virginal. Orange-flower treter, 8 ommees; nill tincture of betazoin, 9 drachine. The fortuer is addoul very slowly to the latter dying colbant friturnion, bo as 50 produco an opaleacent mitiky fluid.
1139. Creme de Pistache. Piktachio nuss, 3 otrices; Etven wil, palm soap, wax, and rpermacot, carls I ounce; orautollower water, $3 \frac{1}{2}$ pints ; cewnes of seroli, 12 onnces; make as directed for the preceding nithes.
1140. Milk of Roses, Place over a water-loath, off sop, 1 oures; unel suelt it in 5 or 9 ohnees rosemater; then add white wax and sperrasecti, 1 ouneo, and coathaue the heat until they haro neelted. Next Latie 1 poaml blanchod almonds beat thent us a meal to a clean marble vourtan with is pints rose-valer, ailanitsel portionsise, durtag the triteration. (Sie Ne. 43.) The enulsion of shatomes, thas mote, is to lim ktraised without pressure through knlud white musliy, and ran very slowly fote the previousty formed soup-misture; the white Velsg Wensled at thatamo time by eoergetic trifiration. Fiowards the end of shis opuration, 2 siachams sttar of rose, dissulred in 8 omatys itmentous alpobiol, are on lie lot inten the misture rery gradualiy, and in of has stream, during constant hathige uf the mack This coutionts manipalation is inhasperisablo to Cre sumothners and perfectios of (les mill: (Kice No. 43.) The lavt operation is tu ftratio ami, witere thed Bquid hat foul a slay's repuray, in bottle it This is a lichly estecmesi cosmetic for the altin and conghes foul Milli of chenmbers they be mate in the sume matiner as milh of rises, ly solislittijug juice of cuctanbers for rose-water.
1141. Iotion for Freckles. Talio tiefiluride of mercury; 6 paids avoirdupois;
pare hydrochloric acid, specific gravity 1.1s, 1 Imperial fluid drachim; distillesl water, $\frac{1}{4}$ piat ; mix, and nded reatificed spirit nul emn de rose, each 2 flaid ounces; Pricu's glycerine, 1 ounce.
1142. Lotion to Remove Freckles. Dizsolve 3 frains burax in 5 dracluns etach rose-water, and orange-flower water; a very simplo and barniless remedy is egpal parts of pree glyeeritio and sose-wathr, applied every Hight, and allowed to dry.
1143. Iodine Lotion for Eruptions of the Skin. Take unlite of patnsitum, 30 grains aveirdupuis; iodite, 15 grains, distilled or soft water, 1 Ituperinl pint; add only a coaple of table-spoonfuls of the water at first, and when ly agitation the sollis are dissolved, add the remainder. This is the comumon and bust form of jonturetted lotion or wash for ordinary purporiest. It is ofter serviecable in eplarged and indurated gtimds, ivelh, \&e, Or: take iolide of putusiunt, 1 tos drachma, and distilled water, 1 pint; dissolve.
1144. Glycerinated Lotion of Iodide of Potasaium. Tho fha last midd 1 obuce Price's glycerise. Iloth aro excellent skincosmetica, exployed like Gowland's lotion partionfarly fier pursons with a servflalous or seorbatice taint or who are troubled with eruptions, swellhggs, or iudurations arising froin it. It is also excellent hs is liair-wath. The product of the last furapula may be advantageunsly used inetend uf tratr-oil.
1145. Lotion of Bicbloride of Mercury. Take corronivo tablimato (in coarso povider), 10 graips acoirilupois; dintilled wnter 1 Jmperial pint; agitate them togethor until eolution be enmplete. The aldition of 5 or 6 grains bydrochlorate of ammouia (pure sal-ammoniac) or 5 or 6 drops (not more) hydrochlotio ncid, frereases the solvent action of the water, and readers the preparation lesa liable to sniter thange, but is not otberwiso alvantagcous. TVbei absolately puro dial tilted water is not used, this addition of acid sbonld bor made to brerebt decomposition. Soma persons dissolve the sublimate in 2 or 3 fludd drachms rectified splitt before adding the water, to facilitate the jrocosy; but this alen, Thongh canvenient, is utasecsaury. A part from ita value as is cometic, the above Jotion is att escellent application in a variety of ahstivato eruptions, and in obstinato sorea mul plandular nwelings and indarations of a wither charactor; the first of which it meldon faile to reliever, prosided the howels arul diet be earefully attenuled to, und suffirient exorvime bo faken daild: Ortinary miht cases of flel rapilly disappent mider its use. The aldition of sbont 1 onnece bure gifycerino confeots it inte a lotiont adomirably aulapted to allay itching ani irribation penerally, ns well is finto une of the lest ensimetie wa-herknown. For the fatter pinfose, atithlo pure rose water of orampo-lower water may bo mident, at will, tif give it frampames; o like quantity of distillral witer, in Itse case of taly of the abovo anditionn, beims mittest.

1146, Eau de Beaute. Bichloride of mercury (enmwire sablhuato), 8 grains; eamphon, 10 gratm: andplate of kine, and solntions of leal (liquor of neetato of lead), rach 2 scrujles: rose waler fold moces; and the guik of a small negr. This mixture is regularly ins isso by Creole ladies for bewatifyinf their skis.
1147. Glycerine Lotion. Tako Price's glycerme. 1 वинes, ant distilled or pure sof Water, 19 ownces; mix. A goosl strength for alaily nse az a cosmetie wash, ot as a vehiclo for other ingrealionts, for which purpose it is prestly preferable to milk of atmonds; also as as Jotions to allay itching and intitation of the skin. provent chaps, exeoriations, tho effects of weatber, climate, \&e. It is like-
wiso applied to the hair irnsteat of oil.
1148. Gly cerino Lotion No, 2. Take of Price's glycurine, L mance, aud distilled water, 17 ounces; mix, it projecr strength when more marked effects are desired; us in chapped Jands, lips, and nipplos, obstinato excoriations, alonsious, thatingx, sumburas, persistent roughness of haxlness of the skin, \&e
1149. Glycerina Lotion No. 3. Taka of Prise's aljecrias, 3 poneen; water, 17 ounces; mix. Plis is adapled for use in obstinato cases, or when still more rapia effeets are dosired; also has ith opplieation to bums and sealds.
1150. Fragrant Glycerine Lotions, Anf of the furegoing glycerine lotions tray lio rendered fisagrant and mone ogreeable by ewploying rose water of elder-flower water, iastead of water, or by the addition of a lintle ens do Cologno, laveader water, or other seent, at wh. The muldition of a fow dreps of sisence of thisk of of atstiergris, per pint, or of a couple of ounces of cau to fose or eau do fleurs d'orsnges, in lief of ma equal link of water, imparts a delieate odor which is always higbly esteemed. In like manner they may be medicated or inereased in efficacy, in varions ways, for tollet and persomal une. Thus, tho addition of a littlo borax (9 of 3 drachma per pint), ronders them moro offoetive in ohap3, excoristions, docri a litele salt of tartar, of of lomon juieo, vintegar, or rectified spirit, increasea their power of allayibgitebing and inorbid irritabilly in akin-diseases, of woll it converts No, 1 (mare particularly) iato mu excellent wash for freokles and like disoolorations. 8 or 10 grains of bichloride of morcury, por pint, concerts it into the admirable lotion of that silbstauce. (Sue No, 1145.) In liko manner, by tho addition of n drochm of no of fodide of potassion, or of componnt tinetura of indine, wa lave a boathful cormotio wash partieutarly geryiognbla to persons with is serofalums taine Stiongiy keent if with the vils of origmaty and rosamary, or improgante it wich a certain proportion of eantharifos, or some other oppropriato stimulant nat rubefaciont, and wo havaruspoctifelythe inost cleanly, cony enfiont, bud useful baic cosmotics, indoed, merely tu onuberata all the uses it may ha placed to in the costnotionad allied trastinent of the per. son, ventld alune fill mony pareds.
1151. To Test tho Purity of Glycerine. Glyecrine weighed at the temperatare of 600 Fabrenbeit should havo no less than $29^{3} \mathrm{~B}$. ; if it contains lime or alkalies, oue dogresshould bodeducted, as these mubstances make it Incavior.

Itubbed on the band, it should Le porfectly inodorotis. Impire glycerine, tinder this test, hay n disagrocable manell. Tho impurity eatsfog this ofor is moskly butgerid icid, ta by contat with tho glycerime it furns as vory volatile glycerole. Snch an artiele will al. ways grow worsd by agc.

The prosonce of ehioriac, sometimea used Fur bleachint plycerises, is detected by Liuging tho sample bleo with sulphato of indigo, amil thon adding of litele suppurie acid; if froe chlorine, or ehloride of calcinm, be present, tha blue color will disuppear.

If a fow drops of st sutation of mittate of silver bo added to glycerine, the presence of chlorine is marked by the furmation of n white precipitate.

Osalute of ammonia will precipitate liae, if prosent. Lead will bo cletested in the same way by bydrosulphate of ammonis; and zalphuric acid by a soluble salt of baryta.

Cane sugar mity be traced by increnseil swoatness of tasta; elso by dissolving the glycerine in chleroform, in which it is complotely solublo if pure, sugat being insolable
in it.
1152. Caution About Glycerine. The proparty which las cansod most anuoyance in the wso of glycerine is its strong affinity for water. Although glycerine has a pleasant, bweatish taste, yet the first semsation that is falt when it is applied to tho tongue is one of pain and burving. This is canked ly the fact that the glycerine absorbs all tha moisturd from tho surface that it tonches, and thus dries it up and parches tho neryes. Igporant of this fact, marses and mothers have applied para glyeerina to tha chafed skin of infants, and produced groat pain. Tho glycerime ought to hava been first wired with an equal baik of water, or at lenst with so much as rould remove its buming action on the sense of taste. This being done, it may be applied to the most tender surfuces without produeing iojury, and as it does not dry up, virtually maintains the parts is a constantly moist condition, exclaliug the air and promoting the healine process.
1153. Fine Glycerine Lotion. Gly. cerinc, 3 fulil onnces; quince-seul mueilage, (seo wost receipt), 10 Luid drachuts: paiserized cuchineal, 5 graius; lot water, 14 find munces; inodorois alcohol, 28 naid ommees; oil of rusc, 8 drops; pulrerized gun-arabia ; I drachm; water, \& fuid unaces Rab tho powdered cochineal first with the lot vater gradially addel, and thes add the aloobol. Then Lriturate the ofl of rose well with the powdered gum-aralie, and graulnally nd the water tu in makimg emulsion. (Sco No, 43.) Witli thas min well tho sulation ifret formed, and filter, and to tho alterse liquid add the glyceriun and mucilago of quince seeds, and shako wull. Tho suncilagg of quitice beols khond old tiass bo fresdly tude. If the atoo. lvol is awoot and free frous forcign poder, and the glycerine perfectly inodoruus, in lesa quantity of of of rose may auflice. If caro is takon 10 its bianufaotere, duis will form a Lountiful mod elogat preparntion, with a rich masy fagrance. Thein applied to tho akin it impartor nin agremblify soft, smanth, and velvety feel. It is nit espeeltent ajplication for tho face after wharing or for allayisg the irritation eatsied los exporme to tho witud.
1154. Quince Mocilage, The mucilage of fuince seeds may Low twato by boiling for 10 ininates 1 ifracini fuinco soeds in 1 pint watnr, and stranimg, This is sometimes tued os a londinline, bub it sum decamposes, and, thercfore for thint jurposes, ntily very sumil quantitios sbumh! luy inverared.
1155. Gowland's Lotion. The formuin sannetioned by thenurical profiession is to tako of Jondan nlinonde (blanclied), 1 ounce; lite ter almunds, 9 fo 3 drachms; distilled water, I pint; form them into an mablsion. To the strained enumbion, with agitation, gradually add of lieblonide of mervary (ia coanne powder), 15 gratus prexiouzly dissoffeal in dift tilled water, 1 piut Δ fer which farther auld enowgh water to malce the whole measiure exactly 1 pint. Then put it in loottles. This is used asa cessmetio by wetting the skin with It, and gantly wiping off with a dry cloth. It is also employed as a wush for obstinato eruptiness bind mino glamdular swellings and indurationis.
1156. Lotion of Borax, for Sore Gums and Nipples, Talic 5 drachms powdered borax; distilled water, $\frac{3}{2}$ pint; mix. Λn offoctive mash for sure garms, sura mipples, escoriations, \&es, applied trice or thrice daily, or oftener.
1157. Glycerinated Lotion of Borax for Chaps and Sunburns. Take Gdrachms avoirlupois powdered lourax; Price's glyeering, $\frac{4}{4}$ nunce; ruse-water or elder-flower water, 12 nupess; wis. Resembles the last, lut is fra-
grant and much more agrecable and effective. Itsdailynsans a cosunctic wasle renders tho skin beantifully soft anal white, and prevents and remores chaps, staturns, de.
1158. Cazenave's Lotion of Cyanide of Potassium. Trake eyatide of potassium, 5 grains awoirdupois; enmlsion of bittoralmonds, 3 Imperial fluid ounces; dissolve. Used like the last, to allag ftehing and urntation, particularly after shaving; also for freckles and pustules. (Sec No. 43.) The atrove is Cazonavo's formula. Tho next recept is, bowever, pirefernble,
1159. Glycerinated Lotion of Cyanide of Potassium. Tuko cyanide of 1 potassium, 6 grains avoirdupoisi glycerine, $\frac{1}{2}$ ounco; etrongest camphor-water, 25 ounces; mix. (Sec . No. 11C0.)
1160. Caution Against Cyanide of Potassium. Cyanido of potassiunt is highly poisotnous when awallowed, and ata the above Jotiona are pleasant-tasted, they phould not be left ont of the dressing-case; nor should n Jarger quantity than that abose given be kept in use at onco; nor, under ordinary circumstances, shonld they loo appliod to a largis exrfaca at a time. If mot kept undor lock and koy, it is eafost to label them Poison. Kope twith care, and properly omployed, they aro snfo and aseful Jotions.
1161. Cherry-Laurel Lotion, or Shaving Wash. Trate genuize distilled chery. Iararel, 2 Ioporial fuid ouncos; rectified epirit, 1 fluid oance; glycerine, of ounce; distiled water, $7 \frac{1}{2}$ fluih ouncos; mix. Zbed to allay irritation of tho skin, partieularly aftur shas ing, tho part befug weistoned with it by means of tho tips of the fiugera; alfo used ns a wash for freckles nud pustules, and to romove excesaivo uoistuess or Erousiness of Lhe hair. Milk of Lither-almomels is often sohbtituted for the glyeerinu emd apicit, lut not for the bair.
1162. Glycerine and Borax Lotion for the Complexion. Mix o enneu powdured horax, and i otace pure Elycerine, with 1 quart camplar-water. W ot tho face moming and evoping with this Jotion, nllowing it "th dry partinlly, sud then vinso off with sofe water.
1168. Pomade de Ninon do l'Enclos. Taike of of of almentes, 4 wances avoirdapols bog'a lard, 3 otnees; speranaceli, 1 ounco melt, add of oxpressed juice of bonae-loek, 3 Imporial flaid oumees, aud stir antil tho mix. tare sulidifies by cooliug. A few drops of esprit da rose, or of eni de Cologne, or lavande, may bo added to seent it at will. Used ns a general skiu-cosunctic; alao for wrinkles and freckles. It in paid to bo rory softenimg, cooling, and refreshing.
1164. Pomado de Beanté; Pomado de Vénus. Tinke of oil ot' almonds, 1 poust; spermaceti (pure), 2 ounces; white wnx (pura), 13 ormees, glycerino (Price's), 1 onuce; balsain of Pernt, $\frac{1}{1}$ ounco; mis by 4 gentle heat, mad stir tho mass until it begins to kollidify. It is sold either white, or tinted of a dolicato roso or green color. Used bothas a bair and skin cosmetic. It forms an elegnont Enbstituto for ordinary cold-eream, lip-salve, Ac., and is much recommenided by the makers for improring tho quality and pronoting tho growth of tho hair.
1165. Shaving Paste; Pate pour Fairela Barbe. Thitent Naples-sunp (genuine), 4 ounces; curd-sonp (air-dried and powdered), 2 nunces; lioney (fincst), 1 ounce; essence of ambergris (or essence rovale), oil of cassia, tul of nutmer, of each 10 drops; beat them to a smooth paste with water or eau de rose; and put it into covered pots. (See Nos. 602, \& ch., and 607.)
1166. Shaving Paste. Take of white soft-soap (sec No. (6)0), 4 ounces; honey-sosp (linest, sliced), 2 ounces; olive-oil, 1 ounce; water, 1 or 4 table-spoonfals; carbonate of soda, 2 druchms; melt them together, and form a paste, as before, mbling a littlo proof spirit aud scent, ot swill. Somer persons melt with the soap abont 1 drachm of epermaceti.
1187. Colored Collodion for the Skin. 1 ounce collodion, 3 grains each pure annotto and dragon's blood; digest, with agitation, in a stoppered phial, for 24 hours; and, if necessary, decant the clear portion.
1168. Flesh Colored Collodion. 3 ounces collodion; I drachm palm uif; alkanet, 15 grains; digest, \&c, as in the last receipt. This dries of a good skin color; but it is mot so strong as the proluct of the preceding Sorrueln.
1189. Glycerinized Collodion may be oftained by nubstitating 2 drachus of glycerine for tho palm oil in the preceding receipt. Thia is excecdingly supple, doos not crack ur scale off from the skicia, and necommodatea itsolf to the motions of tho part.
1170. Peruvian, or Red Lip Salvo. Take of ppermaceli ountrnent, \& pound; alkapet rout, 3 or 4 drachems; digest, at a gentlo heat, unta the first has nocjuried a rich deep ved color, theu pass it through a conno strainof. When tho liguiil hat has cooled a litule, stir ia thoroughly 3 drachma Lalsaun of Peru, In a fow minutios poars off tho elear pirtion from tho dregs (if any), and nedd ± 0 to 30 drop4 oil of cloves. Lattly, tweforo it cools, pour it inte the pots or boxck.' The produet forma tho fibest and most estcomed lip salve. 2 or 3 dropls of osscuce of anibergris, or of cssence royald, improve and vary it.
1171. Rose Lip Salve. As tho above, but using only If tructuma baluam of Pera, ander replacing the oil of cloren with a four trops of athar of romes, or fulficieut togivo tho mixture a martied oloto of rneest Some makers nomit thio lestaur aftopectior. If uncol. ored, it formas whito nowo lip salse. (See No. 1135',
1172. White Lip Salve. Takoof pound spermaneoti inntucut, liguify it hy tho heat of warm water, und stir lin d dradem neroll or cessenco do petil pruin at befores.
1173. Glycerine Lip salvo, Thia ha propared ty nuding \& $6 \pm$ spart of glycerino to any yon of the abowo whilst in tho meltod stato, , mind stirring tho mixturo nasiduonsly nutilit begins to cool.
1174. French Lip Salve. Mix togethor 16 punces lard, 2 ,unces whito wax, nitre and alum in fina powter, of encll, tounco; alkanet to collor.
1175. German Lip Salve. Batter of
 noelt toggstier with n gentlo licat, und adid 6 drops ossenico of lemoil.
1178. Gants Cossmétigues. Theso aro white lidi glores, which harv been tumed inaide out, and brusied orer with a melted counpeand of wass oil, lard, balesm, sc. Tho Perruian lip saive (see No. 1177) withour tha alkanet, may answer the parpobe. An excellent muthod for softening the hands.

W ashesfor FailingHairwashos to mako the bair prow, can alwaft bo maployed, with greater or less sulucess, soloug ass there is any vilality left io the hair follicles or roots. If, however, the se are entirely denal or dostroyed, thero is no possibibity of inducing a frosh growth of hair. Tbis will be evideat from the stiving ger plistenipg appearance tho scalp assunpes when the hair roots are de-
stroyed. The loosening of the lanir, which frequantiy pecurs to young persoms, or thase of tho midulle period of tite, sisil generally, if negloctod, become real baldness. Such n state is common in women, and generally terininates. in its mildest form, in excestive loosening of tha hair. The case, however, is not the hopelass ooe which is generally imagiued; and is propor treatment be pursued, the limir will grow afresh, aud asuuic its pristine strength. A useful prastice in men, and those of the opposite sex whose hair is rhort, be to immerse the head is cold water moming and night, dry the lasir thorougoly, and theu brand the scally, until a warm glow is prodiced. For wruen with loog hair, this plan is oljectionable; and a botter ono is to brish the sealp tutil reducis asd is warm glow are prodoces, then dab sanong the roots of the hair one or other uf the buir lotions. If the lotion prowluee smarting or touderness, the brush may be laid aside, but if no somkatiom in oecasionea, the broshing bould be resobied, and in recotul application oi the lotion made. This treatment shombla be praticed once or twiec a day, or at intervals of afow days, according to the Ntato of clue scalp: numely, if teuder, leas; if insunsible, more requently, Whes tbe ealdnesi lapposat in pateses, tho skiu should bo welt lorushed with asffe tooth brunb, dipgeal in distilles rinegar moriog nad ceveuing, or dipped in one of the wather given below. If either of Hesic lo. tionsshoulfle found tos irritatiag to she shis. use than is smailer qumitity, of dilntel, and less frequetty. If they bare the effeet of making tha hair harntr and try, the inconFenience may bo rentoved by the ush of nit or pomatum aftec carli applicalius of tio lothas. Pomatumi for che growth of the linirare very inferior to the ations in ellicacs. The lofto of mont hair instigurators and reitorens in cith. of tha tinctara or the vivegar of catulharilles; the mothod of Freparing the latter ingrealient is givan io the rest receipt.
1178. To Prepare Vinegar of Cantharidos. Thia preparation in mot alwayn obtaiciable in the drug stares, and is made ly macorating, with agifativu fur 8 days, 2 nobnoes powdoral cantharides in 1 pint acctic atcili; then press and etrain.
1179. Wash for Reatoring Hair. Mix is ounco vinegar of cantharides mith 1 ounce ean da Cologges and 1 ounce rose water. Or, b ounce tineture of cantharides, \& vanes cau do Cologne, I drachru wil of wtubeg, and 10 drops.oil of lavender.
1180. Morfit's Hair Tonic, Scald biack tea, 2 ounsey, with 1 gallon beiling vater; atrain, and add 3 outuces glycerine; tineture cantharidos, $\frac{1}{}$ finces ; null bay rum 1 quart. Mix woll by khaking and then perfome.
1181. Regenerative Glycerino Hair Waah. Tako I ounce, Avoirlapois, glycerize (Price's); strougest catu de Cologre, 1 Imperial pint; liquor of ammonia (specific gravity (880.58%), 1 flutil drachmy oil of origanum and oil of rosemiary, each, \ddagger fluid drachim; tincture of cantharides, 11 Anid ounce; briskly agitato themi together for 8 or 10 miautes, then add 5 pint strougest canupor water, aupi again weil agitate. A few drops of essenco of mask aro often uxded. Au escellent hair lotion, and one that supperseles the necessity of usin oit or pomate.
1182. Erasmus Wilson's Hair Wash. Take 8 Imperial thuill ounces strungest cats do Cologne: tincture of canthanides, i flajd onneo; English oit of laveader, and oit of rosemary, cach, $\frac{4}{}$ fluid drachm; inis. It is improsel by the addition of $\frac{7}{f}$ fuid drachm oil of origauma, or by its salistitution fur tho pil of lavender; but the omission of the latter renders it less odorous.
1183. Parisian Wash to Gradually Darken the Hair, Take of meen sulphato of iron, 15 to 20 erains; distilled verdigris, 5 or 6 grains; frood whíte winc, $\frac{1}{2}$ luperial pint; perfume with cau de Cologne to ruit; mix. A farorite among the fushionable Parisinns. The above will iron-mould linen if permitted to conae in centoct with it.
1184. Wash to Gradually Darken the Hair. Take of sulphatio of irum (green) erushied). 2 drachas nsuindupuis; reetified puit, 1 ipperial finid otmee; oil of rosentary,
 tate thear together until solution and mixturo ato cumplete, Many persuns substitute the strougest ald ale for the water ordered aboye. (Soe No. 11e3.)
1185. Wash to Darken the Hair. Talio of rust of iress, y dractins aveirdupois; ald ale (strongest), 1 lupociat pint, inl of rosentary, 12 tif 15 drops; pat Lhem into a butte, very looscly corle it, ligitate it daily for 10 or ta dyyy, and then, ufter repose, dectant the clear jortien for use, (Sce Nob. 118t.)
1180. Wash for Dry, Stubborn Hair. The best anil mout eflistive of thengs combists
 1 Imperial jiat of any frigume distilled water, is that or roass, or urname ur older Aowess; 15 to 90 geaing aith of simtar (cimbinato nf jotaka) par punt, is sometinns rubled.
1187. Wash to Cleanse tho Eair and Bealy. I wit pocepfitpuredorod horas; 1th-
 Wher. Mix itl Lopetier and apply to tha hetsd whilh a hof sphatge then nob the head woll with fidry towel. \Ye grea is week.

Anotbes execllent thetuol of eleaming tha hair, is to saties the yoth of als vgar, unt rube it ia thoroggbly a litfle at a time, It wift joro dues a slight sumpy lather, whels shonde bo ribed out with pafl whetr. This letives tho scalp perfectly clean, and the latie suft and sionks,

1f88. Barbers' Shampoo Mixture. Shopgraing is a tem used lor cleansing tho head and hair. Salts of Lurtar (cenloutato of protaca) is the primipal iurside fised by barhets for thes parpose. Disuoleo 1 onnec palts of tartar iu 1 grart soft waters sprinkle freely of the heal and rula well till a lather is formed; wash off with clean wates. Hay rimenth then be nsed if desited.
1189. Shampoo Liquor. Salta of Larfar, 4 ounces: pulverized borax 4 ouncon: oof water, 1 palfon. Mix, and bottlo fio nse
1190. Fine Shampoo Liquor, This excellent wash Sir the thits ts mate by Ot esolving if ounce carboaste of manotin and 1 ounce baras is 1 graith water, anal adding thereto 2 onuces plywerias, is puarts Now Englatio rome onil 1 ypart lay mon. The liam, liaving been moistesked with this ligtor, is to ke slmaponed will thar haude ubtil a swight Jether is fanmed; athd the latere being then wasbeck ont with dear wnler, leaves the head clean, and the liair monet and plosey.
1191. Hair Curling Liquid. Take

 soon ws the ingreatients are dissolved ath 3 talile sponalits atrout s pirita of camphor. Ont retiring for rest wet the hair with the above liquinl and woll it in (w) sta of paper is usasal.
1192. Curling Fluid for the Hair. Take 1 enowe avoirduquas finest white fum-
 whter, in luiperal piot; dissaltre To the
 fied spinit; corrosive suthlinmate aud phowdered sal-amuotiac, couch 6 grains; tho last two being disselred its the spirit beforeadnixtureIastly, wild enongh water th tuake the wholo measure 1 pint, with a litsle esprit de rose,
eau do Cologne, or cau de lavanule, to scent it. The hair is moistened with the fluid before putting it in papers or papillotes or twisting it with the fingers. Shake liefiro nsing.
1193. Wild Rose Curling Fluid. Take 2 drachas avoivdopois dry valt of tartat (carbounte of potassin); powsefered enchineal, $\frac{1}{2}$ drachen; liquer of ammonia and esprit de roso, each 1 fluit drnehur: glroerine, $\frac{1}{2}$ winec; reetified spirit, It Imperial fuill unnees; distilled water, 18 ounces; digest, with agitation, for a week, and then deeant or filter. The hair is moistesed with it, and then lonsely auljusted. The effeet gecmers as it dries.
1194. Drying Washes for Moist, Lax Hair. Thke of cisential oi) of almonds. I Imperial flud drachin; wil uf cassia, 直 fluil drachu; essenee of muak, 1 fluid drucbm; reetified spirit, $2 \frac{1}{2}$ (luil outuces; mix, and ndd grad ually, with briak agitation, If avoirdupois ounces distilled water in whieh has been ilissolved 1 ounce finest gum-arabie. The hair and gealp are nlightly moistened with the liquil, asd the bair at onee urrauged without wiping, whilst atill molat. Slake hefore using,
1195. Rose Bandoline. Steep G ounces gone tragacasth fir 30 hams in 1 gallou rusewater, stirrigg frequently; strain througls a cloth, and let it stand for a few days; then strain again and work iuto it 4 drachas of of roses. (See No, 1154.)
1196. Hair Gloss. Mix 1 pint njirit of jasmin, and is drops anilive, with 4 pounds pare elycerine.
1197. How to Dry a Lady's Heir. The Jady should rielite on w loumge of a sula, with ber long baif buagiug over tho oud. A pan containing 2 or 3 bits of prited ehareose fo then placed undur it, nut a litila powdered benzoin bprink led upon the lighted fuel. The thick smoke which rives and is atrongly im. pregoated with heqzuic acid combined with carbonic acid, rupidly nusorbs the maistare in the hair, whed should be previously well wiped with towele, so an to bo a fron from wet as possible; and in a few seconds tho hair is perfectly dry, beautitsily perfamek, and ready for the operation of the brash.

Hair Dyes. The numerous preparations yended, under different names, as bair dyes, bave pencrally a basis of lead or sivere, and possass a sameness of composition which bearcely occurs, to an equal extent, in auy other elnes of custuetices. A few, it is true, contaín liammeli, crade pyrogallic acid, and certain nstriogeot regetabla fices, as dieir netive itugredients, tut thezo are only ocensionally met with fi the stores.
1190. Walnut Hair Dye, Theximplent form is the expresseed juice uil the bark or shell of green walnats. Thes is the venorable hair dyo of Paulus Ayeneta. To preservo this fuice, a little rectified spirit is conamonly nded to it, with a few lirtised eloves, and the wholo digested tugether, with ocensional agitation, fir a week or fortaight, whea tho elear purtion is decanted, and, if neteressury, filtered. Sonotimes a little conmon enlt is added with the same intention. It siould be kept in a enol place.
1200. Pyrogallic Hair Dye. Thka of progallic acid, it oumee; dissolve it in bat fixtifled water, is ottuces, null, when tho solution has coolecl, gralually auld of rectifed spirit, it luid onnee. It uray be minde a litto stronger or weaker at will.
1201. Beaatiful Black Hair Dye. This is compnsed of 2 diflerent liquids. Tako G drachms avoirdupois gond reecent salphntet of potassium; distilleed water, 2 luperial fuid ounces; liquor of potassa, 14 draclas; agitato
them together, after repose deearl the clear splution into a stoppered phial, and label the bottle cither Solntion No. 1, or Mie Mordant. (See Na. 93.) This solntinn foes not stain theskis, and is an effeetive and easily prepared mordant. In some of the wordants sold in the shops, the liquor of potussa is omilted. To prepare the dye, nest take 3 drachmas avoirdupois erystals of mitate of silver; distilled water, 2 Imperial fluil ounces; difsolvo in a stoppered phial, and eark it cither Solsfion No. 2, or The Dye. Flifa is the averago strength of the best silver-dycs of the atores. Tbe atrongest, intended to dye the heir black, in a few cases ane niade with 2 drachms of the nitrate to 1 flud ounce of distilled water; weaker ones, for lrowis, with ouly 1 drachm of the nitrate to the fluid ounce. This sulntion stains theskin as well as the bair. Thesa solations are usually put up in flat stoppered phials, and one of ench, handsumely labieled sold logether io a case under various fancifnl numes, for which a most extravigant price is geverally eharged. Thicy fonm the mont convenient, effective, and expelitions bair dyo known, und the one now chicfly sold and used by tho large perfoneri and hair-dreberts. Other nearly similar mordants we recommended by different good anthoritien. A good formula fs:-Take of liquor of jotusit, 3 fluid drachms; bydroselphureof of ammionia, 7 (Iqid draclnns; distillel water, 1 ounce; mik. The method of using these liguids is giveu in the following receipt:
1202. Method of Using the Hair Dye. The hair (perfectly cican) is first thoroughly wetted to the roots with Solution No. 1, previously dllated witb 4 ot 5 times jts balk of prow water, or of the higheat etrongth that ean bo nsed without irritating tho skif, caro leing taken not to make the hair too wot, as that wonld interfcre with the sest operations. A small brash is conmonly used for the purposes, and the notion anil atsorption of the inondant is promoted by the free application of the former for a short titec. Aher the lapse of 2 in 5 minutes, the bair is thoronghly but lizhlly moistenel with the dye, or Sotetion Na, 2, ly weans of a smalltoothed const, of what is tuere concenicat, a balf-worn touth lontsh, care leing taken to toneh the shit as littlo as possible. Any staing 100 on tho stin by aepilental cotatact with the dye, aro now remnyed by rubbing them with a pieco of rag or mpouge, or the corner of a napkis wetted with in little of the mordant proviunsly diluted with wator. After the lapse of a few minates, the ekis is spongeil cleas with a litto warm sater, and wiped dry, and the hair arranged with the comb, in the usant manner. It if better to avoid rabking or washiug tho butir for a fow hours, Somelimes the two operations are reversel, and tho dyo applied first. The color thas prodnced is more permanent, but atains ont the skin are less envily removed. The whoie process, if expertly managel, miny be completed in from 10 th 15 minutes.
1203. Hydrosulphate or Hydrosulphuret of Ammonis (also called snlphyret or solpibide oi zmmoniat, used as a mordant in dyeing the hair with either silver or leat, may be preparell as follows:-Take of sulphitr, 1 part: feesh ilry hyilrate of lime. 2 parts; hail in water suflicient to disoblve the sulphar; filter, mul to the filtered liquid adil for every 8 parts of solphat used, 33 parts of sulphato of ammonia. Afler ageitation mul repise, the clear supernintant lignid mast be decanted, and preserved is loteles. The prodact contains traces of lime, which do not, however, unfit it for use in the cosmetic art. When a salt of antimony is used to dye the hair, the nentral hydrosulpheret of aumonia
should to emplogel, as, if the licuid coutnin moro salphur than is neecssary to neutralizo the ammonia, and it be used in excess, the color at first prodneed is dissolved out and washed away. But if this excess le avoided, the bisulphuret gives the brightest color. The neutral hydrosulphuret is prepared by eaturating stront liquor of ammonia with sulpharetted hyilrogen, and then adding a second portion of liquor of ammonia equal to that first psed. (See No. 1201.)
1204. Red Hair Dye. An actdulated solution of a salt of antinsong (a solution of potassio-tartrats of antimony or tartar-cmetic: 1 to 16, acidulated with a litule tartaric, eitric, or acetic acid, may bo ussi), followed by a weak mordant of hettral hyllemitlyhures of ammonia (sec No. 1203), or the bistulphuret (carofally avoiding excess) gives n red turning on the orange, which tones well an light-brown bair. A solntion of sulphantimoniate of potasea (Schlippe's salt) with a mordant of water alightly acidulated with malphuric acid, gives a bright orange-red or goldon-red color.
1205. Red Hair Dye. A atrong infusios of safflowers, or a selution of puro rouge, in a weak salution of erystallized carlonate of soda, gives a bright red liko hemas, or a red. alish yellow, accurling to its strenisth, if followed, when dry, by amondant of lenton juico or viocgar dilated isith ans-hetf to mim equal balk of water.
1200. Blonde or Flaxen Hair Dye. Mix in 10 ouncer distilled whter, 1 matace acetato of ims, 1 oumed mitrath of silvor, and 8 angeen mitrate of bianath; rimistem the hair with this miktares, aud, after an hour, touch it With a inixtire of ogual pharts of sulphide of potassiuz atal distilled water.
1207. Blonde Hair Dye, Another method is by annistemiag thin hair with a mixture of 2 ontens protschlaride of tin and 3 ouncos lydratedl lime. An hour after, whe tho potaexinin sulution as in lest receipt.
1208. Golden Yellow Hair Dyo. A solntions of bethlutide of tin, sufficiently dilinted, followed ly a mordant of hydrusulpburet of amponia (sce No. 1203), pives a sich golden yellow tint to very light laid, mal a golden lirown to dariker hair, owing to the formation of bisulplatest of tin.
1209. Rich Yellow Hair Dye. A soJution of acetate or nitraten of teud, followed by a mordant of yellow cloromato of potash, gives a brilliant riel polden yellows. If'wantel warmer or deeper trinei, a fien drops of soIntion of dinectate of leal (Goulard'* extract) should be added to the acetate solntim.

A salution of pure mantun oblafret by boiling it in wnter slightly alkalized with carlomato of sode, or with salt of Lavtar, gives a golden yellow or ftane yollow, aceorling to its stresgeth, to very pale hair, and corresponding tones to darker bair. A previonsmoriant of alatm-water decpetns 36 , and a zulsegnent washing with water smured with laman juico or fingegar redidens it of turns it on tho oranges.
1210. Brilliant Yellow Hair Dyo. A solution of a neutral salt of iron (sulphate, aectate, or chloricle), followed by a weak solntion of earbonate of solla, or sull of tartar, or Dime water, gives a warm yellow or nankeen eolor, whiel, when deep, turus on the red. In the latter erse it is apt to assume a sandy shade on very light linir.
1211. Brown Hair Dye. A ready way to color the hair brown is by a solution of piermanganate of potassatis the proportion of 1 troy ounce to 1 quart of water. The hair must be first cleansed by a diluta solution of ammenia, when it is dried by menns of a towel , and the solution of the pormanganate applied to the nair, lout not to the skin, as thia
would also be colored. It dyes the hair immediately, and tho desired shade may be obtained by applying more or less of the solation. Should the bands become stainel with it, they can be cleaned with a little dilute hydroebloric acid. This dge is not permanent, but is very easily ronewel with n tooth-brush.
1212. Golden Brown Hair Dye. Brown lair may have a golden tone imparted to it by the judicious application of any of the yellow dyes already noticed. Light hair may be previously dyed of a warm light lirown before applying tho latter. A Bolution of sulphate of copper (bluo vitriol) followed by a rolation of ferrocyanide of potasaium, gives an extremely rich golden brown or bronze browa to light hair, when the procoss is expertly mumaged.
1213. Cautions about Applying Fiair Dyes. Tho application of tho mbove dyea, so as to produco approprinto and agreable shades, requires mure consideration and experioneo than that of the black dyes. The complexion, and the naturnl color of tho hair of tho persou operated b , with other attondant cireumstanees, must he carefally considerect beforoband, and allowed fur. Unless all those points be attended to, tho party may, on looking in tho mirror, siuddenty find himbelf strangely altered in nppearauce, and probably for tho worse. Hair dyes of all kinds will only act effectively and eativfuctorily on perfoetly clean bais. The premence or the slights. est contamination of anly or greacy matter will arrest ar greatly lesson their action, anal remder it unequal in differont jarts. ILenee tho halr, in fill cases, stould bo forit tharoughly wasbed with warm koap and water, then rined with tepld water, nod tasty, wipot dry previous to their nipliestion. A few grains of sada of of salt of tartare (carlomnto of potassa) added to the first water, efil facilitute iss retertent action
1214. To Bleach Hair. It has been found in the ease of blenching hatr that gaveons chloriue is tho most effectud. The hairshould bo cleaned for this parpose ty a warm antation of mida, and venshed afterwurds with water While modist it is pat into a far and chlormo gas introducel, ustil the air th the jor lookr: Freenish. Allow it to stand for 24 homes and if necoseary repeat the operation. The omployment of binexite of hydrogen has beon oflon recommendel for this puphose, it belar in overy way siperior to tho otharugents, bot it bas the dravlsack of being diffleult to prepare.
1215. Lotiona to Change the Color of the Hair. A pamber of lutions nre extensively ndvortisod, and sald under tho naue of "Huir Restorers," "Hair Iejuyenatum," "Lifo for the Urir," \&c, whieh pmrport to re. storo the color antl improve the growth of the hair. The aetivo ngent in all these preparations iv lead, combined with sulpbur, und this, by frequent applicatiou, darkens the hair. In the mpjority of cases, probably, a moderate thso of such a lotion would ho anatrenderl with misthicf; litt it is worth remambering that polsy has been known to lie priednced by the long continued use of costneties containing lead. Tho followiug receipts show how these rostorcrs are male:
1216, Hair Coloring which is not a Dye. Take 1 drachm late sulphur; sugar of leul, 2 seruples; glycerine, 2 oumces; distilled Water, 6 ounces; mix, and perfumo to fancy. Or, lac sulphur and fugar of lead, each i drachur; sulphate of iron (copperas), 10 grams; glycerine, 2 ouncos; mater, 6 omees; mix and perfame. Shake well before using, and apply with a sponge every other day until a chango of color is oltained, after which oae application each week will bo sufficient. The
hair must be cleansed of all areasy matter before using the ahore. (Sce No, 1213,)
1217. Magic Hair Colorer and Restorer. Take of sugsar of lead, $\frac{1}{2}$ punce; lac sulplur, 3 drachms; aqua smmonis, $1 \frac{1}{\text { ounces ; }}$ glyerine, 6 ounces; water sufficient to fill a piat bottle; mix, and perfume to sut the fancy. Or, take of lac sulphar and kugar of lead, each 1 drachips; tinctures of cepsicum, and cantharides, each it ounce; glycerine, 2 ouneca; water, 5 ounces. Apply as above. Do not enploy nuy greasy oils in perfuming these proparations. (Sco No, 1212.)
1218. Hair Restorative. Take 1 drachm milk of sulphur, 1 drachm acotato of lead. 2 itrechms mariate of suda, 2 foid vances glycerine, 8 fluid oumees bay ran, 4 fluid otraces Jamaiea rum, anul 1 pint water, Mir togother, and shake before using.

Depilatories, Ireparations for removing snperiluons liair from tho ykiu. Tho constitsents of most of these are lime, atad the tersulphuret of arsenic (orpimeut), liat the nse of orpiment is dangemuls, equectally in rave of nay strasiou of tho ekin. Tha knfost depulatory is a strong solution of nulphuret of hariom mado into a paste with posctered starch. It should be applied immediately atter it is mixed, and allowed to romain there fir 5 or 10 fitimutes. (8 eo Nos. 12021 10 1495.)
1220. Martin's Depilatory. Apply a ligbt conating of kn|phwectol sutptride of cal. cfill tu the fort frim whets tho liair is to bo removes); efter 10 fuinutes it may lo wached of. and the ekion will ho cleat.
1221. Bondet's Depilatory. Mix 3 parhlygdro-sulphuret of sodiami (erystallized), 10 paris fincly powilered quicklime, and 11 jarts slarel. It shomit tiot lie applied longer than 2 is 4 ininutes, Yery effectivo and kaff.
1222, Chinese Depilatory. Mis B pumes quichlime, 1 otmen diy pearlahs, and 1 obnco atslphotret of petaselum; opply as in tho lave receipt.
1223. To Apply a Depilatory as a Paste. In Hec, tho cliexniral flepitatories (ace Noe 1219 fo 1922) shich are iu tho stato of powsder, ara male into A pasto with warm water, and fimmedfately ppplied to tho part, previously shaved elose, a little starch being penerally added to thase which do not comthin it, in order to rester tho pasto moro manageable. Sometimes sonp-Iso is used, instead of witer, to form the paste, 1 wopiten or tone knife should be ised io preparing tbis paste.
1224. To Apply a Depilatory as a Plaster. Anotler mode of applization is to make the paste rather thick, -pread it on a piece of strong paper, nud apply it like a plaster. In fromi $\$$ to 10 or 15 minutes, or suoner it muth smarting necurs, the pasto should be washed ofl with warm water, and a little cold crean or nuy simple cintment applied to the part. The bavel depilatories aro thstally thichened with a little starch purrder, before applieation. (Sec Nog 1219 to 1222.) 1225. Cautions About Applying Depilatories. Both clases (see Sos 1223 and 1224) requira cautinn in their nse. They Fhould be applied to only a small sprface at a time, and great care should be taken to prevont shem ortanding to the aijjacent parts. They lose their properties unless kept entirely arcladed from the air; and no liquid must be added to the Ury ones until just before their application, and then wo more should be mixed than is required for immediate use.

Scented Oils; Perfumed Oils. The fised of that usually forms the basis of the simple econted oils of the perfomer, is that of almouds, beit of olices; bat other bland vegetablo oild are occasionally used, particularty for infericos qualities, In France, three different modes are adopted for imparting fragrance to thexe oils.
1227. Perfumed Oils by the Addition of Essential Oils, or Alcoholic Essences. By tho simplo addition of as sulficient quantity of the essential oil of the plant, of of tha concentrated alcotolic exsenes of the subatance, if it does not furnish an oil, fillowed by agitation, the whole being then allowed to repose for a fove days, and, if ay eediment falls (which should zot be tho case if the ingredients are parc), tho cleat portion decanted or poured off into another bottle. In the ease of alcobolic essences, it is better that tho fixed ofl should be geatly whmed by placing the bottlo or yeasel (a woll-tinued bottle or can with a suitablo mouth and neela for corking, is tha best and most conventent for tho purpose, for a short timo is a waterbath, before adding them, aud thee, after tightly and firmly securing with if corle, to agitato it tantil colat or acarly son. In genemh. 1 to 14 drachms of a pure essontial oil, or 3 to 4 flaid drachms of a concentratod essence, is enufficient to render 1 piet of fixed oll agroumbly fragrant; but in yome easex, and tor the best quatity, an alditional \& druehut, or grote, of tho one, and 1 to 2 Iuid draclam of the other, will be required. belrachat jute attav of roses, owing to the very powerful character of its odor, is suilicient for the purgumis. Oild of ambergris, berganot, cassia, спמиamat, cloves, lavender, lemons, milleftems, mithk, neroli, nutmeg, orangn-flowers, roses, aud sll other similar sconted oila, may bo thut made. The alove are ehiely employed fil hair cosmotics, with, in most callo, trilling additions of other essential oila or ctasetices, to modify and improve theer odon. Some of them are also colored. (Cooloy.)
1228. Perfumed Oils by Infusion. "Dry buastances, afer beilg reduced to consed powdor (but froe from dust), of silicel fery small; fuwers or petals, afer being carchilly selected, pieked from tho stems and other scentless portions, and pulled to pieces; and eof, unetrous, and resinous matters, at aubbertris, mush, civet, resins, and batsams, after beme rubled to a pasto with a butle of the oil (either with or without the additiun of about twiog or thrice their weight of cleau siliceons sand or powdered glass, to facilifato tho reauction), are digested in tho fixed bit, for an nour or two, in a covered yessel, at a gontlo hest ebtained le means of a waterbath, frequent stirring or aritation being ein ployed all the time. Tho vossel is then removed from tho bath, and set asida (for flowers) until the next day, or (for other substmecs) for 5 to 7 Alays, to settle, whon tho elear portion is carefully decanted into a clesm bottle, or bottles. With ambergris, civet, must, and vanilla, the digestim, with froquent agitation, is usually continacd for at least 3 weeks; and expmstire of the ressel in the sun, or int some equally warus situation, is geuerally snisstituted fir the heat of a waterLatls. When flowers are employed, the froo oil is allowed to drain nit, and the remaindor is oltained by the aution of a press. Tha two portinns leing mixel, frest flowers are added to the oil, anil the whole process is repented; and this again, with fresh flowers, 5 or 6 times, or ofteser, matil the oil is sufficiently fragrant." (Cooley.) For the extraction of perinme from rose leaves, from scented woods, from bark, from gums, there appeary to bo
nothing better than glycerine，and this use of it is constantly on the increase，as the most delicate odors are perfectly preserved in it．
1229．Perfumed Oils by Enfleurage． A serics of shallow iron frawes，admpted for piling on each other，and fitting elosc together， being provided，a piece of white，spongy cot－ ton－cloth is stretthed upon each，and a⿴囗十心 then freely moistened with bil of almonds，olives， or hen．On the cloth is noxt laid a thin layer of the fresh－plucked flowers，and each frame， as thins covered，is placed on the preceding one，until a compact pile of them is raised． In 24 to 30 hours the flowers are replaced by fresh ones；and this is repeated overy day，or every other day，until 7 or 8 different lots of fowers havo been consmed，or the oil has becoma sutficioutly chargel with their odor． The cotton－cloths are then carefally collected and sulumited to porverfal pressure，and the oxpressed oil which flows from them is placed asilut in corked brteles or jars，to sottio．Atter somo time it becomes perfectly cloar，and is then yoaly to bo decanted into othor bottles for storn or sale．Sometimes crays with per－ forated bottoms，on which are laid thin layers of cotcon－wool stilighty moistened with the oil，are substituted for the frames and cotton－ cloth above roferred to．Sometimes，also， sheop＇s wrool or cottoa wool impregnated with oil，is stratibed with flowersin alargo earthen ressel，and this，after being closely covered np，is kept for 10 or 12 hours gontly beated by menus of a water－bith．Tho noxt day tho old dowera are replaced by fresh onen，and the wholo process repeated again oud again，as ofen as uecossary．The oil is finally obtained by pressire from the wool，as beforo．Whea only a moderate degreo of aroma as required in the oil，the flowers may bo erusted in a mortar or a mill，with one－ball thatir weight of blanched sweet almonds，and tho noxt doy， or the acoond day affer，weconling to thio weatber，the mass，after being silghtly warmed， thay be salmisted to tho press．Aher aboat 3 week＇s reposo，the uppor purtion，which is tho perfamed oil，may ho decanted，mad，if itceessary，filtered．Thia plan is occasionaity qdopted in thls country for＂Oin of Roses，＂ and a forr other flowers，intended for tho baif．（Cooley．）
1230．To Perfume Hair Oila，The mistures of essential oils，and other oloronas substances，used in tho preparation of thr perfumed epirits，will furnish examples whiol may bo followed in sceating hair oils and po－ mades，and from these can bo framed otber conbinations as the fancy may suggest．（See Nos． 123 and 1261．）
1231．Colorless Hair Oils，In prepar－ fug coloriess or whito lair oils，blanched fixed oil，and new and colorless，or neasrly colorless，essential oils and essences only are employed．
1232．Colored Hair Oils．Tho colored oils derivo thoir hucs from the fixed oil of whioh they aro prepared being tinged before the scent is added．Tn each caso the colored oil bhould be allowed to clarify itself by re poso in a closed vessel and a warm situation （ 60 to 70° Fubr．）before being decanted for further treatment．It is also better to pass it through a piece of coarsa maslin，to remove floating particles，and，in some cases，it may be pecesessy to filter it，to render it quite brillinat－a quality which it should always possess．
1233．To Color Hair Oil Red or Crimson．A red and crimson tingo may be given by steeping，for 2 or 3 days，a little alknnet－root（say＇2 or 3 drachus）in cach pint of tho oil．By warming the oil，the time re－ quired for obtaining the dessired tingo may be reduced to 1 or 2 bours．
1234．To Color Hair Oil Yellow or

Orange．A yellow and orange tinge may be given ly rubbing up a little annotto with a portion of the oil whilst hot，and then adding it to the rest at a gentlo heat；or，more simply． by adding a little bright palm oil to it whilst varm．

1235．To Color Hair Oils Green．A green tinge may lo given by steeping，a little green parsley，or spinach－leaves，or lavender， in the oil for a few days，in the colly；or by dissolving 2 or 3 drachms of gum －guaiacum in each pint of it，by the aid of heat．
1236．Oil of Musk；or Huile Mus－ quée．Take 2 avoirdupois drachms grain－ musk；umbergris， 1 drachur ；of（alnoond， olive，or ben）， 1 Imperial pint；proceed by infusion．（Sce No．1228）．Some makers add about 20 or 30 drops oil of lavender（Kaglish）， 10 drops uil of cloves，and 5 ot 6 drops oil of cassia，with tho musk．I necond quality is made by working oser the Bame ingredients with $\frac{1}{5}$ pint of frest ofl．

1237．Oil of Ambergris and Musk； or Huile Royale．Take 4 drachms amber： gris；grain－puask， 1 draclam；oil of lavender （English）， 20 drops；oil of cassia，oil of cloves， oil of nutaige and neroli，each 10 drops；and proceed by iofusion．（Sco No．1228，）Very tive．Tho iugredients may be worked over is socond time，as with oil of mask．

1238．Oil of Storax．Take 10 to 12 drachma pare liquid storax；ofl of nutwerg 12 to 15 dropa；ainbergnis， 5 or 6 grains；oil （almond，olive，or bep）， 1 Imperial pinti by infusion．（Sce No．12：18．）Ilighly iragrant． Used ia the bame way as of of balsam of Pera．

1239．Oil of Vanilla；or Huile a la Vanille．Tako 24 ounces avoirdupois finest vasilla in powder；oil of bergamot， 1 Imperial flaid drachm；attar of roses， 15 drop？；auber－ gris， 3 grains ；oil（almond or olive）， 14 pints； by infusion．（Sco No．1228．）Very fragrant． For the aimple oit，the bergamot，attar，and amborgris，are omitted．

1240．Oil of Ambergria；Huile d＇Am－ bergris，or Huile al＇Ambre．Take of finest smbergris， 4 to 6 drachms avoirdupois；and oil（almond，olive，or hoa）， 1 Impenal pint； and proceed by infusion．（See No．1228．）A zecond quality is mado loy working the resid－ nom with $\frac{1}{3}$ pint of fresh oil，

1241．Oil of Balsam of Peru．Take it avoirdupois omnee pure balsain of Pers，and hot oil of almonds，i Imperial pint；agitate them together until perfectly mixed，and for a short tifue afterwarla；then set the bottle aside，and in a fow dayndecant the clear por－ tion．Oil of tutmeg， 20 or 30 drops，is com－ monly added to inerosse its action．Used to scent other oils and fats；also，by itself，to improve and restore the hair，for which it is in high repute among many persons．

1242，Oil of Benzoin．Take finest gum benzuin， 1 ounce avoirdopois，and oil of al－ monds， 1 Imperial pint；and proceed by infu－ siom．（Bee No．1228．）Used to conroy the scant of benzoin to other oils；and also to prevent rancidity．

1243．Mixed Essential Oils，or Mixed Scents．The followitg are used as extem－ pormbeous scent for mocling bottles，hair oil， pounales，esprite，sce；for which parpose one or other of them is commonly lept at hand by the draggists． 1 ounce of any one of them，added to a pint of rectified spirit，pro－ duces an agreeable eaprit or perfuma for per－ sonal use．Oit of bergamot and lemon，of etich 1 ounce；oil of lavender（English）and pimento，of each $\frac{1}{}$ ounce；mix．Or：To the last add of oil of orange peel， 2 drachms；pil of cloves， 1 drachm；mix．Or：Take oil of ber－ gamot，lemon and orange peel，of esch 3 drachms；essenco de petit－grain， 2 drachme； oil of cloves， 14 drachms；ail of caseia， 1
drachm；mix
1244．French Huiles or Hair Oils． The haile antique an jasmin，anx fleurs d＇or－ anges，id la rase，a la tuberose，id la violetete， do．，de．，of tho French perfumers，are simply one or other of the bland fixed oils，（almonds， olives，or ben），strongly scented with the oils （huiles）of the respective flowers，or some otber preparation of them．（See Nos، 1236 to 1242．）
1245．Marrow OiI．Takoclarified beef． marrow， $1 \frac{\downarrow}{2}$ ounces ayoirdupois；oil of almonds， 4 Imperial pint；melt them together，and scent the mixture at will．Held in high re－ pute as a hair oil，by many．That of the small stores has seldom any marrow in it，but lard insteail．The appropriate scents are the samo as for bear＇s grenso．It is generally tinged slighty yollow by means of a littlo palm－pil or annotho．

1246．Tonquin Pomade or OiI．Mac－ erate for from 12 to 24 hours，$\frac{1}{2}$ pound tonquin beans in 4 ponnds melted fat or warm oil，and strain through fino maslin；when cold tho greaso will bo futud to havo aequired a fino odor of the heans．

1247．Vanilla Pomade or Oil．This is prepared in the satue way as for tonquin beans，by sulatitating \ddagger pound of rasilla beave．
1248．Macassar Oil．Oil of ben， 1 gallou，oil of noisette， 1 gallon；strong alco－ bol， 1 ，quart；attar of rose， 2 drachma；attar of bergamol， 3 ounces ；attar of Portugal， 8 oances；and tincturn of muakk， 3 ounces；；mix togother，digest with alkanat root（for color）， in a stoppered bottle for a week，thon atrain and bottle．
1249．Cheap Hair Oils．Theso are made of fixed oils（ussually almond or olive oil），gradually recoding iu quality，kceated with loss attar，the doficency being made up by a mixtaro of of of rhodiam，rosemary，and bergamot．A fow drops of neroli，or oil of rose geramium，or a littlo hoilo an jasmin， with or withont 2 or 3 drops oil of mask or bnile royale，aro secasioually added to im－ proya and sligbtly molify tho udor．
1250．Tricopherous．Castor oil，$\frac{1}{}$ pint； 95 per cent．alcohol，b piat ；tinueturo canthar－ idos，\dagger onnce；oil of hergamot， 2 drachms． Color a palo pink with alkanet root．（Sec No． 1233．）

1251．Oil for Incipient Baldness． The commonest，and perbaps the moat con－ veniont and casily propared cosmetic of the kind，is a mixturo of equal parts of tineture of eantharides and olive oil or almond oil， simply agitated together，and shaken before use．A more offective abd cleanly liquid pre－ paration may bo mado ly substituting proof spirit（or good rum）for the oil，and adding 1 to 1 d drachms of glycerino（Price＇t）to each onvec of the mixture，a corresponding increasc being made in the proportion of the tincture， to compensato for this aidition．This prepa－ ration imparts as much moisture and gloss to the hair as the former one，and is mnch more genial in its action on the scalp．Distilled water，or rosemary water，is often substituted for proof spirit．Δ still more active prepara－ tion is made of tincture of cantharides and giyecrine only．

Pomatums or Pomades． Auy ecented greasy matter of appropri－ ate consistence，or any mixture of fats，used， or intended to bo used，in dressing the hair， now commonly passes under tho name of po． matum or pomade．Thio usual basis of ordi－ nary pomatum or pomade for nss in this cli． mate，is either a mixturo of 2 parts of hog＇s
lard and 1 part of beef suet; or of 5 parts of lard and 2 parts of mutton suret; the fats leeing both previously earefully rendercd or prepared, aud then melted together by a gentle heat. The latter mixture is chiefly ased for white pomatum or pomade. Bssential oil, and othor volatila matter nsed to seent this fat, should be added to it and atirred up with it, after it has somewhat cooled, bat before it hegins to solidily, in order to preyent loss. The unseented mixell fats form tho plain potnude or pomaturn of tho perfumers. (Cooley.)
1253. To Purify Suet or Lard for Making Pomades. Suet or land form the bady of pomales; and that their quality mas be unexeeptinuablo, the remdered suot must bin subjected to a purifying proress, in order to fit it for use in perfumury. This is doue by melting the rendered fat by the beat of a saline of stam bath in an enameled fron vessel, and adding to it, gradnally, 1 ounce powilerril slum and 2 ounces chtmpley of sodiam (pure tuble salt) to every fifty pounds of fat under treatment. The hiest ia to be contioued ahove 2120 Fahr, mitil scum censes to riao to tho surface, which contains all the organic and other impurities, and unst be skimmed of at fust fas it is formed. The fat is then strained through boltinge eloth into clean stono jars, and luft to cool. It is next to bo kpread upon a circular stone slab, the top surfacenof whenh is alanting from the centre, (that is, nifghtly conicat in form), unt provided with a stono roller which is mivie to veyolve by gritatio gearying. As the rolter, of muller, revolves over tho fat. cold water is allowed to triekle upon it., puld this dissoless the salino impurities romaining in the fat. After this the fat is heated until all watur is expelled lig ovaporation. When cold, the fat will bo fopsill to ho very white and pure, and ia is condition to proservo its sweetners, and anitablo for ase with the poost telicate olors.
1254. Method of Purifying Fat, Take 1 cmt of perfectly fresh grease, either of lard or beef suve: colt the grease into souall piecos, and pound it well in a mortar; when it is well erushed, wash it with water repeateally, intil, in fret, the water is as clear affer wilhdrawing the greato as befora it wha pit in. The grease has now to be meiled over is slow fire, rdding thereto abont 3 ounces orys. tallized atum in powder, and a handful of common salt; now let tho grease looit, hut atlow it to bmbble for a few seconds onfy; then strain the greaso through find limen into a deep pan, nud allow it to stand, to clear itself from all impurities, for ahout 2 bours. Tho clear grease is then again to be put into the pan, over a bright fire, ndimit thereto abont 3 or 4 goarta roso water, and abont 5 onnces powdered gum benzoin; it is allowed to boil gently , and all scum that rises is to bo removed, until it ceases to be produced; finaliy tho greaso is put into deep pans, and when cold taken carefully off the sedimentary water; it is then fit for uso, and may be kept for an indofnite period, without change of turaing rancid. It will be obecrved that the primeipel feature in this process is the ase of bemzoin.
1255. To Perfume Melted Fat. In alding nromatics or perfumes to the melted fat, its temperaturo must be sulapted to their relative derere of volatility. Essential oils and alcoholic essences, particularly tho moro delicate ones, are added at the lowest possiblo temperature compatiblo with their perfect union with the fat $;$ whilst substances like the aromatic resins and balsams are better alded to tho fat more filly liquefied, aiding their solution and union by stirring the mass with a wooden, boue, or porcelain knifo or spatula. With the latter, after tho union is complete, it is often necessary to allow the mixturo to repose for a short time, and to poar it off
from the dregs before sidling the casential oils and essences, and concluding tho work. (Sce Na, 1961.)
1256. To Finish off Pomades, In finishing of pomates two methods are adopted, according to the appearance it is desired they shoula bave. Thoso which it is iutended should be opaqraw aud white, should be stirred of beatem assiduncely with a knifo or spatula untif the fat hegins to concrete, or has acquirrd ennsilerable consistence, before protting it: but when it is desired that they should be transparent or erystallite, the clear Iiquid masas is poared into the pots or bottles, proriously alightly warmed, and tha whole is allowen to coul very slowly, without heing disturked, in a situation frec from draughts of colld air. For tho ordinary pomsdes a misture of laral aisl suct is gonerally employed; for tho harder oses, met chiofly or wholly; of a little pure white wax or beeswax (accorling to the inteuded color of the prodact) is mefted with tac fat to increasa ita solidity. Por white pomades, mutton suet is emplayel, for otherx, in geaeral, beef suct. In those which aro artificind. ly colored, either thay be used; trat heef snet is preforable when eithor clearness or a erystal. ling appraranoce is deadred. (Cooleg.)
1257. Coloring Matters for Fat. It fa often descrable, anamatter of taite, $w \frac{\text { tinge }}{}$ tho preparest fat lesed fos perfisocey. The procesa given below is applicable to nil fats, whether solit of 0usd. Color may also lie imparted by tho addition of piements in pors. der, hot these are oldectionable for potvaile, hair oil, and creame The colorine matter ahould be ditiolvel of Rtrejed in the melting fat bofore acenting il. (Sec Nu, 1932))
1258. To Color Fat Pink, Bruide 4 ouncea alkract rout fur every pound of fat wied; melt the fat over a water-bath, alld the bruised alkaneb, ped 山igest fur several lioura. Etrain the mirture through bolting cloth, and allow tho elear dothl fat to coot. This fat, now colored deep plak, is tweal ns a coloring mixtare; 1 outsee of it will he sutBeicot th color 1 pound of swhite fat, log simply meiting then togethor.
1259. To Color Fat Yellow. 1 yel. low coloring fis may be prepared os in the last receipt, by using finticull of the allianet. 1 ounce of ammotto to the posssh of fat.
1260. To Color Fat Green. The same process followsil in Na. 1958 , with freath walnut leaves, will give a groch coloriag fat.
1261. Essences for Scenting Pomatums, Milleflem-ofl of lemon, 3 oonces; essence of ambergris, 4 ounces; oil of cloves. 2 ounces, oil of lavender, 2 ounces. Cowslipessence of bergamot, I6 ounces; casenico of lemon, \& ounces; oil of cloves 1 ounces; nil of urange-peet, $\frac{2}{}$ ouncea; oil of jasmin, 9 drachms; cad do bongitet, 2 aunces; oil of bitter almintals, 16 drops Eor general asoesseuce of bergamot, 16 ounces; essence of lemon, 8 ounces; true oil of origianm and oil of clores, each 2 ounces; oil of orange-peel, $1 \frac{1}{1}$ ournces. (Sce Nos 1243 and 19r5.)
1262. Pomades by Infusion. These are prepared ly difesting the odorous sulbtances in the simple potande (see No. 1965), at is very geutlo heat, for 2 or 3 , ta 8 or 10 hours, according to their nature, is the way already noticed muler "Oils" (see No. 1224); observing to stir tho mistura frequontly, and to keep the reasel covered as muchias possible doring the whole time 1 part of flowers, eareftily piched and pulloil to pieces, to 3 or 4 parts it pomaule, are the usenal proportions. The nest day the mixture is again greally heated, und, after being stirred for a short time, is throwh into a strong canvas bag, which is then securely tied, and nt once submitted to the aotion of a powerful press. (This should have been proviously made
moderately warm. This is effected cither by means of a steam-jacket, or by filling it with hot water. In the latter case, caro should bo taken to perfiectly free it from water beforo use.) The wholo operation is then repeated, several times, with fresh flowers, or other lunlify odorous sulastance, until the pomado bo sufficiently fragrant. This will require 3 to 6 times its weight in flowers. Lastly, in tho case of dowers, the pomado is liquefied in a covered vessel, at at gentle heat, as beforo; and after sufficient repose to allow it to Ileposit aulhering moisture, is poured of for stack, or is at once potted. To obtain essences the fat is treated with spirit, which combines with the essential oil. leaving tho fint with still a strong udor of the flower. This latter forms the French pomade. Tho delicate perfiume of sume flowera is impaired by beat. and the prucess of absorption (cNAcurage) is ndapted. (Son No, 1263.) Tho mode of proceeding tyith the aromatic barks, serds, resins, balsams, \&c., the duration of tho infusion, and the proportions Laken, are, for the most part, similar to those of the corresponding laniles or oils; hat bere the first two kubstancel, and nthers of a like nature, are only braised, ground, or sliced very small, nuil not reduced to actual powder betoro digestiont, as pomades, inlike oils, cannot bo freed from fine powder or elust by filtration through fine amedia, or lvy repion in the cold. In this way are preprared lis pomades of bolsam of Pers, linozion, cassin, cimamon, lavender (gicen), orange-blossoms, orfis-root (videt), roses (colored), ntowas, vanilla, and soveral others kept fy tas Prench perfimerh, and known ant spoken of in this country by their Frejeh nomes, ns "Pomade aux Fleura A'Oranges," "it ia Jose," "A la Vanille," \&o. (Conley.) Piessa prinosucs a simplo method by which nuy peram can perfimo pomado in kusall quantition \& Nad, it dessired, propare perfumel extracts of favorite flowerf, Proctro an ordinary, porfoctly clean, doublo glue-pot, tho inuer sebsel capable of bolding n pound of fot. When the flowen are in bluorn, put a peund of fibs laril into the inner ressel of tho plae-pot; pour sufficient boiling water into the outer pot, zind place the whole on a stovo umtil tho lard is melted; strain it through a close hair-sieve into a sessel containing cold spring water. In order to obtain a perfictly jbodorons grease, this process may be repeated 3 or 4 times, using each time freeh water, containing a pituch cach of sutt and alomi. Lastly melt the purified fat and let it cool, to free it from water, Nest pitt the fat in a vessel in a place just warm enough to keep it constantly fiquil; throw inte it as many of the flowers as it will receive; overy 24 lonrs for a week; strain the fat from tho dowers, and add fresh ones. This repetation of fresh flowers will produce a highly perfimed pomade. In this manaer cilher one kind of howers, or a mixtafe of 2 or more kinds tuay he employed. The perfumed extract may bo cibtained from the pamade by introducing the coll perfumed fat. fizely ebopped, into a wide-neeked bettle, and covering it with tho strangest spifits of wine that can be obtained; and, sfer cloming the bottle, let it stani for a week, when tho spirit may be strained off, and will be a perfomed extract of the fowers empinged. The following flowers are best adapted for this process: Rose, jasmin, orange, violet, jonquil, tuberoso, and cassia. Piesse proposes heliotrope, but probably without sulficient grounds.
1263. Pomades by Enfleurage. These perfamed pomiaios aro prepared by a simi. far process to that adopted lor tho corresponding oils. (Soc No. 1229.) On tha large scale, a layor of simplo pomade is sprend, with a
tono palette-knife, on panes of glass, to about tho thickness of a finger, and the surface is closely efack all over with the nowly-gathered flowers. Tho panes aro then placed in shallow frames of wood, and theso aro elosely piled oni upon another, in stacks, in a moderately eool situation. In some of tha great perfumeries of Frunce, many thousands of thesc frames aro employed at once. On the smatl scalc, porcelain or pewter plates are geuerally used instead of panes of glass, and aro inverteil over each other, in pairs, so as to fit closa of tha edrea. In each casa tho flowers are renewed daily, end the fat stirred up and re-spread oceasionally, for 1, 2, or oven 3 months, of until the pomade has beeome sulbiciently fragrant to remiler it of the quality intended by the manufacturer. It is now scraped of tha paaes of plates, into the storo-pots, and ia ready for uso or sale. In this wisy aro prepared tho fimest qualities of cowslip, honeysuekle, jusmin, jongrij, mayblosscon, myrtle-blossony, narcisus, orangeflowar, tuberoso, and violot pornade; as well as tho pomules of several other delieate flowers that readily impart their odor to fat by simplo proximity or contact. Thoimported pomiades of this class, like those of tha last one, ary always distinguished among the perlamurs, by their French bames; as " Pounade hu Jasmin," "Pomado nux Fleurs d'Orauges," "Pomade is la Violette," be. The utromater pomutes of those last two classes are chietly employnal in the proparation of extraits and essiences, and are rulifed to other pomades, to impart tho fragranco of tho respectiva flowers. Tho others aro also ased as hair cosmetios. (Cooley.)
1264. Mixed Pomades; Compound Pomades. These aro propared either by the aderixture of the difforent fragrant pomides alarcady noticed, of hy tha addition of jadicious combinations of the more estocmed essential oils, ossenecs, and other odorous substances, to gimpla ponade, whilst in the liquid or somi-liquid atato. Tho lateer is the onthood almost oxclusivaly adopted by our perfimers. Tha uanal fatey basis of the preceding pomalied is one or other of the following:
1965. Plain Pomatum or Pomade. Tako a parts carctully rendered hog's tard, and 1 part beef-suet (see No. 1253, 4c.), and melt them together by is very ponile beat. The product is of tho proper consistence for tompernte elimates. Or: tard, 5 parts, and mutiots-suct, is parts. (Sec No. 1263) Or: Lard and suot equat parts.
1266. Common Pomatum. Take of plain pomade (ir fat), 1 pounil, melt it at the lowest derrese of heat that will effect the objuct, add of oit of bergamot aud lemon, of oach 1 drachan ; stir tho mixtare until it bogins to conterete, and then pous it into the pota or bottlus. This forms the ordinary pomatum.
1267. Rose Pomade. Melt together and mix in a water-hath 1 poand rrepared greaso and 2 ounces spermaceti; trínrate in 3 mortar until it becomes white w.d amooth, then auld aud facorporate thoronghy 3 ounces oil of aweet almonds, i drachre oil of roses, and 4 Alachm oil of geranium. A rose-color is olstained by heatiog the oil of almonds and thlding to it if drackm of albanet, aml strainins it before incorporation.
1268. Pomade Millifleur. This much estecmed pornade is at ongly scented with several perfumes of the simind noticed below, so proportioned to each sther that nono predorititate. Tho following aro commun oxamples; but the scents, within certain limits, may be varicd at will:-Take of plain pomado, 1) pounds avoirdapois; ofl of lemon, $1 \frac{1}{3}$ Impeshal fluid drachmas; oil of lavender (English), balsum of Perit, and essence royale, of each

1 fluid drachm; oil of eassia, oil of cloves, and essenco do petit-grais, of esch $\frac{1}{1}$ fluid drackon. Or, plaín pomade, 1 pound, asd esseace or extrait do millefleurs, 4 to 5 fluid drachms.
1269. Peruvian Pomade. Take onnce each good washed land, and clarified beef suit; Lulsam of Peru, i ouned; mix as before, add $\frac{1}{2}$ flaid drachm oil of nutmeg, and pour it into pots or dumpy, wide-moutbed phials. Dr. Copland adis a little oil of lavender. In ligh repute as a hair-restorer.
1270. Philocome. This compound is mallo without beat. Equal parts of purifica beef-marrow, oild of noisettes and awveet al. mods ara thoroughly mixed in a marble mortar, and the whole is then perfamed by the addition of a sufficient quantity of a mixture of estracts of rose, aescia, jasmin, or-ango-flower and tuberose.
1271. Vanills Pomatum. Take of plaia pomade 1 pound avoirdupois; melt and add 4 or 5 Imperial fluid drachms finest essenee of vanilta; attar of roses, 8 or 10 drops, as befors. Very fine. The plain pomademay be previonsly slightly tinged with annotto.
1272. East India Pomatum; Pomade dea Indes; or Pomade dOrient. Tako beef-smet, \& pound avoirdupois; lard, I pound; puro bright ficeswas, 2 oupces; finest amotto, 1 drachni; gum-heazoin in coarse powder, $\frac{4}{2}$ ounce; and grain-musk, 6 to 8 grains; digest in a covered versel sot in a water-bath, with frequent agitation, for 2 or 3 bousk. After repose, decant tho clear portion, add of oil of cuinn, 1 Imperfal fluid drachm; oil of lavender (Engtish), 1 fluid drachm; oila of eassia. cloves and verbens. each 10 or 12 drops; and stir the mass nutil it has somewbat cooled. Lastly, pour it into pots or bottles, and lot it cool very alowly, and undisturbed. Yery fragrant.
1273. Transparent Pomade. Tako of best transparont soop, 11 drachuns; 95 per cent. alcohol, 25 nitnces. Disolve the noap in the alcohol by heat, and add it soddenly to a quart of hot eagtor oil; thave perfume ready to put is at once, sad poir is warm botules. Apother sery superior articlo is prepared in the follouring way: Falty oil of almonds, if pounds; spormaceti, 1 pound; oil of lemon, 3 ormces. The spermaceti is melted in a watefbath, the nils are then added, and tho heat lopt tap until a uniform mass is obtained, in which no floating particles of epermaceti can be distinguikhed. The pomado is then poured into gianaes; if it is desfred to obtain this pomado erywialized, the glasses must be lieated beforelund, nad cooled down very slowly.
1274. Crystallized Pomade or Pomatum. Take of oil of almonds or olives, 1 pint; $\frac{4}{2}$ pound spermnceti (beet, pure); melt them together ly a peatlo beat, bdd seent at will, and whilst kufficiently marm to be clear, pour it into whrm glas bottlos, and allow it to cool pery slowly, and without disturbance. Somo persons nded 1 dmchm catmphor. It is usmally preferted zocolored. If tiuged at all, it must be only very faindly so, nud with substances that will not catese opacity.
1275. Pomade Divine. Tale of refined beef-marrow, 1 potmd avoirlupois; cypresswrood (rasped), ofris root (in coarse powder). liquid styrax, of cach 1 ounce; cinnamou (poswdered, lut not dusty), isunco; eloves (isell Unised), matuegs (grated), of each $\frac{7}{4}$ ounce; digest, by the heat of n water-luath, in a covered vessel, for 5 of G hours, and thent strain through flannel. Very fise, aud nucch csteemed for the hair, and also as au oceasioun! skin-cosmetic.
1276. Castor Oil Pomade; PalmaChristi Pomatum. Take of castor oil, 1 pound aroirdupois; pure whito wax, 4 ounces; melt them together, and then add of oil of
bergamat, 2\% drachmes; oil of lavender (Eng lish), $\frac{1}{2}$ dra ham ; essence royale, 10 or 12 drops; etir the misture whilst cooliug.
1277. Bear's Grease. Thic fat of the bear has long becu highly estecmed for promoting the growth of human hair, but with, out sulficient reason, since experienco shows that it passerses no superiotily oyer the fits orditarily employed ly the perfuners. Indoed, if we may regarn the somewhat rank smell of gendine bear's grease as an indication of its quality, it must be inforior tos them as a hair cosmetic; besides which, it is much more enatly. The greater portion of the socalled bear's greaso now sold is a factitious article, and is prepared by tha following for-mula:-
1278. Imitation Bear's Grease. Take of washed login land (dry), it primbds avoirdit. pois; melt it by the beat of a waterelyath, add of bulsatn of Pern, 2 draclams; Llowers of benzoin atad palm oil (bright), of cach 1 drachm; atir riguronsly for a for minutes, to prometo solution. Then remuve the pas from the lath, and, after repose for a short time, pour of the clear portion from the sediment, anel stir the liquad mass natil it begius to cool.
1279. Pomade for Ïncipient Baldness. Melt over a water-bach, 12 otacses pue veal grease, 5 ounces nerval balsinh. 5 ounces nutmeg butter, and 64 orneos of of Alammla triturate in a mortar unth thornggaly mised; thon add 10 drops crotea oil, ats menrporato. Next dissolvo 3h obnces nuhicarlamato of soda in 1 sunce each of ulcoliol and distilled water; incorporate this with the pomade and perfume to tastc.
1280. Cazenave's Pomade. Proparel beef-narrow, 4 numee (atedindipeis) : tincture of enntharides, of faid outee (tmperial); and cinnamon coarsely powdered. $\frac{I}{}$ ounce; melt them together by the heat of a water-bath; etir until the spirit is the tineturo lias evaporatod, decant the clear portion, and agaln stit until the masa concretes. It ia cheaper and more oupvenkent to atnit tho powdered cinvamon, and to struasly scent it with of of cianamon (or of cussia), after tho removal of the vessel from the bath. Some ecent it with the oils of orignaum and berganot; and others employ the oils of nutmer and lavetder for the parpose. Recommeniled in weak bair and remedinble baldress. It is ordered to lio used night and unorning; tho head being washed with senp and water, and afterwards with salt and water, and wiped dry, each timo before uppleing it, or at least onee in day.
1281. Tar Pomade. Dr, Dajacergne extolled in anmeasured terms the virtuc of vogetable tar in failing lair and baldness. His formula is as follows;- 64 troy ouncos lard; 5 drachans Norwegrian tar; $3 f$ dracbnas each hatter of nuthegs and gum-benzein ; 5 drachms fiovarenti balm; 5 drachms baums de commander: 1 ounce essence of patchouli; and 3 grains mask; nix. This formula appears uimecessurity and absurdly enmplicated. We bave no liestation in stating that tho substitution of 3 to 5 drachms English of of tavender, and 2 drachmis essence of musk or essence rorale, fur the last four articles, would dispulise the smell of the tar quite as well, rithout impaitiog the efficacy of the preparations
1282. Dupuytren's Pomade. Take 12 avairdupois ounces prepared beef-marrow ; melt by a gentle leat, add baume nerval, 4 otnees; 3 oances each balsam of Peri and oil of almonds; and mix thoroughly. Then aild aleoholic extract of emtharides, 36 grains , dissolved in 3 Imperial fluid drachms rectified spirit; stir the mass until it coucretes. This is tho original fonuela for this celebrated pomade; luth, in scrions cases, Dupuytren
was in the habit of doubling, or eren tripling tho proportiou of the extract of cantharides witheat altering that of the other ingredients. The provitet is a genial stimnlant and rubefscient, nod, not undeservedly, has long been theld in bigh esteem da is hair-cosmetic, keting Ly medkating the senlp.
1283. Soubeiran's Pomade. Take of oil of aluonds, $\frac{1}{2}$ ontace; disulphate of quinire, 1 dinclum; triturate them together in a warm welgtrood ware mortar until thonwaghly anited; then add of prepared beef-marrow. If ormees; and contivat the tritnration until the mass is cold. Scent maty be aided. Reconnuended for atrengthening and restoring the tisit,
1284. Pomade Contre rAlopécie, to Cure Balaness. Freat lemon juice, i draclom; oxtract of lark (by cold water), 2 dratmes, toarrow, 9 oqnees? tincture of conthatider, 1 drachm; vil of leman 20 drops; of of tueganiot, 10 dingis; mix. Pint wash the beat with chatp nad yater, with at bitlo ean do Colugue, then mb it dey. Next moraing ribi in a buentl truap of pomade, and repopit it shily. In 4 of 5 weeks the eure of haldness is efleperd.
1285. Now French Remedy for Baldness. Stobs nil, one of thet lant Preneh remedite bir haditest, is pagplayed by simply adding it 48 oil of pomale, and niminge or agitatine tha two together until admisturo or eulution te complete. The formula aslopt of by tho aminent Promels plagnielas whotithGroduced this renusly, ami who speakes, in the most eoudident anf enthusiatie wiy, of the suecosir atteadige is bue, h-hake of crotora oil, 22 dropm (minimes); of of almomels, 4 Tror diachoms mis. A litus is to lom well rubbed on tha seatp twiee a day, Soff down,
 Cooloy ray : "L have tried a mamber of experiments with crotoin oll, Glut 口ued, in partial lost of liste and lowdredil, ash am compelled to boit tortiniony to itcellieacy for veroal apparently lonolesa camer, in whicls oven cair-
 down, dit tuethe to reppertr from 3 to 4 weokx, ind contitusd til grow and increase hi strongth tise sotus time is was, howneer. only in about otic-thent of thene cabss that thin down nubsequently moseasei in atifies and grantity so as to well covor the prat, and in deserve the tarthe of hait, in the peprilar sense of the word." (Sed No, 12-6h)
1286. Caution abolzt Stroag Hatr Cosmetios. Ajthough tho stronatiz lutzoms matios are, nu is mude, porteotly site whert ap. plied neeprating to the directions pivon, atul tho oblief inconvenience that maty arteo, oven froot their too froo ir finfadiciuns oth, will bo only tomporary isritatiou, perhaps secturpanige or fallowed liy alight epesquitusation of tho cutiele, or by is firm animportant pustules which will puss off in twon or threo days, yet therd ard cases is which their appliation would be unvise, adal fiable to prailace tunte serious consegnences, Thus, persons of a nervous tompermmont, with a bighty irriable skin, and had babit of brely, persons liable to athuiks of erysipelas, or to swolien plands behind the cars, of to swollitgo or tumens in the upper part of tho neek behind, or to craptire of other nttacks of the scalp, and the like, should toot have recourse to them. In other cases, and, indeed, is all eases, it is wise to use them very sparingly, or in a diluted state at first, amid thats, is it were, feel otar tray, and las able to julgn from experience the strength that can bo cmployed, withont ineonvenienec, to prolues the desited effect. (Seo Nos. 1177, 5c., 1279, 4c. , kml l 1285\%)
1287. Hungarian Pomado for the Moustache. Melt by is gentio lient $\frac{k}{2}$ pound
gum-urabie, and $\frac{1}{2}$ poumd of oil soap, in 1 pint rose water, thun aild I poum white was, constantly stirring; when of a miform consistency, ald 1 ounce attor of bergamot, and $\frac{1}{2}$ drachm attar of thyuie, for perfume. If required to bo brown, color it with tube-barat umber; or fof black, mse tubo ivory-black.

Tooth Powders; Dentifrices; Poudres pour les Dents; \&c. These preparations

 should be compoumilei of materials which, while eleaning the teeth withont injury to the samel, will also be anti-acid, nnti-scorbntic. and tonic io their action ppean the gumbs. Cooley Eays: "Great caro thonld be untion to finely pulverize all the dry ingrerlicuts, and to redace tho harder and gritty obses to tho state of irapalpable powier, either by patient leriention or trituration, or by olutriation. (Sce Not. 25, 31, and 14.) To ensmre the perfect mistura of the ingredients. they shoud bo stirred together until they form an apparently bomognserns powder, which should then bo passed or zublied throngh a fing gauze-xieve. These wlich contain folatile or perishabla vutetanens, or whirls, liko charooal, are affected ly contast vill the uir, should ho put op ia thampy, vilio-mouthol bottler and kopt clome? ly corked," "Tuoth powdent am nearly all conepound powder. The only xitpple pewider in comaturs itse as a dentifico is powdered elaronal. Powdered bicarbonato of andin, eream of tartar, Ee., are also cmployed, thengli lesa frequmuty," The following list inctudes monte of the last thoth-powiers in cosumain wach as well at soveral alvertived nowtrims nid named puriders of the stores.隹ven for tomell pailei farsiah sthore for wooth powders; anhl nice veraid. Thas, the examplo fivea undler each nill incercuse the pumber of tho otber; nill both will sugest to thoreader ubler fucusale.
1289. Poadre DCtersive Dentifrice. Willow charcoal and white sugar in impalpas. ble powder, each 8 ounces; calasaga bark in impatyablo powder, 4 omecs; mix thoroughly in a mintar, sift thrungh the finest boiting cloch, and porfme witl a mixture of nttar of miot, 2 drachems; atter of cinnamion, 1 outies; and tineture of amber, $\frac{4}{}$ vunee.
1290. Camphorated Challe, Precipitited carbonato of lime (ctaik). 1 pount : powdereil orris roont, Il poumls; powdered cauplor, $\frac{t}{4}$ protnol; redare the camptior to line powiter ly trituratipg it is in mortar vith a littie alcohiof; then add thenther ingrediente. and whea the misture is coniplete, sifit through the firiest bolting cloth. (Siec No. 23.)
1291. Precipitated Chalk. This is prepared by alditur a solution of carbonate of sonla to a solation of chloride of catcimm (hioth cold), ws loug the a precipitate fonns. This last is well wathel with pure water, ond dried out of the dest, is tbe last. The refisp sulplate of lime of the soda-wrater mnkers shoob is poisomoas in quantity, is often zold for it by the druggists. Pare chalk is wholly solnble it tivegar, and in dilute acetic, hydrochloric, atul witric acid, with effervescence. Sulphate of lime is irisoloble in these fluids.
1292. To make Prepared Chalk. Fual, 1 pomsl chalk with safficient water, adied gralualiy, to make it s sunootb cream; then stir this into a largo quantity of water, after the coarser particles hare settled decant the millyy Iltid into another ressel, and allow the claik to settle; deeant the clear water, aul dry the seliruent.
1293. To Purify Hartshorn. Barn
pieces of Lharts' leon until perficetly whito; thea grimd them, and purify in the samo matuer is phatk, (Ke No. 1:92.)
1294. Lardner's Tooth Powder. Take of powdered charimat (recent), 1 ounee; prepared chatk (sen Ai, 12\%2), 3 ournces; mix. and keep it froun the air. 1 simple, but good tooth puwiler, kuowa mlso as Larelner's Propans! Choremel
1295. Miahle's Rational Dentifrice. Tike of angar of mill, 3 bubees: tomnin (tanmie acill 3 drachuts; red lake, I drachm; vil of tuint and of of aniseed, of each 7 or 8 drops; neroli, 4 or 5 drops; mix. Very serviceable in foul, lax, or bleeding gums,
loose or rotten teeth, \&c. As a tooth powder loose or rotten teeth, de. As a tooth powder it is improved by the addition of 1 ounce each of burnt hartshoni aud cuttle-fish bono.
1296. Deschamp's Dentifrice for Removing the Yellow Color from Teeth. Take of dry byypochlorite of lime, it drachm; red coral, 2 draolinis; triturato woll and mix thoroughly. Thia powter is employed in the following mabuer: a new brush is slightly moistened, then dipped in the powdor andapplied to tho teeth. According to Deechamp, a fow days' aso of this powder will produce a marked alteration is the appearanco of the the teeth, which will acquire a white color.
1297. An Excellent Dentifrico. Precipitated chalk (uca No, 1291), 1 powed; powdered borax, f pound; powdered wyrrh; 4 ounces; powilercd orria, 4 ounces. Mix, and siff through finest bolting cloth. (Sce No, 28.)
1298, Morfit's Dentifrice. Puwderod Willow eharcoal, 4 onncea, chinchuna bark and eugar of milk, in powderts, each 1 pound; old transparent koap, is powder, 4 ounces: mix in a marble mortar, sith, through the finest bolting cloth (seo No. 28), and perfumo with attar of oragg-flower, 1 onnce.
1299. Orosyenor's Tooth Powder, Thke of red cornl, 6 oumees; prepared oystersholl, 5 ounces; orris rout, 1 ounco; oil of rbodium, 4 or 5 drops; mis. This is the original formula. Equal parts of preparod sholls, rose-pink, and cutlu-lish bone, aro now generally sulbsti(uted for tho crral It is almo sold ns coral dentiffica aud corat tooth powider. Thoy aro atl favorites in tho fashionable world.
1300. Violet Tooth Powder. Tako of precipitated chalk, 6 ounces; cuttle-fish boue, 3 outices; rose-pink (bright), 26 ounces; orris root, $1 \frac{1}{2}$ ounees ; cssence of violets (orris), d fluid drachm; indigo (pure, to striko a violet tint) 0 sufficient quantily; mis. Λ favorite dentifrico among ladies.
1301. Areca Nut Tooth Powder, Take of arees nut chareoal, 5 ounces; puttlefish bone, 2 ounces; arseanuts (raw), 1 ounce; mix. Abont f drachm each of cloves and cassia are tesually quided, lut it is botter without any such nddition. Areca nut chareoal, in fine powder, is often sold under this name. This powder cambot bo excelled. (Sco No. 1302.)
1302. Areca Nut Charcoal is prepared and kept by only a fow houses; four-finhes of that sold by the druegists is spurious. Tho genuino powder is heavier and barder than consmon charcoal, and has a peculiar appearanec and feel, when pressed with the fingers, which is readily distinguishable.
1303. Pearl Dentifrice; Pearl Tooth Powder. Tako of white marile-dust, 4 ounces; cuttle-fish lwone, 1 ounce; smalts (finest), 1 drachis; essenco de petit-grain, 10 to 12 drops; mix. A favorits with ladies who bave white, bealthy teeth. Precipitated chulk or heavy cartuonats of magnesia is commonly substituted for tho marble dust, but the quality of the product suffers in all but color.
1304. Pelletier’s Quinine Dentifrice.

Take of red coral, 3 ounees; myrrh, 1 dracham; disalphate of quinine, 15 grains; scent at will; mix. Recommended as a tonic for the teath and gams. Prepared oyster-shell is commonly substituted for the coral, and a littla red bole added to color jt.

Tooth Pastes; Tooth Electuaries; Pates pour les Dents. These may consitit of any of the

 substances ordinarily used na dentifricea, reluced to the stato of iapalpable powder, and beaten up with sufficient honey (liquefied by a gentle beat), byrup, or capillaice, to give them the form of a bmooth and moderately stifl pasto or electurry, is suffieicnt guantity of aromaties being usualty added, na it were, to "ombalm and perfume tho month." Iloney of robes is often, aud conserye of roses sometimes, used for thoso in which their odor sod color are suituble. \triangle little rectifien spirit ia a usofil oddition, as tending to presarve them, and prounte their action. A litile eaude Cologno or layender water is often omployed, with the game intention. They are usually put up in porcelnin or ermamental glazed earthonware poth, firmahed with elosely fieting covers, to properve their contents froas tho air. The mixed powilers stould be passed through a very fino ganze-sieve, beforo adding the honey, and the pasto whnutd not loo potted antil the day following that on whiets is is made, (Scc No. 1298.)1306. Ward'a Tooth Paste. Take of prepared chalk (sec No. 1292), 2 nunces: byrrb, thatany root, and cuttlo-fiah bone. each, founco; orris root, + otuce; hovey, ${ }^{2}$ obinceri. A vory useful dentifrico (in fou), apongy, and seorbutic gums, foose and rotten teeth, be. Thia is alke knowve as Zofifer's Ap-i-scorbutio Denlffrice.
1307. Areca Nut Charcoal Tooth Pate. Arocanut charcoal (recent, in fino powder), beaten up with puro honey or capilFairo, Aromaties, though commonty ndded, do mot inptove ita offeacy. (Seo No. 1302.)
1308. Areca Nut Tooth Paste. Taka of recently burnt arectint chareoal, in fino powder (seo No, 1302), 5 parta; raw or winburnt areen butar, 1 part; boney, litquefied by a gentlo beit, and allowed to cool, sufficient to make them into a atide pesto, utdiog gradual. ly, for each ounce of the mixtare, abost 1 fuid drachm reetified spirit, bolding in solotion oil of cassia and oil of eluves, of ench 10 or 12 drops. The neat day leat up the mass again, adding, if necessary, a few drops of proof spirit, or of can de Joso or orangonlower water, to give it a proper consistence, and at once put it into pots. A very excellent preparation.
1309. Vanilla Tooth Peste. Take of the finest vanilla, 1 drachm; cloves, $\frac{1}{2}$ drachm; lump sugar and outtle-fish bone, of each is ounce ; white marble-dust, 1 ounce; mix, triturate them to an inpalpable powder, and then lieat them to a pasto with about 2 ounces syrup of saffron. The product is much esteemed for rapidly whitening tha teeth and deodorizing the breath. 5 or 6 drops of es seace of ambergris or musk, dissolved in 1 fluid drachm of rectified spirit, are often added, and improve it.
1310. Peruvian Bark Tooth Pasto. This pasto is made by sedding $1+$ or ${ }^{2}$ drachms of Poruvian bark, in very fino powder, to the last roceipt. It is a uschul tonic in sponginess, foulnoss, and scurvy of tho goms. (See No. 1318.)
1311. Soap Tooth Paste. Tako of Cas-
tilosoup (air-dried, in fino powder), and cuttlefish bone, of esch 2 ounces; honey, 4 or 5 onnces; aromatica or perfumo at will, with or without tha aldition of a littlo rectified spirit, A very oxcellent preparation, saperior to all the other pastes for cleaning tha teoth and remoring tartar and animaleulre from them, but inferior in blanching and preservativo qualities to areca nat charcoal paste. A pink or rose color may bo given it by alding 1 drachm of finely powdered cochincal, or a fluid drachm or two of the tincture. It is commonly ordered is books to be made with boney of roses. but the alkali of tho Bonp spoils the color of this article. The aboyo preparation is also known under the eames of Spanish Dentifrice, and Castilian Tooth Cream.
1312. Violet Tooth Paste. Take of prepared chalk, I ounces; cuttle-fish bono and whita eagar (powdered), of each, 2 oances; orris root (powdered), 1 oqnice; smalts, 2 to 3 drachms; mir with sufficient syrup of violets to mako a paste. A fashionable tooth-pasto, highly esteemed for its power of cleaning the teath, and its delicato color and odor.
1313. Odontine. Thero aro several dentifrices advertised under this nume, two or threo of which hase acquired a very largo salo in the fishionablo world. That of an cminent perfomery house appears to bave the following composition:-Cattle-fish bone, Castilo noap and red coral, equal parts; color with tineture of onehineal and mix with honey sulficient to make a paste, and essential oils to aromstizo, in sufficimat quantity of each.
1314. Pellitier's Odontine is said to consiat of palverized sopia-bone (cutule-ash bone), with a littlo butter of cacao, beaten up with honcy and aromatized or scented with ossentint oils.
1315. Magic Tooth Paste. Tako of white marble-dwot, 2 ounces; pumico-ktono in impalpable powiler, $1+$ ounces; rase-piak, it ounce; attar of rones, 7 or 8 drops; mix as before with suflicient honey to make a paste. A favorito nostrum for rapidly cleaning and whitenigs the teeth, bat oac not nalaptod for froo or frequent use.
1316. Charcoal Tooth Paste. Take of chlorato of potases in sery fige powder, 1 drachm; finely powlered clingoal, 2 ounces; hoacy (Gest rave, cold), 11 ounces; suifficient bint water to flator; form a pasto na beforo. A rather nnechemical mistare, estenmed, partiealarly by amokers, for deodorising the leath and breath.
1317. To Prepare Charcoal as a Dentiffice. To prepare efarcoal of tho highest quality, as a dentifrice, requires cousiderahle ekill and care. Tho sabstance, whether wood or nat, should not tho in largor than ono fnch pieces; tho carbodization should too effeoted in coverad erucibles, at a low red heat-in no case oxceeding a dull obarry red,- and the wholo shauld be oooted out of contact with the aif. On opening the orucible, only those pieces should be selocted for uso which aro properly burst, and havo a uniform dark color and a dull surface, if the leat employed bo mach bigher than that named, tho charcoal acquires a lirilliant sarface, nad is greatly doteriorated in quality. Tho pieces selected should be kept in close vessels for farther aso or operation; any exposure to the air weakons ita power of sibsorptions.
1318. Peruvian Tooth Paste. This is formell by adding about $1 \frac{1}{2}$ to 2 drachms of Peruvian bark, in rery fino powder, to every ounce of the dry ingredients of any simplo tooth paste, befora beatiog thetn up with boncy or syrup. Δ usefal tomio for tender, spougy, foul, or scorbutic gams, and said to fix loese teeth. A little powdered myrrh is sometimes added.
1319. Quinine Tooth Paste. Tako red coral, 3 ounces; cuttle-fish bone, 1 ounce; disulphate of quinine, $\frac{1}{2}$ drachm; mix, triturate to very fine powder, add honey (white), 4 ounces; and a fow dropa attar of roses, or neroli, dissolved in rectified spirit, 3 fluid drachms; and beat the whole to a paste. A little powdered myrrh (1 to 3 drachms) is sometimes added. A very fashionablo and popular article. Use, de., tho same as Perrvian paste.
1320. Opiate Tooth Paste. Honey, powdered orris, and procipitated claill (sce No. 1291), each $\frac{1}{2}$ pound ; rose piuk, 2 drachms. Rabinto pasto with simplo syrap, and perfumo with oils of cloves, nutmeg, and roso, each $\frac{1}{2}$ ounce.
1321. Patey's Orris Tooth Paste. Take 1 ponnd Pans white, $\frac{1}{2}$ pound roso pink, 3 ounces orris root; alom, $\frac{1}{}$ ounco ; oil cloves and nutmegs, each 1 drachm. Uso honey enough to form a paste.
1322. Dr. King's Tooth Paste. Propared challt (sec No. 1293), 1 pait; powdered Peruvian harl, 1 part; powdered old Windsor soap, 1 part, Mix with equal parts of tha tinctures of thatany and mymth; oil of checkorberry to flavor. This pasto is a fino proparation for soft, spongy gums and looso teoth.

Tooth and Mouth Wash-

Tbesefuo used to rinso the mouth, and particularly tho teoth and gums, a fow drons, more or less, of them being added to about a wine-glassfal of water for the purposo. In some cases their action is promoted by tho uso of the tuoth-brasls.
1324. Eau Botot. Tincturo of cedar wood, 1 piat; tincture of mymh and rbatany, each 4 ounces ; oil of peppermint and rono, each 10 drops. Mix.
1325. Violet Mouth Wash. Tincturo of orris, essenee of rose, nod alcohol, each it pint; of of almonde, f drogs. Mix,
1326. Mexican Tosth Wash. Tako of pulverized onis root, 1 ounce; wnqua benns, lounce ; Perucian bark, f ounce; oak bark, $\frac{1}{t}$ onneo; alcohol, 1 pint; water, 1 piat ; let tha above stand for 12 dasse, and filter; color with alkanet root, An clogant tonth wash.
1327. Balm of Thousand Flowers. Take of whito Castile soap, 2 ounces; bonoy, 4 ounces; water, 12 ounces; alcohol, 4 onncese melt tho Castile soap and honcy in the aloohol and water with a gentle hent. Flavor with oil of roso and wintorgreen. Used as a dentifrico.

1328, Wash to Harden the Gums. Take $\frac{1}{2}$ pint of Jamaica spirits, $\frac{1}{2}$ tea-spoouful each powdered alum and saltpetro pulverized, and 1 ounco of pulverized myrrh. Mix.
1329. Cologne Tooth Wash. Eau do Cologno, 1 qquart ; tincture of myrrh, 4 ounces. Mix.
1330. Sozodont. Take of salts of tartar (carbonate of pothssa), if ounce; honey, 4 ounces; slcohol, 2 ounces; water, 10 ounces; oil wintorgreen and oil rose, sufficient to flevor. Δn elegant dentifrice.
1331. Cleveland's Tooth Wash. Tinctures of myrrh, Peruvian bark, aud geutian root, ench 1 fluid ounce; aqua aminonia, 1 drachm; puro water, $\frac{1}{2}$ pint; tinctare of wintergreen, or any flavor tosuit; mix. This is a fine wash for tho mouth, guns, and teeth.
1332. Myrrh Tooth Wash; Kirkland's Tooth Lotion. Take of tineture of myrrb, 1 ounco; water, 2 ounces; inacilage, t onnce; agitato them well togother, and ngain each timo beforo use. As a wash in rotten and loose teeth, foul, spongy, and ulcerated
gums, fetid breath, \&ec, it is oflen very Bervicenble where there is a seorbutie taint.
1338
Myrrh and Borax Mouth Wash. Rab vell togethor in a mortar, 1 ounce each of borax and honey; then gradually fudd 1 quart spirit of wing (not above proof), and aeld 1 punco cach of gum myrrls and red saunders wood. Macerato for 14 days, and fiter. This is an excellent wash for the gunss and mouth.
1834. To Cleanse the Spaces Between tho Teeth. Sonne dentists recommoni silk floss for cleaning the spaces loctween toeth, lont we linow from experienee, that No, 8 gam riugd iro supuerior. Thay are much moro convenient it evary resineat.
1335. Wash to Beautify the Teeth. Dissolye of ounces horax in 3 pounds boilug water, and before it is eold add 1 ten-spoonfol spicita of eauphor, aul bottle for lase. A tablo-spooufu! of this mixtare, miken with ars oqual quantity of tepid wates, and applied daily with a siof. Drasb, preservea and beantif fios tho teeti, extirgates all tartarams nithesiow, arrests docay, modices a healthy metion ill the guma, ant suakes the teeth pearly wbite.
1336. Grehon Aromatise. These popalar pastilles fox perfaming the breath are thes mada: Dissolvo 35 pmices extract of Diquorice in 4 otrues water, by the lieat of a Water bath, and mild pulverized gnot-arabio, ; ounce; and Bengat ratectas in powder, if ouncs. Evaporats to the cobsistesco of ati extract, and Hzen mix in thoroughly, pow. derod mastic, charconl, cascarilh, and orris root, each 1 truetum. Wbou the innss has boen reducod to the proper consistenee, it is to bo ronoved frous the fire, treited with attar of peppormint, 30 drops; timotures of asolesgris and anast, 5 drups ; and then poured out upon an oilea shab, ant milled to a sery thin bheot, Δ feroooling, blotting paperia preased upon it to absorb any adhenng ofl, nad the surfaces aro motituned with wister, and covered with silver leaf. When dry it fo to bo divided into amall bita of thegizo of a lentil.

Syrups for Soda or Minerabl Waters, Tho following

 is a collection of well approved receipts for Ilsyoring ininetal waters, solected principally from the "Druggint's Circular and Chemieal Gazette." Most of the syraps not trade from fouits may havo a little gum-arabie added, in ondor to produce a rich firoth when tho aoda water is ndded.1385. Simple Syrup. To 8 poundi
 whites of 9 ggga; stir mutil nll the sugar is dissolved ; aimuer for 9 or 3 minutes; skim well, aud strain throngh a fine danmel bsg. Tha following syrups for soda water may bo prodaced by employing the above byrup bs is basis Λ variety of other syrups may be malo it the same way by using the artificinl fruit essences. (Sec No. 1045, also last receipt.)
1386. Simple Syrup. W bite sitgar, 10 pounds; whter, 1 gailon; isinglnss (beet), $\frac{1}{4}$ ounce (or, the white of in egg). Dissolve the isingloss in lut water, and ald it to tho hot syrup. The syrup is to bo mado with gentle heat, and then strained.
1387. Lemon Syrup. Add to simple syrup, when cold, 20 drops fresh oil of lemon and 1 oumee eitrie acid (previously dissolved in 3 ounces water) to each gallon. Mix by shaking well in a bottle, then add 4 ounces bum solution, made by dissolving 2 onncea fine white gum-erabic in 2 ounces warm water.
1388. Lemon Syrup. Grate off the yellow rind of lemons, and beat it up with a sufficieat quantity of granulated sugar, Expross the lemon juice, suld 1 pint water to each pint of juice and 31 pousids gramulated sugar, Encluding that rubbed up mith tha rind; Farm until tho sugar is dissolved, and strais.
1389. Sarsaparilla Syrup. To 1 gallon simple kyrup uid 10 drops ofl of amise, 20 drops oil of wintergreen, 20 drops oil of eassifras, and G ounces caramel, of entoring. Before tha oils aro added to the syrup, they shottd be cut by grinding them in a pportar, with as touch sugar as they will mowisten, or misud with s small quantity of stroug alcohol.
1390. Sarsaparilla Syrup. Take oil of wintergraen, 10 drops: oil of ninise, 10 dropa; oil of sassaifas, 10 drops; flaid extravt of sarcaparilla, 2 nunces; simple syrup, 5 pinti; powdered extract of liquorice, $\frac{1}{2}$ onace; mix well,
1391. Parriab's Syrup of Sarsaparilla for Mineral Waters. Take sigple syrup. 4 piata; compound syrop of smaplarilla, 4 flusi ounces; caramel, il ounces; of of wintergreen, 6 dropy; oil of sasafras, 6 drops; mix.
1392. Ginger Syrup. Bruited Jabiaica gingor, 9 ounces; hoiling water, 1 pint; macerato for 4 horrs: nid fing white sugar, 2 poments, add strain thrugra a fioe dannel lag. (iinger byrup msfy slam bo mado by ailding ? ounces estract of giuger to 1 gatlon eimplo syғup.
1393. Ginger Syrup. Tinetare of ginger, 4 dainl ousers; Amplo syrup, 4 pints; mix.
1394. Vanilla Syrup, Vinilla, 6 drichns; bodlef waler, $4 \frac{1}{2}$ pints; sufar, 4 poinils avoirclupoia. Ieduce the vanilla to Line powiler by tritaration with a portion of the wagar; boif this with water for 9 liours in a coveral vesel, thon drath.
1395. Vanilla Syrap. Fluid estract of vasilla, I utheses citre acid, $\&$ ornce: aimple zyrap, 1 gatlon: rib the awhl with some of tbe segrop, wall tha estract of vanilla, and mir.
1396. Wud Cherry Syrup. Stecp 4 onncot ivilil charry bark, weft briksod, iu i gint colld water, for 36 hours; pross ont the Infision; let it stand Utl ctear; decant, and ndil it porisds find whito kagar; mis and strain.
1397. Wild Cherry Syrup. Moliten 5 euseer will cleerry leask, tis cuarme powder, with water, amilet it stand for et bouss io a closo vessel, Then prock it firmly in a perconlator, ant poar waler upous it undil 1 piat of Qutd is obtainel. To thas add 25 onneessagar.
1398. Strawberry Syrup. Take frodh Etratwermos and inctose thenifia coanco hasp; prear vus the juiee, ant to each quart ndd i piat wabor andi' 5 porvila Thito sugar ; dissolve by ratang it to tho bofliog poitt, and atrain; tottle nad cork hot, and hprp in a cuol plase.
1399. Strawberry Syrup. Take fresh strawberries, 5 quans; whitokngar, 12 podsuis; water, 1 pint Sprinklo sonthe of thesugtar over tha frnit in layers, and allow tho whote to stand for several hours; espress the juied and strain, washing out tho pulp, with water; add tho remainder of sugar and water, bring the fluid to tho point of boiting, and then strain. This will keep for a lotig time.
1400. Strawberry Syrup. Strawherry juices 1 pint: simple syrup, 3 pints; solution of citric aced (sec Prait Acid), 2 drachms; mit.
1401. Fruit Acid (ased in snmo of the syrups). Citric meid, 4 omnces; water, 8 ponices.
1402. Strawberry Syrup Without the Fruit. Add to 1 gallon simple cyrup, 2 tea-spoonfils essence of struwberry, and $\frac{1}{4}$
vusce tarlaric acit Golor with coloring maile as follows: Befl 1 onmee cochineal with I tea-spoonful of cream of Lartar. Strain.
1403. Raspberry Syrup. Make as direeted for stsawberty syrup, citber with tho fruit or the essence. The flavor of this rymap is improved by using 1 pint currants to 5 of raspherries.

1404 . Blackberry Syrup. Mato ns directell for strawberry, and add to cuch yuart 1 unoee of the best. French Lramdy.
1405. Pineapple Syrup. Tako a conrebient mumher of piseapplex, pirc and mash them in a marhle on porcelais murtur, with a small quantity of sugar: expresa the juiec, and for each quart take $1 \frac{1}{2}$ pints water and 0 poumds finc sugar; boil tho stgar and water, then ald the juice; remove from the fire, and akin and atrain. or make it with tho edsabce, as directed for strawberry, (Son No, 1402.)

140日. Pineapplo Syrup. Oil of pimespple, 1 drachm; tartarad acid, 1 drachut; siouple syrup, 6 pints; mix. Orf Take 1 gal lon espreased pibeapplo juico; sugar, 15 pounds; fruit neid (ree No. 1401), 2 umpees; \#nis.
1407. Wintergreen Syrup. Oil of wistergreen, 25 dropar ; simple syrup, 5 pinta; rufficient brrnt magar to eolor (see No. (124); Elis.
1408. Maple Syrup. Tate maplo smay, 4 pemads; watirt, ${ }^{2}$ pints.
1409. Chocolate Syrup. Mix 8 ounces chocolato in 2 piota watur, bul stir thoremghly over a blow firo. Strain, wad add a podnda whito agar.

1410, Orange Syruip. Take a onvenient atamber of fieqh an fipe oranges, grato of' the ontaite yellow poed; cut the oramges fant express tho lisee; tund to carlh quart nd 1 puat water and 6 joarda ungar, proviously well mized with the crated jeel. गhasalva by geutte beat, thra ktrain.
1411. Pear Syrup. Mako as dirceted fir pubeapple byrup, ur the tho oksence of pear, by atding to cach gallon of simplo syrup ? tea-sjonatfala cosemeco of poar and $\frac{1}{t}$ onneo of Lathrin acid.
1412. Applo Syrup. Muko as dirented for pincapple syrip: of with tho appropriate frait ensente und acid, as aboyed
1413. BananaSyrup, Makoas directed for pureappic syrup; ur with the apperopiato fruit essence, as Lu-foredirected. (Soe No. 1402.) Or: Take oil of hamama, 2 dracluna; tartario seid, 1 draches: siniple byrup, 6 pinter mix.
1414. Grape Syrup. Brauly, of pint; spirits of lemon, $\frac{1}{2}$ oance; tinetire of red sausders, 2 onnces; simplo byrup, 1 gallon. Mis.
1415. Orgeat Syrup. Take 3 onnces sweet almonda nod f ounco bitter almonda; gum-arabic in powder, $\frac{1}{}$ ounce; sugar ie powder, 3 ounces. Rub together in a mortar, adding water from time to time, patil the mixturo mensures 1 quart. Strain thrmigh a eloth, and mix with 1 gallon of simple syrup.
1416. Imitation OrgeatSyrup. Cream syrup, i pint; vanilla syrup, 1 pint; oil of bitteralmonds. 4 drops. Or: About2drachms imitation cream syrap (sec No. 1430) are to bo mixed with 2 ouners simples syrup and flarored with bitter almund and orange-flower whters.
1417. Orange-Flower Syrup. Adit, 1 gallons kituple syenp $\frac{1}{2}$ waseo extract of of ango flowers.
1418. Coffee Syrup. Cotfee, roasted, $\frac{1}{2}$ poumb; boiling water, I falkon. Enough is
 which add erasmiated surat, 7 pmonds.
1419. Nectar Syrup. Strasberry syrup, $\frac{1}{2}$ pint; Muleira wite, 1 ounce; urgeat egrap,

1 pint. Mix.
1420. Nectar Syrup. Vacilla syrup, 5 pints; pineapplo syrap, 1 pint; strawberty, rasplerty, or fomou syrup, 2 pints. Mix.
1421. Sherbet Syrup. Vanilla syrup. 3 pints; pineapplo syrup, 1 pint; lemui syrup, 1 pint. Mix.
1422. Ambrosia Syrup. Raspbent syrup, 2 pints; yanilla syrup, 2 piats; Hock wine, 4 ounces. Mix.
1423. Hock and ClaretSyrup. Hoek or claret wine, 1 pint; simple syrup, 2 pints. Mis.
1424. Solferino Syrup. Brandy, 1 pint simplo ayrup, 2 pits. Mix,
1425. Cream Syrups. These are propared by mixing highty finvored syrups with fresh oream. As this latter docs not keep well, it in a more economical plan to make a simpla cream synsp in suitablequantities, and to add a portion of it to the flavored synip as required, This prevents the loss of different favored syrups by spoiting, nad allows of the cream being used for any tavored syrup.
1426. Simple Crearn Syrup. Mix together thoroughly 1 puand powdeced sugar with 1 pint fresh oream. Keep it is piat bottles for use.
1427. Taylor's Cream Syrup. Fresh cream, it pint; freah milk, $\frac{1}{8}$ pint; powdered nogar, 1 pound. Mix by bhaking, and keep in a cool place. The addition of a fow grains of bicarbonate of goda will for soma timo retard nouring.
1428. Hubbell's Cream Syrup. This is propared with is pouades sugar to 1 pint of cream.
1429. Cream Syrup. Take of freith eream, i pint; fierh inilk, 1 piat; fine powdered sugar, 3 pounda; beat tho megar with the mille and the whitess of 2 eggb, then mix with the eream. Flavor with ramila, lomon. or strawberry. Keep in a cool place, woll bottled.
1430. Imitation Cream Syrup. Make an emalsion with 3 flaid ounees freeh oil of 6weet almonds, 22 ounces pewderel gum-limbic, and 0 unpees water ; then diseolve 1 potail white sugar by a geatle heat, atrais, and when cool, add the whites of ta egges. It chould be put up in small louttle, woll corked. in a cool place. This is nut only an exeellent imitation and sulustitute for creant byrup, but Fill keop well for a considerabla time.
1431. Cream Syrup. Taka of Freah anskimmed milk, 1 pint; sugar, 2 ponnds, Troy. Disuolyo by ainaking in a bottle, ndd 4 of this to $\frac{7}{}$ of any of the fruit eyrups; or, for vanilla cream, add about a tabfe-spoonfal of fluid extract of vanilia to 1 pint.
1432. Vantlh Cream Syrup. Flaid extract of vanilla, 1 ounce; simplo eyrup, 3 pints; cream (nr condensed milk), 1 pint May be colored with carmine.
1433. Coffee Cream Syrup. Coffoc synup, 2 pints; Cream, 1 pint.
1434, Nectar Cream Syrup. This is a mixture of 3 parts vanilla syinp, 1 part pincapple syenp, 1 part lemon syrup, and 1 part simple cream syrup.

C ements and Uniting Bodies. In the preparation of ce-

 ments and all substances intended to produco close adhesion, whether in a semi-flufd or pasty state, frecilom from dirt aud grease is a most essential and necessary condition. Quite as much depende upon the manner in which a cement is applied as upou the cement isself. The liest cement that ever was compounded would prore entirely worthless if improperlyapplical. The preparations given lelow will be found to answer eresy reasonnble demand; and if properiy prepared and used strictls eccording to the direetions laid down, will reldons fail to form a mion es strong, if not stronger than the sulustances joined. The first point that demands attention, is to bring the oement itself into intimate coutact with the surface to be unitenc. This end is best reached, when using hot coments, by making the edges to bo joinod at least as hot as the cement when applied, or as wearly so as can bedone without injury to the sibstance; in some cases it is even preferable to meit this cement on the heated edges. Awother very important point is to use ss. litalo cement is possible. When the surfaces are sepnrated by a largo masa of coment, we have to depend upon the strungth of the comeot itsolf, and not upon its adhesion to the surfaces which it it need to join, min, in general, cespents are comparatively frithe Sealing-wax is a very goou sgont for uniting metal to plass or stome, provided the masces to bo uuited are mode so foot as to fuse the cement; but if the cement Is applied to them while they are cald, it will not stiek at all. This foot is sell knowis to venders of cement for unitivg eurtheawaro. By heatiog two pieces, so that they will funo alhellac, they are able to joln them to that they will rallier bealk at may other part than along the line of mintom. Dutathoagh peopte constantly aee the oguration performed, and buy liberally of the cement, it will he foand in nide eases out of ten the cotpent proves worthless in thelr hands, sinply liecause ther do not know how to ase it. They are afraid to heat a delicate glasi or porentain vessel to as sufficient degroe, ani they aroapt ts uso too mach of the material, and the result is a failtre: the cement is consequently deamed good for notaing. Tha great olatacles to the fonetion of any Lwo surfaces aro alr and dirt. The former is univerally present, the latier is due to abeldent or carclinames. All kurface are coyerel with athin silbering loyer of air which it is difscolt to romore, nud milesa this ia displaced, the cement eaunat putbere to the earface to which it is npplieel, simply becaise it canaot comis into coliteot with it. Tin moat alfieiont agent in displacing this adhoring air is heat. Metals wafoest to an point it Litte above 200° become finatantly and eomplotoly wet whea brimersed ia water. Itence, for cemonts that are used in A fued condition, heat is the buost effigingt meass of briumtige Chem is combact with tho surfeces to which they are to lie applted. Io the case of glae, tho mithesion is beat athained by unoteralo presarare and friectiots.
2152. Armuninn or Juweler's Cement. The followiug is 4 receipt for a strong comont ured by nome oriental uations, for the parpose of attachitig precious stomes to metaltio sarfiues: Take 6 pieces of gum mastio, the size of is pea, and dissolve them in the smalleat pursible quaratity of 95 per cont. nlestol. Softer sotre isinglass in water (though noue of the water must le nued), and satarate strong liratidy witl it tall you hase 2 orinees of gluc; then rub in 2 kmall pieces of gum smmoniac Mix the two pteparations at a heat. Kecp well stoppered. Set the bottle in hot water before asing. it is said by the Turks that this preparation will mite two metallic surfaces, evela of polished steel.
2153. Keller's Armenian Cement for Glass, China, \&c. Soak 2 drachms ent isinglasa in 2 ormces water for 24 hours; boil down to 1 ounce; sdid 1 ounce espirit of wine, and strain through linen. Mir this, while hot, with s solution of I drachm mastio in 1 ounce rectified spirit, and triturate thoroughly with
$\frac{4}{}$ drachm powdered gum ammoniac.
2154. Ure's Diamond Cement. Tako I ounce isinglass and 6 ounces distilled water; boil down to 3 ounces; add $1 \frac{1}{2}$ ounces rectified spirit. Boil for 2 minutes, strain, aud add, while hot, f ounce of a milky emulsion of ammoniac, and 5 drachms tincture of gum mastic.
2155. Chinese Cement, Take of oxango shellac, brmeed, 4 ounces; highly rectified epirit of wine, 3 ounces. Sot the mixture in a warm place, frequently shaking it till the shellat is dissolved. Wood naphtha may be snlastituted for the apirit of wine, but the unpleasant amell of the naphtho is amme objection.
2156. To Mend Broken Glass. A mach better process for mending broken glass, china atud earthenware with shellac, than heating them, is to dissolvo the shellao in alcohol to about the consistence of molasses, and with a thin eplinter of wood or pencilbrush touch the elges of the broken ware. In ashort timo il sets without any heating, which is often inconvenient. It will stand every coutingency but a beat equal to boiling water.
2157. To Mend Crockery Ware. One of tha strongest caments and easiest applied far this parpose is lime and the white of man ege. To use it, take a sufficiont quanLity of Lue egg to mend ono article at a time, shave off a quantity of lime, and mix thor: pughly. Apply quickly to the edgos and plase firmly cogerlier, when it will very goon becomo ret and sitrong. Mix but 14 small guantity at once, as it hardens very soon, 89 Lint it campot bo usonl. (lateined plaster of Paris would abswer the samo purpase.
2158. Badigeom. A rament used by eqeratives atd artiats to fill up holes and corver defects in their work, Statuaries nse a jaisture of plaster and free-atone for this purposo; carpeuters, a mixtione of smwdust and gine, or of whiling asd glue; coopers nse a nixture of taltow ant chalk. The samo Wante is given to a stone enfloreil mixture used for the frouts of houses, and said to be con. prised of wood-dust and lime slacked together, Ftone-powder, and a little umber or sienna, mixem ap with alam water to the consistence of puint.
2159. Japanese Cement. Intimutely mix the best powdered rice with a little cold water, then grodually add boiling water until a proper consibtence la acquired, lieing particularly caruful to keep it weil stirred all the timo ; lastly, it muet be boited for oni minuto in a clean equoc-pan of earthen pipkill. This glue is beautifully white and almost transparent, for which reason it is well adapted for fancy paper work, which requires is stroug rand colorless cement.
2160. Curd Cement, $\Lambda d d \frac{1}{2}$ pint vinegat to $\frac{1}{2}$ put skimmed milk. Mix tho ourd with the whites of 5 eggs well beaten, and sufficient powdered quick-lime Eifted in with constant stirring, so as to form a paste. It rexists water, aud a moderate degrev of heat, and is nsefol for joining small pieces of marble or alabaster.
2161. To Make a Cement that will Resist Benzine and Petroleum, It has guite reseatly been discovered that gelatine mixed with glycerine yields a compotud liguid when hot, but which solidifies on cooling. and furms at lough, clastic substance, having much the appearance and characteristics of Iudia rubleer. The two substances united furm a misture entirely and absolutely insolnbla in petroleam or benzioc, and tho great problent of moking casks impervious to these fluids is at once sulved by brushing or painting them on the inside with the compound.

This is also used for printers' roilers and for buffers of stamps, as bemzine or petroleum will clean them when dirty int ho meast perfect manner and in om incredibly short space of time. Water must not theltsed with this compound.
2162, Cement to Resist Petroleunt. A cement peealiarly folaptell to stami putroleum or any of its distillatea is made by boiling 3 parts rosin with 1 canstie sodn and s water. This forms a resin soap which is afterward mixed with half ils weight of plaster of Paris, zine white, whites lend, or precapitatesl chalk. The plaster hardens in about 40 minutes.
2163. Cement for Aquaria. Mir 3 pounds wail dried remetian red (timely powdered) with 1 pound oxide of irou, ond "udd as much boiling oil as will reduce it to a stiff paste.
2164. Cement for Marine Aquaria. Take 10 parts by mensure litharge, 10 parta plaster of Paris, 10 parts dry white sand, I part fiuely powdered resin, and mix tham, when wanted for use, into a pretty stiff putty with boiled linseed oil. This will stick to wood, stone, metnl, or glass, and hardens under water, It is also good for marine aquaria, as it resists the nection of enlt water. It is better not to use the tank inatil 3 days ofuer it has beon cemented.
2165. Water Cement. Stananase io found to be a valuable itigredient in water cements. 4 parts aray elay are to be mixed with 6 parta black oxide of manganeze, and about 90 parts good thae stone redneed to fine powder, the whoto to be caleined to expit the carbonic thid; when well culctsed aud cooled, to be worked inte tho consixtance of a stiff pasto, with fo parts washed saul.

2166, Cement for Glass Syringes. Take pitch, is parta; fituta perchoh 1 part: melt together arer a stuw fire, apply hot, and trim with a bot knifes.
2167. Quickly-Setting Rust Joint Cement. Make into a paste with watue I part by wejght rot ammoniut it powiler, ? parts ilower of Aulphar, and $=0$ parts irmit

2168 . Slowly-Setting Rust Joint Cements Make into is paste with water, 2 parts 8 sal ammoniac, 1 part flower of anfphat, and 200 parts jron boringts. This eesheel or better than tho last if the juint is not reguired for immediate lise.
2169. Red Lead Cement for Face Joints. Mix 1 part each white and red lead with linseed oit to the proper consistenes.
2170. Singer's Cement for Electrical Machines and Galvanic Troughs. Mels together 5 pounds resib, and 1 pound bees' war, and stir in 1 pound red ochre (highly dried, and still Warmit, with it ounces l'arls plaster, continuing the beat a litele above 212^{3} and stirring eonstantly till all fevthing ceasnes. Or, (for troughs), resin, 6 pounds; tried red ochre, 1 pound; calciseal platter of luaris, I pound; linsced oil, $\frac{1}{2}$ poumil.
2171. Cement for Rooms, M. Sarel, of Paris, has byude an invention which is pronoumcesl hatter than plaster of Iraris for coasting the walls rut eeilings of roems. A cost of oxide of zine mixed with size, maste up like a wash, is first lail on, und over that is coat of chloride of sine applied, propared in the same way as the first wash. The oxido and chloride cfect an immediatecombination, and form a kint of cement, smboth anul polixhed as glass, and possessing the odrantages of oil paint without its disulvantapes of emell.
2172. Coppersmith's or Blood Cement. Bullocks blood thickened with finely powdered quicklime makes a good cement to secure the edges and rivets of copper boilers,
to mend leaks frmm jnints, fo It must bie naed as toonn as mised, as it rapidly gets liard. It is estremely cheap atil rery durable, and is snited for many parpases where a strong cement is required.
2173. Pew's Composition for Covering Butldings. Takelue hardest and purest limestuthe (white marlbe is to be preferred), free from sand, cley, or other matter; calcing it in a reverberatory furnace, pulverize, and pass it through a sieve 1 parh, by weight, is to be mised with 2 parts clay well baked and situilarly pulverizel, condseting the whole operation with great eare. This forms the first puwder. The secont is to be made of I part calcined aul pulverized E5pam, to which it aulded 2 prats clay, laked and pulrerizal. Theset two porders are to be combined, and intimately incorporated, so as to form a perfeet misume. Whes it is to be maed, misi it with about a fourth part of its Weight of water, added gradnaily, vtirring the mass well the shole trme until it forus a thick pathe, in which itate if is to be spread like martar upan the desired surface- it becomes in time us hand as etone, allows no mulature to penelrate, and is not cracked by heat. When rell prepared it will Jast ayy fength of time. When in its plastic of soft state it may be colored of auy ile ired tint.
2174. Hard Hydranlic Gement. cement whiely fosud to bave lieen nasl with grat abcecal in covering terraces, linine basus, cemealiag slunes, etc., resistiog the filtratiost of water, and so hard that it seratelon isom, if formed of 63 parts sell-harmed brick. and T purts lith urge, palserizel and mofistened with frsieef oll. Ifenstan the sturfaces to Which it is ur bo applied.
2175. Universal Cement. Diasolve 9 umber mastie in jut cuongt 95 per cent. al mbet to effeel a soletsun. Them took I
 unghly sunteted. Dissolse the initglasi ia proof xpirits putficient to form a strong glue. abd thete mill 1 monee liapls pulverived gunaatmoniaus Warm the $t \mathrm{wn}$ misturns together oser astow fire, and when they are tharoughIf mixid, hothe and lesmelirally seal theth. This cement hecomes parfoctly dry in 12 or 15 tours. When the cemeste to to to used, tho hottlo shoulh be leatel in 4 waler bidh to lifuefy it; the frugmmite to be cemonted alraghe alat lue heateil before jomiog them and, int a matier of opirme, the surfices well cleanal. Giass, crockes, de., reabured by then above cement, aro zy tollid is before hav14y luve mendisl, ant the seatos are satedy vivilute.
2176. To Cement Amber. Arulur is junod or mendel by emeatimg the wurficese tetth timilol lirseed nil, and strogigly presing tham together, at the enve time bofding them over a charcual fire of buatine thein in any ether way that will tout infure the amber.
2177. To Cement Alabaster aud Plaster. Ornumpata of afahazer or plader way Lo juimed topethec by treasis of a Ditale whitio. of eggs thickeom sitir fitedg-posilural ynicklime, or by a mixture of nerty-frakim ald finulg-powiored plater of Parts twiked. ap with the least por ittle gnantity of wates.
2178. Mending Plaster Models. Wax tund resin, or shellac vartish, is mosommented for the above purpuse. Dr. Chain sumgests the ense of tiqnid silex. Wet the two surfices with it, and allaws a few moments by dry. It will leo formd very tuseful in cases of accident to a cast.
2179. Waterproof Mastic Cement. Mix together I part real lesud to 5 parts gronnil lime, and 5 parts sharp sand, with butled oil. Or' I part reil lewi to 5 whiting and 10 sharp sand mised with boiled oil.
2180. Marble Workers' Cement. Flower of sulphur, 1 part hydrochlorate of zamumin, 2 parts; irou filizges, 16 parts. The atbore subataues tinst be reduced ta a phowder, nud securely preserved in clasely jtopped vetsels. Whien the cement is to be employed, take 30 parts very fine irom filinge, Iude I part of the above powder, mix them together with enough water to form is manageabld paste. This paste soliditios in 20 days and becomes as haded as irun.
2181. Masons' Cement for Coating the Insides of Cisterns, Take equal parts of quicklime, pulverized Laked bricks, and woon ashes. Thorougbly mix the above anbstances, and dilato with sufficient olive oil to furin a manageable paste. This cement immediately harilens in tho air, and never cracks bencath the water.
2182. Colored Cements, Professor Bonther prepares cement of difforent colors and great handmest by miximg various bases with aplable plast. Soluble soda glass of 35 Bayonf is to foe thoronglyly stirned and mixed with five clalk, and thocolorimg matter (see 12 fullowiny reccipts) well incorporated, In the conrze of 6 ur 8 hours a bard coment will sets. whiteh is eaprable of a great sirioty of unos fo sulatble glase can bo toepe us frand in liguid form, bud the phalk whl eoloring thathere are permanent and cluay, the colored comanta cas bo roadily prepared whom watand, mad the matertal can be kept is star:k, Fondy For 1 ace, as tht litute expense. Bontiget toconnaredib tho fullowing cotroitis anaters:
2183. Black Cement, Well siftol mul. phith of sutimays, miseid with molublo ghans
 which, after volidifyiag, can be polimbed or haraisiced with agite, atsl then possesses it fine mutallie luxtes.
2184. Grey Black Cement. Fino iron duat, mised wh ha No. 9182, gives a grey-black cermptit
2185. Grey Coment. Zinc duat. This, weal ar ill Nu, 2182, makes a grey mass, excealingly land, which, out pulasames, oxhibita a brilliat motalic luntre of gine, so that brokeri "f Wefective zibe castings may bo mentel antid rustorel ly is cement that might Ifor ralled a cold zint chating. It allierestirmly to metal, yhese and woul.
2180. Bright Green Cement. Carbanufe if copper, usod secording to $\mathrm{No}, 2182$, gives a liright groen cemont.
2187. Dark Green Cement. Sußquirexide of petromitul bixed is it No .2182, trives a dark from extacut,
2188. Blue Cement. Themard's blae, nsed ask in Xo. 21-2, malcea a blue coment.
2189. Yellow Cement. Litharge, with sulsilic glass deb. zee No, 2182, gives a yeltow ocricht.
2190. Bright Red Cement. Cimabar, used as dirested in No. 21s2, makes a bright red cumomt.
2191. Violet Red Cement. Carmine, used as in No. 2102, yields a violet red cement. 2192. White Cement. Tho solublo plass with fine chalk alone (see No, 2182) cises a white cenvent of great beauty and hunfuess.
2193. Black Cement. Sulphide of antimony and iron dust, in equal proportions, stirred in with soluble glass (sec No. 2182), afford at exceedingly firm black coment.
2194. Dark Grey Cement. Zinc dust and iron ia equal proportions, tised as in No. $21 e 2$, gield a hard dark grey cement.
2195. Portland Cement. Portland cement is formed of clay and limestote, generally cuntaining some silien, the properties of which ung vary without injury to the ceasent. The proportion of elay may also vary
from 19 to 45 per cent without detriment. Tho only necessary condition for the formation of a good artificial Portland cement, is an intimate and fomogencons mixture of earbonate of lime and clay, the proportion of clay being as above stated. The materials aro raised to a white heat in kilus of the proper form, so that they are almest vitrified. After the calcimation all pulverulent and scorified portionti are carefulty pricked ort and thrown away. Tho remainder is then finely ground and becomes ready for use. Tho amount of vater which enters into combinution with it it mising is abort, 306 by weight. tt sets slowly, from 12 to 18 hours being required. Made into a thin solution like whitewast, this cerment gives woodvork all the apprarance of having been painted and samlesl. Piles of ytone may be sot tugether with eommon mortm, and then the whole waslied over with this cement, making it look like the fmmense roek of erey eandstone. For temporary liset a flour-barrol raay hava the hoops nailed, and the Inside whiled with 4 litsle Portlam evment, und it will do for a ear or more to ladd water, Romeds mailed logethee, anl wa-lied with it, mako gond hotwater tanks. Ies water-resisting propertien puke it umeful for a shrfaty of purmoses
2196, Mastic Cements, or Pierre Artiflcfelle. Boetiger sisys that these coments are mistluyes of 100 parta encir of sand, limestone, and litharge, with 7 partd linseed oil. These ingredionth, earcfully mixed and well Worked together, will baye the eanaiatency of moint sand, atd at fisst but little colerevice TV ben presseet, buwover, the mixturogradual. ly acequires the hardness of ordimary sabodstupe, and in is montha tige vill emitiparks whor struck with steel. The bindiag agenta in sach cetments aro the Litharjpo and oil, the eand giviag the body, and limestome or clalk filling up the interytlece.
2197. Coarse Stuff for Plastering. Coarse stuff, or sime and hair, as it is notur timea caited, if ptepirel in tho varme way as enmasos mortar, with the addition of bair proeured frobs the tarmer, which mast be wepl mixed with the nestar by means of a themeproaged rake, uatil tho bair is equally athetributed throurhuat the compositori The mortar chonta be first formed, and when the lime and satd haye been thororghly mised, the haif sbould be added by degrees, and the whole no thoroughly urited that thin hairatall appear to bo equally diatributed throughoul.
2198. Fine Stuff for Plastering. This is made by alackeng litue with a small portion of water, after which sufticient water balded to give it the eonsistences of eream. It is then allowed to settle for snase times, and the superfloous water is portell off, und tho sedtment soffered to remain bli evaporation ro. duces it to a proper thickness for nise. For some kinds of work it is neecsstry to oukd a small portion of hair.
2199. Stucco for Inside of Walls, This stuceo consists of 3 parts tine stalt (sted No. 2196) and 1 part fine whished namd. Thoser parts of interior walls which ard intended to the painted are firtishei with this exacco. Is using thes material, great care must be taken that the surfiact: ber perfectly luvel, and to secure this it must be well worked sills is flonting tool or wooden trowel. This is dume by sprimkling is little water oceasionally on the stacco, and rulbiug it in a circnlar direction with the float, till the surface lras attuined in high gloss. The darability of tom work mach depends upon how it is dme, for if bot thoroughly worked it is apt to ernek.
2200. Gauge Stuff. This is chiefly used for mouldiugs and comices which aro run or formed with a wooten mould. It con-
sists of about $\frac{1}{}$ plaster of Panis, mised gradnally with it fine stefif. (Soe No, 2198.) When the work is required to set rery expeditiously, the propertion of plaster of Paris is frereasid. It is often neenssury that the plaster to be used should hove the property of setting inmediately it is laid on, and in all such cases gauge stiff is msed, and consequently it is extensirely employed for cementing ornaments to walls or ceilings, ns well as for casting the ornaments themsel res.
2201. Higgins' Stucco. To 15 pounds best stone lime add 14 pernuds bone ashes, finely possterel, and abont 95 ponnds clean, Whathed sand, quite dry, either coparse or fine, aceording to the rature of the work in hund. These ingredients urusi be intimately misel, and kept from the air till rantel. When required for nse, it unst be snixed ap into a proper consistence for working with time waLec, and usel as speedily as possible.
2202. Durable Composition ror Or, naments. 'This is frequently thed, instead of plaster of Paris, for the urnamental parts of buidinges at it is more durable, and becomes in tine tos hard as stome ithelf. It is of great non in the execution of the ilecomative parta of architecture, and alous in tho frumbinges of picture fraties leing a cheaper method than carving, by Eearly 80 per cent It is made as follow 9 pound beit whtteniag, 1 pound glue, and i pround Jibeced ofl ase beated tegetber, the compusition lreing contiaually stirred until the diferent subatances are thorughty isontporatel. Iat the compound cool, and then lay ft of a stobe coverol with persdered whitet. ing, and loat it weil until it lecomen of a tougt and firm consistence It may then bo pat by for aine, eovered with wet clotha to keep it frobl. When wanted for han it must the cut into pieces adapted to the fien of the roould, into which it is farced by a screw press. The ormament, ur cornice, is fised to the frame or will with glee, or with whito leaid.
2203. Roman Cement. Calcine 3 parta of any ordinary clay, and mis it with 2 parts lime i g gind it 2 to powlor, and caldine again. This makes a beantiful nemeat, improperly called Roman, since lies preparation was entirels nolknown to the teomans.
2204 . New Plastic Material. A beautiful plastic mothetance call be prepared by mixing collodion riths pliwphate of lime. The phesplate sbonld be pure, or the color of the comporad wit he unfatisfactory. Om setting. the mase is fomed to ben hard and cuscoptible of a tery time prilch. The material cas be nael extentifvis, applital in modes that will suggest thentsolves to any inteligent artist, to high clases lecoration.
2205. Concrete, it compact maks, compried of publules lime, atal sand, emploged in the fimslations of buildings. The hest propurtivosare 00 parts of coarse pelbles, IS of roight sand, and 15 of lime; othera recenumeni to parts pehbles, 40 parts river sund. and oatr 10 parts fime. The pebbles should two exceed alomet $\frac{1}{2}$ pouts each in weight. Ablé Mosgno, in hif Faluable scientific journal, "Las Mendes, "relateshis personal experience with a comerete formed of fine srought and cast iruntilitges and Porthmul cement. The Abte states that a cement minde thas is bard ennugh to resist any attempta to frncture it. As he ctates that the irou filings are to replace Dhe saind insmally put iato the mixtare, wo presume that the relative quantities are to bo sinnilar.
2206. Concrete Floors and Walks. Compost for larn and Eischen flours:-After the grommed on which the floor is intended to be male is lerelent, let it bo casered to the thickness of 3 or 4 inches with stopes, bruken
staall, and well rammed down; upon which let there bo run, about $1 \frac{1}{4}$ inches ahove the stones, 1 part by measuro calcined ferruginous marl, and 2 parts coarse sand and fine gravel, mised to a thin consistence with water. Before this coating has become thoroughly sety, lay upont it at coat of calcinced marl, mixed with an equal part of fine sand, 1 to $1 \frac{1}{2}$ inches thick, leveled to an even surface. The addition of blood will render this compost harder. The calcined marl mentioned above is the Portland cement of commerce. (Seo No. 2195.)
2207. Concrete Gravel Walk. Dig away the earth to the depth of about 5 inches, then lay a bottom of pebbles, ramming them well down with a paving rammer. Sweep them off as clean as possible with a broom, and cover the surface thinly with hot cond tar. Now put on a coat of smaller gravel (the first bed of pebblos slould bo as large as goose egga), proviously dipped in hot coal tar, drained, and rolled in coal ashes, with an intermixturo of fine gravel, and roll it down as thoroughly as possible. Let tha soller ran slowly, and let a boy follow it with a hoe to perape off all adbering gravel. Noxt put on a coat of fine gravel or Rand, and coal tar, with come coal ashes, to complete the surfuce, and roll ugain as thoroughly as peasiblo; the more rolling the better. It will take some weeks to harden, but makes a splondid bard curface which sheds water like a roof. Do not uso too much tar. It in only necossary to uso ebough to mako tho ingredients cohore under pressure, and a lithe is better than too much. Such a aurface will last in a farmyard a great while.
2208. Cheap Conerete Flooring, Mix 3 lushels coal asbes from a blacksmith's ahop with 9 buabels gas lime, and then add suflicient gas tar to make is stif mortar. If tho ampioblacal liquar bas been separated from the tar, ita placo must bo supplied by adding water fill the lar is thin enoligh for use. For utables and cattie sheds, thu uortar can bo laid down with a spade, and fine sharp sand or gravel sifusd over it; then roll well, and you will havo a good ooncrets floor. It will iaks a fow days to got thoroughly hard, oven in dry weather; but it will bo a good pieco of work, if earefully done. Atutum is the beet time for laying thia kind of pavemont.
2200. Keene's Marblo Cement. This is mada of baked gypsum or plastor of Paris, steeped in a katarated solution of aldam, and then reculofed and reduced to powder. For use, it is mixed with water, as ordinary plaster of Paris. This cement bas bem most extotasively applied as a stticeo ; bat tho finer qualities (w)en oolored by the simple proeces of infusing mineral colors in the water with which the coment powdor is finally mixed for working), being susceptible of a high degree of palish, produce beantiful imblations of measic, aud other inlatd marbles, seagliolin, \&e The cement is not adapted to hydraulio parpases, nor for axposura to the weather, but bas lbeen need as a stucco for internal decorations, and from its extreme harilness is very durable. A pleasing tint is given to this cemont by adding a littla solution of green copperas to tho alum Liquor.
2210. Parker's Cement, This valuable ceurent is made of the nodules of indurated and Elightly forraginons marl, called by mineralogists meptaria, and also of somo other species of argillaceors limnstone. Those are burned in conical kilns, with pit cual, in a similar way to other limestone, care being taken to avoid the nse of too mitich heat, ws, if the pieces undergo the slightest degree of fusion, even on the stuface, they will be unfit to form the cement. After being properly roasted, the
calx is reduced to a very fine powder by grinding, and immediately packed in barrels, to keep it from the air and moisture. It is tempered with water to a proper consiatence, and applied at once, as it soon hardens, and will not bear being again softened down with water. For foundations and cornices exposed to the weather, it is asually mixed with an equal quantity of clean angular sand; for use as a common mortar, with about twice as much eand; for coating walls exposed to cold and wet, the common proportions are 3 of sand to 2 of cement, and for walla exposed to extreme dryness or heat, about 21 or 3 of sand to 1 of cement; for facing cistern work, water frontages, de., nothing lut cement and water should be employed. This cement, under the name of compo, or Roman cement, is miuch employod for frocing houses, water-cisterns, setting the foundations of large edifices, \&e. It is perhaps the best of all cementa for staceo.
2211. Pollack's Cement for Iron and Stone. This cement takes some litule tirpe to dry, but turns almost as hard as stone, and is fire and water-proof. For mending erueks in btone or cast-lron ware, where iron filings camót be had, it is invaluable. Take lithargo and red lead, equal parts, mix thoroughly and make into o pasto with concentrated glycerino to the consistency of soft putty; fill the crack and smoar a thin layer on both sides of the easting 80 as to completely cover tho fracture, This layor ean be rubbed off if necessary when nearly dry by an old knifo or chisel. M Pollack has ased it to fasten the different portions of a fly-wheel with great suecess; whille, when placed between stones, and once hardened, it is easier to break the atone than the joint.
2212. Cement from Furnace slag. Purnace slag ean be mide to furninh an excel: lent coment by Eelecting such portions of it as are readily dissolyed in diluto hydrocblorie acid. On subjeoting it to tha action of the acid, silies is throwa down, which is afterward to be washed, dried, and pulverized. Ona part of this is next to bo mixed with 9 parts powdered slag and the necessary quantity of Alacked lime. This matter soon hardons, and rivals the best cement in its durability.
2213. Zeiodite. This subistance is made by mixing 20 to 30 parta roll sulphur with 24 parts powdered glue or pumice, wbich forms is mass as hard na stone that resists the action of water sud the strongest acids. Prof. R. Boettgor recommends it, therefore, for making water-tight and-air-tight cells for galvanio batteries.
2214. Cement for Closing Cracks in Stover, etc, Λ useful cement for closing up cracks in stove plates, stove doore, ete., is prepared by mising finely-pulverized iron, such as can bo procured at the draggists, with liquid water-glass, to a thick paste, and then coating the crucks with it. The botte the firo then becomes, the more does tho cement melt and combine with its metalio ingredients, and the more completely will the crack become closed.
2215. Cement for Fastening Iron to Stone. Λ cement for fastening iron to stone, which becomes nearly as bard as the stono itself, consists of 6 parts Portland cement, 1 part powderod lime, not slacked, 2 parts sand, and 1 part slacked lime, mixed with wator to the proper consisteney, the stome and iron both being previously fampenet. In 48 hours it will have set firmly.
2216. Strong Cement for Iron. To 4 or 5 parts clay, thoroughly dried and pulverized, add 2 parts iron filings free from oxile, 1 part peroxide of manganese, $\frac{1}{2}$ part of sea salt, and \& part borax- Mingle thoroughly,
and render as fine na possible ; then reduce to a thick paste with the necessary quantity of water, mixing thoroughly. It must be used immediately. After spplication, it should be exposed to warmith, gradually increasing almost to white heat. This cement is very hard, and presents completa resistance alike to a red heat and hoiling water.
2217. Cement for Iron. An excellent cement is made by mixing equal parts of sifted peroxide of manganese and well-pulverized sino white, adding a sufficient quantity of commercial soluble glass to form a thin paste. This mixture, when used immediately, forms a cement quite equal in liardvess and resistance to that given in the last receipt.
2218. Cement for Uniting Stone, Derbyshire Spar, etc. Melt together 4 ounces resin, $\frac{\hbar}{}$ ounce wax, and about an ounce finely-sifted plaster of Paris. The artieles to be joined should bo well cleaned. thon mado hot enough to melt the coment, and the pieces preased together very closely, 80 as to leave as little as poasible of the composition between the jointh. This is a general rule with all cements, as the thinner the etratum of cement interposed the firmer it will hold.
2219. Cheap Artificial Building Stone. A large number of homses lave boen constracted in Paris, for workmen, of the following materials: 100 parta plaster of Paria, 10 ports bydranlic limes, S parts liquid give. and 500 parts cold water, are intimately mized and poured into moulds of any desirod nize and shape; and in baif an hour the form cas be romoved. The stones aro then expored in the open air for 3 weeke, matil they are thoroughly dry. Artificial stone that prepared, has the ring and hardisess of the native rock; and, where the materials are abundant, is said to bo 25 per cent. cheaper than quarried stone.
2220. Simple and Useful Cement, Alim abd plaster of Paris, well mixed in vishter and used in the liquid state, form a hard composition and also a usefal cement.
9291. Cement for Fastoning Instruments in Fandles. 4 minterial for fasturing kpives or forts tinto thetr handes, when they have become loosenest by use, is a machneciled article. The bect cement for this purpose consistr of 1 pound resin nul 8 capees bulphar, which aze to be melted togothor and either kept in bars or redaced to powden. I part of the pourder is to be mised with if a part of iron tillings, fine saput, of brick dust. and the cavity of the liamde is then to be fitled with this misturd. Tbostem of the hnife or fork is then to be heated and inserted into the cavity; and when cold it will be found firmly fixed in its place.
2222. Cement for Fastening Iron to Stone. Gigcerine and litharges stirroal to a praste, bardens rapidly, mid makes a suitable cement for irou opan from, for two stuas surfaces, and especially for fastening iron to stome. The cemont is insoluble, and is not attheked by btrohy heide.
2223. Vegetable Cement. A good vectable cencut mayy lin prepureal by mixing gum-aralie isith nitrite of lanc. The latter is prepared ly disobiving an excess of marblo in pitrie acid, and filtering. The filtered solation will contain 133.3 per cent titrate of lime, which may te dried by exaporation. For the coment, take 2 parts by weight of the ritrate of lime, 20 parts pulverized pumarabic, and 25 parta vater. The mixture can be further dilated to adapt it to the uses to which it is to be applied. In the manufacture of artificial stome, a cemedt of a similar character has been found to serve a good prorpose. Something of the kind is used in the Frear stope, bat in the Béton-Cojgret no additional binding material is found necessary.
2224. Cement for Leaky House Roofs. Take 4 pounds resin, 1 pint linseed oil, 2 ounces red lead, and stir in pulverized sand until the proper consistency is secured, and apply it warm. This cement becomes hard and yet possesses considerable elasticity, and is durable and waterproof.
2225. Engineer's Cement. Mix ground white lead with as much powdered red lead as will make it of the consistence of putty. This cement is employed by engineers and pthers to make metallic joints. A washer of bemp, yarn, or canvas, smeared with the cement, is placed in the joint, which is then screwed up tight. It dries as hard as stone. This cement answers well for joining broken stones, however large. Cisterns built of square stones, put together, while dry, with this coment, will never leak or require repair. It is only necessary to use it for an inch or two next the water; the rest of the joint may be filled with good thortar. It is better, howerer, to use it for the whole joint, (See No. 2160.)
2226. Plumbers' Cement. Melt 1 pound liack resio, then stir in 1 to 2 pounds frick-dust. Sometimes a little tallow is added.
2227. Red Cement. The red cement nsed for uniting glass to metals is made by maltiug 5 parta black resin with 1 part yellow was, and then stirring in gradually 1 part red ochre or Venctian red, in fine powder, and previonsly well dried, This cement requires to bo melted before usc, and it adheres better If the pljeecta to which it is applied aro warmed.

2228, Turners' Cement. Melt together bees' was, 1 ounce; rosith, of ounce; and pitch, $\frac{b}{b}$ ounco; stir in the misturo some very fine lirick-dust to giro it a body. If too soft, add more resin; if too hare, more was. When nearly cold, wake th up into cukes or rolla for nse. Used for fastening wood on a tarner's chnek.
2229. Temporary Cement for Opticians, Jewelers, \&c. A temporary cenient to fix optical plasecs, ntones, jowetry, \&c., on stocks or handles for the purpose of paintiug. repairing, or ornamenting, is mado by melting together at a good hent, 2 ntinces resin, 1 drachm wns, and 2 ounces whitaning; with this appliced to the article whet beatod, a socoro bold may bo obtained, unfixed at plea sure ly heat.
2230. Cement for Fixing Metal to Leather. Wish the metal in hot gelatine, steep the leather in hot gall-nut infusion, and unite whilo hot.
2231. Cement for Fixing Metal to Marble, Stone, or Wood. Mix wogother 4 parts carpenters' gluo and 1 part Venice turpentitue.
2232. Cement for Costing Acid Troughs. Melt together 1 part, pitch, 1 part resio, and 1 part plaster of Paris (perfectly dry.)
2233. To Cement Cloth to Polished Metal. Cloth can bo oemented to polished iron shatts, by first giving them a cont of liest white lead paint; this being dried hard, ooat with best Russian glne, dissolved in water containing a little vinegar or acetio acid.
2234. Cement for Gas Retorts. A new cement, especially sidapted to the retorts of gas-works, is very warmly recommended in a German gas-light journal. It consists of fine$l y$-powdered barytes and a solublo water-glass; or the barytes and a solution of borax. The joints are to be coated several times with this cement, by means of a brush. Tho addition of two-thirds of a part of clay improves the cement, and the retorts will then stand a red heat very well. Instead of the water-glass,
a solution of borax may be used, or even finely powdered white glass.
2235. Use of Silicate of Potassa in Strengthening Fossil Skeletons. Λ very judicions application of the silicate of potassa (liquid glass) has been lately made at the Museum of Natural History of Paris, in re. pairing a great many fossil skeletons which had been disjointed and broken by the shells bursting in this Palace of Science. The solutions bave been first ased diluted to about 30°
 concentration. The adherence of the broken or separated pieces is brought together by epplying with a brush some of the selation of the silicate of potassa on the parts to bo joinod, then they are left to dry, and the joint is hardly visible; and the joined part is far stronger than the romainder of the bone. Very delicato and porous anatomical pieces, as akel. etons of birds, insects, eto., can be dipped rcpeatedly in mere dilated solutions, and thes be rendered very hard and tenacious.
2238. Transparent Cement for Lenses, esc. It is frequently found neensary to cemont together two surficess of transparent glass, without destroying or injuring their transpareney; this is especially tho ease in compound lenses. The best cement for offecting the union is Canada belsam, which, if too thiok, should be thinned with a little turpentine, bensole, or other. It is of importance that no air bubbles bo present. In order to cement together the two parta of an achromatio lens (this consists of in double convex lens fitting exnetly into the eoncavity of a plano-coneare lens), baving thornughly cleaned the surfaces to be lirought in oontact, lay the glass, previonaly made warm, on a table suitably covered to prevent the muder surface from being scratehed. 1 by means of a pog of wood or otberwise, convey a drop of the balsam to the centre of the lens, asul then gently lower down upon it the lons to bo onmented to it, alao previously made slightly warm. Now apply a alight pressure, and the dark dias in the centre, Indicative of optical oontact, will rapidly increase in size, until at last the balsam reaches the margin aud beginis to ooze out at the odges, if the balsam bo present in excess, as it shoald be. By means of a piece of aoft atring passed crosiwise over the lenses, tie the two together, and place them in a stove, all oven, or hefore a fire, for a short time, until the balsam at the odges shall have become hard and dry. Leg the string then be removed and the lens freed from all external traces of balsain by means of benzole or ether. Tho abore fireetions, modified to suit cireumstances, apply to tho comentation of transparencies or opal pietares; also to the varnishing of magic lantornslides, and the proteetion of any transparent surfaces from the air.
2237. Gement for Chemical Glasses. Mix equal ports of wheat flour, fincly-powdered Fenice glass, pulverized cbulk, and a small quantity of brick-dust, finely ground; theso ingredients, with a little scraped lint, are to be mixed and ground up with the white of eggs it must theu be spread upon picces of fine linen cloth, and applied to the crack of the glasses, and allowed to get thoroughly dry before the glasses are put to the fire.
2238. Hermetical Sealing for Bottles. Gelatina mixed with glycerine yields a compound, liquid when hot, but becoming solid by cooling, at the same time retaining much elasticity. Bottles may be bermetically sealed by dipping their neeks into the liquid mixture, and repeating the operation until the cap attains any thickness required.
2239. Cement to Seal Bottles Containing Volatile Liquids. Chemists and
others know well the ditficulty of keeping volatile liquids. Bottles of ether, for example, are shipped for India, and when they arrive are found to be mote than half empty. The remedy with exporters is a Iuting of melted sulphur, which is difficult to apply and hard to remove. A new cement, casily prepared and applied, and which is saill to prevent the eseape of the most volatile lifuids, is composed of very finely ground litharge and concentrated glycerines and is merely paintod around the cork or stopger. It quietly dries and hacomes extremely hard, lrut cas be easily scraped of with a knife when it is necessary to open the bottle.
2240. Cement for Sealing Corks in Bottles. Tako an equal quantity of rosin and bees wax, melt them together, then put in an atmost equal bulk of finely-powderod red chalk, add a small quantity of weatsfoot oil, let the whole boil 1 minate, then take it from the fire and stir it well; if too thick, adil a little more oil.
2241. Cement for Sealing the Corks in Bottles. Melt tugother i pound sealingwas, the same quantity of resin, abd 2 ounices beew' wax. Wlien it froths stir it with a tallow candle. As zoon as it melts dip tho monthe of the corkeal hintles in it
2242. Painters' Putty. Putty is mado of Rominour whitentige, pornital very fine, and mixal with linewit oil inf it becomes about the thirkzess of dungh.
2243. Quiek Hardening Putty. A patty of starch and chloride of zinc Luardens quickly, and lasta for montho, as a stopper of holes in metais.
2244. Cement to Stop Flaws or Crackn in Wood of any Color. lhit may quantity of fine sawdust, of the sanie wood the woik is made with, inte an earthen pan. and poor boiling water on it, stir it well, and Iet if romain for a week or tom dayn, occasionally stirritg it ; then boil it for some time, sand it will he of the consistence of pulp or pasto; put it into as cosarse eloth, and wquenero all the moisture fman it. Keep for aso, and, when wasted, mix a sufficient guastity of thin glue to make it into a pasto; rub is well into the cracke, or fill up tho holes in the work with it. When gulto hard abd 4 rr, clean the work off, and, if carefully done, the imperfection will be searcely disserisible.
2245. Cement for Cloth, Leather, or Bolting. Take ale, 1 pint ; best Rusin inaitglass, 2 onnees; put them into a cormmoni gluo kottle mui boit until tho isinglass is disgolved; then ndid 4 ounces best glue, and dissolve it wifh the other; then slavely ahd $1 \frac{1}{1}$ ounces boiled linseed oil, stirrite all the time while adding aud until well mised. When cold it will resomble India rublier. To use this, distolve what is peesled in a suitable quantity of Alo to the consistence of thick glae. It is appliceble for leather, for harioss, bands for machinery, eloth belts for cracker machines for leakers, do. do. If for lenther, shave off as if for nowing, apply the coment with a brosh while hot, laying a weight to keop each joint firmly for 6 to 10 hours, or over night.
2246. Cement for Leather Belting. Take of common gloe and American isinglabt equal parts; place theus in a glue-pot and add water sufficicat to just cover the whole. Let it soak 10 hours, then bring the whole to n boiling heat, and add pure taanin until the whole becomes ropey or appears like the white of eggs Δ pply it warm. Buff the grain off the leather where it is to be comented rab the joint surfoces solilly together, let it dry a few hours, and it is realy for ase; and, if properly put together, it will not need riveting, as the cement is nearly of tho same na-
ture as the leather itself. We know of no ecment better either for emery wheels or emery belts tham the best glue, In an experience of fifteen years we never found anything superior.
2247. Gutta-Percha Cement. This highly recormended cement is mate by melting together, in an iron pan, 2 parts common pitel and 1 part gutti-percha, stirring them well together until thoroughly incorporated, and then pouring the liquid into cold water. When cold it is. Bask, Firlid, sud elastic; but it softens with heat, and at 100° Fabr, is a thin fluid. It may bo nised as a soft paste, or in the liquid state, and answers an excellent parpose in cementing metal, glass, porcelain, ivory, ice. It may be used instead of putty for glazing windows.
2248. To Dissolve India Rubber for Cement, \&c. India rubler dissolves readily in rectitied sulphuric ether, which has beon washed with water to romove alcohol and acidity; siso in chloroform. These mako odorlens solutions, but are too expensive for general use. The gum dissolves easily in bisulphuret of carbon; or a mirture of 94 parts bisulphuret of carbon and 6 parta absofute alcohol; alao in caoutchoucine. (Seo No, 2249.) Theso dissolve the gum rapidly in the cold, and leave it unaltered on evaporation; they have a disagrecablu olor, but they leavo the India rabber in better condition than most other solvents. Ofl of turpentine, rendered pyrogenons by absorbing it with bricke of porous ware, and distlliog it without water, and treating the product in the bame way in also used for this purpose. It is stated that the solution on evaporation dees not leave tho caoutchouo in a atioky state. A nother method in to agitate of of turpentime repeatedly with 3 misture of equal weights of snlphuric acid and water; and afterwardh expose it to tho ann for some time. Bebzole, rectifed mineral or coal tar naphtba, and oil of texpentine reduce the gum klowly by long digeation and trituration, with heat, forming a plutinous jelly which dries slowly, and leaves the gum, when dry, very mneh reduced in hardness nad elasticity. The fats and fixed oils combino reailily with India mubler ly boiling, forming 6 permanently glutinoun paste, (Sec No. 2947.) India rubbor is rendered more readily solublo loy first digesting it with a solution of carbopmate of sodia, or witer of ammonia.
2249. Caoutchoucine. Pure Indiarub Ler, cat into suall lomps, is thrown into a cast-ikou still, connected with is well-cooled worm tub, and heat is applicel until tho thermometer ranges about 600° Pahr, when nothing is left in the still lut dirt and charcoal. Thin dark colored fetid oil whieb has distilled over is next reetificel with one third its weight of water, once or oftener, until it is colorless; it is then highly volatile and of .680 specific gravity. The product is then shaken up with nitro-muriatic acid, or chatorine, in the proportion of \pm pint of acid to each gallon of the liquid. This is the lightest fluid known, and yet its yapor is the heariest of gases. Mixed with nlcohol, it dissolyes all the resins, especially copal and India rubber, at the common Lemperatare of the air; and it speedily evaporates, leaving them in it solid state, It mixes with the oils in all proportions; and has been used for making rarnishes, and for ligucfying oil paints, instead of turpeatine. It is very volatile, and most bo kept in closo vessels.
2250. Cement for Uniting Sheet GuttaPercha to Silk, \&c. Gutta-percha, 40 pouvde; caoutchouc, 3 pounds; shellac, 3 pounds Canada balsam, or Vonice turpentine, 14 pounds; liquid storax, 35 pounds; gum mastic, 4 pounds; ozido of lead, 1 pound. Mix as directed in the next recejpt.
2251. Cement for Uniting Sheet Gutta-Percha to Leather. For uniting shoet gutta-percha to leather, as soles of shoes, etc. Guita-percha, 50 pounds; Venice turpentine, 40 poumds; sheflac, 4 pounds; chentchome, 1 ponnd; liquid storax, 5 poumds. In making tha cement, the Venice turpenting should be first beated, then the gutta-pereha and the shellae should be addel; the order in which the other materials are added is not important. Care shonld le faken to incorprofate them thoronglity, and the heat should bo regulated, sn as not to barn the mixture.
2252. Transparent Cement. Dissolvo 75 parts India rubber in 60 parts of chloroform, and sid to the solation 15 parts of gum mastich.
2253. How to Fasten Rubber to Wood and Metal. As rubber plates and rings are now it-days nlmost exclusively used for makiag connections between steam and othor pipes and apparatus, mueh annoyance is ofton oxperienced ly tho impossibility or imperfeotness of ausir-tight connection. This is obviated entirely by omplogitg a cement which fastons equally well to the rubleer and to tho metal of wood. Such cement ia prepared by a solution of shellice in ammonia. Chis is best made by ionking polverized gum-
ebolluc in ten times its weight of strong am8bollac, when times its weight of strong nem-
momia, whon a olimy mess is obtained, which in three to four wreks, will becume lignil without tho uso of hot water. This nofiens tho rubber, ant becomes, after volatilization of tho nmmotia, hard and impermeable to gases and Aluids.
2254. Marine Cement for Uniting Leather to Gutta-Percha. This will umite leathor to gatta-perebis, and is imperyiona to damp. It is malo by dissolying by the aid of heat, I part India rabber in naphthn, and. Whon thettod, tubling g purts shellac, and molting tantil mixed. Pour it whild hot on motal platos to cool. When requaired for aue, melt, and apply with a brusib. This eement does not addere very well to tulcanfect ribber, aud the joint is always weak.
2255. Cement to Unite India Rubber. Tako 16 partif gutta-percha. 4 parts India rulsbor, 2 parts common cankers' piteh, 1 purt limsond oil. The ingredients aro meited together, and usel hot. It will abite leather or rubber that has not been valcanized.
2256. Gutta-Percha Cement for Fastoning Leather. Dissolye is quantity of gutta-percha is ehloroform in quantity to mako a flud of loney-like consistence. When spreal it sill diry in a fer moments. Heat tho surfaces at a fire or gas lame until softened, and apply them togetber. Small patches of leather can be thas cemented on boots, etc., so as almost to defy detection, and somo shoemakers employ it with great nuecess for this parpose. It ia waterproof, and will answer atmost anywhere unless exposed to heat, which softens it.
2257. Caoutchouc Cement is made as follows:-Gutta-percha, 3 parts; virgin India rubber (caoutchouc), 1 part (both cut small) : pyrogenuus oil of turpentine, or bisuiphuret of carbon, 8 parts; mix in a close ressel, and dissolvo by tho heat of hot water. This ecment should be gently heated before being used.
2258. Cement to Mend India Rubber Shoes. A solntion of eaontchoue, or virgin Indis rubber, for repaiting India rabber shoes, is prepared in the following manner: Cut 2 pounds caontchone into thin, small slices; put thom in a vessel of tinned sheet-iron and pour over 12 to 14 pounds of sulplifide of carbon. For the promotion of solution, place tho vossel in another containing water pre-
solation Trill take place promptly, Unit the fluid will thicken very soon, and thus render the application ilifficult, if not imperskitic In order to prevant this Chiekeniog. \boldsymbol{a} asolation of caontchoue and resia in spirits of turpentine must bo added to the solution of eacoutclone in sulphide of carbon, and in buch quantity that the mixture obtains the consistency of a thin paste. The solation of capatchoue and resin in spirit of tnrpentine shonld be prepared as follows: Cat I pound of caputchoue into flim, small slices; heat in a suita. ble vessel over a muderate coal fire, motil the cmoutchone becomes fluid; then add $\frac{1}{\text { p pound }}$ powdered resin, and melt both materials at a moderate heat. When these materials aro perfectly fluid, theo gradually add 3 or 4 poumels spinit of turpentive in amall portions, and stir well. By the addition of the last solntion, the rapid thickening and hardening of the compouind will be prevented, and a mizture obtained fully answuring the purpose of clucing together nobber surfaces, cte.
2259. To Fasten Chamoif and Other Leather to Iron and Steel. Dr. Carl W. Helafichen, of Dresien, gives the following receipe for the abore parposez Spread over the metal os thin, hot polntion of good glue. soak the leather with a waru solution of gall-nuts Lefore placing on the metal, and leave to dry under an even pressure.- If fastened in this manner it is impossibie to sepsmote the leather from the metal withous tearing it.
2260. Cement for Petroleum Lamps. A coment particularly ataptud lor attabing the brass wark to peiroleun lampy, is teade by Pivecher, by boiling 's parts Festa with I of enustic smia and 5 of sater. The composition is then misell with hals its mefght of ploster of Paris, anal pots lirmly in half wo threnquarteni of an bour. It is asid to lee of great nuthesive puwer, not permeable to potroleum, is low conductor of heat, and but supericially attacked by hot water, Ziae white, with leac, or precipitated chalk may lie ababstitated for plastri, bit bardens toore elowly.
2261. Cement for Attaching Metal Lettera to Plate Glass. Copial Faruieh, 16 parte; dryiag ail, 6 parla; turpentine, and of of torrpentine, of each 3 parts; liquefied glae (made with the least posrible quantity of water), 5 parks. Melt together in a ssaterbuth, und nda frosh slacked lime (perfectly dry and in reey line powder), 10 parte.
2262. Cement for Metal and Glass, Mix 2 ounces of a thick sointion of gloe with t obneo linsed oil rarnish, of : ounco Vevice turpentinej boil them together, stiming them tutil they mix as thoraugbly as poskible. The piecer comented should be tied together for 2 or 3 days. This cement will firmly attach any metallic substance to glass or porcelain. (See last receipt.)

Luute. A composition employed to secure the joints of chemical vessels, or as a covering to protect thers from tho violence of the fire. For the joints of vesaels, as stills, de not exposed to a beat anneli higher than 212° Pahr., limseeal meal, either alone or misell with au egun! weight of whiting, and miado iuto a stiff paste with water, may be employed. Ground almond eake, from which the oil has licen pressel, way also be used for tha same purpose. For tho jointa of small vessels, as tubes, de., especially of glass or earthenware, stoall rings of India rubber slipped over snd tied above and below the joint, are very cormenient substitutes for Intes, and have the advantage of lasting a long time, and bearing uninjured the heat at which oil of vitriol boils.
2264. Lute for Stills. A Fery useful Iute is formed by beating the white of an egg thoroaghly with an equal quantity of water, and mixing it with some slacked lime in the state of fine powder, so as to form a thin paste. This wust be spread immediately on strips of muslin, and applied to the cracks or jointa intended to be luted. It soon hardens, adberes strongly, and will bear a heat approaching to redness without injury. A leak in this lato is readily stopped by the application of a fresh portion. Solution of glue, or any liguid albuminoas matter, may be used in place of the white of eggs.
2265. Lemery's Lute for Stills or Retorts, Lemery used tho following lute for stopping retorts, ote.: Fine flour and fine lime, of each 1 ounce; potter's earth, $\frac{1}{2}$ ounce; make a moist paste of theso with white of egg, well beaten up with a Bttle water; this will bo found to stop exceedingly close.
2266. Boyle's Lute for Retorts, \&c. Boyle recommends, on experience, the following for the same purpose: Some good fine guicklime and scrupings of cheese, pounded in a morlar, with as much wator as will bring the misture to eoft paste; then spuread on a pieco of lises rag, nud apply it as oceasion requires.
2267. Usefal Lato, Λ useful luto is made ly spreading a solution of glue on strips of cloth, and coatsuy them, ufter they are appilied, with drying of.
2268. Lute for Joining Crucibles. For joining crucibles to be exproked to a strong beat, a mistate of thu clay and gronnd Lricks, pixed up with water, or preforably with a solution of boras, answers well fir most paryusos.
2269. Fire Lute. Asn coaling for ves. sols, to proiorye them from iujury frum exposure to the fire, bothing is better tban a misturo of ordinary pipe-clay and horse dang, tnade into a pasto with water. This compo: sition is used by the pipe-makerd, and will stand unharmod the extroms heat of their kila for 24 bours. It is applied by spreading it on paper.

2270, Lute to Protect Glass Vessels. The following conpobition will ouable glass Tessels to sustain an incredible degree of heat: Take frugments of poreelain, pulverize, and sin them well, and add an equal quantity of fine elay, previously softeved with us much of a saturatod solution of muriate of soda as is requisite to give the whole a proper consist. chec. Apply in thin and unform coat of this composition to tho glass pessels, and nllow it to dry slowly lefore they are pat into the fire.

Flour Paste. Tha vest pasto for general purposes is simply wheat flour beaten into cold weter to perfect smoothness, and the whole just brought to a boil, while being constantly stirred to prevent burning, The addition of a few drops of creosote, or a fow graing of corrosive sublimate, or a little carbolic acid, or bisulphite of limo (especially the first nud second), will prevent insects
from nttacking it, and preperve it (in covered from nttacking it, and pregerve it (in covered
vessols) for years. Shond it get too hard it may be softened witl water.
2272. Paper Hangers' Paste. Beat up 4 pounls of grod white wheat. flour in cold water-enough to fortu a stiff batter (sifting the flour first); beat it well, tu take out all lumps; then ndd enough cold water to make it the consistence of podding batter; add abont 2 ounces of welf pounded alum. Ba sure and have plenty of boiling water ready; take it quite boiling from the fire, and pour gently and quickly over the batter, stining
rapidly at the same time; and when $t t$ is observed to swell ahd loso the white color of the flour, it is conkell and ready. This will make about $\frac{4}{2}$ of a pail of solid paste; do not use it while hot; allow it to cool and it will go further; abont a pint of cold water may lie put over the top of it, to prevent it skinning; bofore using, thim this with cold water to spread easily aral guickly under the brnsh. This paste will keep a loig while without ferntenting, when it is useless; mothd mothe top does not hurt it; remove it, the remainder is good. (Sce No. 2:273.)
2273. Strongly Adhering Paste. Where great athesiveness is required, stich as papering over vurnished pepecy or painted walls, it will be necussary to abld $\frac{4}{4}$ an onneos of finely powdored resin to each $\frac{1}{1}$ pallon a the butiter in the last reesipt. As the resin does aot dissolve so readily, set the pan containing the ingrethents over to moderate fires eonstantly stirringe untif ic lipils mad thickens, and a shuft time nfter put utat to cool. Reduce the poste with thil gun-arabie water. It hasging "fock" papers with erimant in them, ount the alom, is it will injure tha color.
2274. To Make a Fine Paste. A solution of 24 quaces gum-wahie in 2 quarts warm water, is thickuned to a parto with wheat flour; to this bs addial a solution of alum and suger of fend, $1+$ numees ench io water; the mixture is heabin and stirred olamit to foil, and is Heas couled. It may be thinned, if necensary, with a gum solmitos.
2275. To Make Pasto for Laying Cloth or Leather on Table Tops, Tu I pint best whentoty foar add xeoin, tery lieely powdered about 9 large tpopnhifs; of whan, 1 spopufd, in powiter; mex tlom all well Logether, put them intura pun, and add by de. grebs suft or tails watat, corefilly stining it bill it is of the conufintence of thinnibh erone; put it fuk it satecem oyer a eleat fire. keg\%. tug it coustuntly stirred, that if may tot git Lumpy. When it is of a slifl cubistence, to that the zpoon wilt stand upright in it, it is done enuagh. Re farefil to stir is well from the botton, for it will Lurn if not well at. tended to. Boppyy if obt futo a pall atd cover it over till cold, to provent is skin forming on the (op, which woutd uabe it Jomport This paste is very superior for the proposic, and adbesive.
2276. To Paste Leather or Cloth on Table Tops. Th tues phaste in the last receint, for cloth or lafize, spread the pasto evenly and smonthly on the top of tho table, and lay your cloth on it, pressing and snnothing it with a flat piece of wood; let it remain till dry; then trim the edges closo to the oross-banding. If you ent it closo at first, it will, in drying shrink and look bail where it meots the landing all arousid. If usoil for leather, the lemther must be first previowsly damponed, and then the pasto spreail over it; noxt lay it on the table, ats rub it smooth and lovel with a lisen eloth, and eat the ellges close to the bauding with π short, kaifes. Some lay their table-covers with glue instead of paste, and for cloth perhaps it is the best mothod; but for leather it is not proper, as glue is apt to run through. In asing it for cloth, great care must be taken that the glac is not too thin, and that the eloth be well rubbed down with a thick piece of wood made hot at the fire, for the glue soon chills. You may, by this method, eut off the edges close to the border at once.
lue. The hotter the gline, the more
lua. Tho bot the alse the tore
forco it will exert in keoping the two parts glund together; therefore, in all large and long joints the glae should be applied inimediately after boiling. Gine loses much of its strength by freqnent re-melting; that glue, therefore, which is newly made, is much preforable to that which has been re-builod. In melling ordinary glue in the doubla vessal containing water, it is an excellent inethod to sald salt Lo the water in the outer vessel. In. will not hoil then, until beated cunsiderably above the ordinary boiliug point; the consequenee is, the heat is nitainet, insteal of passing off ly evapmation, nnd when the water boifs tho glue will bet found to he thooougly and ovenly melted.
2278. To Prevent Glue from Cracking. Glue is ofen foumal to prock in very dry lucalities, partieularly when the objects glued together are not in clase contact, Tut have a thin layos of gluc betwees then; in which casee they sumotimes fall apart. Vory thin layens of glac aro not ouly exceedingly lieni, but alsi more or less baitle whea extremely dry; and, therefore, to prevent this dry and consequent brittly comblition, the nddition of a very small quantity of plycerine will nocoutplish tho desirest end. Tle quanelity of glyerr ine mast the modified necording to cirenimstances.
2279. To Make a Very Strong Glue. An oanco of the loost isinglass may ho din solvad, by the application of a moderate heat. in a pint of water. Take this soldution susd strain it through a pieces of cloth, and ald to it a proportionate qquatits of the beat glove, whieh has loven previously soaked in wator for about 21 limers, and a gild of vinogar. Atter the whote of the materials hare beent liriought inte a solntion, let it oace boil up. aul strain off the impuritios. This glue is Well alaptod for any work which ropuires parLioular atrength, and where the joints thenssolves do not coatribate towards the conulf. nation of the work ; or in small fillets atal moisldinge, anil carvel patteras that are to be Lesla on tho surface loy the glne.
2280. A Strong Glue that will Resist Mointure. Diswolve gubistandarme and mastich, of each $\frac{1}{}$ ounce, in $\frac{1}{2}$ pist spirits of wine, to wbich sald $\frac{1}{2}$ ounce olear turpentino; now take strongeglue, vo that in which isinglais has beem dissulved; then, juitting the gums into ndouble gluw yot, ald by degreer tho glice, cotutasily stirting it over tho fire tith the wholo is well ineorpuratedi ; strain it theough a cloch, and it is renily for use, it tuay how bo ruturoed to the gloc-pot, ant $\frac{1}{2}$ wance very finely-powaterat ylase abled, nse it quite hot.
2281. To Make Tungstic Glue. Tungstie glac is prepured loy mixing a thitk solution of glan with Luggstato of sasita, and ligetrochloric acin, by means of thich a computunt of tungtio acid and gloe is precipusted, which, at a teraperature of $\mathrm{A} \mathrm{g}^{\circ}$ to 104° Fuhr, to sufficiently elatio to ndinit of beiny drawn out into very thin sliects. On conding, this tuass becrunes solid and loritule, anil on being heated is again sof and plastic. This new empround, it is sail, ean lie usas for all the purposes to which hard rubber is adapted.
2282. To Keep Glue from SouringIf a hittle matriation neid be pat inte glue when it is dissolved, ready for use, it wilf retain the glue in the eame rondition for a long time. It will neither 4 fy $\mathrm{g} p$ nor ferment. Liquili glive is male in this way, and sold in bottleas The use of a snall portiou of sugar of leal will alion provent fermentations.
2283. To Prepare Glue for Rendy Use. To any quantity uf glue nse com than whishey instead of water. P'nt buth together in a hottle, cork it light, and set it for 3 or 4 days, When it will bo fit for nos withont the applica-
tion of heat. Glus Hus prepared will keep for years, and is at ull time fit for use, except in very bold weather, when it slowhd le set in warn water before using. To obviate the difficulty of the stopper getting light by the gha dryin in the nowth of the vessisl, uto at tin vessel with the cover fitting tight on the ontside, to prevent the escapo of the spirit by exaporation. A strong solation of iviuglass male in the samo manaer is an excellent cemeat for leathor.
2284. Liquid Glue. The preparation of liquid glae is hasesl ppon the property of the concentrated acid of vinegar and dilluted nitive acid to dissolve the gelatine withont destroying its eohesive gualities. Dumonin has given the following ricelpt?
2285. Dumoulin's Liquid and Unalterable Glue. Takie a wide-mouthed botule, and dissolve in it 8 unnurs leest gher in 1 pint water, ty mettang it in a vessel of water, and beating until dissulved. Then add slowly $2 \frac{1}{5}$ comets ntroug aduat fortis (nitric neid) in ${ }^{\circ}$ Haumé, stirriug all the whife. Eifarvosectices thket places muter getheration of chitems giss. Whem all the aejd has hoom addel, the liquid is allowerl to caol. Kespit well corked, and it will he resply fur usa at any monuont. This pirguaration down tiot golatimises. tere bietergo patrefaction or fermertutom it is mpulfablifo for many domonfic make, stach th moudibg thina, repairing ealunet work, ife,
2286. Russian Liquil Glue. Thid is
 ghan in 100 prata warn water, mad thete addiog slowly from $5 \frac{1}{2}$ to ${ }^{6}$ patha nqua fortin, and finally 6 parts powdorod supphato of lead. The latter las used he order to impurt the it a whitu coler.
2287. Pale Liquad Glue, Divaclveina Flass vobel 100 parta phle "steam trlue" in deuthle ita weipht of waturs, and widd 12 phits
 (Sne No, R23s5.)
2288. Dark Liquid Glue. Put 100 parta dark "Atcan play abd 130 parts water in is whe-monthed glaws imptle, thind dissolve the ghe in tho waten then add Nlowly 16 parta aypa fortis, stimits all the while. Whem all the acid is adiled, the liguid ts allowed we cool. Cort well. This liquil glame exhibits a greater coheesive force thaty that prepared after Dumoulin's recript. (Sice No. \&2bes.) Howsvot, still better kimels of liqual pluo or mucilage aro oblatuol hy dissolsing giolatige or ilustriue in neelic acid and alcolrol.
2289. Good Liquid Glue. Fill is glass jar with broken-11p glase of Leses quality, them fill it with scetie acit. Krep it in hot watur for a fow hown, watil the glow is all metted, and you will haye at excellent glue always ready.
2290. Glue which Stands Moisture Without Softening. Biskalles, ift about of fluil ounces of strong thethylated kpirit, $\frac{1}{2}$ ant ounce each of sudaracand mastich; next, aht 1 an ounce of fropentine. This solution is then aulded to a hot, thick sulution of glite to which isinglass has been added, and is next filtered, while bot, Ularough cloth or at bind sieve. (Sec No. 9280).)
2291. Marine or Waterproof Glue. Take of gum shellac 3 parts, caoutchone (India-rubber), 1 part, by weight. Dissole: the conutebonc and shellac in separate sessels, in ether free from alcuhut (sce No, 22248), applying a gentle luat. When thoroughly dissolved, mix the Lwo solutions, and keep in a hottle tightly stoppered. This ghtue resists the action of water, both hot and cold, and most of the acils and alkalies. Pieces of wood, leather of other substances, joined together by it, will part at any olher puint than at the joint thus made. If the grlue be thinned hy
the admiztrue of ether, athi applied as is rar-
nish to leather, along the scams where it is sewed torether, it renders the joint or seam water-tight, and almost inpussible to separate.
2292. Isinglass Glue. Dissolve isinglass in water and strain through coarse linen, and then add a little spirits of wine. Evaporate it to buch is cousistency that when cold it will bo dry and hard. Thiswill hold strouger than common glue, and is much preferzed.
2293. India-Rubber Glue for Photographers and Bookbinders. A most valuablo gind for photographers, and extensively used by first-clasa lookbinders, is made from bottle India fubber. This must be dissolved in bighly rectified spirits of turpentine; the highty reetified spifitextractas every partiele of grease, which is of the greatest consequence.
2294. Braconnot's Glue of Casaine. Dissolve caseine in a strong solution of bicyrbonates of soda.
2295. Wagner's Glue of Caseine. Dissolve enseine in a cold saturated solation of borax. Saperior to gtom, and may take tho place of glue in many cases. May be used for the backs of ailhesive tickets.
2298. To Glue a Joint, In gonecal, nothing nore is necessary to glye a joint, after the ;oint is mado periectly atraigbt, than to phe both edgee whilo the glue is quite bot, and rub them lengthwise notil it has nearly set. When the woul is spoygy, or sucks np the glte, abother method mast bo adoptedtoje which strengtheps the juint, while it does uway with the necinsity of using the glue tou thick, which nhoult atways be avoided; for the leas glue there dist ountact with the jointh, proyided they toneb, the botter; and when the glue is thick, it chills quiekly; and camoot be well rubbed but from vetween the Juintio. The method to whieh we refer is, to nib the joints on the edge with a piece of zof chall, and, wiping it so as to take of any lumps, ghe it in the usnal manzer, shil fe will to fouml. when the woul is porous, to bold moch faster than if ised without ehalking.
2297. To Glue on Ivory Veneers. To glue on ivory venemot, take 2 jarts polverized gum-arabie and 1 part calomel, and add was. ter sufficient. to make a paste.
2298. Excellent Liquid Glue. Tako of beet white glue, 16 ounces; white lead, dry, 4 ounces; rain water, 2 pints; alcohol, 4 ounces. With constant stirriog diasolvo tho glue and tead in tho water by means of a wa-ter-bath. Add the alcohol and contione the heat for a few minutos. Lastly pore into bottles while it is still hot. This is raid to be superior to "Spaulding's Fifuid glve,"
2299. Glycerine Paste for Office Use. Glycefine paste for office tuse may be prepared by dissolving 1 onnce grom-arabic and 2 drachms of glycerine in 3 ounces boiling water.
2300. Government Postage Stamp Mucilage. Thasubstance iused for gumning
stampsis made as follows, Gum dextrine, 2 stamps is made as follows, Gum dextrine, 2
parts; acetic acid, 1 part; water, 5 parts. Distolve in a water-bath, and add alcobol, 1 part,
2301. Mucilage for Labels. Macerata 5 parts gond glue iil 18 to 20 parts water for a day, and to the liquil add 9 parts rock candy and 3 parts gum-aralic. The mixture can bo brushed upon puper whilelakewarm; it keeps well, does not stick together, and, when moistened, adheres firmly to bottles.
2302. Mucilage for Soda or Seltzer Water Botties. For the labels of soda or seltzer water bottles is is well to preparo a paste of good rye flour and glue to whieh linseed oil varmist and turpentine have been added in the proportion of $\frac{t}{2}$ an mnnee of each to the pound. Labels prepared in the latter way do not fall off in damp cellars.
2303. Very Strong Liquid Glue. To make this, putti parts gime in 8 parts cold water, and let them stand for several hours to soften the glue; then add \downarrow part muriatic acid aud 4 part sulphate of zinc, and heat the mixture to 180° Fahr., for 10 or 12 hours. The misture remains liquid after cooling, and is suid to be rery aseful for sticking wood, erockury, and glass together.
2304. Good Mucilage. For household purposes this may he mado ly mixing 3 ouncer gain-arabic, 3 ounces distilled vipegar, with I oumee whito sugar. Instead of the distilled vinegar, 1 part acetic acid abd 5 parts water may ho sulbytituted.
2305. To Prevent Mould in Mucilage. Solutions of gum-arahic are very linble to become mouldy; and while the introduction of ercosoto, corrosivo snblimato, etr., frequently usod to remody this evil, is objectionable on account of tho danger of poisoning, according to the" Industrio Blitter," sulphalo of quivine is a completo protection against mould, a very mmall quantity of it being sofficiont to provent gum maeilaga from spoifug. It is quito possiblo that writing ink uigight be protectel, by the samo application, from a like difficulty, Tho nse of ainmonis for the zame purpone is algo recoramethlel.
2306. Elastic Glue which does not spoil is obtainod an followis: Gool cormmon glue is dispolved in water, on tha water-shath. and tha water evaporated slown to a masi of thiok condintence, to which is quantity of gly. carino, egual in weight with the gloe, is added. after which the beating is continned matil all tho wator has beoa drivus off, when the nass is ponted out into moulds, or ou a marbleslab. This mixtern answers for stamps, priatera' rolla, gatvaro-plastio copios, eto.
2307. Sweet Mouth Glue. Sweet gloe, for ready use by mofstening with the tongue, is maild in the same way as elastic gloe, siabstituthis, liowever, the samequantity of powdered sugar for the glycerine.
2308. Partable Glue or Bank-Note Cement. Boil 1 poutad hest glae, strain it very oloar; boit alion 4 ouncea isinglass; put it into a double glse-pot, with 1 poand fine brown sugar, and looil it pretty thek; then pour it into platos or monds. When cold, you may ent and dry them for the pocket This glae it vory usefal to draughtmen, architects, \&e., is it impediately dilutes in wann water, and fastens the paper without the procesp of dasugings; or, it may bo used by coftening it in tho moath, and applying it to the paper.
2809. To Make Mucilage that will Adhero to Glass or Polished Surfaces. We all know the diffiouity of cansing labels and similar objects to stick to glass or highly varnished articles exposed to the contioued drying action of a very warm room. The gumi or paste dries up nud eracks, cansing the labiel to fall off. One or two drops of glycerine it a small bottlo of mucilago will entirely prevent this result. Too mach glycerime mnst not be aided, or the ccment will fail to harden at all.
2310. Mucilage of Tragacanth. Triturate 1 drachm powdered gum tragacanth in a mortar with 6 drachms glyeerine; add by degrees, with embstant trituration, 10 fluid ounces water. This will produce a mucilage at onee, without the objectionable air-bubbles incidental to agitation.
2311. Mucilage of Tragacanth. Macerato I ounce tragacinth in 1 pint boiling water for 24 hours. Then tritarate until smpoth and uniform, and press through linen. If pretty firm this pastakeeps well without the midition of an antiseptic, although a little acetic acid or ereosote will more effectually prevent fermentation.

Sealing-W ax, All the following receipts for fine wax produce superfine by employing the best qualities of the ingredients; end extra superfine or scented by adding 1 per cent. of balsam of Peru or liqnid atoras to the ingredients when considerably cooled. Tha faney kinds are commonly scented with o tittle essence of mask or ambergris, or any of the more fragrant essential oils. The addition of a littlo camphor, or apirit of wine, makes sealing-wax burn casier. Sealing wax containing resin, or too much turpentine, runs into thin drepzs at the flane of the candle.
2313. Fine Red Sealing-Wax. Melt cantionsly 4 punces very pale shellac in a bright copper paa overaclear charcoul fire, at the lowest degree of heat that will be neecs. sary to melt it; when melted, stir in 14 omeces Venice turpentino (previously warmed), followed by 3 ounces verailion. The heat must be neither too anch nor too lítule, hut josit sutficient to allow a most thorough mixing of the different ingredients, When this is ancomplished, the flujel mass is discharged into metallio monilds and left to cool. For the parpose of malling the shellac more easily, some ald to the rame a little alcohol. Or: '3 pounds sbellas, $1 \frac{1}{2}$ prounds Venice turpentino, and 2 pounds finest cimmbar, mixed in tho same majner ath the preceding.
2314. To Produce a Polish on Seal-ing-Wax sfer the above process the sticky of sealing-was have no polish. To prodnce this they have to lie beated again on the nurace. For this parpose they are put in other moulda, tuinde of polished atecl, Which are engraved with the desired onnmesta. These moulds are heated only just sulfiejent to melt the sealing wax on the surface, by which operation the atick obtain a beaatifal glossy appearance. Tho beating of the mould to stamp the mark of tho mannfacturer can bo teadily performed with a spiris tamp.
2315. Common Red Sealing-Wax. Melt together 4 pounds resin and 2 pounds shellac; mix in, as io the last recojpt, if poubds each of Vemice turjentineand red lead. 2316. Fine Black Sealing-Wax. Take 60 parta shellae, 30 partstinely-puwdered ivory black, und 20 parts Venice turpentíne; mixed as in 2 No .2313.
2317. Common Black Sealing-Wax. Mix together (sec No, 23t3) 6 pounds reshin, 2 pounds cach shellac and Venice turpentine, and sufficient lamplack to color.
2318. Gold Colored Sealing-Wax. This is made by stining told colorel mica spaugles inta the melted rakins just befora they begin to cool. Or: By taking fincly pulverized gold-leaf (see No. 25) or thetal powder, and stirring them into the sealing $\$ a x$ instead of the colors. A common kind is mado as follows: 6 parta shellac, 2 whito resin, 1 silver Jeaves,
2319. Marbled Sealing-Wax is numb by mising differcut kinds of wenling-wax together just as they begin to snlillify.
2320. Yellow Sealing-Wax, Mix toguther 4 ounces pale shellace, $1 \frac{1}{6}$ ounces resin, 2 ounces Venice turpentiue, and $\frac{4}{2}$ onnco King's yellow (sulpharet of atsenic, or orpiment).
2321.

Light Brown Sealing-Wax. Take 71 ounces shellac and 4 ounces Venico turpentine; and color with 1 ounce brown ochre and $\frac{1}{1}$ ounco cinnalar (red sulphuret of mercury or vermilion).
2322. Blue Sealing-Wax. Take 16 parts mastic, 4 turpentinc, 8 mountais-blue, 3 burned selenite. The motutain-blue turos green by the heat of melting the mixturo; therefore it is better to use fine indigo, or very fine Prussian blao; but in that case the shel-
lee must bo partienlariy light-colored.
2323. Dark Blue Sealing-Wax. Mix Tounces fine shellac, ${ }^{2}$ ounces Venied turpertine, 1 ounce resin, and 1 ounce miseral bluc.
2324. Green Sealing-Wax. Mis 4 croces shellac, 2 ompes Vemice turpentine, $1 \frac{1}{4}$ onnces resin, $\frac{1}{2}$ osante King's yellow (see No. 2320), and \ddagger wate minetul blue, Of: 24 parta shellace, 12 maste, 4 tupentine, 6 verdtgris; colored with as mistura of yellow and indino.
2325. To Make Perftmed SealingWax. Any fine sualing wax may be per-
 Pera, or liquil stoms, to the ingredients when considerubly cooled. A litcle esisence of mask or ambergris will aerve the same pirpose. The addition of a Iittlo campluer or spirit of wine makes healing wax buelt catier.
2326. To Improve the Appearance of Common Sealing-Wax. To nalre eotomon acaling max nepuar to hostur ndvantase. the sticke, beiag xifl inft, wioc dipped it the powder of a botke quality, and then saper fuelally melted, sons to produce is thit enating-
2327. Soft Gealing-Wax for Diplomas, Tako 16 purta yellow wax, is uippetstine, 1 olive vit 1 feer it is melted, the cimesbat or other colaring matten, is stirred in the compernd.
2328. To Thke Proof-Impressions of Seals and Stamps. Eur this furphio the very best sealing was is melteed us imal by a flame, and careftity worked on the surtheo te which it is applied, tutil peefeetly even; the starap is then firmly and evenly pressed into it. Thas tlame of a spint lamp if preferables. baving no tendency to blacken the what. I beautitul dead uppeampee is gisu2 to the inspression by drikting tho stamp, before nsing it, with a fine g-puwdersil pigment of the same oulor as the wax; thon, for vermitiod scaling-wax, powlered vermillon, se.

G
 wie fleit) wist the uxide of as alkalime methi, obtained hy fision. In ita natal form it

 or quatities. The prinesple of its panketion in

 comblimation takesplaces. IV leon the mesolys comes perdeetly limpiat and the from air hime. bien, it is allewom to conl untit it reallosed the peculiar tenusious comdition fin working. Thafusion is performed in largo crachles or tefiactory fire-clay; in making lead glas3, tho cruciblo is covercd with a dome, nad am opening left in the sidc, througle. whicis tho matcrials aro put in and tho melted glass with. drawn. Carbonates and other erystalliad matter used in glass makity re require Lo bo dry. (Sec 20. 2065.) Certain minetal oxiles give glass a, varioty of eulor, sometimes of a rery undesirablo kind. Should the pisto cuntatu traces of iros, instead of pruchucing white glass thero will bo only tho common bottic. glass; and if the iron bo in larger proportions, the dark green siado will bo tho rosult. On the contrary, add a certain tuantity of oxido of lemi to a pure base of potash, and the beantifol orystal glass is formed; a still larger doze, nud the diamond paste, with its wonderfully dispersive power, will deceiva many an unpracticed eye,
2340. Peligot's Bohemian Tube Glass, The component parts of this glass aro 714
parta quartz; 20 parts $d r y$ (sec No. 2065) carbonate of potasss (or its equivalent), 82 parts quicklime, and a littlomangatese. It is very intractable and difficult to melt, but the addi-
slacked line, 4:3 partx or: Pron satad, it parts; refined sunda, 45 part-; quichlimes, 40 parts; nitre, $2 k$ partis; cullet (ohl glasi), 45 parts.
2352. Table of Proportions of the Materials Used for Making Lead Glass, the Numbers Increasing with the Quality.

	Cryutal					Common Flint.			Opticat.		Faste tis imitate Dhanandr \&c.		
	1.	2	3.		5.	6.	7.	8.	5	10.	11.	12.	18.
Silica	100	100	100	100	100	100	100	ICOI		10%	160	1031	110
Oxide of Lead	10	30	42	45	48	66	70	E01085	104	100	13%	154	100
Putash, purifie	35	33	33	35	16	26	40	35.1040	43	24.	13	5.6	${ }^{211}$
Saltpetre....		10	1.			7	3	2 tos		1.3			20
Cartonnte of Li	13				5								

tion of a very small quastity of borax, boracic acid, or arsenions acid, canses it to flow into is glaes of great brilliancy and hardness, and capablo of leing wrought at the highest heat of tha ordinary iumace.
2341. Bottle Glass. Drjf Glandersalts, 11 pounds; somper salts, 12 pounds; 3 buliel of wasto soap nhes; ravd, 26 poands; glasa akimminga, is potndsy green brokeu glase, 1 ewt: basalt, 25 pousds. This mixtaro affosila is dark greon glass. Or: Yellow or white sand, 100 parts ; Lelp, 30 to 40 parts; Fixiviated wood ashes, from 100 to 170 parts; fresh wood whes, 30 to 40 parts; potter's clay, 80 to 100 parts; cullet, or lirolien glass, 100 parts. IC bsualt be used. the proportios of kelp may be diminithed,
2342. Broad, or Green Window Glass, Dry Gintiber salts, 11 peands; soaper talts, 10 pounds; ! bashel of ixxiriated soap waste; 50 pounds of sand; 22 pnunds of glass-pot skimuing ; 1 out, of broken preen glas.
2343. Crown or White Window Glass. Pure sand: 100 partr; dry sulphato of $20 \mathrm{da}, 50$ ports; dry quicklize, in powder, 17 to 20 parts; charcoal. 4 parts. The produet is white and good.
2344, Bohemian Crown Glass, Puro silicious band. 63 paits; potash. 22 parts; Lime, 19 parts; oxide of manganees, 1 part.

2345, Nearly White Teble Gtass. Take to pomnds potasbes, 11 potinus dry Glauber salts, 16 pounds soaper salt, 35 pounda samd, and 140 poands eallet or luniom glasa of the sanie kinhl. Or: 100 parts sanut, 235 kelp, 00 wood ashes, $1 \frac{1}{2}$ yasganese, 100 broken glass,
2346. White Table Glass. Fuse togethor 40 putads putashes, 11 chalk, 76 sand, t purt mangupese, 95 whito cullet. On: So parts pinilied potasties, 200 sand, 90 elallis, aud $\frac{1}{2}$ satpetre.
2347. Crystal Glass. Take 60 piarts purificd potabtres, 140 sand, of elalh, 2 saltpetre. 2 arsenions acid, is part miangaizee, or : Purified peariashes, 70 parts; 190 white sand; 10 saltpette; 12 part eirsenious acill; and if part aragancse On: G7 paits sand, 43 pari fied pearlashes, 17 sitied ulackesl lime, \ddagger part masiranese, 5 to 8 red lead.
2348. Clear Crystal Glass. White sand, 15 parta; resl lead, 10 parts; refined ashes, 4 parts; leitre 1 [art; arseluioas weid aud manganese, of ench a very little.
2349. Vienna Plate Glass. Sund, 100 parta; catcimeal salphate of sumio, 60 parts; lime, 20 parts; cbarcolal, 24 parts.
2350. Plate Glass. Pure sand, 40 part: ; dry carbonate of suels, 2ft parts, fluve, 4 parts; nitre, is purts; broken plate gless, 25 parts.
2351. French Plate Glass. White quatiz sanil and cutlet (uhd glass), of cash 200 parts ; dry carhemate of sabla, 100 parts;

It has been suggested that the oxides or other salt of thalliun, substituted for the lead, makes a paste of greater brillinacy and dis. ponkive powers for optical puryoses, that for iuitation gemes.
2353. Ingredients for Coloring Paste to Imitate Gems. The fillowing primortimis minst be milied to 1000 parts of pasto No. 12 in the above ablibe uf leal glass,
2354. For Topaz. Antimmy glass, 40

2355. For Ruby. A ruly calor is given

2356, For Amethyst. Oxide of mangenese, 8 parte: it part gall priple (sec Nos, 2720 to $272: 5$, abal 5 parts oxide of coltalt.
2357. For Garnet, Anthmony glaw, 500 parth 4 parts caxite of mangusew, end a partic pald purple. (Sec Nos 2720 to 2723.)
2358. For Sapphire. Take 15 1arth vxith of cohalt.
2359. For Aqua Marine. Take 7 purts

2360. For Emerald. Take 8 parto os. ite of cuipror, है phart uxide of chromes.
2361. To Siain or Color Glass. Dif ferent rolons sre givento ginss by thendation of mutallic oxides. Thas, for amothysh, oxile of manganene is uged; for blac, waide of cis lalt; for brown, oside of iron; for green. black uxite of eopper ; for juryjle, oxide of gold; for ruly rad, subasife of copper; for white, uxide of tia; for yellow, oxide of siferer Sc. These substances arc ether mided to the nelted contents of the glase-pot, us fu preparing artiticial goms (ere No. 2419), or aro applisel in a thin layer to the surfive of the abject, whieh ie then heated ubtil the coloring compuand fuses as in conameling. (Sce No. 2375.)
2363. French Glass Used for LightHouses. The aquecint campusition of the erown elings used for the light appuratus for light-4ouses was, whtil guite recentis, kept it secret by the manufucturers of Salat Gobbiu, in France, and sintie firmis in Birminglint!, which had the monopaly of Clis lraoch of trade. From the researches of David M. fendersou, C. E., tre are alule tu formish the composition of both. The Eremoh plans is composed of silicic neid, 72.1 parts ; snda, 12.2 parts; and lime, 15. 7 parts; indinting some traces of alumina and cuxile ulf ifos,
2363. English Light-House Glass. In Jirninghan it is made from stal prosith Freweh sand, 203 pounds carloumut: of soild, 63 puonds line, 28 petnds mitrate of sumfa, and 3 ponteds arections acid. The bost qual: ities of this ghass are at preasent prestuced in the sienwens fornace.
2364. Liquid Spectroscopes, The use of trannparent liguids, such at lisulphisle uf carbon, for the mandacture of leasent is making rapid progress on the gromnl uf econmuy;
hage pieces of glass, free Irom thaw ane luemish, heiug diffient to ultuin, tual expernave. Pogerndorfl's "Amualen" salis aftenion to possible disturbatect of the accomay of liquid prismbs, the lines it the senetran farging with the tomperatires Tho divergoner, rwilig to changes of heat and colld, inf the liteso of sotha paisms, is quite invizaificuns. A glast jutison, heated itt then sati atut flien rembied to the shute, was observed to jusshst min ihereased refrnelive power as it remberl, while 4 bisill-
 fants print ont the jumortance of therliat if the thernamuter in emjobution with the spectro. suoper, ant also slow that there is ruen for great fimproxemotht in the ntannfieture if

2365. Pri\&natic Diamond Crystals for Windows. A bol suluthat of salphate
 bie, misal tugethry hay to wh Jot. For a
 wiste to roxatin elent with a wet towel.
2366. To Drtll Gless. Wetan udinary

 diftiont to home. It lua leven verontly wive tained that dilute unlphare wid io auch nose
effeetive, with luse wear of the tool, than oft of tarpentiges. It is atated that at liothos,
 phated ami lown like fron -buen, and th the same lathes umi nnechines, loy the bill of setphurie aeit.
2367. To Cut Giass Round or Oval Without a Diamond. Sumbleh ther glase feromit the shape your deaire with the vorner of a filo or graver; then, ladefigy beent a picon id ivfo to tho samm shape, beat it red hot and lay it upon tho scratelt, bink the glass into cold water Juat deop enangh fine tho water to come almost on a lered with its uppersiuflace.
2368. To Break Glass in any Required Way, Dip a pleen of vonther threat in spiviti of thepenction, rorip it mand the glass in tho drection regured to ho broken, fand ther aet fire to tha turend, or apply a red hot wire round the ghass; if it does not inmmellately crack, throw cold water on it while the wite rematins hot. By this menas glows yese sols thut hace leen linken wity ofem hoo fashtoned and rentered useful for a varisty of purposes.
2369. To Break a Glass Bottle or Jar Across its Circumference. Whew the Inotle in is vessel of water, to the hejptit wherw it is derigned to break it; slow fill the lmatle to the rame level. Nuw punr eonl oil inside and out on the water; ent af ring of paper, fitting the buttle. Saturate with alouho of benzine, so that it tonclies the oil. Pour, also, same inside the loctles. Set out fire: the eoffi water prevents tho glass from lecating below its surface, whide the expansion etrsed by the loent will break thet verdot on the water line.
2370. Glass of Antimony. ISonst powdered antimany in a shallow vessel wver a gentle fire, until it ttrus whitisls gray, mad ceases to emit findes at a red losat; then beat it in a cravilile until it fises into a frow wish red gluss. If ealefped the mueh, a little nome Antinuny mast las midel to make it rum well
2371. Writing on Glass. This may he dong with a piece of Preach clalk, or erayous prepared for the purpase; or evem with a comman pen huld nearly perpenulicular. Tudia ink, or when the artiele will be expused
to damp, sluellae rarmish, thickened with a little vertuilios or lamphlack, for red or black color, is host adapted for the purpose. Common ink is not sullicieatly opnque.
2372. To Imitate Ground Glass. Λ realy way of imitatinf ground glass is to dis. solve Epsumi salts in beer, and apply with a bewib. Δs it dries it erystalizes.
2373. To Make Prince Rupert's Drops. Prime Rupert's drups are made by letting drops of molted glasi fall intu colle water; the drops nosmuic by that means an oval forim, with a tail of neck resembling a retort. They pozsess this singular property, that if a small portion of the tait is limken off, the whive bursts into powder, with an explosion, and a vonsiderable slonck is conmmnuicated to the hatol that grasps it.
2374. To Etch on Glass. Ktwhing with hydrullunic acill ou plate glass is procticed now to a vicy consileraide extent, the F ronch manufincturens especially prolneing splundial ornamental effeets liy this process. The drawiugs to be imitated or etched on the glass are first made on stone or plate and then prioted on ansized paper with an ink conxistlug prinespally of a solution of asphaltum in nit of tarpentine made with the aid of heat, to which some subintance is odded which shows a suore or less crystalline strueture on conling, hat ateatio refid, spermenceti, naphthaline, parsifise. This misture is xtrained nol rapilly troled with comstant stirring; it is the only kind of coating waich thoroughly rexids the tuthon of the corrosive arid. The printed japer is lain fat with the blauk side on water, to which from 10 to 25 por cent, of imiriatio aefd has boen added, aus as sumb as the lines show eg ans of softeming the negatire printing in transterred to the glass loy aslight presemre; when the paper is romaved, the pictare will adhere to the glas, ond this is Afterwards expused to the fluove raprors in leaded troughx
2375. To Etch or Write on Glass. A writer in Dingler's "Prolytechanieches Jouroal" recomineinta a alototion of fireride of ammonium, which can le used with an ordfoary guill, aml on drying leaves udistinet line.
2376. To Engrave on Glass. To engrive on glase, ltoric heit is msed, either in the lignid state or in vapor. This acid is kept in motal moteles, nat remuirn very carefal bandling. The ghass totut be warined, and conted with vas, of engrarort' cement, nud the writing or dexign traced through tha wax with a puinted instrument. The liquid fluorio neid fa ponred on it, sabl left to act on the uneopered portions of the glats; fir pour somo of the aed it a susall lead pat, whieh place in a kelit larger reosel filled with sand; heat the suits and place the glass olject over tha gas lilverated frout the heated neid, and it will sonts be formud tu be leatiffolly ctehed. Great eare must be taken wluen this is going vi, for the gros, at well as the acid, io of a vary deleteriviss elacracter. The same effict miny be prodiced by the tre of flumepar, perwelped fond mule into a paste with oil of vitriol, laid wver the prepared surfare, ant coveral' with teal-foil or tea-risul; or liruised flumpjar is put fo as wedgovol evaporating basin, with tuffiecient oil of vitrial to form a thin paste, [ini) the prepared glass luid orer the leasin, so that the vapors blay net ion the portions from slieh the was hak been remirvesl.
2377. Glass of Borax. Calcine brarax with is strong beat till the water of erystallization is expelled, and the salt fases into a cleargless.

[^6]oxides (sec No. 2393) and applied in a thin stratam to brightly polished metallic surfaces (copper ur pold), ou which it is fused by the flame of a howpipe, or by the heat of a suall flurnace. The basiz of all ewamels is a hiphly tratusparent and fusible glass, callesl frit, fla, or paste.
2379. Base Frit or Flux for Enamels. The precise qualities of the prothets of the fullowing processits depend greatly upm the duration and degres ot hent employed. By increasing the quantity of sand, plass, of flux, the enanel is rendered more fusible, and the opacity and whiteness is increased by the addition of oxide of tin, The use of borax should Le avoided, or used very sparingly, as it is apt to make the enamel effloresce and lose color.
I. Red lead, 16 parts; calcined borax, 3 parts; powdered flint glass, 12 parts; powdered flints, 4 parts; fuse in a Некsian crucible for 12 hours, theu pour it out intu water, and reduce it to a powder in a biscuit-ware (unglazed porcelain) mortar.
11. Powdered flints, 10 parts; pitro and white areomic, of each 1 part as last.
III. Flint glass, 3 ouncess; red lend, 1 ounce; as last,
IV. Iled lead, 18 parts ; borax (bot calcined), 11 parts; fint glass, 16 parts ; ns last.
V. Fint glass, 6 parts; flux No. II, above, 4 parts: rod lead, 8 parts; as last.
VI. Tin, 2 to 5 parts; lead, 10 parts; cal. cino in an iron pot at a dull cherry-red heat, and scrape off the oxide as it forms, oluserving to obtain it quite lree from mulecomposed metal; when enough of the dross is obtained, roduce it to fine powdor by grinding and elintriation (800 No. 14), then mir 4 parts of this powder with an equal weight of pure sand or powdered flints, and 1 of pea-silt, or other alkaline matter; fuse the intxture ina Hessian crucible, and proceed as beforc. Tho best proportions of the tim and lead, for all urlinary purposes, are about 3 of the former to 10 of the latter. The calciued mixud oxidos are commoniy called oalcine.
VII. Lead and tin, equal parts: calcine ns above; and take of the mixed oxider, or calcine (seo precoling receinl) aud ground flints, of each 1 part; pure subcarbomato of potash, 2 parts: as before.

VIIL. Lead, 30 parts; tin, 33 parts; calcine as before, then mix 50 parta of the calcine with an equat weight of ffinte, in porsler, and 1 pound of salts of tartar; as lefore. I fine dend white enamel.
2380. Black Enamels. I. Pure clay, 3 parta; protoxide of irom, 1 part; mix and fuse. A fine blinck.
II. Calcibed iron (protoxide), 12 parts; oxide of colnult. 1 part; mix, and add an equal weight of white flux. (Sce No, 2396.)
III. Peroxide of mangnnese, 3 parts; zaffre, 1 part; mix and add it as required to white flux. Zaffre is crude oxide of cobalt.
2381. Blue Enamels. Eitber of the white thuxes colored with oxide of cobalt.
II. Savd, red lead, and nitres of ench 10 parts; fliat glass or ground flints, 20 parts ; oxide of cobalt, 1 part, more or less, the quantite depending on theslepth of color required.
2382. Brown Enamels. I. Red lead sad calcined iron, of each 1 part; antimony, litharge, and sand, of each 2 parts; mix and add it in any required proportion to a flux, secorling to the color desired. A little oxide of cobalt or zaffre is frequently added, and nlters the shade of brown.
II. Manganese, 5 parts; red lead, 16 parts; flint powder, 8 parts; mix.
III. Mauganese, 9 parts; red lead, 34 parts; flint powder, 16 parts.
2383. Green Enamels. J. Flux, 2 pounds; black oxide of cupper, 1 onnce; real oxide of iron, $\frac{1}{2}$ drachm; mix.
II. As above, but nse the red oxide of copper. Less decisive.
III. Copper dust aud litharge, of each F sunces; mitry, I numee; eand, somnees; thax. as much os requireil.
IV. Add oxide of chrome to a scilicient quantity of flus to prolnce the desired shade; when well manated the color fis silpertb, and will stand a very great heat; lat in carcless hands, it frequently turno on the dead-leaf thinge.
V. Transparent ilnx, 5 muees; bluek oxide of eopper, 2 seruples; oxild of chromic, I grain:. Resembles the emerald.
VI. Mix blue enil yellow cuareel in the re quired propontions.
2384. Olive Enamels. Gund blue enanel, 2 purts; black nul yellow enamels, of each I part; mix. (See Irwirn Numwels.)
2385. Orange Enamels. I. Hest lent, 12 parts; red nuphate of iron ated oside of antimony, of enich 1 purt; dint piowiler, a parts ; calcine, puwder, and welt with flox, 50 parts.

II, Ieed lead, 12 parts; oxide of antimony, 4 parts ; flint jewder, 3 parte; rod nutphate if Grom, 1 part; cadcine, them aid tlux. 5 parta to every 2 parts of thin wisture.
2386. Purple Enamels. T. Plux colonel with oside of guld, parple preeipitate of caskins (sed Nos, 2520 tu 2723), or peroxido of mangmese.
11. Sulphor, nitre, vitriol, autimony, ent oxide of tin, of eneh 1 pound; red lowd, 60 pounds; mix and fase, cont ami powier; aild
 cus martion, 14 ominces; bunts, it otrices ; and I pound of a compentad formed of pild, silver, and meretiry; fine, stirriby the meltol mass with a oppper rui alt the time, then place it in erocibles, nud snbait theme tie the oeftion of It reverberatory furnued for 24 hums. This is said to lie the pligile erasmel tased in the mosaic pietures if SI. I'eter's at lloms.
2387. Dark Red Enamel. Sulphate of irou (ealeined durk), 1 purt; a misture of 6 parts of flux IV, (in $\boldsymbol{N}_{0}, 2439$) and 1 of coleothar, 3 parts.
2388, Light Red Enamel. Ped sulphate of irou, 2 parta ifux 1 (bn Sia 2559) 6 parls; white lead. 3 parts Liglet Ted.
2389. Red Enamel. Paste or flinx colored with the red or protoxide of enpper. Should the color pass into the green or linwo, from the partial perisiiltzement of the eopper, from the heat beng mised too higl, the red colner may be restored by the aldition of any carlonnceons matter, as tallow, or chareval.
2390. Beautiful Red Enamel. The most leantufal and costly red, incliming to the purple tinge, is produced ly tinging glass or flux with the oxide or salts of gold, or with the puple precipitate of cassins (see Nos, 2720 to 2723), which emsists of gold and tin. In the hands of the skillial artiot, any of these substanees prodnce shades of red of the most exquisite lue; when must perfeet, the emanel comes from the fire quite culorless, and afterwards receives its rich hue from the flame of the blow-pipe.
2391. Rose Colored Enamels. Purplo ethanel, or its clements, 3 parts: flinx, 90 parts; mix, and uld silver-leat' or oxide of silver, 1 part or less.
2392. Transparent Enamels, Bither of the first five fluxes in No. 2379.
2393. Violet Enamels. Saline or alkaline frits or fluxes colored with small quantities of peroxido of manganese. As the color depends on the metal being at the maximum
of oxidation, contact with all sulestanees that would absisuet any of its nayzen should te avoided. The same remarks apply to sther metallic oxites.
2394. Yellow Enamels. Superin yellow enamels are leservaily prostuceil tham nust other colons; they royuire liuc litule fiox, and that onostlg of a metallie mature. I. Fed leaul. 8 ounces; uside of antimony ninl tin, calcined together, each 1 onnee; mix, nund addl flux IV. (24 No. 2579), 15 punces; mix ahd fuse. Fy varying the propertion of the iugrodients, variout shatles nay lee proilacel.
11. Lend, tin ashes, lltharge, antimony, and sund, each 1 ounees; bitce, 1 omices; mix, flise, and poisder, and sadd the product to any quantity of flos, according to the color required.
III. Flax flowed with oxite of hoal, unt a little rol osible of ions.
1V. Pure oxite of sifver mided to the metallie fluxes. The salts of silver are also nsed, but are difficult to manser, IF a thin filut of axile of slver tee spreat over the shisface of the cnomel to bo colored, exprused to a ramerate heat, then withifawn, ath the Hilut of reatneed sitver on the nurfiser remessed, whe part nuder will be foum tingell of a fise yollow.
2395. Bright Yellow Enamel. White oxide of untimbiy, alom, und sal ammoniac, each 1 pert; pure carloumate of lebil. I to 3 party, is requirel, ull inpowder; mix, mul expose to a heat sofficiently high to tlecopuruse the sal сининиiac.
2396. Dead-White Enamel, Fur white enaties, the articles witht lam porfectly free from loceigo moloisture, as this souhi hupart a cohor. When well managrol, sither of the following forms will produen a josste that will rivat the opal. Gatrine Cfrum of parts of lis and I jort of lomat caloised tocatber), I part? fithe ergatal or foit, \& parts; a Fery trilling quantity of mangaromer; poncler, mox, melt, siml perer the fised maxt into clear water: Ary, powolof, and agoin firse, oull repeat the
 entatamation keith sumble, dirs, or vxide of ifunt.
2397. Fine White Enamel. Wableal Alophurelic antionaty, 1 part; line glass (perfeesly froe frous lead), is purla; mis, und prosceed as befire.
2398. To Make Black Enamel for Gold or Silver. Melt together in a crocible, 1 part, by wajelt, of sitver, 5 pirls eoppuc, 7 parts lead, and 6 parts muriate of ammonio. Add to this mixture twige its quantity of pulverized sulplut, covering the crucible funnediately. thet it calcine putil the excess of sutphar bus passed nifi. Then poaind Checouspound to coarse povilor fud make it into a paste with a solotiont of nouringe of anmomia. This is the lilack enmmel wad fir jewelry.
2399. To Black Enamel Gold or Silver. Place swate of the ealizinel pastec, asprepared in the precoding resojpt, on the article to be enameled; bold it over a suririt lamp until the enamel melta ami lovex upon it. It may theu be smoothed and polished.
2400. Black or Enameled Copper. The bequiful ebameted surface pomsessel by paintings on eopple, way Im proluced, on a tack ground, by the followjif process: (Jeal the copper with saud nuil sulphurie acil, auti then rupply the fothwing mixtures ${ }^{2}$ joirts white andenic, 4 purts lyiflochlorinacid, 1 sulphuric acil, pul 24 water.
2401. Enamel for Labels, Signboards, etc. The fine emanels if trude ane georrailly prepareal lig fiesine at high temprnatures, silica, oside of tin, and oxitle of lrad, asd spreading the mixture orer the swiflace of a spreat of copper, gold, or platimum. The ob-
jections to these enamels are, in the first phace their high enst, and secuntly the impossibility of giving them a pertertly flat smeftec. Mr. E. Dachemin has adsablagoonsly repheced then by the following esanomical and effivient conprotiti:
2402. Duchemin's Enamel for Labels, etc. Arsunic, 30 parta by weight; saltpetre, 301 jarts; silica (fine samd), 90 parts; litharge, 2501 parts. This is spuend on plates al plass of the required shaipe and kixe, same licing taken, fowever, that the kind of glass theploged be bot inferfor in point of Chesiliblity wo the enamel. Enaneleal thass prepured from the above sulstances may te drawn or written on as readily as if it were paper, and in less tibe than oue minte the writing thyy los rendered indelible by simply beating the pate
 autographes, legal acts, publie dowments, historical facts athi dater of inportance, labels for hortientumal purposes or fustined for out.
 showerase signs, the., may thind be chataply

 Lhes or negatives, may ho taken on whih enanche withont rollotion. (Noe thetumrephes wa Eammel.)
2403. Enamel for Iron Hollow Ware. The shatuet of ins boillow waro is mate of jowderal tlates smathel with celcimed horns. fime slay, mes a litite feddopor. This mixture is zande cato a paste with water athel lomaked neer the pota ather they haves been semend with silutiol sidjthues achl and sifoed vtean with water. Whilet still moist they are
 carhomata of smina, horas, and a litlle exite of tin. Thus prepansi, the jmts ate eradratly dries sond then the phaze is fired on funed under a modfle at n loright rod heot. Qxito of houl, athonegh inereasing the foribility of the glaze, impairs its effecioncy, if is will not resist tho ग्रtion of scide io camkina.

Glazes. Glazes must be reduced to a very fine prawalet Fur usa they ure kroum with water to a vers thin paste or shmoth $\mathbf{v r u a m}$, into whieh the artielea, previnusly makest th the wate called "hrivelut," 40e then droppech; theg are afterwarkenx pased for it sallivient heat in the kinn for fiem the glaze Austher methan of apulying them is Io anneses the biscuit in wase fie a minnto or sat, and then tar rprinkle the dry penwder over the moistoned surtines
2405. White Glezing. Propafo an intimate mixtaro of ' 4 jarts massicut (sce Index), 2 paris tin mishes, if ol' erystal glass frogments. anit $\frac{f}{\text { pad }}$ son salt. This mixtmo is suffered for nielt in carthenwant reskels, when the Ifguidi thex may he wate nase of,
2406. Yellow Glazing. Take antal jarta ut massicent, red leasl, and sulpharet of antimatg: Catedne the mixture ant redates it agais to powiler, suld then 4 parts of pure saind and $1 \frac{1}{2}$ parts of salt. Mett the whate.
2407. Green Glazing. Saud, 2 parts; 3 parts masejed, 1 part if salt and ceppory mates, aecording tor the sloade tol he prodnced. The nisture is tuelteal as directed atoose.
2408. Violet Glazing. Massicot, 1 part; 3 parts kand, 1 of smath, anit \ddagger part black uxide of \quad тйcauese.
2409. Blue Glazing. White suml and massivet, equal parta, \ddagger paist, of hate sualt.
2410. Black Glazing. Black oxide of
 quarts, aul 112 massient.
2411. Brown Glazing. Thake I part broken green bottle glass, 1 of manganese, and 2 parts lead glass.
2412. Glaze without Lead. Common earthenware is glazed with a composition coutaining lead, on which aceount it is unfit for many purposes. The following glaze has been proposed, among others, as a substitute: 100 parts washed sand, 80 parts purified potash, 10 of nitre, and 20 of slacked lime, all well mixed, and heated in a-black-lead crucible, in a reverberatory furnace, till the mass flows into a clear glass. It is then to be reduced to powder. The goods to bo slightly bumt, dippel in water, and Eprinkled with the powder.
2413. Glaze for Porcelain. Feldspar, 27 parts; borax, 18 parts; Lynn sand, 4 parts; nitre, 3 parts; soda, 3 parts; Cornwalt chinaclay, 3 parts. Mele together to form a frit, and reduce it to a powder with 3 parts calcined bornx.
2414. Metallic Lustres for Pottery. The uppearance of a lustrous metallie surfinee is given to vessels of stoneware, de., by ap plying the lustre over an eaxily-fusible ghowe to the outer surface of the vessel, after which alhesure is produced by exposing it to a wlight degree of heat. They are then polished with cotton or leather. The principal luatres are given in the following receipts:
2415, Gold Lustre, Diasolve 1 drachm grain-gold in $\frac{1}{2}$ onteen uqua-regis, add 6 grains metallic tin ta the solution. When disnolved, pour it gralually, with constant alining, into a mixture of f drachm halsam of sulphar, (sco Indox), and 20 graiss oil of tarpentine. When the mass beginstor ntiffou, wn ulfitiona! $\frac{1}{7}$ drachm of of turpentine mant be added and Well mixed in. Mire gold deepensand brightons tho lustre; more tin turnsit on the violet or purple. Applied ess in No. 2414.
2416. Iron Lustre. This is a mixture of muriate of iron and ngirit of tar. Tsed accorving to Nis. 2414.
2417. Platinum Lustre. To bichlerile of platiumin (a solation of plation in pgonregia), is added drop lig drop as mistare of spirit of tar and balsam of mulpher in equal proportions, until by a trial the coraposition in lound to give the required resuft. This gives the appearance of pelished steel. (Sce No. 2414.)
2418. Silver Lustre. Reduce amumiochloride of platinum to and inpal pahle prowider; grind it to tho requisite eonsistence with a fittle spirit of tar, and apply witle a brash as directed in No. 2414.

A^{r}rificial Gems. Theae comstist of ritreons compomaty made in imitation of gems and precions stones. Lika enamels, the artificial gens have for them lasis a very fusible, highly transparent and brilliant dense glass, which is known tomler the name of frit, paste, straks, waycuce base, \&c., and which, in its state of greatest excellence, consitutes the artificial diamonul. Is the strass or bose enters largoly into the manufacture of initation gems, we give fle method for making it first. It is absulately becessary, to ensure suceess in the following receipts, that the aubstances empleyed le perfeetly free from impurities, partientarly thase of a mineral natire. Titharge, oxide of lead, and carbounte of lead ospecially, wuxt be entirely free from oxide of tint, as the smallest particle of this imparts milkiuens to the paste. All the ingredients musit be separntely redneed to powder; and, after being mixed,
sifted through lawn. For the finer kinds of mock diamonds, reek erystal should alone be employed; when sand is nsed, the purest white rariety slrouli bo seleeted, and be washed thoronghly, finct with muriatie mid and then with water, to remove any fraces of earthy matter. Much of the minmie detail in making artificial gems can only be aseguired by experionec. The fusion must be cafclully condtueted and conitimums, nad the melted mase allowed to cool very slowly, after having been left in the firo for 21 to $\$ 0$ bours it least. IIessian crncibles mu preforred for this pirpose, and the heat of an orilinary poreclain kilu is ushally sufficient; lout a stiall wind-furnace, devoted exclasirely to the pirprime, is in geucral more convenimt. It is formul that the mone trmiquil, continucu* and uniform the fusion, the denter and elearer is tho paste, and the greater its refrective powor and beanty. All the eotered vitmoserivat-
 may be worked up in thiswoy iate cpabachtal stomes. It may be furtber coleveriod that the beanty of pantes of imitations gerus, and especintly the frillianer of moek dianuombs, is gruatly dependent an tho eatting, seting ip, and the skinfol arrangement ef the Rall ir th: bel behind them. (Sre EKiviras, No. 2238, fe.: Polss, No, 2447, ifc.)
2420. Diamond Paste, or Strass. D,itharge, 20 parts; : Alieo, 12 part ; Bifre anil bores, coel 4 part: white ansumic, 2 juarts; powder mix, Juse in a enteible, pootir the melted ung into watoh सeparale nug forliceed Iral, tind again puover sod ro huedf.
2421. Mayence Base, or Strass. Sili-
 sath of Larfar. 24 miluesis mix, lahk. ceol. wash with dilute nitric achl, amd alterwarik with water; dry, poweler, add 12 nanees pare catbonate of lean, and to every 12 wusces of the mixture mild borax, 1 ounce; triturate it I porcelain mortar, wielt in a clean crucible, and patr the fuend compruund isto eold water: dry, pusider, anil repeat the pmees a sosend amit a thint tithe it a clean crwwible, silsarcing to apparnten ang reviven lowi. Th the thind fitt ahl uitre, 5 strachms, sul uraun moft. Very brilliank. Orf Carbonate of fead, 8 ounees; pawilereil borax, 9 onuces; rock crystal, \% ounces; wangutiere, i/ grain; mix, sthl pmever as last.
2422. Patent Base for Artificial Gems. The baso of those gecus, ns patented by the Superintnadent of the Ruyal Proredain TVorks at Derlin, is a fux obtained by melting tugether 6 drachms carluanate of sinda, 2 Arachms toment borax, 1 draclim saltpetre, 3 Itrachns mimine, aud $1 \frac{1}{1}$ omoos purest white sand.
2423. Loysel's Straas or Paste. Pure nilex (ilint or grartz), 100 parts; nal oxide of leat (uinium), 150 parts; calcinel patabl, 30 to 35 parts; calciged botax, 10 parts; anseniout achl, 1 part. This proulsces a paste which has great lrillancy and refractive amd dixperstre powers, aul also a siunlar spocifie gravity to the oriental dianomd. It fuses at a moderato heat, and neguires tho greatest brillianey when re-melted, and kept for 2 or 3 days in a fuseil state, in order to expel the supenibuadant alkali, und perfect the refining-
2424. Fontanier's Base for Artificial Gems. Mix together 8 ounces puro tilica and 21 ounces salt of tartar; bake, cool, wash with dilnto nitrie acid, and aftermards with water; dry, powder, add 12 ounces pure earbonate of)end, and to every 12 ouncer of the misture add borax, 1 onrico; triturate in a porcelain mortar, melt in o clean crucible, and pore the fused emponnd into cold water; dry, powder, and repeat the process a second
and a third time in a clean crucible, observing to soparate any revived leal. To the third frit add nitre, 5 drachms, and again melt. The product is perfeetly limpid and extremely brilliant.
2425. Doualt-Wieland's Paste or Strass. Rock erystal, 4056 grains; winitm, 6300 grains; potash, 2154 grains; borax, 276 grains; arsonie, 12 grains. Or: Sand, 360 grains; pura carbonate of load, 8508 grains; potash, 1260 grains; lyorax, 360 grains; atscnic, 12 grains.
2426. Lançon's Paste or Strass, Litharge, 100 grains; silex, 75 grains; white tartar or potash, 10 grains.
2427. Red Cornelian. Strass, 2 pounds; glass of antimony, 1 pound; calcined perosfle of iron (ronge), 2 ounces; manganese, 1 drachm.
2428. White Cornelian. Strani, 2 panads: washed yollow ochre, 2 drachms; balcinel bones, 1 ounce.
2429. Oriental Garnet or Carbuncle.
 timony, 2 grains purgies of casidits, atid 2 grases oxido of manganese. Or: 350 gralos phate, 17 H grums glass of antatoby, and ? trajias oxide of manganese.
2430. Vinegar Garnet. Tako 2 pound 1ate, I paund glass of ratimany, and io otnee axitle of irves.
2431. Opal. Taka 1 ounce pastet, 10 grains horz silfur, 2 grains ealcined mugnetio ore, 2 G grains calcinted bones. Or: 16 podmity parte, and 6 ponmi calciacd homer,
2432. Raby. Tako 40 parte juste, and 1 part nable of anagguients. Of: 1 part topaz paste that has haroed out apmoge, nmid sparts

 84 grains ench preatipifate of cassins (sece Now. 2720 to 2723), peroxide of irno, golden sulpburet of mtinamy, and manganuse catefned wite nities add I muce or nome of mock erjer tal. Or: 1 pomid pasto and 3 struchme purplo of cassius. 02: 4 ounces jastr, 4 muces glass of antimong, aud $\frac{n}{4}$ slmehom purple of caseus, this toras on the orange.
2433. Sapphire. Fuze 1522 paria pasta and 63 parts exde of cobalt for 30 hours its a luted Hossiau eruciblo. Or: \& unamis pastut and 49 grains ostilo of enbalt. A liute wanganeve may he added to this last receipt.
2434. Topez. Melt 95 grains pinte and 1 grain calciued peroside of irom. Or: 1008 gratur paste, 43 grains ghase of antihimy, and 1 graint purplo of cassins. (Nee Nox, $2720 \ln 2783$.
2435. Turquois. Thke 10 jrombls the pasto, + pund caleinel bookes.
2436. Yellow Diamond. Take 1 ounce
 1 numes strins aud 24 tratus chtorthe of silver. 2437. Chrysolite. Striss 5 prumds; calcined peroxife of 'iron, 2 to 4 tiruchms.
2438. Eagle Marine. Tatte of wtrass, 10 prounis; copper laghly calkited with sutphar (copperstain), 3 ounces; zathe, 1 *eraple.
2439. Emerald, Langem's paste (we No. 242i), 9312 grains; noetate of copper, i2 grains: peroxide of itom, $1 \geq$ graius. (Ort lot-ault-Wiéland paste (seo No. 2125), 150 (gratins: green uxide of copper, 42 graims; ixide of elorome, 2 grains. Or: Paste, 1 outuce: plass of antimony, 20 graius; oxile of eubalt, 3 graius. Or: Paste, 15 wunces; carbomate of copper, 1 Irachun; ghaks of fntibuny, 6 grains.
2440. Lapis Lazuli. l'aste, 10 phunds; ealeined horn or hones, 12 ounces; wxites of colualt and manganuse, of each, $\frac{1}{2}$ ommec ; mix. The golden veins are produed by painting $^{\text {fal }}$ thens on with a mixture of pold powider, borax, and gam water, and gently heating till

the bornx fluxes.

2441. Amethyst. Take5mantains gaste, 3 grains oside of manganeres, aut 2 graine us. ite of colcalt. Of: 460s grains jasit, 故 geains oxide of' munganese, 21 srains oxide of colnalt, and 1 gram putple of enosmis. (Sire Nos. 2720 to 2723.3 Or: 9216 grains paste, 15 to 24 grains axite of mangomest, sall 1 graiir uxide of colult.
2442. Aqua Marina, or Beryl. Take
 and 1 grams oxite of smbed. If: som praing paste, 16 grains plase of antimomy: and I gratin oxide of comats.
2443. Ayenturine, or Gold Stone.
 aut 5 gradus praturide of trypur, matil tho cepper pe reduced to motallic fom, then allow the mass to cool rery slowly, sat that the
 fused throughs it. By substitnting oxfile of ehrminm for the protoxide of eopper, Hoe stone mpgeare brown, filted with minute gohl spangles; of by using a less gquantily of the chromium, a greenish grat stone, filled with grean spangles, is produced.
2444. Parisian Diamonds. Thenet beantifit Imitations of the gem are mently fisest vixide of tin. It is a pity that. their haril. liancy is not permaneat, in they lmequme quite dull be time.
2445. Boettger's Artificial Rubies. Moisten recently precipitated and well washed hydrate of alumina, with a fow drops of nentral chromate of' potaska, and kweadol nu that the mass ansemion a searcely jerecptible tinge: thon roll it out foth xumil stiekx, blowat the thicknens of a finger, sind dry then slowly, filling up wiy eraeke that may ocent indrying with feesh hydrate of Alumion. Wher perfoetly dey, warm a xtick a little, wiml lining a portion finto the end of the flame of a com. poutid (oxylydingen) blow-pipe. In a few inisuten several infute hadle form, of nuth istense harehosa na to scratch quartx, glase, giml granite. These, howover, wheu cut und poisheal, appear aslistitly opaque.
2446, Boettger's Artificial Emerald. This is masle in the stme panuter us ble ninies, by employing nitrate of niekel insteal of the elaromate of potasia. The kamo phat, sulbefftuting aside of chromiom for cliromate of putassa, will proulueg gems of conssiterabite hardness and heauly, though slightly opagme: which may, however, he lessenet by the allition of a very littlo silfea.

Inks, Writing inks might bo inchuded under the general term of liquid eoloring matters, wero it aut that they require to hayo this special charucteristics of brilliance, permanence, and some degreo of iodestructibifity, combised with perfect flaidity, in order to fulfill tho objects for which they aro generally used. Printing and lithographic and other inks aro also included under this heading.
2461. Black Ink. Aceording to the most accurato experiments on tha preparation of black ink, it appears that the quantity, of sulphato of fron suould not exceed + part' of that of tho galls, by which an excess of coloring matter, which is necessary for the durability of tho black, is preserved in the liquid. Gum, by shielding tho writing from the action of the air, tends to proserve the color, but if much is employed, the ink flows badly from quill pous, and scarcely at all from steel pens. Tho latter requirs a very limpid ink. The addition of sugar increases the llowing property of ink, but makes it dry more slowly, and frequently passes into vinegar, when it acts in-
juriously on tho pon. Vinegar, for a like reason, is not calculated for the fluid ingrealiont. The bost bluo galls should alone boemployed in making ink. Sumach, logwood, and oak bark, are frequently sulistituted for galls is the preparation of commons luk. Whon such is tho ease, only about one-sixth or ond-soventh of their weight of eopporas should bo omployed.
2462. To Prevent Ink from Moulding. The addition of a fow liruisod cloves, or a littlo oil of cloves, or, still batter, a fow dropt of ereosote, will effectably prevent any tambany to mouldiness in juk.
2463. Fine Black Ink. Aloppo galls (wall bruised), 4 punces; olean soff water, 1 quart; macerato in a cloan corked butto for 10 days, of evon loogur, with frequent agitation; thea add $1 \ddagger$ oances gum-arahis (itiaHolved in a winc-ghassful of watec); lump sagar if ounco; inix well, aul uftorwardis further add If ounces sulybate of irou (greven copperar) erushed small, upitate ocessionally for 2 or 3 daps, when the ink biay be decaated for use ; but it te botler if left tudigest tegether for 2 or 3 weakx. When timo is an nhject, the whole of the ingredients may bo at osee pat into a bottle, and the latier agitatest daily, until the ink is mades and boilizi watas insteal of cold water may be ennproyed. Tha above will unake 1 guart of leuntind ink. writing palo at firat, but noon turning intense$1 y$ Wack.
2464. Cooloy'a Superior Black Ink, Braised Aleppo nat-galts, 12 pounis; wator, 6 gahlons; boil im a enppor vesiel for 1 hour, adding evater to make up for tho purtion lont by ovaporation; strain aid again boil thes galli with water, 4 gallons, for 3 hour, strath off the liguor and boil a third timo with wates 24 gallotes, and stralig biix Heo several liquoch and while still bot nibl grom obppuctas (sin)phato of inui) evarsoly poudosed, 4 pounhla; gam-arabie bruised sanall, it porbato: agilate until disoolved, sied, when sethesh, "train through a hair siere, nut heep ic it n hanzol. up cask for use. This will produce 22 gallonts, vory fine and durable.

This ink, 9 nd that in No. 946s, are pood. Cooloy recommends them vary highly. In says that they aro very durable and limpid. and will bear dilntion Kith hearly an equal bulk of water, and still be saperior in quality to ordinary inks. Of the later ink be atys that he has writiog that was esecaled witi this kind of ink upwands of 60 years atro, which still possesses a goul culor.
2405. Black Ink. Camprachy logwood chips, 3 pounds; bruisod galls, 9 pounds; limi in water, and to tho mixed liyuors ald gumiarabie and groen copperas, of cach 4 phands; to produco 161 , gallons of ink. Quality vory good, bitt inferior to the above.
2466. Asiatic Black Ink. Lagtraci shavinge and pistered galls, of each 2 pounds; green vitriol, 1 pround; gant, 1 pothd ; pomagranate bark, i poand; water, I gallou; infuso 14 days with frequentagitation, of boil as direeted in last receiph, This ink writes pald, but dows well from the pen, and soon tarns black.
2467. Good Black Ink. Bruised galls, 2 pounds; logwood, green copporas, and gum, of ench 1 poumi; water, 6 gallons; boil tho whole of the ingredients is the water for 14 hours, andstrain5 gallons. Good, but aot fine.
2468. Common Black Ink. Irnised galls, 1 pound; logwood, 2 pounds; camann gum, $\frac{1}{4}$ pound; greeu copperas, $\frac{1}{4}$ pound; water, 5 gallons; boil. Common, lrat fit for ordinary parposes.
2469. Exchequer Ink. Bruised galls, 40 pounds; zom, 10 pounds; green sulphato of iron, 9 pounds; soft water, 45 gallons;
macerate for 3 weoks, euploying fiequent agitation. This ins will eulare for centuries
2470. Black Steel Pen Ink, A black ink, not corruding stend pens, and uentral, may be prepared by digesting in an opmen yessel, 42 nuwces coarsely- -urwderat nut-galla, 15 ounces gam smpegal, 18 ounesis sulphite of iron (freo from coppor'), 3 drustms afna nmmonis, 24 ouncesalcolaul, and is gharts distilled or rain Wather. Contime tho digestion until tho fluid Las nssumed a deep black extor.
2471. Glycerine Ink. Take eqpperas,
 ounces; ringar, 8 onnce; ; gnu-shabic, 1 owhes; blywrine, $\frac{1}{2}$ cunce; wator, 4 - nutices; all the solid sulataness aro to loe pulyerized and lisimel fot sut honet together; they ara then set la coud, ourimes flimingh a flanael bag, and afur that filtered frourghr is folded fittor. A drope of ofl of clevod io added, the whola well dhaken aud filleil inta bottlesi Thas ink will capy well.
2472. Dr, Ure's Ink. For 12 gallons of tak take le proudd linuisea gathe, 5 pumuls gum, 5 qumads greas sulplento of iron, and 12 gallens nuirt witer. Jenil the galld with 9 gallohd of the water for: howrs, atdime fresha wates to kupply that lowe in raphir; let tha deroction wettie, ant Araw of thaclear liguer. Add to it the pram previousty disaolsent in it gallons of vater ; thendse the green vitrod foguratuly in 14 gillons ol watur, wit mix tho whiole.
2473. Japan Ink. Alepin Falls, $\frac{t}{1}$

 wnesa; Whe vitrial (sitpluate uf repper), and simar camly, culy $\frac{1}{2}$ omune. loil the gath and logerood intignares water till reytuend one-half: otrale; add tho othes ingredients. Stir watil
 shine atouph, whd mana genn; Ales a tow cluyce to jocovent thombld.
2474. Ink Powiter. For un inis pows
 and 7 onnces gungarabic: Vulrorize anif tmis. This ambins of ink pawaler will thake I gale son of grod black lak. Two or there pow:
 of potiler, to perentamalding.
2475. Permanence of Ints. Thagereat
 Whioh will tahiptacs, ather a longer or Hanter time, and wheb mandluberer lise fred to nlowinte by stolstitamitir ofler materiales, $8: 1$ itthe, howecer, Wha tetale at shodit if imit tall nato and gallate it ims nee fot black jummdiatel 5 , and consequantly sum so il meveathe to the ejo whon ubthg them. Thar alizarine it

 adaplet on withstand chwoicual agents Unats fron inthy ure.
2476. To Keep Ints from Thicltening. The valy way to keep wrialy fuk that wati Fhich we are aceptamited is to protect it from tho atonosphere. The fir not only esapurades it, but oxidizes it mad semters it thek, Throm ink-slands which bave a tapeting funtel in tho mouth will preserve tho ink in its, notmal state niuch tomger tham tho onliaty kind, bocanse less of the sarface it "xposed.
2477. Writing Fluids, Tho very gencral uso of steed perns has cunsed a corresponal. ing demand for casy flowing friks, many of which have been of lata yeara introlnced wader the title of "triting fluids," or "steel pen ink." Tiase are nostly prepared from galls in the preceding maumet but a less guaptity of zum is employed. The the writing flads, which cither maintain their color or turn black by exposure, ate prepated from the ferrucyanide of potassinut (prussiate of potassa), or Irom iniligo.
2478. Beautiful Blue Writing Fluid. Dissolve basic or aoluble Prussian blue in pure water. This is the most permanent and beautiful ink knowu. It is not affected by the addition of alcohol, but is immediately precipitated by saline matter. The precipitate, however, still possesses the property of dissolving in pare water.
2479. To Test Prussian Blue. Pure Prussian blue feels light in the hand; adheres to the tongue; has a lively dark blue color, and fires a smooth deep trace. It should not effervesce with acids, as when rululterated with chalk; nor become pasty with boiling water, as when abulternted with starch. Prussian blue, renulered inferior in itt color by an admistare of free oxide of iron, may be improred by digextion in dilute sulphuric or murintic acid, washing and deying, Its relatire ribhness in tho real ferroprussiate of iron may be estimated by the quantity of potash it soda which a giveu quantity of it requires to destroy its blye colop.

2480, Blue Writing Fluid. Dissolse the sotuble ferrocyatide of potaisium and iran in puro wathr. Resombled No, 2178, bue is precinitatel from its solation by alcolhol.
2481. Stephens' Patent Blue Ink. Mr. Stephens' process. Take Prissian blue, (elther of commerce, or the paro chemsical combination of sesquioside of iron with ferroayanide of potassium), put it into any earthon yessel, and pote lipon it as much strong bydrochloric, nitsic, or smphurie acid ns will cover it (if sulpharie achel is usel it must bo dilated with an equal bulk of water); after Atanding is hustr or voure, tudd plenty of water, stirrieg it thoroughly, to remeve the salts if fron; lot it stand till uill colot has subsided, then draw off the clear linuid with a syphon: nold fresh water, and repeat the wasking notil forrooyanide of putassiam censes to produce a blut precipitate, atal the water drawn off enases to redden blun Litmas paper, then filter the product. This treatmient extrnots much of tho iron from the Prasmian blte, and takes tway its liability to precipitate by longstandligg Nest add ant carefully mix 1 part oxalic neid to overy 6 parta of Pruasian blae; then dilate, by degrees, with water sudieient to make the blee ink any desired tint. The influenees of air and dampqess hove a tendency to destroy the color of mantsscript written with black trik, while the same influonces tond to deepen and increase the color of the Prussian blue iul. This ink is only affected by contimaded exposure to light, which makes it fade in some degroo; but it completely rccovers its original depth of color by being put in a flark place,
2482. Mohr's Blue Writing Fluid. Triturate to a perfectiy smooth paste, 6 parts pure Prussinn btue, and 1 part oxalic acid, with a little water; then dilute with suffeient soft water to make it fluid.
2483. Runge's Black Writing Fluid. This is a cheap and good inl:, and resists ordinary destruetivo agents well. - It is perfectly liquid, scarcely thickens by ago, tleposita no sediment, and does not corrode steel pens. Digest 4 pound logwood in fine chipa for 12 bours in 3 pints boiling water; then simmer down gently to 1 quart, caretilly aroiding dust, grease, and smoke. Then cold, decant the decoction, and dissole in it by agitation 20 grains yellow ehromate of potash; it will then be fit for use.
2484. Shellac Ink, or Coathupe's Writing Fluid. To 18 ounces trater add 1 ounco powdered borax and 2 ounces bruised shellac, and boit them in a covered ressel, stirring them oceasionally till dissolred. Filter, when cold, through coarse filtering paper; add 1 ounce mucilage; boil for a few minutes,
adding sufficient finelr-powdered indigo and lampblack to color it. Learo the mixtaro for 2 or 3 hours for the caarser particles to snbside; ponr it off from the dregs, and bottle it for use.
2485. Arnold's Writing Fluid. Arnold's writing tluid is a mixture of sulphate of indigo and ordimary ink. It flows frecly from the pen and at last becomer vary black. On ncount of the large quantity of acid it cuntains, it is rery destrmetive to steel penss, and for this eril we know of me rure.
2486. Blue Fluid for Mraking BlueBlack Writing Ink. Irusian blue im filue powiler, 1 ontice ptaced in a common phial. and concentrated hydruchluric acid, 2 numees, phured over it, Eflerrescence ensmes, and tha mistare sonn assumes the consistence of a thin paste. After 24 bours it may be dilutel with 8 or 9 wumees of water, and preserved in a glass bottle. The intensity of this color may be lessened by water. Ifforms an ercellent blae writing fuid.
2487. Fine Writing Fluid, Dissolve ceruloo-sulphate of potasss or ammonia (sol. uble indigo) in hot water, and when cold decant the clear. It is in intumse blue, and dries nearly black; is perfectly incorroalve, and very permanent and easy flowing. It may be thickened with gum water, or diluted with paro rain wator, ns required.
2488. Reade's Patent Blue Writing Fluid. Preparo a solution of iodide of iron, from iodine, iron, and water; add to the solle: tion half as much ioding as firyt used. Pour this nolation into as semi-saturated solutiont of forropruasiato of potash, containing nearly as much of the sialt as the whole weight of iodine. Collect the precipitate, wasb it, and fianily dissolve it in water, to form the blue ink. Tho solution from which the precipitate is soparated, evaporated to drgnest, and the reaidde fused, re-dissolved, and cryatallized, yields pura iodife of potassa,
2489. Indelible Writing Fluid. To gall ink, seld a strong solution of Reade's Pakent Writing blue in dintilled water. This addition makes the lnk which was proviously proof against alkalies, equally proof ugainst soids, and forms a writing fluid which cannot bo erasel from paper by any cutmaion mothod of fraululent obliteratioa without the destriction of the paper. This ink writes greenich blae, brt afterwards turus intonsely black.
2490. Precautions in Making Writing Fluids. All the preceding receptsts for writing tlutils, under proper maungement, produeo excellent products. Care must bo takon in all cases that the ingredients bo pure, and anless this procastion is attended to, succakd is doabtful. Bither of the preceding blue flaids may bo used as indeliblo ink to mark linen, and will be found very permanent, proFided the part be first moistened with alum water and dried.
2491. Gold Ink. Gold ink is prepared in the following way: Genuine gold leaf is rabbed with thoney on a plate of agate or groand glass by means of a flat pestle, until the whole preaents is uniform mass, in which no distinet particles of gold ean be recognized. (Sec No. 2517.) This mass is carefully removed iute a vessel with water, which will dissolve the honey, and leave tho gold in an extromely disintegrated state behind. The water has, according to the size of the vessel, to be removed twice or three times, when all tho sacobarine matter will have been washed away. The rumaining gold is then mised with a sufficient quantity of a solation of gumsrabic, slaken well, and is ready for use. (See No. 2518.) The writing is to be rubbed, aftar drying, with a flat piece of ivory, when it will present the lastre of pure gold.
2492. Silver Ink. Sifrer ink is preparel in the same way, from silver leaf, as the gold in last receipt.
2493, Gold Labels on Glass Bottles. The finely divided gold, prepared as in No. 2191 , is distributed in s solution of gum damar in maphtha, and the writing is to be done with this fluid by means of a brush. If the solution should beeome too thick in course of time, a little naphtha is added and well shaten, When the gold paint will be ready for usa again. The gum damar in drying will eover the written lines with 4 kind of varnish that will protect the gold from the action of acida of alkalies
2494. Purple Ink, or King of Purples. Infuse 12 pounds campeachy ligwood in 12 gallons water; provide a fuunel at the bottom of which a spouge has been placed; pour the infasion through a strainer made of course flansel into the funnel, and thenes on to 1 pound hydrato or acetato of copper (verdigris); then alh immedlately 14 pounds inam; and for each 17 galluns of the liguid, add 4 pounds gum-tratie or aenugal; let Hese remain 3 or 4 days and a beantifll phryle will bo prodnced.

2495, Green Ink. 1bil 2 parts acetato of copper und 1 part hitartrate of potassa in 8 parts water, until the solution is roduced to half the buik; filter through io cloth, and, when eool, bottle,
2496. Green Ink. Diasolve 180 grains biehromate of putasea in I Onid ouneg of Water; ald, whilo warm, $\frac{1}{1}$ ounce spirit of wino; then decmmposo the mixture with enncentrated sulpharic acid, until it assanea a brown color $;$ evaporate this liquer ibitil its quantity is reduced to one-half; dilute it with 2 ounces diatilled watert filewr it, and δ ounee alcolhol, followed by a few ilvops etrotg sulphuric acdi; it is naw allowed 10 rebl, and after a than it assumes a beantifil green color. Alter tho udition of a kmall quantity of gunh-sabic, it is ready for whes.
2497. Violet, Magenta, and Solferino Ink. Inkis of thege, and sueh other bright akilite culors tuay tre tuade as follows: Mix I drachun of the proper anilitio eolor with 11 ounces alcobol (sec No, 2578) in a glass or enameled iron vesul; let it stand for 3 hours. Thes add 13 ousces lostilles water, and subject Lhe whole to ogentle hent mitil the ateohol has ovaporated, that is, nutil no odor of aleuhol in percoptible; then add 4 drachms gum-arabio dissolved in 3 oninees water. Mix and strain. As the aniline ecolon of commerco vary a great deal in geality, the amount of dilution must vary with the sainple issed, and tho shade deteranined by trial.
2498. Heuslor's Red Ink. Take 2 ounces best Brazil wool, $\frac{1}{2}$ ounce pulverized alum, is ounce crystals of bitartrate of potassa, and 16 bunces distilled water; boil down to one half, and strain. Then dissolvo in it $\frac{1}{4}$ ounce gum-arabic, and add if drachons eochincel dissolyed in 1I aunces alcohol of spocific gravity . 839 .
2499. Brilliant Red Ink. Brazil wood, 2 ounees ; muriato of tin, $\frac{1}{}$ drachm; gumarabic, 1 drachm; boil down in 32 ounces water to one half, and strain.
2500. Good Red Ink. Ground Brazil wood, B ounces ; vinegar, 10 pints ; maceralo for 4 or 5 days; boil in a tinned-copper vessel to one hail, then add roche alum, of ounces; and gum, 3 ounces ; dissolvo.
2501. Buchner's Carmine Ink. Pure carmine, 12 grains; water of ammonin, 3 ounces; dissalve, then add powderod gum, 18 grains; $\frac{1}{2}$ drnchm of powdered drop lake may be suhstituted for the carmine where expense is anobject. This makes a superb carmine ink.
2502. Fine Red Ink. Cochineal, in powder, 1 ounco; hot wator, \& pint ${ }^{\text {; digest, }}$
and when quite cold, add spirit of hartshorm, 1 pint; or fiquor of smmonts, 1 ounce; dilate with 3 or 4 ounces of water; macerate for a few days longer, then deeant the clear. Tho color of this is very fine.
2503. Fedwood's Red Ink, Guarancine and liquor of ammonia, of each 1 ounice; distilled water (cold), I pint; triturate together in a mortar, filter, and dissolve in the solution gum-arabic $\frac{t}{2}$ ounce. (Cooley.)
2504. To Restore Writing Effaced with Chlorine. Expose it to tho vapor of sulphuret of ammonia, or dip it into a sohution of the sulpluret. Or: Eerroeyanide of poLassa, 5 parts; water, 85 parts. Dissolve, and immerse the paper in the flaid, then slightly acidulate the solution with sulphurie or hydrechlorio aeid. The method foumb to answer best has been to spread the ferrocyanide thin with a feather or a bit of stjek ent to a blant point. Though the ferroeyanide shunld oecas sion no sonsible chmge of color, yet the moment the acid eomos uponit, evary trace of a letLer toras at ouce to a fime blue, which soon acquiras ita fill intensity, and is boyond com. parison strunger thun the color of the original trace. If, then, the corner of is bit of blotting paper bo carofully and doxtorously applied bear the loteurs, so as to imbibe the superfluous liquor, the atnining of the parelmunt piay be in a great measurg avoided; for it is thes superftuous liquor which, absorting part of the coloring inatters from the letteri, becomes a dyo to whintever it Louchus, Cire mist bo takon not to bring tha blotting-1aper in coutact with the letteem, loseane tho coloring mater is sof, whilst wet, und niny easily lo mbbed off. The acia ehiofly anployed is the muriatio; bat both the sujpharie and nitrie succeed very well. They should le so far diluted us isot to bo liabile to corrode the parchnaent, afor which the degrea of atrength does acot recon to bed a mattor of mash ticety.

2505, To make Now Writing Look old. Take 1 drmibin saflron, and infiee it into f pint ink, atal warm it were is gentle fire, and it will cause whatever in wribtet with it to turn yollow, and appear hes if of masy Geará standines.
2506. To Write on Greasy Paper or Parchment, 1 'al 6 a bullock'k gnil 1 bandful of kalt, and $\frac{4}{4}$ pint vinefur, itir ft tuntil it is mixed well; when tho papor or pardhment is grousy, put 1 drop of the gall into the ink, atd tho difliculty will ber instantly obviated.
2507. To Romove Ink Blotches from Writing. When ink blatehed lisva boen formed over writing which it is desired lo decipher, we are advised to brush off the spot carefully with a weak solution of oxalic acid by means of a camel'a-hair pencal. In this way layer after lager of the superiseambest ink will be removed, and finally the writing itself will, in most cases, conse to view. This is expecially possiblo whers some considerable interval bes elapsed between the two applications of ink. As soon as the letters are visible the lorashing should be comtinued for a'time with clean whtar, wo ns to arrest tha tendeney of the acill solution to make a further change in the ink,
2508. Redwood's Indelible Marking Ink. Dissolve I otnee nitrates of silver and 1t ounces crystallized carbonate of soda in separate portions of distilled water, and mix the solutions; collect the resulting precipitate on a filter, wash it thoroughly with distilled water, and introduce it , while still moist, into a wedgwood-ware mortar; add 8 scruples tartaric acid, und triturnte the whole untif efferveseence has ceased; next add sufficient ammonis to dissolve the tartrate of silver; mix is 4 fluid drachms archil, 4 drachms
white sugnr, and 12 dractins fucly-powdereal gum-arabic; then autd suflicient dintifled water to make 6 ounces of the mirtare. This ink fulfills all the complitions fhat is marhing ink should ponsess : It flows freely from the pen without rumuisg or hlotting; it does not require a pery atrong or loug ennitimed lucat to develop it ; when duvelipel it is pericelly black ; and it does nut injure the fosutre of tho finest falurie.
2509. Indelible Ink. The linen is first mistened sith \& fhal fullsisting of a misturs of a parta carbonate of sula in crystals, 2 parte gum-aralie, 8 parta water, ami then ifried. When inite diry, it bs rableed with at glass of amooth pubble to reulor it as vipooth as possible, so that it nay be eadior to writa npoti. The compusition of the ink itself is as Jiblows: 18 parts nitrate of silver, 16 parts diftilled water, 4 parts gum-arabior, and $\frac{1}{\text { f part }}$ sap grees. The zitrate of जilcer is first divmolvel in tho distilled water, und the gima-arnbio and sap green are sulespuendy atded. It is necessiury to write with a quill pen, all mos tallio pens except gold ones slewomposing tho ink. It is a good jlan to true the fetters on the linen with a perseil before whititg Heu. This and the four following sceefptin are by Dr. Keimen, whonays that they have all bean thoroughly well trim, and found efficetual.
2510. Fine Marking Inlc. Markiog linen is most convenieat! g efleled ly uring a sirialt stif liruslo and a suall copior plato
 Fequifed. This stenell jlate is lain inem the lines, and the ink is ruhhed moso the ert-out gquees with the brish. Flin following ink ts of survice for marking llion with of slencil blates 2 parts nitrote of sflver, 4 parts dis-
 carbonate of suda nrystabs, ty pards líquid antmania. The best may to proprare tho isk is to first diantre tho tstrate of sitver int the liquid
 distilled water. Tha two aulations are then anised together anal slifhtly wartied, when the wbole misture becomes beresh. A Few drops of a zulution of magenta nukea the ink Aormewhat taore Eistinet. Wlea Ifis methoal fs esed. the limen requires no previous pre. paralion.
2511. Aniline Marking Ink. Diacolve Bf Erains tichlorides of copper in to prains distilled water, theis auld 10 grains commons salt, and 94 grains liquid anımonia. A solut tion of 30 grams bydrochlorate of snilino in 290 grabtis fistilleI vater is them nddeal to *? grains of a soludion of gam-tablic (ewntain): ing 2 parts water, 1 part gum aratic), onil lastly 10 graitos of gifserine 4 piarts of the aniline volution thon popracd are suisell with I part of the ropjer colntiou. The higuid whith reanlta has at grvets ajpearanee, abal mas le at once enpployed for marking lisen, since it invuriably becumes lilact after a fev days. A steel pen may be employed as well ss a quill. If it ia destrable not to wait so long for the appusance of the black colir, a hot irou may he passed over the writing when tho ink is ary, or the linen may bo hefll over tho flame of is xpiric lamp, or over a lot plate, or hot wates, when the black tint will readily appear. It is a good plan to pat the liner, when marked, into a tepid solution of soap, which has the effect of loringing out a fire hluish tint. The ink must ha so limpid that it is able to perimeate the tissue of the linen, so that the marks appear on both siles, It is al visable to mix the snlutions together, only when the ink has tu be nsed. It is perfeetly indelible, and ao easy to write with that the finest derices may bu drawn with it. This ink has the alrantuge of boing cheaper than the ink propared froth nitrato of silver. It
lus also another advantage orver tho latter salt, viz. : That it is chentically indelible.
2512. Purple Marking Ink. A purple marking ink cun bo propareal by mixing l part lichloride of platinum with 16 parts distilled water. The place where the letters have to be written must be moistenel with a solution of 3 parts earbounte of sodia, 3 parls gum-arabie, and 12 parts water. Tho spert in then driesl and male smooth. After the letters have boen sritten with the platinum ink and becone dry, the linen is nowistoned with a solettion of 1 part ehloride of tin in 4 parts distilled water, wher an intonse sund losatiful parplereal color makes its mppearance.
2513. Cheap Brown Marking Ink, A very cheap browas marking ink may he preparod from 4 parts acetalio of mangonese din. solyed in 12 parth wuter. The place on tho Jiaen where tho umarks have to les nude mast he proviously moistemed with tho following Eolution: I part yollow prussinte of potash, $\frac{1}{2}$ part gum-arabie, 3 parts vater. Tho linen, having been saturated with the above solution, is dried, and afterwands marked with the munganesossilution. Ontho letters becenitig slry, tha following nolution is spread over the ypot with a lirnsh : 4 purts carbonato of potash, 10 parts wator. The letters then become brown, and their color cannot ho remosed by alkalhes, bor by noids, with the exception of dituta bydrocbloric neid.
2514. Carbon Ink, Genuine Tndian iuk rubbeal down with ghod black ink tantl it will flow easily from is pen. Thisink resistachlorine, and uxalic ruid.
2515. Indlan or Chinese Ink. The pure article ean only bo ohtainod from China A good imitation may bo suade with ivory black, tround to an injuaphble powder, hatio into a jasto with wrak gatis-araljic wates, perfunced with a few dropss of esonnee of musk tund hall ns much esscuce of amburgris, and then formed into caked. (Sce No. 2716.)
2516. Perpetisil Ink for Tombstones, Sec. Squal parts of 'Trindal asphatoum ind uit of turprestias. Was in a meltad atates to fill in the letters ambleytecs on tombstones, de. Withont authal violenee it will last as lonig as the stone.
2517. To Pulverizo Gold and Silver Lenf. This is effected by grinding buнm is forphyts slals, wibl a muiler, gold or silver feaves with whito houny, until they awe roduced to the finest possible zate of diviaion. Then wash the honny thoroughly from the puwdered metal and mix with gem watur. (Sce afso No. 2i.)
2518. Liquid Gold, for Vellum, \&c. Take pold leat qunl geful it will pum sater; then ald is Nowall quantity of bieklorite of warcury, and botile for use.
2519. Liquid Silver, for Vellum, Ec. Tukasilver las' und gritul it with ghtu-water or glaine of exgy.
2520. Copying Ink. The virtue of copyiog ink consists in ifs nom-drying property. Thid property muy le given to any arlinary ink by thealiditimin of surat. Lately, however, glyecring has beect substituted for sugar, and is devidenlly to he preferred. A good eopying ink may le mate firan conimout violet writing ink, by the addition of athen] parl glycerine to 100 parts of the ink. The +i4. dition of too large a proportion of glyeerme is apt to impait the requisite drying qualities of the ink ; furl too little will fail to make the ink susceptible of a perfect copy. (See Na 2471.) 2521. Ink for Marking Packages. Take lamplabeto ami mix thoronghly with sufficient turjentine to make it thin enomgh to flow from the lorash. Pawdered ultramarine, iustatad of lamplack, makes a fine blete matrhing mixture for the situte purpusk-
2522. Ink for Marking Packages. An excellent and very cheap ink is manle by mixing $+\frac{1}{\text { onnes bichromate of potassa nad } 4}$ ounces extract of logwood in a stone jar or demijohn, with 2 gallons of hot water. Slake well and let it stand for about 9 weeks, shaking occasionally.
2523. Permanent Ink for Writing in Relief on Zinc. Biphloride of platinum, diy, 1 part; gma-iratie, 1 part; distilled water, 10 parta. Tho lefters traced upan xine with this solution turn black immediately. The black charaters resist the action of wenk acids of rain, of of the elements in generat, and the liquid is thus dulapted for warking signs, labels, or tage which are liable to exposure. To briog ont the letters in ruliof, immerso the zine tag in a weak acid for a few poments, The writing is not attacked whilo the metal in dissolved tway.
2524. Ink for Zinc Labels. Take 1 drachu of vordigris, 1 draclam sal ammoniad powilet, and $\frac{1}{}$ draclim lamplack, and mix them with 10 drachms water; and this will furn an indelible pak for writing on zine.
2525, To Write on Silver with a Black that will Never Go Off, Taka burnt lead and pulverize it, Ineorporato it next with sulphur atud vimegar, to the consistency of is paint, and write with is on any silver plate, Let it dry, then present it to the fire so na to heat the work a little, and it is completed.
2526. Indestructible Inks. Eunployed for writing the labels of bottles eontaining strong aeids and altaline nolutions. They aro capable of rosisting the petion of iodine, chlorite, alkalise lyes and medid, as woll as operations of dreing aud Wleaching, besides heing ant excellent and cheap material for marking linen, an nothing will remore then withouf destryying tho fabric.
2527. Hausmann's Indestructible Ink. Mix 1 part gentine Trinslal asphaltam with 4 parts oil of turpeutime; color with a sutfeiency of plambago, for black, of verailion for red tol.
2528. Close's Indestructible Ink, Mi 25 grains pownerial colate nabl 200 grains nil of lavender by a penthe hoat ; color with 3 grains Jampblack and 1 main taltego, both in tino powder. It a red color is reguired, ount tho lanmblack and fruligo rond ald antiotent vermilion to make tho mizture a roved eoler.
2529. Indestructible Writing Irk. Shellac, 4 ports; boms, I parta: woft wates. 36 parta; lout in a elose vessel till didsulved: theu filter, and tako of gum-srabie. 2 parts soft water, 4 parta. Dissolse, and mis the two sututions tugetber, and leit for 5 mitutos as before, oceasionally stirring to prometis their unton; when culd, ald assufficent quastity of finely powdered indigo und lamplisele to colur; lastly, let it stani for 2 or 3 hinurs. until the consser powdar has sulsided, amt bottle for use. Use this flatil with a clean pon, and keep it in elasa or carthen inkstaads, as many substances will decompose it while in the liquid state. Wher dry it will resist the action of water, oil, turpentive, alcobol, diluted sulphario acid, diluted hydzoeblorie acid, oxalic seld, ellorine, and the caustic alkulies and alkafine earths.
2530. Simple Carbon Ink. Dissolve 30 grains of sugar in 30 grains of water, to which add a few drops of concentrated suiphurie acid. Upon heating this mixture the Bugar becomes carbonized by the acid, and when applied to the paper it leaves a coating of carbon which cannot be washed off. This stain is rendered more perfect by the decomposing action of the ink itself upon the paper, and thus resists the action of chemical agents.
and indelible drawing ink may be male by dissolving shellac in a hot water solution of borax, and rubbing up in this solution a fine guality of Indian ink. After using, dip the drawing pen in alcohol, and wipe dry to keep it clean and bright. (Sec No. 2514.)
2532. Permament Ink for Use with Stamps or Type. Mix equal parts black oxido of manpanese and hydrate of potash, heat to relness, and ralo with no equal quantity of smooth white clay into a paste, water being added for the purpose Or: Sniphate of manganese, 2 dractims; lampblack, 1 drachm; powdered loaf sugar, 4 draclams; rabbed into paste with water, After stamp. ing. dry the fines and wash well in water.
2533. Sympathetic, or Invisible Inks, for Secret Writing. Thesic are colorlesis inks which require the aid of heat or some other ageney to develop the eharactors written with them. Their use has been rendered specially practical since the recent introdaction of the postal correspoudence cards in Englade and clawhere. By previous arraggenent betwena corresporplents, the receiver of a cand ouly needr vonu rinille sigm on tho eart to telentify tho writer ar fepder; this will at once nuggent the meann to be cmploged to derclop the partiendar Ink the receiver's correspmitent has agreed to nse.
2534. Black Sympathetic Inics, Writing with a snlution of sugar of lend wiil be tarned hasek by mofsteaing the paper sith sulphide of pritastium.

If nitrato of silyer be used, the writing will becume black by ilipying the paper in a solu. tion of umumbia.

Chlartly of therctars will tirn black when wetted sitis chluride of tir.

A weak infision of galls is turnest black by sulphate of (irya (copperan).
kevensing the ahore, writing with copperns tarna black by muistening with infusion of palle.
2535. Blue Sympathetic Inks. Writige with copporas turns line if wetted with a wotntion of prowiate of polawa.
Nitrate of cobalt turn - blae on beigg wetted with a weak sototion of osalic neid.
Kice water or -a solntion of boiled starch turna bine in a solution of ivelioe to weak spirit.
2536. Brown Sympathetic Ink. A dettetel solution of nitrate of pilver tarna brown ly eg jesore to 1 the vanliftht.
2537. Yellow Sympathetic Ink. Chatoride of antimony, wsed at the ink, will becotie yellow by moistoniag with a decoction of galls.
2538. Green Sympathetic Irk. Arsentiate of copper, wished over with nitrate of copper, turna a beautifal green.

2539, Purple Sympathetic Ink. Purple is produced by tuing chlontie of gold, and suaking in ehloride of tin.
2540. Sympathetic Inks Developed by Heat, There are a number of colorless sulbstancea that may be used as inks, which are developed by the application of lieat only. Sulphate of copper and sal ammoniac, mised in equal parts, will become gellow if exposed to the fire.
Onion juice bas the same property as the above inisture.
Lemon juice, a very weak solution of either aquafortis, oil of ritriol, common salt, or kaltpetre, will tura yellow or brown on exposuro to the fire.
A treak solution of chlorito of cobalt and chloride of nickel is turned a beantiful green by heat.
A solution of chloride nir nitro-muriate of cobalt, tarns green when heated, and disappears again on cooling.

A dilute solution of chloride of copper becomes a fine yellow at a moderate heat, and disappears on conling.

A solution of acetate of cobalt, with a little nitrate added to it, tums rose-colored by heat, fond disappears again when cold.
Theso last, which disappear again on cooling are the best sympathetic inlss for parposes of correspondence, as the others are more or less indelible when once developed.
2541. Hoe's Composition for Printing Ink Rollers. This consists of glue and molasses, the proportions rarying frum 8 pounds of glte in stamer to 4 pounds in winter, for each gailon of molasses. Tbo glue should Le placed for $\frac{1}{2}$ an hour in a bucket, covered with water, then pour the water off and allow the plae to soften. Pat it into a kettle and heat it until thoroughly melted; if too thick, a little water may ha atded. Last! s, the molaves is stirgel in and well mised with the glue When properly prepared, an hour's boiting will bes sufficient, as tow mith boiling is apt to candy the unlasses. Pour into a clean mould well olled with a swab.
2542. To Clean Ink Rollers. Rollert should not bo washeth immediatoly after uss, ns thoy will become dry and skinmy, but they may be washed $\frac{1}{2}$ hour beforo using anam. In cleating a naw roller, a little of rulfoed over it will loosen the ink, and it should bo serapod clent with the book of a knife; it should be oleaned this way for about a seek. whon lye paz lo woed. New rollem aris ofen apoiled by washits too nusp with tye
2543. Black Printing Ink, Boil 1! gallons old steur linseat oit to than cousigtenco of a thick yamish; whilst hot, add to it, diw. ing comant stirring, dirt 5 pound powderoil rosing and hest if proubls dry brown may shavings; then mis is it 2f pubees iodigio blue, 21 vouses Paris blas, ami 5 poumdn best lamplack. After stauding for a whek it should be grounod.
2544. Black or Colored Printing Ink, Balsam oopaila, 9 minces; latrpblack, 3 aunces: Paris blue, it oruces; Indiai red, $\frac{1}{2}$ ouner; tey resin noap, 3 olmees. Thase will prodnce a maperior black ink. By employing white snap insead of yellow, and a mulficioncy of some colorisy pigment insteal of the black, bluc, and red muxture, 4 good colored ink will bo oblained.
2545. Now Ink for Printers. A new ink for printers has been invented by Profossor Artus, and Mr. Fleekstein, a master-printer at Liehteoboin, which ink is said to be a complote success. The cotuposition of it is as follows: Venstian turpentine, if ounces; flaid sonp, Fi ounces; rectified oleine, 2 ounces: burat soot, 3 ounces; Paria blue (ferrocyanic noid), $\frac{1}{2}$ ounce; osalic acid $\frac{1}{4}$ ounce; distilled watar, $\frac{1}{1}$ ounce. The mixing process of this now, beaatifal, and cheap ink is described as follows: Gradually warm the turpentine and the oleine together; put the soap ou a marble plate, and gradually add, coutimually rubling, the mixtare of turpentine and oleing; when woll mised, add the burnt soot, which must first be well powdered and siftel; then add the Paris blue, dissolved in the oxalic acid, continoally rubbing the composition on the stone, the Paris blue and the oxalic acid having been mixed before with water in the above given proportions. A solution of soda in water is sufficient to thoroughly cleanse the type.
2546. Indelible Printing Ink. Mrix 1 pound yarnish (such as is used for ordinary printing ink), 1 pound black sulphuret of mercary, 1 ounce nitrate of silver, 1 onnce sulphate of iron, 2 table-spoonfuls lampblack. Thoroughly grind together, adding enough turpentime to reduce to the requisite consist-

oncy.
2547. Lithographic Ink. Grind together 8 parts mastich, in tears, and 12 parts shellac; dissolvo carefully by heat in 1 part Venice turpeatine; after the mixture is taken from tho fire, mix in 16 parts wax and 6 parts tallow; then add, by stirring, 6 parts hard tallow soap in shavings, aud finally ineorporate in the mase 4 parts lamplack. Heat and stir until thoroughly mixed; let it cool a little, and poar it out on tables, and when cold, cat into square rods.
2548. Lithographic Transfer Ink. Melt togother 8 parts white wax and 2 parts white toap; and, before they become hot enough wi take firv, stur in by degreos suffcient lampltack to make the mixturo black; then allow the whole to burn for 30 seconds; when the dame is oxtinguishod, add, a littlo at a timo, 2 parts shellac, stirrung it in constantly; put ite veasel on the fire again until the mass is kinilled, or nearly so. Put out the flamo and allow it to corita litule, mad then run it into the moiluls, Ink thas mate rill mako as fine or coarse lines ns aro desired, and ite traces will remain unchangel fir years before being transfierred. When ruet enters into tho composition of lithographic erayons, it does nat keep long, and requires immediate transferring to the atomo.
2549. Lithographic Ink. M, Lastegrio states that, after havimg tried a great many combinations, he gires the preference to tho following:-Dry fallow soap, mustich in tears. and commoa soda in fine powder, of each 30 parts; shellac, 150 parts; lampllack, 12 parts; mix as last. Used for writing on lithographio atones.
2550. To Test the Quality of Lithographic Ink. Lithographic ink of good quality ought to bo susceptible of forming an emulsion so attencated that it may appear to be disandvisd when rabbed upon as bard body in diatilled ur river water. it should be flowlag in tha pen, not spreadiag on the stone; cappule of forming delicate traces, and very blaek, to show its delineations. The most essential quality of the ink is to sink well into the stone, so as to peproduce the most deliento outlines of the drawing, and to afford as great many imprensions. If mast, therefore, be able to resist the acid with which the atone is moistened in the preparation, without letting any of its greasy matiter escape.
2551. Durable Autographic Ink. White wax, 8 ounces; and white soap, ${ }^{9}$ to 3 ounens; melt; when well combined mid lampblack $_{t} 1$ ounce mix well, and heat it strongls; then add sheilac, 2 ounces; again beat it strongly; stir well together, cool a little, and pour it out. With this ink lmes may be Irawn of the finest to the fallest class without danger of its spreading, and the copy masy be kept for years before being transferred. This ink is employed for writing no tithoeraphic paper, and is prepared for use by rubbing down with a little whter in a saucer, in the eame way as common water-color cakes or Indian ink. In winter this should te dono near a fire, or the saucer should be placed over a basiu containing a little warm water. It may then be used with either a steel pen or a samel's-hair pencil.

A^{n}niline Colors. Aniline is a liquid of a color varying from yellow to dark brown. The commercial article is never chemically pure, being a misture of pure aniline, toludine, and odorine. Its boiling point ranges from 356° to 482° Fahr. If aniline boils at a lower temperature than 356°, it contains
too mach odorine, and is, therefore, of poor quality. It is obtained by conversion frou nitro-benzole, a preparation of the benzole obtained from coal tar (not from petroleum). In preparing pitro-benzole on a large scale, 12 parts benzolo are mixell with 13 parts fuming nitric acid, and 8 parts oil of vitriol, in a cast iron apparatus. The character of the product dependa greatly on the purity of the benzole, and also on the management of the renction. The conversion of nitro-bensole into aniline is, by Béchamps? procers, perforaed in iron tanks, heated by steam, anil provided with stirrers, and a still-head to collect the distillates. The tank or still is charged with 100 parts nitrobenzole, 150 clean wronght iran filings, 100 water, and 150 acetic acid; when these are mixed apontaneons heat is eyolved, which canses aome of the liquid to pais into the cosdensers, whence it is returned to the tank. As the heat ls not kuificient for the complete convarsion of the nitro-benzolo, steanu ts introduced after a time, and the stirring and steaming is continued until bo more nitro-lienuale appease in the distilled vapor. At this point the temperature is increased, and, if necensary, aided by direct fire, to canso coraplete distillation of the aniline which has formel, and which pasted off with water, and peparstes frum it on standing as the heavier stratum. The auiline nsed for the rations colors is taken of difierent composition and boiling-point. A. W. IIof mann hat ahown that a mixture of an equiraleat of anilitie and two of toluidine produces the largest gield of rosanilize (fochsine). The substance oned for thia manufucture begins to boil at abont 37°, and as the beat increases to $390^{\circ} 80$ per cent. will bave distilled oyer. Aniline blae and purple require an oil which begina to boil at 374°, and at 392° lasiostonly 60 per cenat. Evidently with these properties it contains loss aniline than the preceling one. The chauges which these baves indergo when converted into dyes or compounds of rosaniline, are brought alaut by the partial destruction of a portion of them
2553. Rosaniline, or Fuchsine. The prineipal methods for tho manofseture of fuchsine empliny arbenie acid, the reaction beibg brought abont in a cast iron still with worable bead, coumected with a condenser, and provided witls a unanhole, and also a place for a thermometer. This still sity in a jacket containing a hot bath of jalm-oil, which keeps it at a temperature of from 3200 to 3569 Fahr . A charge consists of 100 parts aniline and 200 parts arnenic acid, and the renction is ordinarily comploted in sbout 6 botus, sometimes in 5 , but at others only in 12 hours, during which time the teruperstrure is carifflly regulated. Assays are taken from timo to time, and the completion of the process is known by the pure bronze color of the sample. The fused mass is transferted to it tank, in which, after cooling it is broken ap, and at once treated with water and steam. The base fachaine (rosamiline) diysulyes, leaving bebind the resinons products of the reaction; the arsenic achi Is separated by the addition of milk of lime. The siltered solution, after propercomectitration, deposits, un eooling, fine erystals of faelsine, as do also the first mother liquors. in inferior quality of fuchsine is ubtained ty adding a portion of salt, varying in quantity.
2554. Aniline Blue. Aniline blae tesults from rariun processes. The one most commonly nsed at present is that of Girard and De Laire, made by heating fuchsine with fluid aniline. The origimal process produced a blue with a redulish tinge; but by the addition of some orgautic substances, acetic acid, and methylie alcuhnol, pure bleo is obtained. It is distinguished from all other blues by not appearing green in candle light. The varions
shades of purple to blue and violet are mado from fuchsine by Hofmann's method (see No. 2608), heating 1 part fachsine and 2 iodide of ethy! with 2 parts alcohol is a closed vessel at 212° for variable lengths of time; the blue resulting from longest exposure.
2555. Aniline Green. Aniline green is produced from a solution of sulphate of rosaniline in dilute anlpharic acid and some aldehydo, which is heated tillits color has changed to dark green. Addition of a solution of hyposulphite of sodu separates the color.
2556. Aniline Green, Several of the aniline greens oecurring in the market are apt to undergo spontaneons destruction, sometimes in less than a day. The following is a formula which any one may make : 4 parts of pure fachsine or rosuniline are dissolved in 6 parts water and 16 parts aldehyde (see next receipt), and are heated at 212° Fahr, until a drop of the mixture imparts to water acidulatod slightly with sulphuric acid a clear blua color, whenit is ready to be poured into a boiling solation of hypusulphite of soda, which is being stirred. A. fine green precipitate forms, and is grayish one, which latuer must be kept separate. The green is mordanted principally with acetate of alumina.
2557. To Prepare Aldehyde. Aldehyde is made by filting a tubulated glass retort, allogether to obe-third full, with 32 parta abaolute alcobol, 30 parts bichromate of potassa, and, without provious cooling, a mixtura of 35 parts oil of vitriol, and 30 of water, in small portions, tbrough a salety-tube in the tulus. After one-balf of the latter has been fintrodnced, the mixture commences to bofl and aldebyde beglas to distill over, the remainder of the said mixtare lieing added through the tubulas as required. No further purification is needed.
2568. To Make Aniline Colors Soluble in Water. The nulline colors incoluble in water may, according to Dr. Zinsman, bo rendered solnble in the following way :- Λ solution of gelatine in acetic acid of about tho consistence of syrup is first made, and the aniline color in fime powider ts gradually added, stirring all the time so as to obtain a bomogeneons paste. The mixture is then to beheated over a water-bath to the tumperature of boiling water, and kept at, that heat for some time. Colors in this state, if a yery clear gelatine is employed, will be applicable to many decorative purposes, Bookbinders, paperstainers, and printers will find them useful. They may also, it is said, bo used to color confectionery and soaps, Before they aro used for confectionery, buwerer, it will be well to make kure that no arsenic is present.
2559. Injurious Effects of Impure Alcohol upon Aniline Colors. Dr. Till. manns has examined several varicties of alcobol, and tested thẹ effects upon aniline colors. The most sensitive among thesc, for impure alcohol, is aniline purplo (pheaylrusaniline). It appears that empyreumatic substances, aldehyde, the peculiar fineloils due to the substances ased in the manufacture of the alcohol, affect the aniline colors when dissolved in such alcohols and boiled therewith. The best test for the parity of an alcobol is to dissolvo in it 1 per cent. of perfectly pure canstio potassa, and to heat the solution; it should only acquire a bright yellow color. Another test is to dissolve 1 part of the aniline purple alluded to in 50 parts of the alcohol to be tested, and to heat the fluid for some time. If, after half an hour's heating, no change is observed, the quality of the alrohol is good; but if tho latter is not pure enough, the mixture soon becomes turbid, and assumes a red color. Another test is to make two solutions of the color of the same strength (1 in 50), one
with alcohol of known purity, and the other with the suspected alcohol, and then compare the intensity and shade of the solations. A1dehyds is often present in alcohol, especially if it has been parified by means of charecal.
2580. To Test the Quality of Aniline Colors. A good and practical way of testing the merits of aniline colors is to hare, and keep on hand, a standard and measure of comparison, a semple whose value and coloring power has been ascertained by actual practice. weigh out equal quantities of the standard coloring matter and of the one to be tested (say 10 to 30 grains); dissolve them, using the samo quantity of alcohol and water, in vessels of as nearly as possible equal size; introduce in ench an equal quantity of white wool; place them on a water bath; raise the tomporaturo gradually, and aftor sufficient time has elapsed, take the two pieces out, dry them carefully, and compare them. That which has been dyed with the best dye, will of course, show the fullest, brightest, and clearest color. Instead of testing on akeins of wool, Mr. Shuttleworth recommends small equares of white merino or casbmere, as af fording a moro evon surfuce, and a greater masa of color. A known weight of the dye should bo dissolved in aleohol and added to the bath of warm water, with the necessury mordants. A aquare of eloth of known waight - tay 10 grains-is immersed in the buth, and, after a stated time, removed. The strongth and shade of the color can thus bo compared with provious samples, dyed under like condstions. It is a good plan to pusto there squares, by one edge, in a blank book, noting anything worthy of remark on the murgin. The coloris are thas proserved from the action of the light, and will bo found very usefal for reforence.
2561. Test for Sugar in Aniline Dyes. Aniline blue and aniline green have boos found adulterated with a considerable quantity of sugar. Mr. Joly, of Brussels, has also found this to be the case with red anifine colors, such as fuchsine, rubine, to., the adulteration amounting in some cases to as much as 50 per cent. The amount of sugar present ean bo nacertained by troating a sample of tho suspectod dyo with absoluto alcohol; or, atill botter, with a mixturo of alcohol and other; the sugar will remsin undissolved.
2562. To Remove Sugar from Aniline Dyes. If it be found by the test given in No. 2561, that an aniline color has been adulterated with sugar, this may be removed by repeatedly washing the color with cold water, which will dissolve the sugar.
2583. General Directions for the Use of Aniline Dyes. It is impossible to uso any dye, suecessfully, without due regard to cleanliness. This is, perlaps, more partionlarly the case with tho anilines. Thes lightest trace of a forcign substance vill often waterially alter the shade. Earthen or enameled yessels should bo used wheneyer practicable. Iron is generally to be avoided, if for no other reason than that it is diffieult to gay when it is really elean. Woolen and silken goods, before leing dyed, shoulh bo thoroughly washed in soap and water, and then carefully rinsed in clean rain whter. Cotton requires a previous mordanting befura it cand be dyed with anilines, as regetable fibre possesses no affinity for the colors. The preparation generally consists in treatment by sumac, or staunate of soda, and sulisequently by sulphuric acid; special directions will be given in those cases requiring particular treatment. old fabries which were dyed before, may be freed from color by previous boiling for an hour in strong soapsuds. The spirit used should be pure, and especially free from alde-
hydo; methyl spirit does not appear to injare some of the dyes. Spirit containing sbellac turns roseine of a luish color.
2584. To Distinguish Aniline from Other Dyes. Aniline colors, for dyeing purposes, aro now used to such an extent throughout the conntry as almost to eselode all others, on necount of their briltianey and cheapness. They are, howeser, liablo to lose in appearance by bright manilight, and in Iustre by the artificial light of gas or candles. It is, therefore, desirable to liave a realy means by which they eat be recaguizal. This is all the more necessary, as arsenic acid is generally employed in thedr preparatios; and a cloth that has been dyed with an aniline color coutaining it may have oblaorbed a evasiderable quantity of that daugerpus article. The readiest way for its detection is to boil the flannel, or whatever other eloth it inay be, with a solution of caustio soda or potass, nod, affer filtering the flutd from the residne, nolstrulizing it with hydrochtorie reid. If the eloth has been dyed with an aniline color, the fluid will show a coloration. Moxt of the eniline dyes may also he extracted by boiling alcohol, which process, porhaps, can be performed in less time than the other.
2565. To Remove Aniline Colora. Thero afe various ways pinpused to remove aniline colors, Lre following loving the simplost and most practicat. Gooils dyed with anillue colors may easily be reudered white by the the of zine gray; the metallic sine contafied in this powder resluces the colons, forming soluble colorless products. To apply the prizeiple, trilarato 100 graiss zimo gray with 50 graus nueclage marking 20° गaumê, nutil the mixtare il homogoneous; incorporate with this 20 grains of a solution of leypostulphite of soda marking 30° Bumen, apply this misture direetly to the goods, let it dry and vaporize. After this operation if is bost to wach the goods with witer slightly acedulated with hydrochloric noid. Cotton goods may be bleached by chlorine or bleaching liquor, bet this is not applieable to other than cotton fabrica.

Another simple menthod consists in digest ing the fabrica for a bufficient leagth of time fi 90 per cent, alcohol, which wually completes the decolorization in a short Epace of time. The āand alcohol can be used several timed in suocession, and can aflerward bo parified by rectification or redistillation, so es to involvo but litula loss. The wark is lost done in a woll-covered copper kette, whirh is to be set in boilisg Fater. A little bydrochlorice acid may lin mulied if the articies oro tiot tho delicate, theroly incruasing tho rolubility of the abilino colors.

If all other anethods fail, cyauide of fritassfum is absolutely certain. λ stoae vesum! is to bo selcuted, in which a simali quantity oil cyanide of potassium is to be introdaced, und hot water poutred upon ib, so as to enahe a 20 Intion of to to 1° Baums. The whole is to be stirred well with a louk and stroug glass rod, and tho oparation conducted in the apen air, bo that no liarut may result from the condensation of che rapor. The fairrieinquestion, previonaly well cleaned, is now placed in the vessel, and pusbied under the liquid with the glass rol, and the top of the vessel laid on. It is alvisable te lieep the solution warm, by immersing the stone vessel in a wooden tal properiy supplied with stean or bot water. After a stort time the lid shonld he reunoved by taking it off at the end of a long handle, allowing the vapors to pass off hefure the operator comes near. By means of the glass rod the cloth fis to be lifted, and if not entirely white, is to be replaced and the process continned still longer. When finished the eloth
is to be transferred by means of the glass rod to a large vessel containing hot water, and stirred around for a time, then removed and rinsed off. The solution of the cyanide of potassium can be used several times without losing its power. Cyanide of potassium is a deadly poison; contact with any sore or cut is extremely dangerous, und inhaling its vapor is sudden death.
2566. To Remove Stains of Aniline from the Hands. The lest way to remove buch stains from the hands is to either wash them with stroyg alcohol, or what perhaps is more effectual, to wash them with a littlo bleaching postder, and finally with alcuhol.
2587. Phosphate of Lime as a Mordant. A rather thick syrupy solation of phosphate of lime (bone-ash) in hydrochlorio acid baving been recently recommended as a mordant to be used after a provions sumaching of the goods, Dr. Reimann states that, according to his researohes, the phosphate of lime solution is altogether smperfinous for aniline dyes, since a sumaching with 4 pounds sumach to 20 pounds cotton is of Itself a Eufleient mordanting to fix auiline colors excellently. The application of the phosphate of lime solution as a mordant for eochincal colors upon cotton he also considera as quite uscless.
2568. New Mordant Applicable to Aniline Colors, For this purpose the oxide of zinc, in accordanee with a patent taken out it France by MM. Biot and Thisau; may be used for mordunting aniline blue upon cotton, in the iofine green upon wool. The mordantiug in effected by simply immersing the goods for nome bours in a bath of cold water, in Which chloride or acetate of zino has been diaaolved until the solution shows 2° Baume ; for the wool the miordanting bath ehould be it a boiling heat, mind the goods should also be placed in a warm bath of tannin 90° Fabr. for half as hotir. In ayeing, a hot nolution of the color must be used, to which should bo added, in the case of the cottoh, some chluride of zine, and, in the case of the wool, a certain amonts of tantia solution.
2560. To Dye Aniline Opal Blue on Cotton. To mbordant the anilino color known in opjal blee upon cothon it is recommended to tiaso the goods, after bleaching, in a dilute sultuion of soda erystals, to meutralize the Acill of bleaching, then to pass them into a bot lwits of acap, in which wil exists in emulsion in these propertims: Water, 100 liters (211 pinte); soap, 8 Kilos ($21 \frac{1}{2}$ ponada troy); oil, 2 kilos (of pounda troy). Wring them out, itry, und pass them into a solution of acetato of altumita of abont 4° or 5° Batues, wring out, dry, and riuse in het water. Finally dyo in a solution of opal blue to which acetic actel has lieen added, The temperature of the dye Wath strould be 75° to 90° rabr. Rinse and dry.
2570. Difficulty in Dyeing Cotton with Aniline. This difieatty consists in the irregularity of intensity of color when the aniline colurs are applied. This effect is attribated to the umequal oxidation of the tin salts applieil before dipping tho goods into the dyo buth; in using these colors, avoid the uro of the tinsalts, which have little or no beneficial effect on the results in any caso; and dip tho goods into the dyo buth, after treating with infusion of nut-gails or stumach. If tin must be used, the lest salt of that metal is the bichloride.
2571. Aviline Black. When asalt of aniline in solution is exposed to the action of certain oxydizers, as salts of copper, cblorate, and bichromato of potassa, it yields a black dye, of such depth that ordinary gall or madder blacks appear gray or green in
comparison. The fastness of this color, its resistance to the action of neids, alkalies, soaps, and sumlight, reader it of great importance to manufacturers, and mule it one of the great achievenents of hate years.
2572. Aniline Black for Dyeing. Aceording to Mr. Kuichlin, nuiline blaek is produced as follows: Water, 20 to 30 parts; chlorate of potassa, 1 lart; sal ammouiac, i part; chlonilo of copper, I part; aniline, hydrochloric neid, of each 1 part, previoukly mixed together, Several other formalre for producing aniline blacks have heen devised for dyeing purposes. It ia essential in each of them, and alvays, that the preparation shall bo acid, and the noro acid it is, the more rapid is the prodnction of the blacks. The aetion, of course, if it be excessive, will bo likely to injure the fibro of the fabric.
2573. Aniline Black on Wool. For 2 potads of wool is bath bs prepared of 20 quarts water, 3 omees permanganate of potassa, $4 \frac{1}{2}$ ompess sulphate of mapnesia. The nise of suluthute of magresio has for its object, to provent the formation of eamatig alkali, and has alrealy been propored ly Tessid dur Mothay: The wonl is impregneted with this solution, amit left in it matil the fluid has becomo colorteds, or nearly bo, whereby it he colored dark-brown and corered with brown oxido of mangansse. This procest takea places easily in the cold, but it is best to dinsutve the pormanganate in hot water. The wool is now presaed set, and, withomb, washing, eemvoyod into is bath of 12 ouncea comntercial amiline oi, \$1 ounees commercial hydroehlorio ncid, and d yuarts water, where it Es movid about in the cold; it athans hery directify a dark green-black color. It is prowed oat again, Wishbel in water containing a little toda, and treated with a weak solution of + oanco biehromate of potassia in 10 guarts wator. The color becomise now hark black. when the wool is washed with water and drioul.
2574. Persoz's Aniline Black for Wool or silk. Steep tho nilk or wool for 1 hour at a boiliag heat, in a bath consisting of 5 grammes (77 grains) bichromate of potaksa, 3 gramnes (46 grains) sulphate of enpper, and 2 gramataes (31 grains) of of vitriol, for each Litro (2, If pints) of water usel. It wa then thoroaghly washed, and afterward pussed through a solotion of oxalate of aniline maurkIng 1^{3} to 2° Batios, in which it at obee asgunes a black colot. In case the fabrio contains a vegotablo tibre, tho first bath mast be roplaced by as series of bathat resulting in ebromate of lead. This is effected by sticcessive passages through a solution of nitrate or acetata of lead, then throcgh a bot one of sulplats of suta; and lastly throagh a cold bahh of from 5 to 20 grammes (77 to 300 grains) bichromato of potast to the litro (2_{1}^{1}, piata) of water.
2575. To Prepare Magenta for Dyeing. This color, whieh is also catled rosein, fachsine, and anilino red, is the best known of the suries. It is better adapted for tho pres paration of a liquid dye than any other. In the hands of tho amatour it can bo ased with economy, and the results obtaincd are generally sati factory. It is readily soluble in alco-
hol, and to somo oxtent in water. The later property is takeu advantage of by dyers, the dyo bath being prepared directly from the erysuals. It is, however, preferable to use alcohol for dissolving tha color, us the solubility in water is not alwags the sause with different samples. To 1 pound of the crystals add $2 \frac{1}{2}$ gallons of spirit. 8200 specific grarity. The solution may lis convoniently made in an ordinary 5 -gallo: tiu. Agitate frequently, and add $2 \frac{1}{2}$ gallons of hot water. This pro-
duet will be suitable for sale as a liquid dye, but for dyers' use, where a largu quantity of water is ulmissable, if gallons of spirit will be founil sufficient. It is sometimes necessary to filter before usiug.
2576. To Dye Silk or Wool Magenta. Sufficient water to cover, without diliculty, the fabric to be dyod, is trought to a temperatara of atout 170° Faler.; a spfficient quantity of tha dyo is ndided, and followed by the immersion of the gooels, which should be movod about to provent streaks. About half an hour's immersion is sufficient. IIalf an ounce of the crystals should eive a fair shade to 10 pounds of wool. A bath of soap-suds is somotimes omployed instead of water, and lig tha ase of alkali, brighter, but perhaps less parmanent colors are produced. Acids render tho ahado dull and blaish.

2577 . To Dye Cotton Magonta. Place she cotlon in a bath of sumach (1 pound wanach to 10 porads cotton) for I\% bouns, Wring vet, rial dye in the same maumer is wrol. (See preriuss recripl.) A brighter shade is given lic diswetring founco soap in hot water, lettinis the sallation cool to $20-1$. adding $2 t$ onzoes olire oul, and mixing with tepil water. In this 6 promuls of eotton may he workent Ger alnat 5 nininuter. A bath containing + pernal somach ond 1 potanee tin erystals is next prepared, through which tha cotton whould be pases, wnagg uat, and finatly dyed in a batk of magenta and paro water.

2578 . Aniline Cerise and Safranine. These culors resemble mageota in zipparatice, and appear to bo rarieties of thas nubetance. They aro readily soluble in alookol, asil moro or loss so in water. The colons pruduced aro similar to these olbtaised from xaflower, lut Thasied preater viracity and pertananeace, Tho chales aro excoedingly delicate and lanatífal, incliuing to plak with a shalo of ycllow. The tyo both is prepared, and the fabrio dyed, in the ramo tuasuer as mapenta. (See Nos. (2 25,1 (a)
2579. To Dye Aniline Yellow. Thit color is slietbety solubie in water, and for dyers' aso thay be pisid directly for tbo prefaration of the dyo kath. It is, however, preferably preporent in a liquid state, by dismolving 2 puond of ily in 2 gablons of alcobol.
 dye hach very good yellows may be produced, bat the color is much impresed and brightened by a traco of solptaric acid. The temperatare of the bath fhould be under 200° Falr.
2580. Schiff's Aniline Yellow. This twatter, scourdhg to Schill, is easily prepared by means of hydrated antiounaic or sfannic acid. Slamate of sida or other alkaline antiinoniate or stamate is to be pounded with half its weight of aniline to a clear pulpy comestonce, then hydroctiloric acid is audded till thin acid reaction takea place. It is then shaken up, nid the searlet enlor reanosed by etheriaed ticohol, the mase bemug, of coupuo, preyiuasly driel. After proper purification is is allowed to evaporate spontaneously, and in this way ara furmel fakes of a bydrochlorate, having for hase a red coloring matter, which mast not be confonnded with rosaniline. When this ligdrochlotate is elecomposed by alkalies, deep yellow flakes are deposited, which again become red in presence of acids. By impreghating silk or wool with this red color, and then passing it into a hot solution of carbonate of sola, a beautiful yellow tiont is developel, similar to the jellow of picric achil, and which M. Schiff chaims to possess considerable staliitity.
2581. To Dye with Anilina Crimson. A solid dye, lelongiug to tho same series as the preeeding, is sold as crimson, but it does
not appear to differ very materially from magenta, piciog shades with a trille lesid blac. It is applied in the same maner as magenta. (See Nos. 2ins, fic.) Much better colors aro obtained ly the use of aniline yellow (sec No. 9579) and magenta. The former may los applied in the manner indicated for that color, and the fabric so dyed must be passed through a bath of magenta until the required shate is produced. By mixing the liguid yellow and magenta lyes in a bath of sotp-sudis, pearly overy shata from mapenta to orange maty be obtained. This will be found a satisitictury method for nmaterurs.
2582. To Prepare Aniline Scarlet Dye. To pruduce this culor, miline seartot dye may bo used. Neither this nor corallino is alapted for amateur ase, as ifreat exnetness is required in compounding the dye bath. For tha use of anatems, aniline yollew and magerita, as indleatest for crimson (ase No. e581) is revommended. Tu prodtee searlet the yellow should predomjnate, or the bath may bo rondered sliphty wour loy sulphuric actil. Aviline scarlet disalves. caxily in whe ter, and the bath may be made directly from the wollal rubatatice A ligod dyo may bo mule, if desired, by dixaolving 1 pumet searlet in 4 palloms water and 1 gallon nteobol.
2583. To Dye with Aniline Scarlet. Add to the bath containing the dye, ar escess of alum atal crecan of tartar; witralize carto fally by carbonate of sodn-the eract pint may be known by the llituld elninging fron a yellowidh to a pinkidy rod.
2584. To Dye Aniline Scarlet, For overy 40 perads u5 punely, diskolyo 5 poundh white vitriol (salphatur of zinu) at 180^{c} Vahr., places tho goods into thix bath for 10 ruinutes, then add tha color, prepared by boiting for a fesy misuter, 1 potand aniline searlet int gallobs Water, stirring the sume contincally, This bolation has tu foe tiltored beffare heing alded to the bach. Tho gools romain in tho lattor for is minutek, when they have beeme browaed, and must bo bniled for another half bour in tho samo hath, after the aldition of sal numaniac. The more of this is added the redder the shade will heeones.
2585. To Prepare Cornlline Dyo, Diasolve 1 peand coratline in it gatlons alfer: hol spocifie gravily . No00, by the aid af leat; mix the kolation with 7 figallons boiling wo tar, and redissolve tho preetpitated dyo by tho cautions addition of water of ammonia,
2586. To Dye with Coralline. Add the color prepared as in No. 9585 , to the dyo bath, atud neatrallize with auetie acil. The exaet point it indicated by the pink collor of tho solation elaanging to all oxinge red. Immerse the goobls, and, when the reduired color is ohtainesl, remove and wash in a bath of voap-stuils.
2587. Water-Glass as a Solvent of Coralline, Dissolva iomalline in a briting mixbure of 1 part ennecutratsal water-glaw (silicater of soda or purtasas of the cmusistency of a thick syrup), atud 4 parts water, and, afler cooling apply this solution as at puint for wood (white woods containing litilo or no tampic acid are preforable), paper, toys, artificial flower tissues, de, to all of which materials this solution of corallithe imparts a beaptifat carrine red tint.
2588. Preparation of Innoxious Coralline. M, Guyot states that coralime is frequently prisonouk, becanse the rosolic acid, used to obtain it, contains phenol (carbolic acid), and this dangernus quality in the produet can only bo ayoided by using tho exaut proportions necessary, in manufacturing the compuinds.
2589. To Prepare Aniline Brown for Dyeing. This culor may bo used as a liquid
dye, and for this purpose I pound of the brown may be dissolped in \approx gadlons of spirit specific gravity 8200.
2590. To Dye with Aniline Brown. Add a sufficient quantity of the dye, prepared sweosding to the previous receipt, to the dye bath, and immerse the fabric. Wool possesses a rery strong affinity for this color, and po mordant is required. A spuff brown, more or Iess deep, is prodnced.
2591. To Prepare Bismarck Brown for Dyeing. Mix together 1 pound Bismarek, 5 pounds water, and 4 pound sulphuric acid. This pasto diszolves easily in hot water and may be nsed directly for dyeing, A Liquid dye may bo prepared by meking the bulls of the above mixture to ${ }^{2}$ gallons with alcohol.
2592. To Dye Wool Bismarck Brown. Render the bath, prepared as in No. 2591, sour with sulphuric acid; add a quantity of sulphato of soda, immerse the wool, aml add the color by small portions, keeping the temperaturo under 2100 Fahr. Fery interesting shadea may ho developed by cembining the color with indigo pasto or piorie acid, (See Ne 2601.)
2593. To Dye Cotton Bismarck Brown. Cutton reguires mordanting with sumach and nentato of alamina, and is dyed in a bath under 100° Falsos prepared aceording to No. 2591. By the nae of bieloromate of pusash redder shades may be obtained. The nsual color inclinas to cimamon.

2594, To Dye with Vesuvine. This aniline tolor is prepared ond used in the pano manner as magenta. (See No. 2575, ofc.)
2595. To Dye with Aurine, Dissolvo 1 pound aurine is 2 gallonk alcohol specific gravity . e200. This color is nsed principalify for silk. Dye in a bath containise a trace of aulphuric ncid. ISy combuing with magenta (see No. 2575), very brightealors are prodiced.

2596, To Dye with Patatine Orazge. The palatine orange dye is prepared in s sim. Bar manner to uagupta. (See No, 25\%5.) Reuder the bath alightly acid by bichloride of Lim, and dyo at the bolling point. A rery fast, bet not very brilliant orango is produced. Tho color muy be combtned with mageatia or indigo pasto.
2597. To Dye with Phosphine. Phosphine is treated in the same way as palotine, omitting the sulphurie acid, and mbstitatiog a trace of carbunate of sode: or tiso a soap bath.
2598. To Dye Sile with Arilina Green. Iodino green, or night green, dissolves ensily in waras water. For a liquid dye, 1 pound may be disnolfed in 1 gallon alcohot, and mised with 2 gallons of rater containing 1 ounco mnjph m ie acid. This color is almost ulways is fallure in the hasuds of tho amateur, and is not recommended. For silk, no uddition to the dye bath is returired, tho temperature being kept under 180 Fahr.
2599. To Dye Wool with Aniline Green. For Wool, prepare two laths, oue containing the dissolved dye gud a quantity of carbonato of sodls, or boras. In this tho wool is placed, and tho tempernture raised to 212° Fahr. A grayish green shade is produced, which must be brightened and fixed in a second bath of water at 100° Fahr., to which somo ncetio acid has been sudded. Cotton requires preparation by sumach. (Sor No. 957T.) 2600. To Dye with Iodine Green. Mix 3 pounds of iodind green puste well with about if pounds of cold water; then add suer cessively, 1 ponnd acetic weid 80 Baumb, 80 pounds water of a tomperaturo of $140^{\circ} \mathrm{Fahr}$, and 2 pounds lipuor ammomia, stirring the mixture well all the while, and filteriag it botore use. Bring the dye bath to the boiling point; put in as much of the solution as is necessary for tho shade required, and dye for
half on hour, letting the bath cool otE in the meantime. Thes hsve a second water hatls of 140° Pabr, reals, propared as follows, vis.: Por every 20 poumbls of wool, adl $\frac{1}{2}$ poumil sulpburic acid 66° Finumé, and $\frac{1}{3}$ pound perebloride of tin crystals, the latter presiously dissolvodin an equal quantity of water. Take tho goods from the first lasth, without washing into the spoond bath, tum them in it for 15 minntes, and tha green will derelop vivilly, For yullowish tints, slisde off with picrie naid (sec No. 2601), which venst be added to the secont bath and dred quiekly. By this method, 1 pound of jodino green pasto will dye 19 pounds of veol a medium shale, Pre serve the firs Tath, inassmuch as one-third of the dyo remains in it, which circumstamee is impoctant in remewing the bath, which will, couseqnently, require one-thind less dye-stafi when making it fur the second lot.
2601. To Dye with Picric Acid, Disnolve 1 poumd pierio ach in 1 gallon of alcotiol specifie gravity , Bso0, The dye bath requires no indition, or alecial procauision. This color is thed to prodece ahades of lemon and eanary which eamnot be attained by tho aniline jellow or phosipline. Its elijef use is for dyeing gruen. For this purpose pass the faliric through a bath eoptafuing sufphurio seid and alam, adding, sfter thorough immersion, a eufficient quantily of suletion of piorie ueid amd indigo extract (see Ne. 99) to prodicet the desired shaid.
2002, To Dye with Aniline Blue. To 100 purpuls of fibito ilismive 14 pounds of ani. lino blao in is guarta but almolol; strain througli a filter, and add it to it bath of Itwa Falar. also 10 pounda Glsnber'd salta and 5 pounds noetfo acta. Enter the goods, sad handlo them spell for 20 nimittes; next heat it slowly to 2000 Fahri ; then ald 5 poands sul. plurio acid dluted with water. Lec tho whole boil 20 minmtes longer, then tirese sand dry. If the anilina be ndded in two or tliren proportions during the procers of coloriag, it will fucilitate the eveaness of the eotor. The blae or red shade of btae, is goverriet by the kind of aniline lised, is there is a variely in the markes. Fard and close-wove fabrics, sach as brad, ought ta lo prepared in a boiligg nolution of 10 pounds sulphutio acid and II pounts tartaric nci! before coloring with the antiline, as this will make the foluric more sumcoptible to the color. Blaes solublo in wafer color moro easily Ohan thono which bave to be dissolveit in abcohol.
2803. To Dye Silk or Wool with Anlline Bluo. In this manner aro thed the starietios of tinitino blas lspawn as Blew fle Lyon, Pure Blwe. Red Atwe, Aund all others koluble to nicohnl. Into a stomo jar fitteri with a corer, through which a hole is made to sulmit o stick forstirring, puti pound of the dye, 5 gallons n. cuhol specilic gravity $\mathbf{e 2 6 0}$, anu 2 ounces sulphuric acid; tpply the beat of a water bath and stir frequetaly. After allowing the mixturo to cool, fiter, aud treat any andissolved residue with freah alcohol until completo soIntion is effectoL. From 5 to 8 gallons will be required. Tho dre bath for wool should bo rendered nour by sulphuric acid. Tin erystals may bo usod, in quantity equal to nbout io the weight of the wool, to improve tho vivadity of the shaule. The hath should be brought to the boiligg point. For silk, prepare a soap hath, aild thic color, and put in the goods, When dyed sufficiently, pass throegh is bath acidalated with sulpharigacid.
2604. To Dye Cotton with Aniline Blue. Cotton is prepsred as for magenta (see No. 2577), and dyoul in an acid bath 13 for Wool. (See No. 2603.)
2605. To Dye with Aniline WaterBlue. This color is quite solublo in water,
and will answer well for preparing a liquid dye; 1 pound may be dissolved in a mixtura of 1 gallon aloohol und 4 gallons water. Dyers dissolve the powder in the dye bath. The dyo is used in the same way as Bleude Lyon. (Še No. 2603.)
2606. To Dye with Alkali Blue and Nicholson's Blue. Dissolve I pound of tho dye in 10 gallons boiling water. Add this, by small portions, to tho dye bath, which should be rendered alkaline by borax. The fabric should be well worked about between each addition of the eolor; the temperatura must be kept under 212° Fabr. If the right proportion of Lorax has been used the goods will show but listla color when removed from the bath. To develop this, wash with water and pass through a bath contaiming salphurio acid.
2607. To Dye with Ariline Violet and Purple. The various aniline purples known as Parnic, Vioket do Fucherin, Victoria Fotet, and Amaranth, aro used in tho samo mantier as Btou de I- rou (see No. 2603), onitLing the sulphmrie acid. Acidulate the bath by stalphuries acid, or use sulphota of soda; both these kubstanees render tha shade bluigh. Dye at 2189, To give a fair middle shado to 16 poumda of wool, a quantity of solation equal to $\frac{1}{1}$ to $\frac{4}{2}$ ounce of tha solid dyo will ba required. The color of the dyed faturic is improved by washing in somp and witer, tud then passing through a bath soured by sulplunric acid. A ceording to Mr. Ifirsch, cotton bs treated as follows: Propare the goods for fuchsine, and tara then over a fow times in a tepld solution of as ounces crystallized perchloride of tin, for every 10 polandy of goodis. Remave the latter, add as pruch violet soltytion ths tho shade requifer, dye for a quarter of an hour, wriag well, adod liy. Washing in a nolation of aluan tani ntareh will ronder tho color more zolid.
2608. To Dye with Hoftman's Purple. The ilge bs prepared ins otber jurples. (Sce No. 9607.) Some antlioritios manintain (lint this color does not requiro thonddition of acid to the dgo bath, but tho color is apt to rub off when dyed ite this zaanner. Λ trace of Lartar, or of tartarfle, osalic, or any vegetablo avid mat ha ased with alvantago; but minoral scids are to be particularly avoided. The bath shoald be kept at a boiling tomperaturo.
2609. To Dye Woolens Blue with Ariline. To the water it the vat sulphuric acid ts added in sufficient quantity to cunse it to taste als awid as vinograr' it is iben brought to builing, tand kept zo for 10 minntes; som bloo aniline tiguor is thea added with stirring: tho goods are eubmerged, and kept nuder whlle boiling antil the water has lost its color; after which they aro removed, fresh liquor is maded, and tho proeess continted tuntil the dekired color bas been given, the water being kept constantly at is boll. (Seo Mo. 333)
2610. To DyeSilk Blue with Aniline. Silk is steeped first for an bour in lukewarm water, zeidulated with sthphurio acid, is fur woolons in the last receipt, and the color must be ruded in 4 to 5 snall portions, ratising the temperatiaro gradually to boiling, and contiar uing it at that, when a good color has been obtained. for some 5 to 10 minutes. Tho old bath is then repliced by fresh water, which is acidified with snophuric acid, and in which the silk is boiled for 10 mintutes; after which it is thoronghly washed in water and then in bods, afterwards again in water, then once more drawn throngh acidnlated water, and lastly through water alone. (Sec No. 333.)
2611. To Dye Silks or Woolens Viog let or Purple with Aniline. Violets an purples are produced on wool in the same manner as the blue; on silk the same metho
is used likewise, but the water must only be heated short of boiling. (See Nos. 315 and 316.)
2612. Jacobson's Method of Combining Fat and Oil with Aniline Red. The following process is given for this parpose by Dr E. Jacolson. First separate rosamiline from commercial fichsing by heating with soda or digestion with ammonia; wash and dry it, An oleato or stecarate of rosaniline is next obtuined by adding the rosaniline to oleio actid or unelted stearic seid as long as it will dissolvo, or by putting them topecber in equivalent proportions. An excess of oleic ncid must bo aroided when the compound is required fop a varnich, as it delays the drying. Oleato or starate of rosamiline easily diasolves in fats or oils, and coloss these an motense red. If it is wanted for a linseed oil varnish, the llinseed oil must bo freo frem leal. Tho compound must be kept from tha fire, or it soou turns bluc, probably by tho reducing action of the fatty acids. The best red color is obtuined in lisseed oit vamish, Stearine with oleate or stearato of rowariline appears a bifaish red. Parafine appeans to act at a redueing agent with the conppumdo of futty neils and aniline, and changed to a dirty violet color: the mixture then is inappliedble to the colurigg of parafinio or stearine candles. The olente or stearate of rosaniline io a grod colocing agent for huir of or pomatum, lat, from thio instalifity of the color, seems finapplicable for oil paintlige,
2813. Dyeing with Fuchsine on Wool or Sille. Fuchyine (tho erystala of acetato of rosaniline), or tho solution, bs mixed with eide water for jilk, or in water of 130° to 140^{3} Fathr. for wool, whieh temperature fo kept ap. For silk, a few drops of ucetie acil are also sdded. The strengh of tho dyo regulates the quankity which is required. The goods are mercly iumpossal in the bath unta they hatee taken up unflicient of the color: it is not ilwaywalvieable to work them about while in the bath.

I iquid Colors for Various Dude Purposes. Thaeo receipts in-

 lifuid colves as fro used to timge wi impart calor to matter generally, Their particitar nswa aut apritatect are specified in the receipt fivets for cach preparation. In additiun to Thuse bere given, a mumber of other receipts for coloting matter have been necessarily includet kuder the resprective beadings of the spemat oljects for which theg are used, and will bo readily foupd by constilting the indes.2615. Soluble Prussian Blue. Add a solution of procesulphato of irou to a solution of prussutto of putailh, asdexpase the precipitate tu the nie till it hecomes hlue, and wask it till the soltahte salts aro wasbed away. By continuing the washag, the blue itself dissolves, forming a deep blue golution, which may be exaporated witiont decomposition. Or, add a solution of persulphate of iron to a solution of ferroprussiato of potash, keeping the latter in excess; wash the precipitate natil it hegins to dissolve, and dry it. (See No. 24 es for another metrod.)
2616. Chemique, or Chemic Blue. Sulplate of Indigo. To 7 or 8 parts of oil of vitriol, in a glass or earthen vessel, placed in cold water, ald gradually 1 part of fine indigo in powder, stirring the mixture at each adidition with a glass rod or piece of twbaceo-pipe. Cover the vessel for 24 hoours, then dilute with an equal weight of water. Sometimes it is sold without diluting. The German fuming
acid answers hest, 4 or 5 parts of it being sulficient for 1 of indigo. For ijeing silk, \&c., carbonate of potash, koda, or ammonia, is added, to nentralize the nuif, taking eare not to auld it in excess. (Sice Nos. 98 anil 4791)
2617. Liefchilils Patent Blue for Linen. Mis 4 parts Chineso lilue, 1 of Turnbull's biae, and 1 of oxalic acinl; fradually add bouling water until the whole is clissolved, and listly 4 parts of sulphate of indigo. The lattor is twale vith 1 partindigo, and 4 sulphuric weid, nentralized with carbmate of armmonis 2618. Blue for Linen. The ondinary kints of cake bune consist of judigo and stareh. 2619. Solvents for Indigo, Indigo will dissolve is Vening turpentine heated io its boilizg puint, or it boilmg parafine, with tho same bino color as the rolision of miplario weia; and in jutrolenm it foras a carmitio sofution, while in spermaceti it protivers a car. mine-violet, and in atearic acil a blue color.
2618. Blaing for Clothes. Take 1 vance of coft lrushan blaf, powiler it and jus in a bottle ssith 1 grart of clear rain suater, anil ahl tonnce of oraliencid. A tea-spoonfal bs sufficiont for a barge washing
2619. Purified Annotto. To a boiliug solution nt jemplash adat as tabeth anbotto as if will dissolve. Whes cold. devant the clear solistion, and neafrallze wíth diluteil sulphurio acid, dvoiding any excers. Wath tho precipitate with a little culd water, and dry it.
2620. Bolution of Annotto. Boil equal waights of annotto and pearlast with water, and dilute to the roguired color,
2621. Cochineal Coloring. Tuko $\frac{1}{2}$ onnee each powored cochimeal, carbonata of potash, bitartrates of potssh, and alums; boil theso in A glated vessel with 7 ounces water and 1 ounce rpirit of wino, until efferroscence ceases (about 10 uinutes). In this liquid dissolvo an equal weight of rofined gugar by sमeanis of sufficiest heat, and set aside for use, Thin eoloring remaims loright for siny length of time, does not throw down any precipitate, tat bs almost cualterable by combect with either acida or alkalies, which is no panall od vantago. Diokarn'a coloring has sotno disadFanteges tu the large yuantity of spirit and the delieacy of tho ammonia tint. Tho first wonld hayo a tendency to canao a cloudy oppearance in briglat jellies and pther preparations cons taining gelatize, and the amanomia colur would be liable to to coupletely changed when brought in contact with icmon juice, bathed peard, and other acids met with in tho many entiuary piurposes for which the article is tarigely usud.
2622. Dickson's Cochineal Coloring. Mix together $\frac{1}{2}$ ounces spirit of wise and 6 onaces whter. In 3 ounces of thisuisturc iti. fuse I oumco povilured cochineal for 15 min utes, in a flast heated to nearly boilims paint. Potr the infasion into onnther ressel, and repeat the process with 3 ommoes more of the mixed spint und water; shal a third thme, with tho reuaining 2 oubces, Fot tho liquid stand till cold, when *oune fatty matter will rise to the surfacey filtor, addivg kpirit and water, up to eight fluid nunces. Lastly, add suffiticat strong water of ammonis to change the inffsion to the desired tiat. The coloring is thms prepared without carlonnto of potash, alnm, ete., and is free from the objections that atthose sulbstances. (Soc last receipt.) Those objections aro:-1nt, the coloning matter is thrown down as a lake, and after some time forms a layer at the bottom of the containing vessel, requiring the addition of ammonia to re-dissolve and keep it in solution; snil-2d, it doos not keep well. On the other hand, the advantages of Dickson's preparation are:-1st, advantages of Dickson's preparation are:-1st,
the coloring-matter remains in solution, and
$-2 d$, it keeps well, and has no mapleasant odor.
2623. Cochineal Coloring. Maccrate 1 ounco best carmine in 6 ounces stroug tolution of tummonia, until it is dissolyed. Heat geutly to drive off excess of ammonia, taking care nut to carry it too far, so as to precipitato the earminc. Put into a quart wino bottle, and add 4 onnees rectified spirit and 3 pounds white smgar, Fill up with warm water, and shake until tho sugar is diasolved. This is a splentid coloring.
2624. Black Lustra Color for Paper, Cloth, or Wood. Dr. Kiolueyer gives a roceipt which is adapted for either paper, eloth, or poross wood. He states thatit stands well, is vory siapple, and has no tondeney to get stieky. To prepure it, boil togother B pounds glue, previonsly dissolved in 10 pounds water; 1 pound potato starch, diasolved in 54 pounds waler; 54 pounds cumpeachy extract of 6° Benuod 1 pound 2 ounces green vitriol, and 8s pounils browu glycerine. When thoroughly mixed, remove the pot from the flre, and contime to stir umtil the liquid is cold, If the print bo desired thieker or thinner, the amount of starch aud glue must be varied as well as the other niatorials, or tho Instro will suffor.
2625. Black Produced by the Mixture of Colorless Liquids. One of the most interesting pheuomena in the operations of chesuistry cesenrs in the decomposition of sulphato of iron by gallio ncid, Into a wino-glass, cont aining the mfasion of galls, pour a sohution of the snlphate of iron. The gallie neld, from iti kuperior elcetive allinity to the fron, detaches it from its former combination with tho yulphurio racid, and in a short time these two Iafts, previously eolorloss, becomo intensely black, To make this black fluid into ink, nothing but a littlo gum is required, to retard tha proctpitation of the coloring matter.

2688, To Make Liquid Blue. Tut fito a bottle 1 outec puro Prussian blue, in fizo powder, aud pout upon it 2 ounces concentrated bydrocaloric acid. Efforveseeneo onsties, and the mixtura soon assumes tho eonsistence of a this paste, Leave it for 24 houre, aud then dilute with 8 or 9 ouncos water, aad bottle it. The whole may bo further diluted with a quart of water and still rotain a auflicieaty dark color for washing tushins, ete. Tho cormmon bluo writing fluid is thus prepared.
2899. Carmine Purple. The dyo rocently invented, atd known as carmino purple, is obtained by the bolution of uric acid in thitrie acid, earo being takes to prevent boiling over and too great an incredse of temperature. The mixture khoull remain standing qually for sonto days, after which a thick, pasty, or dougliy sulistance is obtained, which is to lis treatel with warm water, filtered, and the residuum again treated with warm water. The filtered liquid posbesses a reddish or yellowish color, resulting frum the organic substancos decomposed by the nitrio acill. It is bext to be evaporated in a large enameled iron vessel, but not heated to the boiling point, which would destroy the murexido (canmine purple) produced. After the liquid las been evaporated to a syrupy consistency, and has assamed a beautifal brownish-red or violet color, it is to be allowed to cool. Tho entire quantity of the liquid should never be evaporated at one time, nor hoated to the boiling point.
2630. To Color with Alkanet Root. Anchusa Tinctotia gives a fine red tinge to oils, fats, wax, turpentino, spirits, essencos, ete, and is used to color hair oil, pomatums, ointments, varnishes, otc. The spirituous soIution stains marble of a deepred; wax tinged with alknnet and applied to warm marblo,

leaves a fresh color.

2631. To Color with Mallow or Malva Flowers. The mallow or malya flower is a nativo of Europe, growing abundantly on wasto grounds and by the waysides. It is also sometimes cultivated in this country. This flower, which gives a beautiful color to water, is used for coloring port and clares wines, and it is considered one of the best artioles that can be employed for that purpose. Weigh 2 pounds, and steep the red petals in cold water for 5 or 6 hours. Trartaric acid mixed with the mallow gives a bright red color, and salt of tartar (carbonate of potassa) a deep purple red.
2632. To Purify Caramel. The caramel of commerce is spirit coloring, or a solation of burnt sugar in water. (Sed No, 694.) In this state it is mixel with variable quantities of pudecomposed sugar and certain litter compounds. To render is quite pure, it should Lo dissolyed in wator, filtered, and aleohol added until it ceasos to produce a precipitate. The caramel is thus thrown down, while tho impurities remain in solution. Pure caramel la a black or dark brown powder, solnble in water, to which it gives arich sepia tint; it is insolublo in alcolol, and incapable of formentation.
2633, Blue Dye from Molybdenum. According to late experimente to yrofestor Boettger, based upon somo previous researches of Dr. Schönn, if molybuie acill be dissolved to bataration in concentrated sulphario acid with hent, an urcolored clear flaid is obtatuen, forming a doublo ncid of sulpburic and molytdio acid. If a litule of bis double neid be placed in a porcelain dhas and heated till it begins to throw off white vagors, and then a oortain quantity of absolato aleohol bo gradually added, a beautiful bleo color is developeh, as it by magio, by meaus of which suite can bo dyed without the nse of any mordant.
2633. Mordants. Substances comploged to fix the coloring matters of dye sttulas on organio fibres, natd to give them brilliancy and permanenoy. This thoy effeet, eilher by their strong afinity for tho filire and the dye matuar, serving as a hond of union between the two, or by uniting with, and rendering insoluble, tho dye contained in the pores of the filire. Tho prineipal unardents aro alnm, attl the oxidos of iron or tin. (Sce No. 93.)
2634. To Color Butter. Pure amotto, when properly prepared, is very nuccessfully used for imparting a good color to fall and winter butter. (See No. 2621.) Annotto of courso adds wothing to the flavor or quality of butter, but as the pure article, whon thus employed for coloriog, is quito harmloas, there can be no serious oljection to its wse. In coloring butter with annotto it is important that a prime arcicle be psed, anil to have it prepared so that it shall bo froo from sediment and adulteration.
2635. To Color Pickles and Sweetmeats Green. A beantifil green color, entirely destitato of any poisonooas qualities, may be made by dissolving 5 grains saffrou it \ddagger ounce distilled water, and in another vessel dissolving 4 grains indigo carmine in $\frac{1}{4}$ ouvco distilled water. After shaking each up thoroughly they aro allowed to stand for 24 hours, and on being mixed together at tho expiration of that time a fine green solation is obtained, capable of coloring 5 pounds of sugar.
2636. Chameleon Mineral. Mifequal weights of black oxide of maugunese and pure potash, and heat them in a cruciblo. Keep the compound in closely-stoppered bottlos. Δ solution of it in water passes through varions shades of color from green to red.
2637. Cadmium Yellow Color for Soap. The chemical works of Schering, in

Berlin, have introduced two shedes of sulphide of cadmium, a lemon and orango yellow, for the coloring of toilet soap. Of all the agents thus far tried to give a lively yellow color to soap, sulphide of cadmium (csidmium yellow) has proved the most permanemt. Age and sunlight do not atifect the color, and the quantity required is exceedingly small.
2639. To Color Soap Yellow with Cadmium. The cadminun yellow (sec aborc) is rubled up with oil, and added to the soap under constant stirring. The color is not dissolyed in the soap, bit, suspended in it, and much depends upoa carefful miting.
2640. Liquid Colors. The following. when thickened with a littlo ganh, are used as inks fur writies as enlors to tint maps, folle, puper, artificial flowess, se., nad to paint on velvet. Some of Chemin are very leantiful. Is must bo observed, howover, that those malo wilh strong spiritilo yot mis well with gumi, unless dilinteoi with water.
2641. Liquid Blue. Disoolvo litrous in water, and add to of kpirit of wine, Or, illute Suson blue or sulphate of indigo with water. If regnired for dolicate work, pesatralize the wid withe chall. 0 , to an aqueotas infulion of itmus add a few drops of vinegar till it torias fitl bue.
2642. Liquid Purple. Stecp litmas in water, and strafí. Or, sadd a litto slum to a strained decoetion of Jogwood. Or whld a poluHion of carning (red) to a little blue milation of litmas or Baxod blic.
2043. Liquid Green. Disolve crystallised verdigris is wates. Or, dituolse fay green in walef, and udd a liute alum. Or, add a little ealt of tartar to a blue or purple selation of litmus , Lill if turns greer. Or, disadve eqnal parta of orystalized vordigria sud ereaus of tarfar in water, and add a litla g om-arablics. Used as an tuk for writing.
2644. Liquid Yellow. Disbollyo gransboge in srater, and ada a litelo gamearabio nud aluis. treed for ink, to stalin paper, color maps, 4c. Or, disoilve pamiogas in equal parts of pmoof eqirit and wate. Goldet colored. Ot, steen \bar{F} raich berries in hot water. strain, anil wid a litulo gom anil olunt. Or, steep tyrtrerie, round zedoary, gamboge, ur amotto, in spirits of wibe Or,disoblye anintto in a weak lye of sultcarbonate of soda or potelt, The alote are mased by artificial flotists.
2645. Liquid Red. Micerate groumd Mratil in vinegar, boil a few minoted, strain, ant add a litulo alum anid zum. Or, medd vinc: gar to un infisinu of litmus till it turas red. Or, boil or infinse powdered cochineal in water; strain, and ndd a little slum said gom. or, dissolye carnitio in liquor of ammonia, or in Weak carlowate of potash watet; the former is superle. (Sce No. 2021, , Sc.)
2646. To Tint Msps or Architects' Plans. Maps, paper, of architectes' phans way bo tinted withi any of tho cimple liquid colors just mentioned. Tr prevent tho colors sinklog oud sprending, which thoy will usaully to on couman paper, the letter flonid be wettel 2 or 3 times with a sponge dipped in alum Water (3 or 4 ounces to the pint), of a bolntion of white size; olserving to dify it carefully after each eont. This will tonid to pire lustre and henaty to the colors. The celors themselves shonla alko be thickened with gum. Before varnishing majpis after coloring them, 2 or 3 coats of clean szoo should be applifed with a brask.
2647. Sizing for Prints or Engravings to be Colored. Dissolvo 4 eunces filust palo glive, and 4 otrpees shitite curd soap, in 3 pints boiling water; add 2 ontuoes powdered alain. Used for sizing prints and engravings befora coloring them.
2848. Druggists' Show Colors. These aro uright and perfectly transparent liquid colors, employed by druggists in ornamental botules for purposes of display, forming an attractive and distinctive ormaneat of a drug store window. It has for a long time been tried to render the beautifal colors of permangatates moro permanent. They are iiable te decorpopose under the influence of light and atmosplecric dust, and no way has as yet been discovered to obviate this difficulty. Many druggists have proposed to fill the bottles in thnir winilows with solutions of andine colors, but even these have to bo renewed from time to time. Nentral metallic salts, that have neither tendeacy to osydize nor to reduce, are best employed for this purpose. The receipts hero given aro among tho very bost and most used for this purpose. The mixtures requiro carefal filtration through powdered glass in a glasa fumnel. It will be found desirable to mase a little moro liquid colur than is actually required, to replace tho loss oceasioned ly a secood filtration (performed in the samo manner as the first), which will probably be neecssary aftor oxposure for a few weeks to the Light: as any addition of water after filtration, to malko up tho deficiency, tends to weaken the color and dotract from its brightness. Drageists' show hottles aro now made of colored glass, and filted with pare water. Theso are Jost as effectivo as the white glass bothes filled with colored wators, and obyious. ly involvo much less trontle.
2649. Amber. Digest 1 part drazon's Mood, coarsely powdered, in 4 parts oll of vitrial: when completely dissolved, dilute with distillel or Eoft witer to the desired thate, ind filter. (See No, 2648.)
2650. Indigo Blue, Dissolve indigo in anjshario acid, and dilate with pure water to tho required shade of color; filter as directed in No. 2648.
2851 Blue. Dissolve 2 ounces sulphate of copper in है ounce ofl of vitriol and 1 pint of pare wator; filter at in No. 2648.
2859. Prussian Blue, Dissolve paro Prustian the in silghly dituted oxalic or muriatic (lyydrochlore) neid: ruld water to bring the oolor to the desired shade, and fitter. (Sem No 964R.)
2653 , Pink. To a molution of chloride or micrate of cobalt in water, add sufficiont mesquicaribomate of athmonia to dissolye the receipitate at first formed. Filter as in No. 2688.10 r : Wash 1 otmeo mulder in cold waLor; Jigest it, with syfitation, for 24 hours in 3 pints water containing 4 ounces sesquiearbonith of ammonia; then diluto with water to the desired stiale, and filter as above.
2654. Purple. To min intusioin of logwood, udd sufficient carbotate of anmunnia or of potassa wo matike tho enlat. Filter uadirectod in No. 2648. Or: To an infusim of coehineal, add sufficient sulphate of indigo, peurly neutralized with chalk. Fitter as above.
2655. Red. Dissoivo carmino in aqqua numoula and dilute with water to the dosired dhale; filter as in No 2644. Or: Dissolvo madler lake in a solution of sesquicarbonato of ammonia, and dilute with watar; filter as above.
2656. Violet. Dissolve nitrate of cobalt in a solution of sesquicarbonate of ammonia; add sufficient ammonio-sulphato of copper to prodice the color. Filter as in No, 2648.
2857. Yellow. Dissolve $\frac{1}{2}$ puund sesquiaxide of fron (rust of irom), in 1 quart muriatio (hydrochloric) ncid, diltute with water, and filter. (Soc No. 2648.) Or: Dissolve cluromate or bichromate of potash in distilled water; or equal parts of either the alove and of nitre (saltpetre) dissolved in water, and filtored as above.
2658. Crimson. To I sunce alkant root add 1 pint oil of turpentine- Filter ts directed in No. 2648. This is used ehiefly for lamps.
2659. Green. Dissolve $\underset{\sim}{2}$ ounces blae viuriol (sulphate of eopper) in 1 pint water: edd suificient bielaromate of potassa to turn the liquil green. Or $=A$ solution of 2 ounces blue vitriol (sulphate of copper), and 4 ounces chlorido of sodium in I pint of water. Or: A solation of distilled verdigris, in acetic acid, and diluted with water, Or: Dissolva blae vitrial in water as above, and add nitric acid till it Lurns green. All these must be filtered as directed in No. 26 ts.
2660. Lilac. Dissolvo ernde oxide of cobalt in nitrie or muriatic (bydrochlarie) acid : add sesquicarbotate of tmmonis, in excess; afterwards suflicient anmonio-snlphate of copper to produce the color requited. Pilter. (Sec No, 964N)
2661. Olive. Dissolve equal parta by weight of snlphate of lrou, and oil of vitriol, in Water; phil sufficient sitrate of copper to proditco the cotor. Filter as in No, 2646 .
2662. Orange, A solutinn of bichromate of potassa ia water, either with or without the aldition of tome hyidrochlorie or sulpburic acid. Or: Dissnlve gambinge or anuotto In liguor of potasas; dilute with water and add a little opinit. Pilter these as directed in No. 2648 .
2663. Sea Green. To 1 gallom water add noetate of copper, 4 drachms; and acetio adid, 4 ouncer.
2664. Pea Green. To 1 pallow water ndd niokel, 2 dradoms; acetic seid, 1 ounce; and bichromste of potaits, 5 draehm. Ot: To L gallon diluteif alsobol, ald sulphate of copper nad common salt, of ouch 2 vapees.
2665. Light Blue. To 1 galton of water add sulphate of copper, 16 imbees.
2666. Light Green. Sulphate of copper (ro-eryotallized), mariatic deld (freo from froth), wator, alenhol, of each is nnfficient quantity.
2667. Violet to Purple. To the igreen acid soluting of volphate of elrraminm add strong solation of harmonils, und filtor at dirceted in No. 964%.
2668. Yellow. Bichromate of potasa, murintic befi, water, of emfo a nuftieient quantits.
2669. Bright Red. Cuetineal, pround, 1 nance, Boil with I piat of water, replacing that which evagurates. Towards the close them, 2 or 3 coats of clean size stiould be applied wich a lirnsh.
2647. Sizing for Prints or Engravings to be Colored. Dinuolse 4 nusers libest pala glue, and 4 numetes white curd suap, in 3 pints hoiling water; add 2 ounces powdered alum. Used fot siziot prones and ulgravings tuefore nolorisg theit.
2648. Druggista Show Colors. These aro bright and perfectly transparent lequid colork, emplogyed by druiggists in ormamental bottles for purposes of display, forming an attractive and distinetive ormament of a drag etore window. It has for an lomg time heen tried to render the beastiful colors of permanganates more permatuent. They are libble to decompose under the influencer of light anil atmospheric dust, and no way has as yet been discorered to obviate this difficulty. Many druggists have proposed to fill the bottles in their windows with solutions of aniline colors, but oven theso hase to be renewed from time to time. Neutral metallic salts, that have neither tendency to oxydize nor to reduce, are best employed for this parpose. The receipts here given are among the very best and most used for this purpose. The mistares require careful filtration through powdered glass in a
glass funnel. It will be found desmable to mako a littlo more Equil colot than is actually required, to replace the loss occasioned by a second filtration (performed in the same manner as the first), which will probably be necessary after exposuro for a few weeks to the light; as any addlition of water after filtration, to make up the deficiency, tenids to weakeu the color and detract from its brightncas. Druggists' show-bottles are now made of colored glass, and filled with pure water. Thesc aro just as effective as the white glass bottles filled with eolored waters, and olvviously invalve much leas trouble.
2649. Amber. Digest 1 part drigoa's blood. coarsely pownlered, in 4 parts oil of vitriol, when completely dissolvel, dilute with distilled or soft water to the delired Rhade, and filter. (Soc No, 9648.)
2650. Indigo Blue. Dissolve indigo in sul phuric acid, and dilnte with pure water to tho required shade of color; filtor as directed in No. 2648.
2651. Blue. Dinsolve 2 ounces sulphate of copper in $\frac{1}{2}$ ounce oil of vitricl and 1 pint of piore water ; filter as in No, wifs.
2652. Prussign Blue. Dinsolvo piare Pravian thue in stightly diluted uxalic or muriatie (bydroeblone) achl; ald water to bring thot colar to the dovired shade, and Giter. (Sec No. 9648)
2653. Pink. To a solution of chloride or aitente of cobalt in water, ald sufficient nespaicarbonate of atumonia to tlissolve the preeipitate at firat formed. Piltor as in No. 2613. Or: Wach 1 onnce msolider is cold wator; algest it, with agitation, for 24 bours in \# pint water engbumisg 4 ources sesquiearbonate of numonia; thenslilute with water to tho desireal shades soul filler as abose.
2654. Purple. To un infusion of logwood, whit sulficiens carleribate of aystrumis nif of potisect ta make the colicr. Filter nititred. od in Na, 9648. Or: Teas infuspas of cuchimeal, add safficient salphate of indigos nearly neutralized with chalk, Wilter as aboye.
2655. Red. Disaolve carmino in aqua anmonia and ditete with sater to the denired disules; fittor as in Nio. 2tits. Or: Dissolve maideir lake in a suifation of sesquacarbonato of ambionia, and dilute with water; filter as sbove.
2650. Violet. Dissolvenitrate of colalt in a coolation of sconquicarlonate of amanonia; ould atalicient ammonio-sulphate of capper to

2657. Yellow, Disolve 5 pund respufoxidenf irou (ruat if irob), io 1 quart maristic (hstmelinvie) acid; dilato with water, and filer. (Sce No, 2949) Or: Diesalve claromate or bichrobate of potash in dintilled walor: or eqnal jurts af either the abore and of liitro (tiltpetre) diswolvod in water, and filtered as aluye.
2658. Crimson. To 1 ounce alkanet root ald 1 pint nil if tarpeation. Filter has directal is Xo. 9348 , This is used chiefly for lamps.
2659. Green. Dissolve 2 ounces blac ritriol (sulphate of eopper) in 1 pint water; add mullicient bichrmmate of potrese to turn the liquid zreen. Or: A solntion of 2 onnees blue vitriol (sulphate of copper), and 4 ounees chlonide of sodium, in 1 pint of water. Or: A solation of distilleal verdigris, in acetje acid, and Gilisted with water. Or: Dissolva blue vitriol in water as above, and add nitric acid till it turns green. All theso must be filtered as directed in No. 2648.
2680. Lilac. Dissolve ernde oxide of cohalt in nitric or muriatic (hydrochloric) acid; ald sesquicarbonate of ammonia, in exenss; afterwards sufficient ammonio-sulphato of copper to produce the color required.

Filter. (See No. 2648.)
2661. Olive. Dissolve equal parts by weight of sulphate of iron, and oil of vitriol, in water; iuld sufficient nitrate of copper to produce the color. Filter as in No. 2648 .
2662. Orange. A solution of bichromate of potassh in water, cither with or without the addition of some hydracbloric or sulphuric acid. Or: Dissolve gambogo or annotto in liquor of potassa; dilute with water and add a little spirit. Filter these as directed in No. 2648.
2663. Sea Green. To 1 gallon water add acctate of oopper, 4 drachms; and acetio acid, 4 ounces.
2664. Pea Green. To 1 gallon water nald nickel, 2 drachms; neetio acid, 1 ounce; and bichromate of potash, t dracbm. Or: To 1 gallon diluted aleohoul, nuld sulphate of copper anal common kalt, of each 2 onnces.
2665, Light Blue. Ta 1 gatlon of water adhl sulphate of cupper, 16 onnces.
2666. Light Green. Sulphate of copper (re-cerystallized), thariatie acid (freo from (ron). water, aleuthol, of each a sufficiont quiantity.
2667. Violet to Purple. To the green acid molution at xulphate of chrounium add xtrong salution of ammonia, and filter as dirental in No, 804.
2668. Yellow, Bichromate of potassa, miriatio aeth, water, of eswli is sufficient quantity.
2669. Bright Red. Cochinea, ground, 1 onnee. Boil with 1 pint uf water, replacing that whiels evaportates, Towards the elona odd cream tarthr, $\frac{1}{2}$ onnce; alum, 1 ounco and when cold, nil of vitriot, 1 onnee, mised with + pint of water.
2870. Purple to Pink. Fuchsinediluted with spirit, as dediral.
2671. Magenta, Solferino, Water of the Nile, and other bright colura may be obtained by mixing the varions aniling or tar colors with woter as directed in Nu. 949%.
2672. To Prevent Show Colors Freezing. It will bo sinficient to bring the molution to a ktrength of about 15 to 20 per cent, of aleohol. Naturally the liquids must be very diluto as regarda the sulides, no as to suffer no procipitation of any saline matter by cold or spirits. Acetate of capper, with or without ammonia, a dilute sohation of foline in fodlude of potasiam, nitrate of collalt, ete., aro not neted on by weak alcohol. We beLiero that glycerine may lan mixesl with water for this purpose, but whether it possesser any stupetiority over alcohol wo have pot been able to ascertain. The bottles in all cases most lave bulficient sjace left over the fluids to allow for expansion.

Pigments. Theso are substances employed as coloring matter in mixing paints, \&c. The following receipts furnish the method of preparing the pigments and other coloring matters in general use, and their special appliances.
2674. Turnbull's Prussian Blue. Ferrieyanide (red prussiate) of putassium, 10 ounces; solution protosulphato of iron, 1 pint; water, 3 pints. Dissolve tho ferricyarside of potassium in part of water, and add the solution, gradually, to the solution of protosulphate of iron previously diluted with the remainder of the water, stirring the mixturo during the addition. Then filter the liquid, and whish the precipitate on the filter with boiling water until the washings pass nearly tasteless. Lastly, dry it, and rub it into fine powder. It may also bo made by ndding
protosulphate of iron to a mixture of yellow prussiate of potash, chloride of soda, and hydrochloric acid. This, mixed with water, makes an excellent bluing.
2675. Prussian Blue. Percyanider, ferrocyanide, or ferroprussiate of fron. Comsmercial Prussian blue is mado by adding to a solution of prassiate of potash (or of prussiate cake), a solution of 2 parts nlum and 1 part sulphate of fron, washing the precipitate repeatedly with water to which a little muriatic acid has been addel, and exposing it to the air till it assumes a deep bluc color. A purer kind is made leg abling a solution of persulplate or perchloride of iron to a solntion of pure ferroprussiato of pntash. (See No. 2674.)
2676. Action of Prussic Acid on Iron Solutions. The Germans call prussic acid blamature, becanse it produces a blue preefpitato in certain irun solutions; but the following experiment undoulatedly proves that the prussic neid does not prodace the color of that precipitate, since it ean be made just as well without it. Prepare a Faturated solotion of green vitriol in water. Tuku $\frac{+ \text { parts of the }}{}$ aboves kolution and treat it with nitrio and sulphuric achls, until it is changed into the salphats of peroxide of iron. Mis this with tho rowatining 3 of the first solation, then suld very grudually (to avoid Its becoming heated) coneentrated vulphario acid, until a precipitata is formed. The result will ho a beautifil blua precipitate, egual in Prussian blue. If water is addeal, the precipitute is diasolved and tho color destroged f but if the precipitate is separateal from the wein and rubbed with pliosplate of soda, Fe obtain a beautifal blac phosplate of iros, which will resiat tho aetion of water. In all these cases the eecids, Which possous no oolor, aro by no means tho catse of the blue eotor, but faror only the production of it, by depriving the mixed bydrites of protoside anil peroside of iron of ecrtain equiraleats of water, and likuwisa by prevonting tho rame from enteriog into a bigher stato of oxitation in the atmosphere.
2677. To Make Carmine by the Langloin Process. Boiling river water, 4 gabous; cochimeal in powder, 1 pound; bod for 10 minuted, then ald $\frac{8}{2}$ ounce carbonato soda, dissolved its 1 pound water; boil again For b un hoar; cuol, whe \& ounce alum in fino powder, agitate rapilly until it bd dissolved, then let it stand for 20 minates, after which carcfully decant into another reasel. Tha white of 2 egga, dissolyed in 1 pint water, is now to be added, and the whole well agitated; apply heat imtil the liquor be clarified, then draw it off, and allow it to repose for $\frac{1}{4}$ an hour, or longer, when the elenr portion must be decanted, and the carmine that las been deposited at the bottom collected, and placed upon a filter to drain. When it has nequired the consistence of a paste, remove it from the filter with an ivory or silver knife, and finish the drying upon shallow plates, eovered with silrer paper.
2678. To Make Carmine by Cenette's Process. The following is the method employed by Madame Cenette: Finest cochineal, redteced to powder, 2 pounds; pure river was ter, boiling hot, 15 gallons; boil for 2 hours, then add refined saltpetre, liruised, 3 ounces; boil for 3 minutes longer, and ald 4 ounces of salts of sorrel (binoxalate of potassa). Boil for 10 minutes longer, then remove the heat, and allow the liquor to settle for 4 hours, when it must be decanted with a syphon into shallow plates, and set aside for 3 weeks. At the end of this time, the film of mould formed on the surface must be dexterously and carefully remored, without breaking it or disturbing the liquid portion. The latter must bo
now removed with a syphon, and the remaining moisture drained off, or sucked up with a pipette. The carmine which is left behind must be flried in the shade, and will be found to possess extrandinary lostro and beanty.
2679. To Revive or Brighten Carmine. We may brighten ordinary carmines and obtain a very fine and clear pignemt, by dissolving it in water of ammonia. For this parpose leave ammonia upon carmine in the heat of the sum till its color is extracted and the liquor has got a fine red tinge. It untst then be drawn of 1 and precipitated by nectie acid and alcohol, next washed with aleohol. and tiried. Liquid carmine tha solution of carmino in ammonia.
2680. Adulteration of Cochinenl. Genuino cochineal has a specific gravity of $1.25 ;$ is commonly increased in weight by alightly moistening it with gum water, aul then rouncing it in a bag, first with kulphate of baryte, and then with finely powiered bone-black. In this way its epecific gravily ia raised to 1.35, by introducing about 12 per cent, of useless matter.
2681. Kirchoff's Method of Malcing Vermilion. This is said to yiold vermilion equal to the Chinesa. Rub in a porceltion dish 100 parts mercury with 93 parts Alowers of stalphar, moistening the nilxtura with a aolotion of caustic potash. Next treat it wilh 53 parts hydrate of potash, mixed with ats equal weight of water: warn it up asal tritorate it again. The water must bo roplaced as it ovaporates, and the operation cuntluaed for 2 hours. The whole is now to be evaporated to a thin paste, dariag constant tritorition, aud the heat removed tho moment the color is of a goul tift. Even a few seconds vou much or too litile will injurg the result. When eold, the mats is washed vith a solution of potash, aud aftervards with pura wntor, and linally dried.

2682, To Preserve Vermilion. It iata factwell knowa to artists that tha sjulepdidily bright color of verisilion (cimzabar, sulplide of maroury) bas a tondency, especially if it has been tirisod with whito fad, to boconice blakkiah brown and rety dark-colored ita a comparatively khort time. This bebdency is altugether oloviated if, proviouts to lociag mised with oil, it is thoroughly aud intimately tningled with flowers of sulphar, in tho jropurtion of 1 purt sialplaur to 8 parts veraillom.
2883. Carthamine or Safllower Lake. Wash saflower till the water cumes off colorloss; mix it wilh water lowling 15 per cont. of carbonate of soda in solationt, so as to forta is thick pasto; leavo it for soveral houre, then pross out the red liquid, amd nearly twotralizo it with acotic ecid. Next pat coltou into it, and add succesaivo small portions of acetic acid, , Ho as lo provent tho liquid becoming alkaline. In 24 hourd tako ont tho cottori, wash it, and digest it for balf an hour in wer ter holding 5 per cent. of crystallixed carboraate of soda in solntion. Immediately on removing the cotton, supersiturate the liqual with eitric acid, and collect the procipitats, which mast be ropentedly washed in cold wator. For pink satroers the liqnid is allowed to deposit in the saucers. Mired with the serapings of French chalk it constitutes rouge.
2884. Lakes aro also outained from Brazit-wood and madder, by adding alum to a concentrated decoction of the former, or to is cold infusion of the latter (maile by triturating the madder, inclosed in alisf, with the water), and after wards safficient subcarbonate of potash or soda to throw down the alumina fincombination with the coloring matter. The preeipitate is to be washed and dried. A Littla Bolution of tin added with the aium improves the color. Lakes may bo olstnined from tnost

Fegotable eoloring matters by menns of alum and an alkalines carbonate. Yollow lake is made from French or Persian berries, by boilIng them in water with a little soda or potash, and adding alum to tho strained liquor as long as a precipitate is thrown down. Or by boiling wold, or quercitron bask, in water, and adding fhum and chalk in a pasty btate.
2685. Rose Pink. Boil 6 pounde Erazil-wood and is pounds pench-wood in water, with t pound alum, and pour tho strained decoction on 20 pounds sifted whiteniag.
2686. Sap Green. The expressed Juice of bucktborm berries (and sometimes of other species of rlamans, and tiso of privet loorries) is allowed to settlo, and tho clenr liquid evap. orated to drymess, A Ifttle gom-arahio is soniet/mes added to tho jaice.
2887. Azare Blue, or Smalts. The common qualities are 3usde by Susing gaftre (rooatod cobalt oro calcinod with viliceons sand) with potasly. A finer qually is olitained by proefpitating a a alntion of sulplate of cobalt, by a wolntion of siliesto of potisit. Another colualt blue is obtained by atding a sodutions of phosphateof soflo to n solution of nitrato of volialt, and mixiss the precipitate, washod, but not dried, with \& thmes its wefght of fresk hyslrated alamina, Whes dry, hoat it to a cherry red. It is permanent, but lias litulo budy. If ground toofins it loses its lreantiful tint. It cin bo employed in freseo and olltduala painting. It it just affectal by anlphurctucl bydrafeas.
3688. Blue Verditer, It in gonerally stated to brombe liy adding chalk 60 a sutuLion uf nitribe of copyine produced in tho proceas of reflaisg wilver ; but Mp. Philips dis tot miceogel in unaking it ly this meane and Fosmed the limo in the best pumples This pigment is ncted mpon by waplerrittod hydrogeos is shomld not be unod in wil, inul thongb moro stablo is water, it fa havily a plgmento for bigls art worlf. Certana bluou wret made from the natural blue liasio carhonate of coppas, anil froso maladoto, luit they lave no inlereat for the artict.
2689. New Blue. Mis equal parts of commoni mrentate of eopprer (sco Nitaerat (Frens, No. 2711), sod metitrol argonjate of potash, fiso by heat in a targe orucible, then add to tho fused salt f its tveight of nitre. ETTorvescuse taker jolace, uud tho salt besomes blue. Cund, pulverize, and wash.
2690. Cobalt Blue. Thénurd's blaa is made by pazecipitating a golnbla cobalt sait with a sotution of abmo, noth heatiog tho preeipitate. When well muslo, it is a good permaneat color, usefly ith oil attl water, It can also bo engployed in freseo abd silieioun painting. It is, however, sothowlat affected by light, Iosing ils brilliancy \#liphlly.
2691. Elsner's Preparation of Zinc Green, Sprintslo will water a misturo of 5 parts oxide of zine and 1 part of sulphato of cobult, dry tha pulp tliss olitained, then beat to ralness. A deep ereen powder is obtained. If 10 parts oxido of zinc, and 1 part Eulphato of cobalt bo omplosed, tho product is frass frecti in color; the same color, only ligater, is potained when the latter proportion of xinc oxile is again donbled. These colors, especially the latter, may replace to advantago Sclweinfort green; thoy apply woll on a conting of lime.
2692, Bistre. This is a brown color which is used in water-color paiuting. It is prepared from the ront of beceh-wood by washing away tho solpble parts with water. The inaoluble residue is mixed with gutu wator and formed into cakes.
2698. White Iead. This pigment, which enters largely into the composition of

THE SURVIVOR VOI. 2
864
DICK'S
varions colored paints, is carbonate of lead, obtained by suspending rolls of thin sheet lead ovor malt vinegar or pyroligneons acid in close vessels, the evaporation of the acid being induced and austained by the heat of a steambath or other appliances.
2694. Test for White Lead. Commercial carbonate of lead is never quite pure, being commonly adulterated with sulphate of baryta, (heary spar), and sometimes with cbalk. The former may be detected by its insolubility in dilute nitro acid, and the latter by the Intrie solution yielding a whito precipitato with oxalie or solpharic acid, or oxalate of ammonia, after having been treated with sulphuretted hydrogen, or a hydrosulpharet, to throw down the lead. (Cooley.)
2695. Simple Test for White Lead. Take a piece of firm, close-grained charcoal, and, near one end of it, scoop, out a eavity
 Place in the cevity a sample of the lead to be tested, about the size of a small pea, and apply to it continuously the blue or hottest part of the flame of a blow-pipe; if the sample be striotly pure, it will in a very ehort time, say in 2 minutes, be reiluced to metallic lead, leaving no residuo; bat if adultorated to the extent of 10 per cent. ouly with oxide of zine, sulphate of baryta, whiting or any other carbonate of lime (which substances are now the only adulterations used), or if it be composed entirely of these materials, as is sometimes the case with cheap lead, it cannot bo reduced, but will remain on the obarcual an infusible maso. Itiswell, after blowing apon thossmple, say for i a minnte, by which time the oll will be burned off, to loosen the sumple from the charconal with a knifo blade or spatula, in order that the flame may jass under as well as over and against it, With proper care the lead will run into oue button, instend of acatteringover the charcoal, and this th the reason why tho cavity aboyo mentioned in neocasary. A common stearine candle or a lard oil lamp farniahes the best flame for uisa of the blowpipe; the damo of a coal ofl lamp theald not bo used.
2696, Zinc White (oxide of xinc) in a permanent pigment; io not affected by aul. phuretted hydrogen; doea not form Boap with oils and fats, therefore it retains its opacity ; does not decompose otber pigments, and if used with proper vehicles rothins its whiteness. It is the best and safest white that can be used. It is most durable in siflicious paint. ing, as it forms ehemical compouads with potash and silica.
2697. Sulphate of Baryta, called barytes and constant white, io very permanent, of a bluish tint; has no body in oil, but is a good whito in froseo, silicious, and water-color painting. Chemically it has no actiow on other colors, and in not itself affected by any ordinary destructive agenf. It is is natural product, called heavy spar.
2698. Pfundheller's Method of Obtaining Barytes White. For cach 100 pounds of wool, 3 pounds alum, 1 pound cream of tartar, and 2 pounds sulphuric acid are to be combined with $\frac{1}{8}$ ounce of solable Jodine violet, and the wool immersed in the solution at a temperature of 122° Fahr., and stirred round for an hour at this temperature. Auother bath is to be made in the meantime, in a fresh kottle, with 3 pounds cbloride of barium, and the whole immersed in this, and kept at a temperature of 122° Falir., for two hours, By thlis process the sulphate of barytes, the most beantiful of whites, will Le thrown down in the filie of the wool, which has been eaturated in the first bath with the sulphuric acid, and it will gain about eighteen per cent. in weight.
2609. Cremnitz White, a Leantifal whito, with less body than ordinary white lead; it is, doubtless, mado by precipitation; it, like ordinary whito lead, decomposea sulphides, and is decomposed by sufphuretted hydrogen.
2700. Cadmium Yellow, Red, etc. These aro sulphiles of cadmium, and, when well prepared, are very stable; they can be used in fresco and silicious painting. It is mentioned elsowhere that cadmum sulphido decomposes emerald green. (Sec No. 2712.) It is not safo to use it with lead pigments, nm less it has been most carefully prepared; and here, inasmuch as decomposition may take place, and lesd sulphide, which is black, bo formed, it is better to avoid the mixture; no such mixture can occur in fresco or silicious painting, and it would be well if there wero no chance of its oceurring in any other style of painting, by the banishment of white Iead from the list of artista' pigments. No nther sialta of cadmium are important an pigments.
2701. Green Oxide of Chromium. This oxide ia perfectly stablo, end, as so many tints of it can be obtained, meluding the beautiful vividian, it can bo used in all vehieles, and is perfectly permanent in freseo and silielous painting. Other chromian compounds are used in painting; the ehrotuates of lead have already been treated of. Chromnta of barytes is a good, bafo pigment; ; it is used under the name of lemon yellow. It is permanent in fresco and silicions painting. The chromates generally aro unstable colors, and, as thore aro 60 many other good yellow, they sbould not bo nsed as pigments.
2702. The Ochres are earthn colored by oxide of fron. The natural color of these earths is yellow, but by burning they get darker, and sume become red. Indian red, red ochro, light red, ote, aro all carths with more or less of the oxildo of iron in thom. All the ocbres aro permazeat fand stablo if they have been well prepared. They may bo used safely in evory style of painting.
2703. Colcothar is also an oxilo of jron; it fa very permaneat, asd gouerally usefal as a pigment. It can be obtained of differeut tiats. It is, bowerer, especially viefol in fresco and silicious painting.
2704. Venetian Red, as now preparci, is in iron red; but, whether from nelulteration or not, it contaits lime; and, as it is niade from the salphate of iron, salphate of lime gots formed, and this preventaits employment in allicious painting, for with silicate of potash a silicate of lime is itmmedintely formed, and it becomes hard and lumpy. It may bo used in vil, witer, and frosco.
2720. To Make Purple of Cassius. This is a sitrifiable pigmeut, which stains glass and porcelain a beautifil red or parple hac. Its preparation is ohe of great bicety, and fs liable to fail even in the inust experieneed hands. Mix together separate solutions of 1 part erystallizel protochloride of tin, aud 2 parts erystallizel perchlorile of tin; thid mixture, added tu a solation of 1 part erystallized chforide of gold, makes a berutiful purple colored precifitate, which should inmediately be whehed, filtered, and dried. An excess of the protochloride produces a hac, jellow, of greentish tingo; the perchloride in excess gives a red or violet cast.
2721. French Purple of Cassius. This is similar in preparition to the last reeeipt, but differs in one ingredient euployed, substituting perchloride of irom for the perebloride of tim. This parple keeps in the air unaltered for a long time.
2722. Purple of Cassius. To a moderately dilute solution of sesquichloride of fron, add a solution of protochlonde of tin, until the
mixture becomes green, and dilute the mixture with an equal lulk of water. Next prepare a solution of terchloride of gold, as neutral as possible, in the proportion of 1 part gold in 360 parts water; then add the tin EoJution, with constant stirrivg, as long as any precipitate is produced. Wash the precipitate as quickly as possible by decantation, and dry nt a gentle heat.
2723. Buisson's Preparation of Purple of Cassius. Two sultutions dif tin are required. The first consists of a nentand solution of 1 part tin in nitric acid. The second is made by dissolving 2 parts tin in n misture of 1 part bydrochlorio acial with 3 parta nitrio acid; a little heat may bo cautiously applied towards the end of this procese, to provent any protoxide of tits from romaining in the Eulution.

Next dissolyo 7 parts gold in an aqua-regia comprased of 6 parta byifrochlorio acid and 1 part nitric acid; nud mix the solution at once with $\$ 500$ parts water; then add the whole of the second tinsolation, sulasequently alding by degrees the first till solution, censing the moment the right color is ohtained. Too little will produce a vialet eolor ; tur much, a lowow. Wash the procipitate very quielly, and dry, When dry ft appoars browih.
2724. Improved Vehicles for Colors. Oue meware of patazated solution of berax, with 4 of limeed ofl. Tho prgment buy be ground with the ofl or the mixtaro. Or, a solution of alicthe with borax, is in making Coathquo' Ink. (See No. 2484.)
2725. Improved Vehicles for Water Colors. Water colors, mixed with golathe, nod afterwards fixed liy woshing with a solution of aluts, or; curd of milk, washed and preseed, then driel on fine net, asd when required for use, mixed with water and tho colsring matter.

Drying Oils and Dryers,

 more or less powerfal for oxygen; and, by exposure to the air, they either lecome hard and resinous or kour and rancid. Thone which exhibit the first property in a marked degree, as the oils of linsced, poppy, rape, and भalumt, no enlled drying oils, nut aro veed as neliedes fot culuas in patititig. The dry. inte property of oils is greatly inereased Ly loniling thmon, efther alote or whth belarge, rugar of Jend, etc., when the prainet formas tha boiled ail or drying oil of commerce. Tho litharge and sulphate of lead conployed for this purpoze, may be agath used, after washing them in hot water, to sebtove tadueritg mueilage. When paints are inixed with ruw oil, ns is frequently the caso in house painting, the drying quality is obtained by the aditition of compositions called dryers, These are genosally made frou Jupan rurvish, sugar of lend, litharge, ete, and ate necessary in whelt paints as are preforably preparesl withme beilesl ofl.2727. Dark Colored Boiled Oil. Sinlmor with frequent stirring, 1 zallom of linseed oil, with $\frac{4}{3}$ pound powdered litharge, until a skin begins to form; then remove the sexum, and when it has loceme cold and has setthed, decant the clear portions. This in fur house painters' use.
2728. Pale Boiled Oil. Boil 1 guart linsced oil, and 2 vunces pordered white vitriol (sulphate of zine), wilh 1 quart water, until the water has all evaporated; settle and decant as in the last receipt,
2729. Very Pale Drying Oil. Mix 2 ounces fincly [uwdercel litharge, or dry miphate of leul, with 1 pint palo linseed or nut oil; agitate frequently for 10 days, then set

the bottle in the sun or in a warm place to set-

 tlo. When clear deeant jt,2730. Colorless Drying Oil for Paint, Tako 5 gallons water, heat it to the Lwilirg point in a vessel boldiug 15 gallong; when abont to boil add 5 gallons linaeed cil and 1 pound rod lead. Kcep it constantly hoiling and stiryed up for 2 hours orer is slow fire. If not constantly stirred the lead will sink to the bottom and causo the oil to ripatter. It is then taken from the fire amt left Les settle, when it will bo found that the oil is clear asal eoloulesis.
2731. Mulder's Colorless Drying Oil. Boil linsed ofl for Lwo lumes with is per cent of red lend; filter it, and expose it to the zunWhine in lurze shaUny vissels, with a glass eovering, hequently removing the eover torenew the mis.
2732. To Make Boiled Oil Clear and Bright. There is oftes a diffenty in obtint iuf tho oils beight after boiling or heating thent with the leat solutions, The heat way on a fmall healo is either to filter the bolled vil twough euarse ruolen filtering paper, or to expore it 3 a bottle for some time to the sun or in n warm place. In larger quantities, the (iil may bo filtored through Canton flannel Lages
2733. Artists' Drying Oil. Mix nut ar palo linseed oil with about an egral moasure of show or powdered bee, and keep it for 9 uontlis at a ircezing temperaturc.
2734. Boiled Oil Specially Adaptad for Zine Paint. Ilix I part Linoxide of
 with 10 parts unt or limaeed oif; keep it gently beated und frequently stirred for about 80 bours, or until the oil logins to tarm reddiah. The oil thus prepared will also answor for any paiut.
2735. Now Drying Oil without BoilIng. Mix with old linseed oil (the older the bottor), 2 per cent. of ita weight of manganeno borate (this salt is reaully prepared by precipStating asolntion of sulphato of manganese with os solition of borax, wash the precipitate, and dry it either at the ordinary temperature of the air or at 100°), and heat this mixturo on a water-bath; or, if you have to work with large quantitios, with a stenm-both to 100°, or at inost 1100 ; you thus oltain a very excellens,
light-colored, rapidly dryinir oft- by keepite the mixture stirred, that is to $日$, 5 , by ajeaya exposing fresth portions to air, the dryise property of tho oil is groatly protnoted. Tue rapidity of the dryiug of the oil after it has been mixed with paint, on surfuces hesmeared therewith, does not simply depend upon the drying property of tho oil, Lut, in a very greac measure, apon the state of the atmospluere-riz, whether dry or moist, hot or cold the direct notion of sunlight, and the atate of the surfaces on which the paint is brought. Really genuine boiled linseed oil, if well prepared, leares nothing to los desired as regards rapidity of drying, but it is retarded ly various substances whicharo added in practice, among which, especially, oil of turpentine is injurious.

2736, Dryers for Dark-Colored Paints. This is prepared by grinding the best litharge to a paste with drying oil. A small portion is beaten up with the paint, when mixing with oil and tarpentine for use.
2737. Dryers for Light-Colored Paints. Sulphate of zinc, or suggar of lead, mixed with drying oil, and nsed in the same way as the litharge in the last receipt.
2738, Dryers for White Print. Mix 1 pound cach sulphate of zinc and sugar of lead, with 2 potands pure white (carbonate of) laad, and apply as in the last receipts.
2739. Patent Dryer. Mis the following ingredients to a pasta with linseed oil: 15
pounds dry sulphate of zinc, 4 pounds sugar of feed, and 7 pounds litharge. The mixture should bo passed 3 or 4 times through a paint mill. When a tin of this is in use, the surface should bo alwars smoothed down level, and kept covered with s thin layer of linseed oil.
2740. Dryer for Zinc White. Mix together thoroughly 10 parts each sulphate of manganese, scetate of manganese, and sulphate of zine, with $14 \frac{4}{4}$ parts zing white. An allilition of 2 or 3 per cent. of this dryer to zinc white ofl paint will make it dry hard.
2741. To Make Japan Dryer. Into 1 gallon linseed oil, put $\frac{1}{2}$ pound gum shellac; $\frac{1}{2}$ pound each litharge, berned umber, and red lead; and 6 ouncessagar of lead. Boil togenuer for 4 hours, or until all the ingredients are dissolved. Remove from tho fire and add I gallon spirits of turpentise.
2742. Cheap Japan Dryer, Mix together 4 gallous puro linseed oil ; 4 pounds each lithargo and red lead; aul 2 pounds powdered raw umber. Boil slowly for 2 hours, add by degrees $7 \frac{1}{5}$ pounds shellac, and uoil f hour fonger; when well mixed, add by degrees 1 pound powilered sulphate of zinc, and arhet nearly cold mix in thoroughly 7 gallons spirits of turpentive.
2743. To Make Paint Dry Quickly. To make psint dry quickly use a large propur. tion of Japan varnish in mixing.

2744, Massicot. Yellow protorida of lead. The dross that forma on melted lead exposed to a currest of air, roasted rutil is acpaires a uniform yellow color Uned as a pigment, and in glazing. (Cooley).

TOuse Painting. Tho followthoroughly practical wonrce, atal will be found usefal both to the amateur and the workman.
2746. Priming. Tbe same paint is nsel for the first coat in outsude and ingido work; it should bo as thick as will work coaveniently, and requires only litharge for dryers. Tha paint should not he laid on too thickly, ond well worked in with the lorush.
2747. Priming for Iron Worl, This must be oil color laid on a surface freed from rtast. For paper and canras, a coat of sien takey the place of priming, as paint rots thesa materials.
2748. Puttying. This consists in filling up all nail-heods aud cracks with putty, by a putty knife; and should always be done anter priming.
2749. Second Cost for Outside Work. $3 f i x$ the paint with raw oil, as thick as it can be used freely. Cover the surface, work it scross to efen it, and finish longways with loug, light sweaps of the brash.
2750. Third Cost for Outside Work. The paint shoald be mixed with ofl, a little thinner than for the second coat; laid on very evenly, and not too thickly, and finizhed as smooth as possible.
2751. Second Coat for Inaide Work, The paint for this coat should bo mixed with raw oil and turpentine, about equal parts, and be as thick as will work freely; laid on thinly and well erossed and finished to prepare a smooth surface, with ms fev ridges as possible, for the next cost.
2752. Third Coat for Inside Work, Mix the paint thinner than for the last coat, using but little oil, and more turpentine; laid on thinly and well finished, 80 as to leave no brush marks.
2753. Fourth Coat or Flatting for Inside Work. The paint is mixed with tarpentine only, and thin enough to spread or
flow even, before it sets; lay on evenly fud quickly, brushing lengthways only, and finish ing up as the work proceerls, as this paint sate quickly, and spots tonched up nfterwards are apt to be glossy.
2754. Drawn Flatting for a Fourth Cost. The oil in which the white lead or other paitat is ground, is drawse out ly mising with turpentine, allowiog the paizt is sectlo, and then pomring off the tiquid; revertoleg the operation with fresh turpentime till the wil has been completely wathed onst. This muakes a better color, withont glose, athd ensily flowing. As it rets very quiekly it unusi bo opplied thickly, erenly, and quickly, with elosed donrzand windowa, to aroil at (moteral.
2755. When to Apply Paint. Puint, to last loag, should be par on early in winter or spring, wheu 5 L is cold mal no dust Aying. Paint pat on in cold weather forms a budy us coat npon the eurface of the wood that bocomes hard ana resists weather, or an edged tool oven, like slate.
2756. General Directions for House Painting, Oil paint dries with a glose, harpentine makes as dead sarface; and, in using paints containing both oil and turpentine, the gloss will be less as the proportion of oit is diminished. Paint requitres more aryer in eold than in bot weather, but is morodarable in out. side work if applied is cold wather. Succostive conts of paint mbond have th least a dayintervese between them fordrying. Dark colors should lave a zlosaly fintib. Bufor: commencing to paint, tho siarface tandi bo perfectly dry. The paint must be tharaughly mixed, both before commetheing and during tha progress of the work; if this is negheeted, the heary ingredtents aro apt to settio, leas: ing a larger proportion of of and turpestiag on the surface.
2757. Painter's Sizo. Stir a amall quantity of litharge and red lead into some boiled oil; lot it stant, shakimg frequently outil bleached; then bottle. Raw of niakes a slower drying size.
2758. Best Painter's Stze. Hent rnw oil in a pan till it emita a bluck amoke ; set it on fire, and, after burnizg for a fow minutes, coser the pan over to pat out the blaze; pour the ofl while warm into a bottle is which some pulverised red lead and litharge tawe been infroduced. Stand the bottle in a warm placo for two weeks, shakiag often. It will then be rendy to decant and bottle.
2759. To Paint Zinc. 4 diffientts is often experionced in casing oil colora to ind. bere to sheet zine. Boettgor recommends the employment of a mordant, so to speak, of tho following composition: 1 part chloride of copper, 1 of nitrate of copper, and 1 of sai-ummoniac are to be dissolved in 64 parts of water, to which solution is to bo added 1 part of commercial hydrochloric acid. Tho sheets of zine are to be brushed over with this diquid, Which gives them \& deep black color; in tho cotirse of from 12 to 24 hours they become dry, and to their now dirty gray surface a coat of any oil color will firmly adhere. Some sheets of zinc prepared in this way, and afterwards painted, have been found to withstand all the changes of wintet and summer.
2760. Polish White. This is made by grinding drysine-white with white varnish, and affords a beautiful glossy fimish, to be laid ou after the second coat. A more perfect surfice may be obtained by covering tho second cont with several other coats of hard drying paint, mixed with turpentine, Japan and litharge; then rubbing down with pamice-stone, followed by a coat of polish white, and finished with a flow coat of white varaish coutainimg a little zinc-white. Althongh this requires more time and trouble, the result will fully
compensate for it. It is necessary to remark that when the last coat is to be glossy, the previous coat must be flat or dead; and a flat coat for finishing should be preceded by a somewhat glossy coast.
2761. To Mix Oil Colors. In mixing different colored paints to produco any desired tint, it is best to have the principal ingredient thick, and udd to it the other paints thinner. In the following table of the combinations of colors required to produce a required tint, the first named color is the priacipal ingonlient, and tho others follow in the order of their importance. Thus, in mixing a limestone tint, white is the prineipal ingredient, and red the color of which least is needed, \&c. The exact proportions of eact depending on tho shade of color required.
2762. Table of Compound Colors,

Showing the Simple Colors which Produce them.
Buif.WLite, Yellow Ochre, Red Chestnut......................Bed, Black, Yellow Cbocalate........... Raw Omber, Fed, Black Claret........................ Red, Umber, Black Copper........................... Yellow, Black Dove........ TV hite, Vermilion, Blue, Yellow Drab-....... White, Yellow Ocbre, Red, Black Fawn \qquad White, Yellow, Red Flesh......... White, Yellow Ochre, Vermilion Freestnne.-Red, Black, Yellow Ochre, Whita Freneh Gray... . White, Prussian Blue, Lake Gray TVblte Lead, Black Gold................. White, Stone Ochre, Red Green Bronge .-Chrome Green, Black, Yellow Do Pea...............White, Chrome Green Lemon White, Chrome Yellow Limestone.. White, Yellow Ochre, Black, Red Olivo.............. Yellow, Blue, Black, Whito Oraggo............................ Yellow, Red Peach.........................White, Vermilion Pearl..................... White, Black, Blud PinkWhite, Vermilion, Lake Purple..... Violet, with more Red and Whito Roge. \qquad Sandstone... IV bite, Yellow Oebre, Black, Red Snuff................ Yellow, Vaudyke Brown Vrolet.....Red, Blue, White. (Sce Nv. 2761.)
2763. To Prepare Whitewashed Walls for Painting. If there sbould be any cracks in tho plastering, and the waph bo sound around the eracks, plaster of Paris is the beat thing to fill them with, as it hardens quickly, does not sbriak, and leaves the surlace level with the walt. If the plester of Paris mets before it can be worked, wet it With vinegar. The stronger the seid, the lower it will get. If cracks be filled with putty, and the wall be painted in gless color, the streaks of puity are very apt to he flat (no gloss), nnd if painted in flat color, the streaks are quite sure to hare a gloss. These streaks, of course, will spoil the beauty of the work, but do not affect its durability. When filled with plaster of Paris the reverkion of gloss never appears, if done as directed below. If the cracks be only in the mash, the latter is lonsening from the wall: and if it has not begun to scale, it soon will, and all attempts to fasten it on and paint it will be total loss. If it be loose cnough to serape off, serape tho wall, taking cate not ta gouge into the originsl wall. If not lodie enough, let it alone until it is. If the wash be thin, solid, and even, it can be painted to look aud wear well. When the surlace is lumpy, rub the lumps off with is sandstone, of a brick. After as, wall bas been prepared, as in cither of abore eases, or If a wall that has never been washed is to be painted, size it with 2 coats of glue size (3 ounces glue to 1 gallon water). (See No. 2815.) Be sure the glue is all dissolved Leforo using any of it. Let the first coat dry before the second coat is put on.
2764. To Paint Whitewashed Walls. When the seennd coat of ghe six: (see Vo. 2763) is dry, paint as follows: Hix the first coat of paint in the proportion of 1 gallon raw linseed oil to 15 pounds white lead, graund in oil, and 1 gill of dryer. Second coast: 1 gallon raw linsed oil. 85 pounds white leal ground in oil, and $\frac{1}{}$ gill dryer. (The leal should bo the best.) Then finish either in gloss or flat volor, the same as if it were soood work with one good cent of priming. Shaile all the coats of paint, as near as you can, to tha color you wish to finish in. Mix the third and fourth coats tho same as the first, that is, about the same thirkwess for a gloss finish, and a fittlo thimor fir a flat finioh.
2765. Flexible Paint for Canvas. Dissolve 24 pomnis pood gellus soap, cat in slices, in 11 gailons boiling water; grind the solution whifo hot with 140 pomuls good oil paint.
2766. Durable Black Paint for OutDoor Work, Griat powdered ehareoal in linaged oil, with sutficient lirharge as drier; thin for use with well-boiled linveed oil.
2767. Green Paint for Out-Door Work. Add to the black paiot, made according to the last reesipt, suffliment yellow oobro to mako tho ahaula of grees required. This is prefemble for girden worl, to the bright green paint geperally need, as it does not fade.
2768. Paint for Iron Work. There is no prodnotion for tron work to ellieacions as woll boiled linased oil, properly laid en. The frou sbould be first well elcuned and freed from all rust and ilirt; the oil should be of the lest qualitr, and well boiled, withont litharge or any dryer boing added. The fron shouh ba painted over with this, but the oil mast be lafi on as bare as possflele, and on this fact doponds in a great mesasmre thes success of the application; for if thery be too thick a coat of oil pat upua the work, it will skin over, be liablo to blisten, suul scarcely ever got hard; but if imon bo painted with three coatł of oil, anil only so urels put on each coat as ean bo made to cover it by hard broshing. We will guarantee that tho aume will preserve the irm from the atmospliere for a much longor time than any other process of painting. If a dark coloriag viatter be neenssary, wo prefer forat umber to any other pignjent as a stain; it is a gool hard dryer, and has many other food propurties, and mises well with the oil without injuriag it.
2769. Painting in Milk. In consequence of the injury which has often resulted to sick and weally persoms from the stasell of common paint, tha following method of painting with milk has been ailopted by aopne workmen, which, for the interior of buildings, borides being as froe as disteoper from any ofensive odor, is ssid to be nearly equal to oi)-painting in body and durability. Take $\frac{1}{3}$ gallon skimmed milk, 6 ounces fime newly Blacked, 4 nmuces poppy, linseed, or nut oil, nind 3 pounds Spanish white. Put the lime into an earthen vessel or clean bueket, and haring poureal on it a sufficimt quantity of milk to make it abont the thickness of cream, auld the oil in small quantities at a time, stifring tho mixture with a woodet epatuli. Then pat in the rest of the milk, and afterFards tho Spauish whito. It is, in general, indiliterent which of the oila above mentioned you use; bat, foc pura thite, oil of poppy is the best. The oil in this composition, being dissolved by the lime, wholly disappears; and, pniting with the wholo of the other ingredients, forms a kind of caleareons soap. In putting in the Spamish white, be careful that it is finely powdered and strewed pently over the surface of the misture. It then, by de-
zrees, imbibes the liquid and sinks to the bottom. Milk skimmed in sumuner is often found to be cardled; but this is of no consequence in the present preparation, as its combining with the lime soon restores it to its fluid state. But it must on no account bs sour; because in that caso it would, by uniting with the lime, form an earthy sait, which conld not resist any degree of dampness in the air.
2770. To Make Paint without Oil or Lead. Whiting 5 pounds; skimmed milk, 2 quarts ; fresh slacked lime, 2 ounces. Put the lime into a stone-ware vessel, pour upon it a sufficient quantity of the milk to make a mixture resembling cream; the balance of the milk is then to be addel; ant, lastly the whiting is to le crumbled upon the surface of the flaid, in shich it gradually sinks. At this poriol it must be wefl stirred in, or ground as you would other paint, and it is fit for use. Thero may be alded any coloring matter that suits the fancy, to be appliod in the samo mam. ner as other paints, and in a fow hours it will become perfectly dry. Another coat may then le added, and so on until tho work is done. This paint is of great tenacity, bears rubbing with a coursa eloth, has little smell, aven when wet, und whon dry is inodoreus. It aloo possesses the merit of cheapness, the abovo quantity being sufficient for 57 yards.
2771. Paint for Old Weather-Boarding, or Boat Bottoms. Take 5 gallons honled liaseed oil, 4 gellons raw oil, 1 gallon beazine, and 80 pounds Rocky Mountain vermilion.
2772. Fireproof Paint, Take a quantity of the best quicklime, and slack with water in a covered vessel; when tho slacking is complete, water or skim milk, or a mixturo of both, should be added to the lime, and mixed up to the consistency of eream; then there must be added, ot the rate of 20 pounds alum. 15 pounda potanh, and 1 bushel salt to osery 100 gallons of creamy liquor. If tho paint is required to be white, 6 pounds plaster of Partis, or tho same quantity of fine whito clay, is to be added to the aboye proportions of the other ingredieats, All theso ingredionta being mingled, the mixtare must thon be atrained through a finc aieve, and afterwards ground in a color mill. When roofs are to be covered, or when crumbling brick walls are to bo coated, fino whito mand is mixed with the print, in the proportion of 1 pound sand to 10 gallons of paint; this addition being made with a view of giving tho ingredients a bindiag or potrifying quality. This paint shonld always bo applied in a hot state, and in very cold weather precautions are necessary to keep it frum freexing. Threo coats of this paint are deemed, in most cases, snfficient. Any color may bo obtained by adding the nsual pigunenta to the composition.
2773. To Paint an Old House. Take 3 gallons water and 1 pint flax keed; boil $\frac{1}{2}$ hour; take it off end aud water enough to make 4 gallons; let it stand to settle; pour off the water in a pail, and put in enough of Spanish white to make it as thick fa whitewash; then pald $\frac{1}{2}$ pint linseed oil; stir it well and apply with a brush. If the whiting does tut mix readily, ald more water. Flax seed, having the naturin of oil, is better than glue, and wilt not wash off as readily.
2774. Paint for Boilers. Tho lesst paint for boilers is asphaltum dissolvet in spirits of turpentine over a gentlo firc. Pulverizo the asphaltum and dissolve as much as will be taken up by tho turpentine. If pure it will last.
2775. To Reduce Paint Skins to Oil. Dissolve $\frac{1}{2}$ pound sal-sodia in 1 gallon rain water. The skins that dry upon the top of
paint which has been left standing for any length of time, may be made fit for ase again by covering them with the sal-soda water and soaking them therein for a couple of days; then heat them, adding oil to reduce the misture to a proper consistence for painting, and strain.
2776. To Remove the Smell of New Paint. Hay sprinkled with a littlo chloride of lime, and left for an hour in a closed room, will remove the smell of new paint.
2777. To Kill Knots before Painting. A mixture of glue size and red lend; or shellac dissolved in alcohol and mixed with red lead; or gutta-perchs dissolved in ether; will, either of them, make a good coating for knots. but will not stand the sunshine, which will draw the pitch through the paint. The best method is to cover the knot with oil size, and lay a leaf of silver over it.
2778. To Fill Grease Spots Before Painting. Wash over snroky or greasy parta with Ealtpetre, or very thin time whitewash. If soap-suds are used, they mast be washed off thoroughly, as they prevent the paint from drying hard.
2779. To Make a Sticky Painted Surface Hard. Rub it well in, with a brush, with Japan and turpentine mised together.
2780. To Prepare Plastered Walle for Painting. Plastered and bard finished walla must bave a coating of glue size before painting. (Sce No. 2815.)
2781. To Economize Paint. Save all the skiug, cleanings and scrapings of the paint pots, and wipinga out of tho brnshes; these, boiled up in oil, make a cheap and durablo coating for outside work. (See No. 2775.)
2782. To Remove Smalt from Old Signs. Spread over it, potash dissolved in water, and then serape the smalt off. If the potash stands too long before scraping, it may noak into the wood; and paiat afterwards put on will not dry well.
2783. To Remove Putty from Glass, Dip a small brush in nitrio or muriatio achi, and with it paint over the dry patty that adhores to the broken glasses and frames of the windowa. Aftor an hour'a interval tho putty will have become so gofl as to be casily removable.
2784. To Soften Putty in Window Frames, To softon putty in widulow frames, 60 that the glass may be taken out without breakago or cutting, tako 1 potud American pearlash, 3 pounda quick stone lime, slack tho lime in water, then add the pearlash, and make tho whole about the consistence of paint. Apply it to both sides of the glans, nad let it romain for 12 hourk, whon tho putty will bo so softened that the glass may be taken out of the frame without being ent, and with the greatest facility. (See No. 27E6.)
2785. To Remove Hard Putty. This may be effected with a paste ot caustic potassa, prepared by mising the caustic alkali, or even carthonato of potash or soda, with equal parts of freshly bumt quicklime, which has previously been sprinkled with water, so th to cause it to fall into powder. This misture is then made with water to a paste, and spread on the putty to be softened. Where one application is not sufficient, it is repeated. In order to prevent the pasto from drying too quickly, it is well to mix it with leas water, adding some soft-soap.
2786. For Removing Old Putty. For remuving hard putty from a window-sash, take as square piece of iron, make the same red-hot, and run it along the patty till it geta soft. The putty will peel off without injuring the wood-work. Concentrsted lye made of lime and alknli will affect the wood and mako it rot quicker. (Sce No. 2784.)
2787. To Remove Paint from Old

Work. To destroy paint on oll doors, etc., lay the mixtare in receipt No. 2784 over the whole body of the work which is required to be eleanel, with an old brush (as it will spoil a new one); let it remain for 12 or 14 hours, when the paintcan be easily scraped off. These two receipts have been used by a practical painter and glavier for years.
2788. To Remove Paint from Wood. Where it is necessary to remove paint entireIy, this is generally done by scraping; another way is to suften the paint by passing a flat flame over a portion of the surface at a time, and it can be scraped off easily while hot; but the method mott recommended is to lay on a thick coating or plaster of fresh slacked lime mixed with soda; next day, wash it off with water, and it will remove the paint, leaving the surface clean.
2789. To Remove Paint from Stone, A correspondent of the London Builiter, hav. ing to clean 4 pulpit and sedilis in which the curving and tracery wero alubst filled up with succesive coats of paint, was informed that common wastingesoda, dissolved in boiling water, and applled hot, would remove it. Ia found that 3 pounds of poda to a galton of water, lail on with a common paint-brush, answered the purpose admirably, softening the paint in a short time, so that it was casily reinored with a stiff scrobbing-brush: afterward, on adding a few ounees of polath to the solution. it softemed moro readily than with sodia oaly. The stomen in both eases was a fine freestome.
2790. To Soften Hard Putty. Brcak the patty in fermps of the size of a len's sef, add a amall portios of linseed oif, and waler sulficient to corer the putty; boil this in an iron veed for about 10 minuter, and stir it when hut. The oil will mix with tho putty. Then pour the water off, and it will bo Hike freal made.
2791. To Cloan OId Paint Cans, Bucketa, etc. This can be thoroughly done with hot, itroag lye.
2792. To Pencil or Point Brick Work. The upright as well as the horizontal lines should be drawn with a straight edge, as the least wank of uniformity spoils the appearanice of the brick work. White lend mixed with turpentine, and thick enough to set firmi, is the beat for this purpose.

Kalsomine and WhiteWash. Tho following rocelpts include the methods of preparing and spplying white and othor coatings on walls, ete., as woll as the preparatory treatment of the Burface to which they are to be appliod, and othor useful information.
2794. To Prepare Kaleomine. Kalsomine is composed of ainc white mixed with water and glue sizing. The surfaco to which it is applied must be olesn and smooth. For coilings, mix 1 pound glue with 15 pounds xino; for walls, 1 pound glun sith 15 pounds sinc. The gine, the night bofore its use, should be soaked in water, and in the moruing liquefied on the fire. It is difficuls to prepare or apply kalsomine; fow painters cau do eо sueceasfully. Paris white is often made use of for it, but it is not the genuine article. (Sec naxl rectipt.) The kalsomining mixture may be colorod to almost any required tint by mixing appropriate coloring mattor with it.
2795. To Kalsomine Walls. In case the wall of a largo room, say 16 by 20 feet square, is to be kalsomined with two eoats, it will require about \ddagger pound light-colored glue and 5 or 6 pounds Paris white. (See last receipt.) Sosk the glue over night, in a tin ves-
sel containing about a quart of warm wator. If the kalsomine is to be applied the next day, add a pint more of clean water to the glue, and set the tin yossel containiug tho glue into a kettle of boiling water over the fire, and continue to stir the glue until it is well dissolved and quite thin. If the glue pail bo placed in a kettle of boiling water, the glue will not bo scorched. Thon, after putting tho Paris whito into a large wator puil, pour on hot water, aud stir it until the liquid appears like thick milk. Now mingle the gluo liquid with the whiting, stir it thoroughly, and apply it to the wail with a whitewash-brush, or with a larga paintbrush. It is of littlo consequence what kind of an instrument is employed in laying on the kalsomine, provided the liquid is spread smoothly, Expensive lrashes, mule expressly for kalsomining, may bo obtained at brush factories, and at some drug and hardwaro stores. But a good whitewash-lirash, having long and thick hair, will do vory well. In caso the liquid is so thick that it will not flow from the brush so as to mako smooth work, add a littlo more hot water. Whon applying the kalsomine, etir it froquently. Dip the brash often, and only so doep in the liquid as to take as muoh as the hair will retain with. out letting large drops fall to the floor If too much gloe be added, the kalsomine camot be laid on moothly, nad will be liable to erack. Tho alm ohould be to upply a thin layer of sising that cannot be brushed off with a broom or dry eloth. A thin coat will not erack.
2796. Whitewash for Out-Door Use. Take a cleau water-tight barrel, or other suitnble cask, und put into th it bushel lime. Slack it by pouring boiling wator over it, had in sufficient quantity to cover 5 inches deep, stiring it briskly till thorougbly slacked. When slacking has been effected, disnolso in water and add 2 pounds sulphate of xite and 1 of common salt, These will cause the wash to hardea and prevent it from cracking, which gives as maseemly appearauce to the work. If desirable, a beautifal ercam eolor may be comannicated to the above wash, by adding 3 pounds yellow ochre. This waish may be appliod with a comtion whitewash-Lrush, and whll be found moch superior, both is appearanco and durability, to common whitowayh.
2797. Treasury Department Whitewash. This receipt for whitowashing, kent out by the Laghthouso Beard of the Treasury Department, bas been found, by experimace, to answer on wood, brick and stone, vearly us well as oil paint, and is much cheaper. Slack t bushel auslacked lime with bolling water, keeping it covered during the process. Strain it, and ndd a peck of salt, dinsolved in warm water; 3 pounds groand rice put in boiling water, and boiled to a thin paste; $\frac{1}{}$ pound powdered Spanish whiting, and a pound of clear glue, dissolved in warm water; mix these well togother, and let the mixture stand for soveral days. Keep the wash thus prepared in a kettle or portable furnace, and, when used, put it on as hot as possible, with painters' or whitewash-brushes.
2798. To Color Whitewash. Coloring matter may be put in and made of any shode. Spanish brown stirred in will make red pink, moro or less deep necording to the quantity. A delicate tinge of this is yery pretty for inEido walls. Finely pulverized common clay, well mixed with Spanish brown, make a reddish stone color. Yellow ochre stirred is makes yellow wash, bat chrome goes further, and makes a color gemerally esteemed prettier. In all these cases tho darkness of the shades of course is determined by the quantity of coloring used. It is difficult to make rules, becauso tastes are different; it would be best to try experiments on a shingle and let it dry.

Green must not be mixed with lime. The limo destroys the color, and the color has an effeet on thiu whitewash, which makes it crack and peel. When walls have been badly Rmoked, and youx wish to have them a clean white, it is well to squeeze intligo plentifilly through a bag into the water you use, before it is stirred in the whole mixture.
2799. Zinc Whitewash. Mix oxide of gino with common tize, and apply it with a whitowash-lrush to the ceiling. After this, apply in the sume manner a wash of chloride of zing, which will combine with the oxide to form a smooth cement with a sbining surface.
2800. A Fine Whitewash for Walla, Snati \& pound of glue over night in tepid war ter. The next day pat it into a tin yesset with in quart of water, bot the vessel in a kettle of water over a fire, keep it there till it poils, and then atir until the glue is disaolvr oi. Noxt put from 6 to 8 pounds Paria white into another pessel, add hot water, and stir mutil it hur the appearatice of milk of lime. Add the mizing, stir well, and apply in the ordinary way, whilo atill warm. Escept on very durk and smoky walld and celliags, a vingle coat is kutficient. It is bearly equal in billianey to zine white (a far more expensive articley, and is very bighly recommended by thoso who hape wied it. Paris white is sul. plate of laryta, und may be found at any drug or paint atore.
3801. Fire-Proof Whitewash. Mako ordinary whitowash amd add 1 purt silicato of siods (me potasb) to evory 5 parti of the whitewail. (see No. 2816.)
2802. Whitewash for Outside Work. Take of good queklizee to buslecl, slack in the ustal manter and ndal potmd common balt, of puand sulphate of sioc (white vitriol), and 1 frallon sweet milk. The salt and the white vitriol shanld be dissolvel before they aro added, when the whola should bo thoroughty mized with sttficient water to give the proper eonsintescy. The sooner the misture is thes applied the better.
2803. Whitewash for Fences or OutBuildinga. Slack the lime in boiling water, and to 3 gallons ordinary whitewneh add 1 piat molassea fuid I pint fable sale Stir the mxiture fremuently while putting it un. Two thin coats afos sefticient.
2804. To Mix Whitewash. Pour leiting water on unslacked lime, and stir it vecsuionally whilo it is slacking, ns it will make the puste smoother. To 1 peek of lime add is quat of sult and $\frac{1}{2}$ otmee of indigo disfolved in water, or the same quantity of Prussian hlue fincly powdered; add water to maleo it tho proper thickness to put oa a wall. 1 pound soap will give gloss.
2805. To Keep Whitewash. Keep the lime cossered with water and in a tob whieh hass a cover, to prevent dust or dirt from falling in. If the whter evaporates the lime is useless, but if kept covered it will be good os loug as any remains.
2808. To Whiten Smoked Walls. A method of cleauing and whitening smoked walls consist $s_{\text {, }}$ in the first place, of rubbing off all tho black, loose dirt upon them, by means of a broom, and then washing them down with a strong sodalye, which is to be afterturd removed by means of water to which a little bydrochloric acid has been adided. When the walls are dry a thin coating of lime, with the addition of a solution of alum, is to be applied. After this has become perfectly dry the walls are to be kalsomined or coated with a solution of glue and chalk.
2807. To Color, and Prevent Whitewash Rabbing Off. Alum is one of the
best addlithons to make whitewash of lime which wisl not rub off. When powdered chalk is msel glue water is also good, but would not do for outsile work exposed to much rain. Nothing is easier than to giro it any desirec color by emall quantities of lampblack, browa sienna, ochro, or other coloriag material.
2808. To Paper Whitewashed Walls. The followine method is simple, sure, and inexpensive: Make flour starch as you would for starching calico clothes, and, with a white-wash-brush, wet the wall you wish to paper, with the starch; let it dry; then, when you wish to apply the paper. wet the wall and paper both with tho starch, and apply tho paper. Walls have been papered in this way that have been whitewashed 10 or even 20 rears successively, and the paper has nerer failed to stick. When gou widh to re-paper the wall, with the brusti wet tho paper with clear water, and it will coma olf readily: (Sce No. 2811.)
2809. Red Wesh for Bricks. To-romove the groen that gathers on bricks, pour aver the briekal boiling water in which uny Vegetables (not greasy) have been boiled Do thls for a few days suecessively, and tho green will disappear. For the red wash melt 1 ounce of glise in a gallon of water; whila bot, pas in A piece of altm the size of an cege, $\frac{1}{2}$ pound Fenetian red, and i pound Spanish brown. Try a littla on tho loricks, let it dry, and if too light add raore red and lirowa; if ton dark, put in more water. This receipt was contributed by a perion who has used it for 90 years will perfoct suceess.

Paper Hanging, In eitien, tils is sither a trade by itself, or is earried on as an adjunict to the painler's trade. in rural distriets, bownver, there are mnny bousekeepers who do this work for themselves. The fullowing receipts are given for the guidance of bouteckeepers.
2811. To Prepare a Wall for Papering. is new unwhitowasbed wall will abkorb the paste so rapidly that, before drying, there wifl be deft too litule body of pasto on tho surffee to hold the paper. A coating of gond glue size, mailo by dissolving 1 pound of glue in a gallon of weter (ree No. 28is), or a coating of good puste, pot on and allowed to dry betore the paper is hung, will provide for this difficulty. If the wall be whitewashed, it should be seratebed with a stiff brash, to romove cpery particle of lonse lime from the sarface; after which it should ba thoroughly swept down with a broom, and coated with the glee sire or thin paste. (Seo No. 2808.)
2812, Utensila for Paper Hanging. A loag table of thin boards cleated together and placed on wooden horses, such as are used by carpenters, a pair of sharp shearswith long blades, if possihle-a whitewnshbrush, a pail for paste, and a yard of cotton eloth, aro the implements required. The table or board platrorm should be lerel on its apper surface to factitate the distribution of the paste. Tho latter shuald be freo from lumps, and should be laid on as evenly as possible. It should be made of pood sweet rye or whent flutr, beaten smooth in cold water before boiling, and should not be allowed to boil more than a minute or two, but should be raised to the boiling point slowly, being continually stirred till it is taken from tho fire. (Sce No, 22t2.)
2813. To Prepare Paper for Hanging. Inexpert hands often find difficulty in
banging the lengths of paper so as to make tho patterns match. No goneral directions car be given for this, but a littlo study at the outset will often save cutting to waste, and other difficultios. In this matter, as in others, it is wiso to "first be suro you are right, then go shead." As soon as tho proper way to eut the paper is decided upon, is whole roll, or more, may be cut at once, and the pieces laid, priated side downwards, upon the table, weights being placed upon the ends to provent carling. Tho paste should then bo applied to the lack of the uppermost pioce, as expeditiondy as possible, as the longer the timo employed in this part of the operation, the more tonder will the paper get, and the more dificull it will bo to halg it properly, Aboat one-quarter of the fength should be turned up at the bottom of tho strip before banging; a4, without this, the bottom is apt to stick to the wall before the upper part of the strip can be adjusted. If tho puper is yery thick, both ends must bo folded over, so as to meot in tha middle. Bekides being maro conve. niont for handling, this allows tho paper to softon, without the pasto getting dry,
2814. To Apply Paper to Walls. The upper end of the plece should then bo talion liy the corners, und the operator, stepping upon a bench of etep-ladder, should baroly stick the piece at the top, and in anch a mavier that the edge shanl solucilo with the piece proviously buog; this con be done by aighting down tho trimmed eigo of tho ploce, while It is held in the handa. The cloth slaoutd now bo beld in a loose binch, and the paper smoothed with it from top to hottom, care being taken to work out all air from uniter the paper, which, if not thorouglaly done, will give it a very unegghtly blistered apparance. If auy air remains under a part of tha strip after it has been hung, a hole muat be prieked through the papor with a pin, to allow of ita oscape. A soff flat whiskGrush (auch as is used for brashing olothes) is bottor for smoothing the paper than a cloth. After the top is secired so that the pattern matelice, brush onco down the centre of the strip as far as tho pasto is exposed. Then earofully unfold tho bottom of tho strip, brush dowa the centre, and smooth the whinle by brushing from tho contra to tho eidgoa, right and Jeft, all the way down, finishing with one swoop down tho trimmed edgo, to onsure a porfoct join, A moist cloth thontd bo always at hand to keep the figuros elean and froes from color. If the wall bo unovenor erooked, as is ofton the case in old housos, it will be difficult to ayoid wrinkles, but thoy can bo mostly got rid of by catting the paper and allowing the eut edges to lap ovor oach otber in plaeas whero there wonld otherwiso be a wriukle. By following these directions the most inoxporionesd will bo ablo 41 do a reasomably tidy piece of work, but of courso a high dogreo of akill is unly secured by practice.
2815. To Make Glue Sizing. Break up tho glue into small pieces, put it in is vossel with sulficient cold water to just cover it; let it sonk over night, and in tho moming tha glue will be soft enough to melt readily with a moderate heat, or in a water-bath. Add water to reduce to the desired consistency. This must he applied as directed in the foregoing reccipts.
to Liemen's or Kuhlman's method, under increasod pressure and heat, it is unaffected by cold water, and the object painted or covered by the same can only be deprived of its eoating by undergoing thessmme heat and pressura as was required to prepare the original solution. Soluble glass prepared from potash is usually called silicate of potash; that from soda being silicate of soda. The most extensive use which ie made, at present, of solnble glass produced after the other methods, is for tho adolteration of soap; in fact, such s preparation is a kind of soap, in which the exponsive fatty acids aro replaced by tha cheap silicic acid or sand; but it is a bad soap, very caustic, as the silicie acja but very imperfectly neutralizes the alkali. Another use of water gluss is that of bardening cements, mortar, ete., so as to ronder them impermeeble by water.
3817. Fuchs' Soluble Potash Glass. A mixture of 15 pasts pulverized guartz, or pure quarts sand, 10 parts of well purified potash, and 1 part powdered eharconl, may he conveniontly employed. These ingredients aro to ba well mised and exposed to a strong heat in a fire-proof melting-pot for 5 or 6 hours, until the whole fuses uniformly and steadily; as mtich heat is required as is necesaary to melt eommon glass. The melted mass is then taken out by means of an fron ppoon, and the molting pot immediately refillod with a freah quancity. (At this stage of the process it is suld by another anthority, that, by pulverizing and esposing it to the air, it will absorts acidity, and by degreaa the foreigu salts will, afer froquent agitation and stirring, to coupletely nopiarated, particularly after pouring over the masd bome cold water, which diasolves thum, but not the rolntio glass.) It is then broken up, pilverized, and disiolved in nhout 5 perbit of boiling water, by introducing it in small jortions into an fron Voasol and constantly stirring tho liquid, replacing tho wator ms it evapuristes, by edding bot water from time to Lime, and contiating to boil for 3 or 4 lostra, antil the whole is ats-solyed-a slimy deposit excepted-and until a pelliele bogiti to form on the surface of tho liquid, which iudicates that tho solntion is in a stato of great concentration + it disappeary, however, when the lignid is stirred; and the bodling may then bo continued for a ehurt lime, in order to nletaits tho solution in tho proper stato of concentration, when it has a specific gravity of from 1.24 to 1.25 (about 280 Baumó). In this state it is sufficiently liquid to bo used in many operations; in some instances it will bo secessary to dilato it with moro or loss water. When evaporsted to a syrupy consistonce, it can bo employed with advintage in but few cases, Yery frequently it is found contaminnted with a little sulphide of pothssium, ahid it lecomes necenary to add is fittle oxido of copper or copper scales towards the ond of tho boiling, which liberstes A ronall quantity of potask, bont which renders it rather mora suitable for many practical purposes than othorwise. If it is desirable, however, to have a water-glass which is entirely neutral, it requires to be boiled with freshlyprecipitated silies as long as any silica is dissolved.
2818. Fuchs' Soluble Soda Glass. This is prepared in the same wny tas the potash glase (see No. 2817), with the exception that a smaller proportion of soda is required. A mixture of 45 parts by weight of quartz, 23 parts dry carbonate of soda, and 3 parts charcoal, may be employed. The mixture fuses somewhat casier than potrsh glass,
2819. Buchner's Soluble Soda Glass. Take 100 parts quartz, 60 parts dry sulphate of soda, and 15 to 20 parts charcoal. This is
said to be cheaper than that made with carbonate of sods, and is prepiared in the same manner. Iy the addilion of come copper scales to the mixture tha sulphur will bo separated. Another method is proposed by dissolving the fine silex in caustio soda lyo. Kuhlinan emplogs the pordered flint, which is dissolved in an iron caldrou under a pressure of 7 to 8 atmospheres of steam. Liebig has recoumended infusorial earth in place of sand, on account of its being rendily soluble in caustie lye; and be proposes to use 120 parts of the earth to 75 parts of caustio soda, from which 240 parts of kilica Jelly may be obtained. His mode is to calcine the earth so as to become white, and gassing it through a sieve. The lyo be preparea from 75 ounces of ealeined soda, disjolred in 5 times tho quantity of boiling water, and thes treated by 56 ounces of dry slacked limo; this lye is comcentrated by boiling down to 48° Daumé; in thia boiling lye 120 ounces of the prepared infusorial earth aro added by degrees, which are rendily diasolved, lenrigg scarcely any sodiment, It has thon to undergo several operations for making it stitable for une, such as treating again with lime-water, boifing it and separating any predipitate, which by contimued boiling forms inte balls, and which can thon be removed from the liquid. This clear liguid is then evaponsted to tho cobisistency of syrup; it forms a jelly slightly culored, feels dry and not sticky, and is readily soluble in boiling water. The difference botwoen
hala shid soda solable glass ia not material;
firat may be preferred in whitewashisg with plastor of Paris, while the soda glaks if more fluidly divisible.
2820. To Distinguish Potash and Soda Soluble Glass, By adding $\frac{1}{2}$ volume of rectified alcohol to a concentrated solution of saluble polash plass, s gelatinous preoipitate Is formed, which, in n few days, is depoaited at the fottom of the vossel in a noldd mass. The eddition of alcohol to inolnble soda glags converts it into a gelatiaous muss, but affords no precipitate.
2891. To Make Wood Incombustible. The application of solnbla glass to wood renders it aimost ineominstible.
2822. Double Soluble Glass, Λ tnisture of 3 parts by meastire of concentrated potash soluble glass, and 2 parts concantrated goda glass, produco ádouble water-ginss which will answor all practical purposes.

The following preparation is also recommended by Fucho, as being much easier to fuse. Take 100 parts quertz, 28 parts purified potash, 22 parts neutral dry esabomate of soda, and 6 parts powdered charcoal.
2823. Soluble Glass for Stereo-Chromic Painting. Solable glass for the use of stereo-chronnic painting is oltained by fasing 3 jarta of pare carbinale of soda and 2 parta of powdered quartz, from which a cobsentrated sulution is prepared, 1 part of which is then added to 4 parts of is concentrated and fully saturated solution of potash-glass kalition, ly which there is in more condensed amomet of gilica with the alkalies; this solution has been foumil to work well for paint. Sieuces? patent for the maunfacture of soluble glass eonsists in the prodnction of a liguid guarta Ly digesting the sand or guarte in a flcamloviler tightly elosed and at a temperatire corresponding to 4 or 5 atmaspheres, with tho common canstic allvilics, which are in this Wey capacitated to dissolve from 3 to 4 times tho weight of Eilica to a thin liquid. Experience hes taught thet the soluble glass anade in the oid way, with an cxeess of alknli, cannot stand the influence of the atmosphere when nsed as a paint. The soda washes out, and leares the silex in a pmlverized condition,
so that it soon disappears, When, however, a elosed boiler is used, according to Kuhlman's or Simmens ${ }^{\prime}$ methoud, and a pressure of 7 or 8 atmospheres, which corresponds with a temperature of some 120° alove the looiling point of water, tho solvent qualities of the fitter are increased to such an extent as to enable it to dissolvea glass containing $\frac{1}{\ddagger}$ to $\frac{1}{2}$ theamount of potash or sodn.

Po Dye Wood. Dyeing wood is mostly applied for giving color to vo-

 peers, while staning is more generally had recourse to, to give the desived color to an articlo after it las been manufactored. In the ono case, the color shonld penetrate thronghout, Wbile in the latter the surfice is all that is csi sential. Afor the veuceva are ent, they should be allowed to lio in a trongh of water for 4 or 5 daye before bejng pilit into the copper; as the water lofjegs aut bluudance of shmy matter, which, if not thus renstred, would prevent the wood Laling in gerod color. Afer this purifying proocses, the vemeers should be dried in the open air for at least 12 hours. They aro thep roady for tho eoppor. By this simplo methoul, the culor wild turike much quicker, and be of a brighter lues, It wobld also add to the 'quality of the enlors, if, aftor the veneers hare boilod a fow honris, they are taken ont dried is the uig, and mgain immersed in the colurisg copper, Always aty vencers in tha oques air, for fire invaibuly mitires tho eolors, (Sco Nos. 2ES57, ctc.)2825. Fine Blacle Dyo for Wood. Put E jounde elipp logwoal fito who eapjeer, with as many vebuors as it, will copveniently bold, without pressiag too tight filf it with water, and lot it bost Elowly fur aloont 3 houra; then add if puatul pmowlered vordigrts, 3 pound cop)peras, mud 4 otnces brtised nut-galls; fill tho eopper up with vinegar as tho water eraphrates; lot it boil gently 2 bourg each day till the wond is drod throngh.
2826. Fine Yellow Dye for Wood, Reduce 4 poutads of barberry root by sawing, to dust, which put in a coppor or braes trough; sdd 4 ounces trumorio and 4 gallons water, then put in as many white bolly veneors as the liquor will cover; boil them together for 3 hours, often turning them; when cool, add 2 ounces nquafortie, and the dyo will strike through mbeh sooner
2827. Bright Yellow Dye for Wood. To every gallon of water necessary to cover the vencers, add 1 pound French berries; boil tho veneers till the color has penetrated through; adil nome brightening liquid (see next receipt) to the infusion of the Frenoh berries, and let the veneers remain for 2 or 3 bonrs, and the color will be very bright.
2828. Liquid For Brightening and Setting Colors. To every pint of strong of satortis, ndld 1 ounce grain tin, and a piece of sal-ammoniag the size of a walnut; set it ly to dissolve, shake the bottle round with the cork out, from time to time: in the course of 2 or 3 days it will be fit for use. This will be formd nin adnuirable liquid to add to any color, as it not omly brigtutens it, but renders it less likely to fade from exposure to the air.
2829. Fine Blue Dye for Wood. Into a clean glass battle put i pound oil of vitriol, and 4 ounces best indigo pounded in a mortar (take caro to set the botto in a basin or earthon glaved pan, as it will effervesce), put the venears into a copper or stome trough; fill it rather more than $\frac{1}{5}$ with water, and add as much of the vitriol and indigo (stirring it about) as will make a fine blue, which you
may knew by trying it with a piece of white
paper or wood $;$ let the veneers remain till the dye has struck through. The color will he much improved if the solntion of indigo in vitriol bo kept is few weeks before using it. Thecolor will alao strike hether if the veneers be boiled in plain water till completely soaked through, and left for a few hours to dry partially, preyions to immersing them in the dye.
2830. Bright Green Dye for Wood. Proceed as in either of the provious recoipts to produce is yellow; but instead of adding aquafortis or the brigbtening liquid, add as much vitriolated udigo (seo tast receipt) as will produce the desired color.
2831. Bright Red Dye for Wood. To $\underset{\sim}{2}$ poinds gonuino Brazil dust, ald 4 gallons water; put in an many vensera as the liquor will covar; boil them for 3 houra; then add 9 ouncea alun, and 2 ounces aquafortio, and keep it luhewarm motil it has suruck throngh.
2832. Red Dye for Wood. To every pund of togwopd chips, add 2 gallons water; pat in tho vencors, and boil as in the last; then ald a suftecent quautity of the lirightening liquid (sec No. 2838), till the celor is of a sathfautory tiat ; keop the whole as warm as you can boar your tiugor in it, till the color has sufleicuatly peretrated. Tha logwood chipx ahould be pioked from all toreiga aulstaitess with whitele it generally atoound as bark, dirt, ice.; and it in always best when fresh out, which miay log kuown by its apjotring of a bright rou color; for if stale, it will look brown, and not yield io muck coloring matter.
2833. Rose Colored Dya for Wood. Mouter produces as fine pink of rose volor on wood of celluloso, sspecially that of the ivory nut, by immersiag it first in is aotation of iodjdo of potasibum, $1 \frac{1}{2}$ otacos por pint of water, in which it remaina for naveral hours, when it is placed io is bath of corrosive nubbimate, 135 graina to the pint. When proporly dyed it is washed and vacuubed oves. TVe should think that loas poisonows materialis might be found to answer boe sarne prarpose.
2834. Bright Purple Dye for Wood. Boil 2 pounds logwood, vither in ebips of powder, in 4 gallons watur, with the veneers; after boiling till the cotor is well strtuck $i n$, ald by degroes vitriolated indigo (sec No. 2029), till the purple is if the shade required, which may bo known by (rying it with a piece of papory; lot it then foil for 1 loorr, and Eeep the fiquid in a milk-warm state till the color has penetrated the vetueer. This uethod, when properly munaged, will priduce a brilfiant purple.
2835. Orange Dye for Wood. Let the vencers lie dyed liy either of the minthoda giveu for a fine duep yellow (sec Nor, 2826 and 2827), and while ibey ate still wat and gaturated with the dye, transfor them to the bright red dya (see No. 2891), till the color penetrates equally thronghout.
2836. Silver-Gray Dye for Wood. Expose dry quantity of ota iron, or, what ia better, the borings of gun-barrels, \&c, in any conventent vessel, and from time to time sprinkte them with muriatie acid, diluted in 4 times its quantity of water, till they aro very thickly covered with rtast; then to every 6 pounds add 1 gallon of water in which has been dissolved 2 ounces salt of tartar (carbonate of potassa) : lay the venuers in the copper, and cover them with chis liquid + let it boil for 2 or 3 honts till well soaked, then to every gallom of liquor add 1 pound of green copperas, and keep the whole at a moderate temperature till the dye has suffciently penetrated.
2837. To Dye Veneers. Some mamfacturers of Germany, wio had been supplicel from Puris with veweers, colored through-
out their mass, were necessitated by the late war to produce them themsclves, Mr. Pubcher states that experiments mado in this direction gave in the beginuing colors fixed only on the outside, while the inside was, untouched, until the vemeers were soaked for 24 hours in a solution of caustic soda containing 10 per cent. of soda, and boiled therein for $\frac{1}{4}$ hour; after washing them with kufficient water to removo the alkali, they may be dyed throughout their mass. This treatment with soda effects a general disintegration of the wood, whurely it becomes, in the moist state, elastic and leather-like, and ready to ahsorb the color ; it minat then, after dyeing, be dried Letween sheets of paper and subjected to presoure to tetain its हlaape.
2838. To Dye Veneers Black. Veneers treated as in last receipt and left for 24 hours in a hot decoction of logwood (1 part logrood to 3 water), removing them after the lapse of that time, and, after drying them superficially, putting thom into a hot solution of copperss (1 part copperas to 30 water) will, atter 24 hours, become beautifully and eompletely dyel blook.
2839. To Dye Vencera Yellow. A solution of 1 part pieric acid in 60 water, with the addition of to much ammonia as to become percoptible to the smell, dyes veneers yellow, which color is not in tboleast affected by sulawquent ramishing. Before dycing. the veneera require tho preparatory treatment givers in $\mathrm{No}, 28$ 立.
2840. To Dye Vencers Rose-Color. Coralline dissintved in fot whter, to which a fitele csustio soda and ese-fifth of its volume of solnble glass kas been added, prodnces mas-colurs of different shades, iependent on the amuont of coralline takes. (Sce No. 2857.)
2841. To Dye Veneers Silver-Gray. The only citor which reneers will take np. withnut prepioes treatuent of sida, is silvergray, produced by woaking then for a day in a sololion of 1 part copperas to 100 parts water.

Too Stain Wood. Stinning rown dyeing it, and roquires to preparation before the sinin le applied. In proparing the stalis, lut little trouble is required; and, gomerslly नpeaking, ils applieation differs very little from that of paintifig. When carefally dose, and properly varnished, staining has a Very lieautiful appearance, and is mbeh less likely to meet with infury than japaaning.
2843. Black Stain for Immediate Use. Boil $\frac{1}{}$ ponnil chip logwood in 2 quarts water, sdd 1 onnce pearflash, and apply it bot to the work with a brush. Then take pound logroood, boil it as hefore in 2 guarts water, and add $\frac{f}{5}$ outhce veriligris and $\frac{1}{\text { f }}$ ounce green copperas; strain it off. put in i pound rusty steel filingit with this, go over the work a second time.
2844. To Stain Wood Like Ebony. Take a solation of sulphate of iroo (green copperas), and mash the wood over with it 2 or 3 times; let it dry, and apply 2 or 3 conts of a strong hot decoction of logwood; wipe the wood, whon dry, with a sponge and water, and palish with linseed oil.
2845. To Stain Wood Light Mahogany Color. Brush over the surface wihh diluted nitrous acid, and when dry apply the following, with a soft brush: dragon's blood, 4 ounces; common soda, 1 onnce; spirit of wine, 3 piats. Let it stand in a warm place, shake it frequently, and then strain. Repeat
the application until the proper color is obtained.
2846. To Stain Dark Mahogany Color. Boil $\frac{1}{2}$ pound madder and 2 ounces logwool in 1 gallon water; then brush the wood well over with the hot liquid. When dry, go over the whole with a solution of 2 drachums pearlach in 1 quart water.
2847. To Stain Mahogany Color. Pure Socotrine aloes, 1 ounce; dragon's blood, $\frac{1}{3}$ ounce; rectified spirit, 1 pint; dissolve, and apply 2 or 3 coats to the burface of the wood; finish off with wax or oil tinged with alkanet, Or: Wash over the wood with strong aquafortis, and when dry, apply a coat of the abose rarnish; polish as last, Or: Logwood, 2 ounces; madier, 8 ounces; fustic, 1 ounce; water, 1 gallon; boil 2 bours, and apply it several times to the wood boiling hot: when dry, slightly brush it over with a solution of pearlash, 1 ounce, in water, 1 quart; dry and polish as tetore. Ur: Logwood, 1 part; water, 8 parts. Make a decection and apply it to the wood; when dry give it 2 or 3 coats of the following varnibh dragon's blowh, 1 part; Epirits of "wile, 2 parts. Mix.
2848. Beechwood Mahogany, Dissolve 2 ounces dragon's blood and 1 ounco aloes in 1 quart rectified gpirit of wine, and apply it to tha surface of the wood proviously well polished. Or: Wash over the kamface of the wood with aquafortis, and when thoroughly dry gire it a coat of the above varnibh. Or + Boil 1 pound logwood chipa in \$ quarts water, und add 2 handfuls of walnut peel; boil again, tben strain, and add 1 pint good vinegar ; apply ns above.
2849. Artificial Mahogany. Tho following method of giving any species of wood of a close grain the appearance of mabogany in texture, density, and polish, is said to bo practiced in France with saccess. The snrface in planed smooth, and the wood ia then rubbed with a solution of nitrous acid; 1 ounce dragon'g blood ts dissolved in nearly a pint of spirits of wine; this, and if ounce carbonate of soda, aro thon to be mixed together asid filtered, and the liqnid in this thin stato is to be latd on with a roft brush. This process in to be repeated, and in a short interval afterwards the wood possesses the external appearance of mahogany. When the polish diminishes in brilliancy, it may bo restored by the use of a littie cold-drawn linseed oil.
2850. Fine Black Stain. Boil 1 pontul logwood in 4 quarts water, add a louble handfol of walnut-peel or shells; boil \& up again, take out the chips, add 1 pint uest vinegar, and it will bo fit for ase; apply it boiling hot. This will be improved by applying a hot solution of green copperas Ifissolved in water (an ounce to a quart), over the first stain.
2851. To Imitate Rosewood. Boil \ddagger pound logwood in 3 pints water till it is of a very dark red; add i ounce ralt of tartar (carbonate of potassa), While loiling hot, stain the wood with 2 or 3 coats, taking caro that it is nearly dry between each; then, with a stiff flat brush, such as is ased by the painters for graining, form streaks with the black stain above named (scc last receipt), which, if carefally executed, will be very nearly tho appearance of dark rosewood; or, the black streaks may be put in with a camel's hair pencil, dipped in a solution of copperas and verdigris in a decoction of logwood. A handy brush for the purpose may be made out of a flat brusb, such as is used for varuishing; cut the sharp points off, and make the edges irregular, by cutting out a few hairs here and there, and you sill bave a tool which will aceurately imitate the grain.
2852. To Imitate Rosewood. Stain with the black stain (see No. 2850); and when dry, with a brush dipped in the brightening liquid (sce No. 2828), form red veins, in imitation of the grain of rosewood, which will produce a beautifal effect.
2853. New Stain for Wood. Permancanate of potasse is recommended as a rapid and excellent stain for wood. A solntion of it spread upon pear or cherry wood, fot a fow minutes, leaves a permanent dark brown color, which, after careful washing, drying, and oiling, assumes a reddish tint upon boing polished.
2854. StoIzels Method of Staining Wood Brown. Dr. Stolzel audds another to the many receipts already given for ataining wood of a brown color. First of all paint over tho wood with a solation made by boiling 1 part of catcehu (Cutch or Gambier) with $\$ 30$ parts water and a littlo sola. This is allowed to dry in the air, and the wood is then painted over with another solution unado of 1 part bichromato of potash and 30 parts water. By a little differenee in the modo of treatiment, and by varying the atrength of the solutions, various shades of color may be given with these materiale, which will bo permanent and tend to preserve the wood.
2855. To Darken Light Mahogany. Whon furnituro is ropaired, it frequontly happens that the old wood cannot bo matehod, and thereforo the work prosents a patched appearance. To prevent this, wash the ploces intraduced, with noap-lees, or dissotve quieklimo in water, and nse in the same manner; but bo caroffut not to let ailther bo too atrong, or it will make the wood too dark; it is bost, therafore, to uso it rather weak at firss, and, if not dark enough, repoat the procees till tho wood ju sufficiontly darkoned.
2856. Black Walnut Stain. Take I quart water, 1 l ounces washing soda, 2 d ounces vand jko brown, $\frac{t}{}$ ounco bichromate of potasea. Boil for 10 minuttey, and apply with a bruah eilther in a bot or cold alato. This is an vxcellont sthin. (Sed Nos. 2853 and (18,4)
2857. To Improve the Color of any Stain. Mix in a bottle 1 ounce of nitric acid, I ten-spoonful muriatio acid, \ddagger ounce prain tin, and 2 ounces rain water. Mix it at least 2 days before using, and keep the bottle well corkod.
2858. To Stain Musical Instruments and Fancy Boxes, Fancy work necessitatea the employment of brighter colors than those used for furrituro; wo therefore give the following roceipta for preparing and applying those most commonly employed for suoh purposea.
2859. Fine Crimson Stain. Boil 1 pound good Brazil dust in 3 guarts water for an hour; strain it, and add $\frac{1}{}$ ounco coebineal; boil it again gently for 1 an hour, and it will be fit for uso. If required of a moto scarlet tint, boil $\frac{1}{}$ ounco saffron in 1 guart of water for an hour, and pass over the work previous to the red stain.
2960. Fine Green Stain. To 3 pints atrongest vinegar, add 4 ounces best verdigris pounded fine, f onter sap grean, and $\frac{1}{\frac{1}{2}}$ oupce indigo. Distilled vinogar, or verjuice, improves the color.
2861. Purple Stain. To 1 pound good chip logwood, put 3 quarts water; boil it well for an hour; thon add 4 onnces pearlash, and 2 ouncess pounded indigo.
2882. Fine Blue Stain. Into 1 pound oil of vitriol (sulphuric acid) in a clean glass phisl, put 4 ounces indigo, and proceeal as above directed in dyeing purple.
2863. Bright Yellow Stain. Wood
need not be stained yellow, as a small piece of aloes put into the vamish will have the desired effeet.
2864. Fine Black Stain. As a general thing, when black is required in musical instruments, it is produced by japarning; the Work being well prepared with size and lampblack, apply the black japan (sec No. 2322), after which, vamish and polish. But as a black stain is aometimes required for fingerboards, bridges, and fintes, proceed as directed in staiuing (see No, 9850); the wood, however, ought to bo either pear, apple, or boxwood; the latter is preferablo; and if it lod rubbed over, when dry, with a rag or flamel dipped in hot oil, it will give it a glass equal to ebony.
2805. To Stain Boxwood Brown. Hold the work to the fire, that it may recoive a gentle warmith; then take equafortis, and with a feather pass over the work until it changes to a fine brown (always keeping if near the fire); then ofl and pulish it.
2866. Cane Staining. By thofollowing simple process, canes and kimilar sticks nay be Etained a rich brown: Dissolve a few grains sulphate of manganese in sufficient
water to take it Water to take it up; mistea tha surface of the cane with it, and hold it over tho flame of a spirit lamp clote enough to scorch it. By cars, the whele Eurface may bo brought to a unform rich brown, or beautifully sariegated by heating some parts more than others; thas varying the color frome white to tho docpast black, The color will appear dull at finst; bat, on oiling it with raw losseed oil, and rub: bing it with a smooth piece of hard sood, λ will bo beautifally developed. Give the cane no other finish, turless it bo another oiling seme daya after the firat.

Varnish, Yaraishes may be conKeniently divided into two kluds, viz.; apirit and oll raruisher. Concentrated alcobol is used as the solvent io the former, and fixed or volatile oils, or mistares of the two, for the latter. The specific gravity of alcohol for the purpose of roiking varaishes should not bo greater than 0.820 (that is, not below aboat 93 per cent). Camphor is often dissolved in it to increase its solvent powers. The of of turpentise, which ts the esseatial oil chiefty espployed, ehould be pure and colorless. Palo drying tinsed oil is the fixed oil generally used for varnishes, but poppy and nut oil aro also oecasionally cmployed, Amoug the substances cuplyyed in the mannfacture of varniahes aro Carpentite, copal, mastich, lac, elemi, sandarach, nnime, and amber, to impart body and lustro $;$ benzoin to impart scent; granboge, turmoric, saffrou, sumotto, and Socotrine aloes, to give a yellow color; dra-
gun's blood to give a red tingo; esplaltam to give a black color and body; caoutchoue to inpart body, toughters, and clasticity. Varnish constitutes a distinet briuch of manufaoture, and many of them cau be advantageously or safely maide unly on the largo Ecale on premises adapted for the parpose.
2868. Preparation of Linseed Oil for Making Oil Varnishes. In the mannfactore of nil varnishes, one of the most important points is the use of good drying mil. Linseed oul for this parpose should bo pale, Jimpid, brilizant, searcely odorons, and mellow and sweet to the taste. 100 gallons of sweh oil are put into an irou or copper bailer capable of holding 150 gallans, and graiually heated to a gentle simuer for 2 hours, to expiel moisture; the scum is then carcfully removed, and 14 poumils seale litharge, 12 pounds real lead.
and 8 pounds powdered umber (all carefully dried and free from moisture), ate gradually sprinkled in; tho whole is then kept well etirred, to prevent the dryers sinking to the bottom, and the boiling is continued it a gentle heat, for 3 houss longer; the fire is next withdrawn, and, in 24 to 36 hours, the scum is carefully removed, and the clear oil decanted from the bottom. This forms the best boiled or drying oil.
2869. Clarified Oil for Varnish. When boiled oil is used for making varnish, and a still further clarifying is deemed advisable, it is placed in a copper pin holding from 80 to 100 gallons, and heat gradually applied till the scum riess, after remosing which tho oil is allowed to boil for about 2 hours, when it is dosed with calcined magnesia, in the proportion of as ounce to every 4 gallons of oil, but added by degrees and with occasional stirrings. This being completed, the oil is again boiled brisldy for about an hotar, and thet, the furnace being drawn, allowed to cool. When tho temperataro if sufficiently reduced, it is removed to leaden cisteras. where it is stored till fit for use.
2870. Clarifled Linseed Oil for Varnishes. Heat in a copper boiler 50 gallonk of linseed oil to 280° Valry; add $9 \frac{1}{2}$ pounds of calcized white vitriol, and lesep the oil at the above temperature for h hour: then remoye It from the fire, and in 24 hours decmet the clear eil, which stiould stand for is fow weeks before it is used for ramish.
2871. Wilks' Refined Linseed Oil. In 236 gallons till pour 6 pouzds oil of vitriol, and stir them tagether for 3 hours; then add 6 pounds fulleri' carth, well mixed with 14 pounds hot line, and atir for 3 houss, Put the of into a copper tollec, with at equal quantity of water, and boil for 3 hours: then estinguish the firc, atd what the moterials are sold draw off the watus, and lot the of stand to setLle for a few weeks before usiog.
2872. Boiled Oil for Varnishes. Mix 100 gallons linseed oil mud 7 ponsuls calemed whito vitriol (sulphate of zine) in fise pouder, in a dem copper boiler; lient it to 2855^{-}Fahtr, and keep it at that temperature for at least an bour, constantly stirriag it; then allow it to cool; in 24 bours decant tho elear portion, atal in it or 4 wedts rack it for nese.
2873. Cautions Respecting the Making of Varnish. As beat in inany cascal is accesaury to disatya the gums used in mbking varnish, the best way, when pructicuble, Is ta case a kathel-bath, whiets is simply placiug tho vessel contaning the vamish, it another filled with esad and placed un the firc. This wiil generally be sufficient to prevent the spirits eatching fire; but to avoid atheh an accident (which not unf'equently happens), it Will be best to take a veseal suficiently large
to prevent any dan ere of spilling its contentup to prevent any danger of spilling its contents: indeed, tho vessel should never be moro than two-dhirds filled. However, a piece of board sufficieatly large to cover the top of the vessel should always be at hand in case the spirita should take fire; as also a wet wrapper, in ease it bhunh bespillel, as water itself thrown on would only itcreuse the mischief, Tho person who attends the varnish-pot should have his hands covered with glaves, and, if they aro mude of leather, and rather damp, it will effectually prevent injury. Theso cantorns thould be well shserved, or shoeking personal injury may result from their neglect. In the city, it is hardly worth while to mako varnish, mesess in largo pquantities, as thero are many stores whero it may be had very good, avd at a fair price; loat in the country, shere the freight is an object, and you cannot depend upon the genuineness of the article. it is necessary to be known by the practical
mechanic how to make it; when it is available, it is best to purchase it. The yarnieh generally sold for varmishing furniture is white Lard varnish.

Oil Varnishes. These, the most durable and lustrous of vermishes, are composed of a misture of resin, oil, and spirit of turpentine. The oils mose frequently employel are linsced and walnut; the resins chiefly used are copal and amber, and nome other gams. The drying power of the oil having been increased by litbarge, red lead, or by sulphate of lead, und a jodicions selection of copal having been made, it is pecessary, according to Booth, to bear in mind the following faets before proceeding to the manufactaro of yarnish: 1. That varmish is not a solution, but an intimate mixture of resin with boiled oil and spirit of turpentime. 2. That the resin must lo eompletely fused previous to the addition of the boiled or prepared oil. 3 . That the oil must be heated from 250 to 300 . 4. That the spirit of tarpentine must he added gradually, and in athin stream, whilo tho mixture of oil and resin 13 still hot. 5. That the varpish be made in dry weather, otherwise moisture is absorbed, and its transparency and drying quality impaired. Of late years it baa been practically demonstrated that not only is there no necessity for boiting the oil and gum after incorporation, but that the prodnee is equally good if the turpentine bo added just before the misture becomes too cold to permit of a perfect amalgamation. In fact, it is now acknowledged that the ofi need not bo raised to a higher temperatare than that at which tho kum employed figes, and that when the two aro mixed the lowest ponsible degree of heat which will imsure their incorperation, is sufficient to secure all the resiles deaired. By this method a jarge guantity of the turpentine fortacrly lost in erapotation is saved, and there jo, moreover, leys risk of fire. The tieatthg vesuel must bo of copprer, of a capacity at teat one-third more pallots than the mixture to be introlueed into it, with a riveted aud not a sotdered bottom. To prosucte the sdmixture of the copal with the hot oil, then ce-pal-carefulty selected and of nearly tanform fusiblity-is separately heated with contio. nous stirring over a moderato chatcoal firo kept constantly supplied with fisel, without distarbing the kottlo until the enanplation of the mixture with the oil. If the copetl is moelted in tho hot oil, tho reaulting varnish is more colored and less drying. Thera is, however, great caro required in fusiag the enpal by itself; for if tho heat is too usech prolunged, tho resin becomes pitcly; and gives an inferior varnish. Constant stirring is requisite to prevent adbesion to the sides and bottnon of the vessel, and conserpuent geurchiug. The pieces of copal should be of uniform fisibifity, the different varicties, therefore, should not be fused togetber, for that whieh melts first is apt to scorch before the more refractory are fased. If it is desired to mix different raricties, they shonld be fused soparately and then mixed in fluid stato. When the resin is thuroughly melteil, tho hot oil fis to be ladled in gradually during constant stirring. To deter mine when sufficient oil has been added, on drop must be now and then taken out and cooled upou a glass plate. If, on cooling, it is limpid und wax-like, penetrable with the nail without eracking, the proportion of oil is sufficient; if, however, it is hard and brittle, more oil is required. Some resing absorb more oil than others. The spirits of turpentine should be heated, and added in a thin stream to the of and resin while still hot.

Care must bo taken not to add the turpentime while the misture is too hot, as too much of the turpentine will be lost by evaporation; but if the mixture gets too cool it becomes stieky, the aldition of turpentiac must be stopped, and it must be repliced orer the fire and heated gradually up to 600 , Limpidity is thas restored, mid, ypon removal from the fire, safficient tarpentine shoulh les aduled to impart the proper consistence; bat this estra heatiag injures the quality of the vamish.
2875. Common Oil Varnish. Resin, 3 poumds; drying oil, $\frac{1}{4}$ gallons, melt togethet, and add, when removed from the fire, 2 quarts warm oil of turpentine.
2876. Oil Copal Varnish. Pale hard eopal, 2 pounels; fuse, auld hot drying sil, 1 pint; boil as betoro dirceted, and thin with oil of turpentine, 3 pints, tiote or lessa, as found nocessary. Very pale. Dries harl in 12 to 94 hours
2877. Best Pale Carriagg Vamish. Pale African eopal, 8 poomals; tase, and wald clarified Imaeed nil, 2$\}$ gallons; boil till very stringy, then aild dried copperas and litharge, of cach + pormd; boil as boforo alsected, thin with oil of tospentlae, of pallons; mix while hot with tho folloning yaruish, and immediately strala tho mlsturn intoat covered venel: Gran raime, 8 poradi; plarified lisiseal ofl, 23 gallonts; driol sumar of lead and Itlurge of each + poupd ; boul as before, thin with oll of tarpentine, 5y gallons, and mix it whito bot with the fast varaide as abose dlrectem. Dries in 4 berars in nummer and 6 in winter. Died for the wheels spriaks, nuel carriage parts of costches ard othor velicios, and by hotaso paluterc, demorators, dee, who wint is atroag. quick-dryitg, and dursble rarnade.
2878. Ordinary Carriage Varniuh. Sorted gum animo, ${ }^{\circ}$ pousads ; clarifical oil, 3 galloas: lltharge, 5 oussert dried and pows. dered nugar of lead and whito copperis, of each 4 ogbees: boil as lant, abd thon with oil of turpontine, $5 f$ gallens.
2879. Amber Varnish. Amber, 1 poutul; pala lonilel at1, 10 otinces; tarpentine 1 pint. Remder tho amler, placed in an irou jome, kethi-ligtrit by heaty Dred add tho oil, mir, remave is froms las fire, and, when cooled 7. litthe, tir is the turpentine Or: To the amber, mellosl as aboro, ndil $\frac{2}{2}$ vinces of ahellac, abil proweed al lefine. This varnieli is rabling ficik, lyet remstably troght. The fiest form iv the best. It it uthed fror the samo purpuas us cogel vaminh, and furtes an excellent article for curcring woud, of mig Other baistariet oot of a white ot very palo color. It drios welt, and 部 very haril and durable.
2880. Black Amber Varnish. Amlies, 1 promel, lomber ral, $\frac{1}{2}$ pist; powderel asplantum. 6 nurace; oif of turpeatine, 1 pint. Melt the aisher, as before described. thels add the aspatitum, providusly mised with the cold nil, and afterwarle heated very bot; mis well, rempve the ressel from tha fire, and, whens cooterl a liztle, add the turpentine, also mado warm. Each of the aboro two yarnishes should ba rolnced to a proper isonsistence with more tarpentize if it bo requirel. The last borm prodeces the licantiful black rarpish mied by the crachmakers. Some maunfacturers omit the whole of part of the asphaltum, and use the Fame quantity of clear black resin instesul, is which case the color is brouglt op by lampliack reduced to an impalpable powder, or previonsly ground very fine with a little bifled oil. Tho varnish made in this way lacks, however, that richuess, brilliancy, sud depth of blnckuess imparted by asphaltum.
2881. Pale Amber Varnish. Amber, pale and tramsparent, 6 pounds; fisse, ndd hoi
clarified linseed oil, 2 gallons; boil till it strings strougly, cool a little, and add oil of turpentine, 4 gatluns. Pale as copal varnish; soon becomes very hard, and is the most durable of oil rarnishes; but requires time before it is fit for polishing. When wanted to dry and harden quicker, drying oil may bo stabstituted for linseed, or dryers may bo alded during the boiling.
2882. Tough Amber Varnish. Amber, 1 pound; melt, add Seio turpentine, $\frac{1}{6}$ pound; transparent white resin, 2 ounces; hot linseed oil, 1 pint; and afterwards snfficient of of tarpentine as aloove. Very tough.
2883. Hard Amber Varnish. Melted umber, 4 ounces; hot boiled oil, 1 quart; as before.
2884. Very Palo Amber Varnish. Very palo and transparent amber, 4 ounces; clarificd linseed oil and oil of tarpentioe, of euelh 1 pint; as before. Amber varnish is saited for all purposes where a yery hard and curnble oil varniall is required, Tho paler hind ja superior to copal vamish, and is often bixed with the latter to increase its hardgess and durabilts:
2885. Varnish for Waterproof Goods. Fet 1 pound of India-rabber, in small piocos, sofees in tomen of of of curpeatine, then add 2 putnals boiled oil, add lat the wholo holl for'? homs over n slow coal fire. When dsesolsed, add agala 6 pruads bofled liaseed nil atad 1 porod litharge, and boil until an even liquid is obtained. It is applied warm, and forms a waterpruol' coating.
2886. India-Rubber Oil Varnish. Take 4 otncen ludia-rubber in the shaving in, dissol re in a covered jar by menas of a sandbath, is 2 prosuds of cride bensola, and then mix with 4 pounds bot tinsed uif varnish, and $\frac{1}{2}$ pound of of tirpentind Dries well.
2887. Indin-Rubber Oil Varnish. Cut up 1 pound Indin-mbler into rmall pieers atul difnion in \& pansed sulptarice ether, which in done by digestion in a glass flask on a gand-bath. Then add 1 pound pale lingeed oil vamikh, proviously beated, and after setuline 1 poand oit of torpuatine, also heated beforchand. Filter, while yet warm, into bottles, Dries slowly.
2888. Gutta-Percha Oil Varnish. Clean \& pouxd guttu-percba in wurm water from adhering impurities, dry woll, dissolve In I ponnd of rectified resin oil, and add 2 pounds linseod oil varnisht. builing hot. Very saitable to provent metals from oxidation.
2889. Champagnat's Irdia-Rubber Varnish. In s wide-monthed glass bottle, digeat 2 ouncos Indin rubber it fino whariags, with 1 pound oil of turpentine, during 9 days, withost shaking, then stir up wilh a wooden gpatula. Add another pound oil of turpentine, and ligest, with frequent agitation. until all is dissolved. Then mix $1 \frac{1}{2}$ pounds of this solution with 2 pounds of very white copal mil varnish, and 1) pounds well boiled linsoed oil ; shake and digest in a sand-bath, until they lave united in a good varnish. For moroces leather.
2890. Flexible Varnish. Molt 1 pound of reain, and add gradually $\frac{1}{}$ pound Indiarabber iu very fise shavings, and stir antil cold. Then heat agrain, slowly, add 1 pound lioseed oil ramikh, heated, and filter.
2891. Flexible Varnish. Dissolvo 1 pound of gura damar, and h pound Indiarubber in very small pueces, in 1 pound oil of turpentinc, by means of a water-bath. Add 1 pound hot oil varsish and filter.
2892. Hair Varnish, Dissolve 1 part of clippings of pigs' bristles, or of horse-hair, in 10 parts of drying linseed oil by heat. Fibrous materials (cotton, flax, silk, \&c.), imbued with the varnish and dried, are used
as a substitute for hair-cloth.
2893. Cabinet Varnish. Fuse 7 pounds African copal, and pour on it 4 pimts hot clarified linseed oil; in 3 or 4 minutes, if it feels stringy, take it out of the building, whero there is no fire near, and when it has cooled to 150° mix in 3 gallons oil of turpentinc of tho same temperatare, or sufficient to bring it to a due consistence.
2894. Bessemer's Varnish for Metallic Paint. This is made with 8 pounds copal, $2 \frac{1}{4}$ gallons drying oil, and 25 gallons oil of turpentine. These are made into a varnish nearly as directed for Cabinet Yarnish (see No. 2ag3); and afterwards mixed with a gallon of slacked lima and left for 3 days to settle. The clear portion is thet drawn off, and 5 parts of varnish mixel with 4 parts of bronzo powler.

2895, Mahogany Varnish. Surted Fom anime, 8 pounds; claritied vil, 3 pallona; lithargo and powdered dried supar of lean, of each It pound; boil talt it strings well, then cool a liytle, thin with oil of turpentine, $5 \frac{1}{3}$ gallong, and strain.
2896. Italian Varniah, Boil Scio turpentine zill brittle; powlor, and dissolve is oil of curpentite, Or; Canada balsam and clear white resin, of ench 6 ounces; oil of turpentine, 1 quart, dinsolved. Used for prints, expravings, \&e.
2897. Varnish for Printers' Ink. To overy 10 poundy clarified limesed oit add 5 pounds clear black rasin, and t pound oil of turpentinc. It is then ready for mixing with tampllack or other coloring matter. A twelth parti of Canada Lalsum fa sometimes fulded for the finer parts.
2898. Varnish for Frames for Hot Beds. Mix 4 ounecs pulvarized white cheese, 2 ounces slowed lime, and 4 vanees boiled lifrseed oil. Mix, and add 4 ounces each whites and yolks of cgey, and liquefy the mistare by heat, This cinions roisture is said to prodace a pliabte and transparent varoish.
2899. Brunswick Black. Foreign asphaltuni, 45 pounds; drying oil, 6 gallons; and litharge, 6 pounda Boil for 2 houry, then ndd dark gum-amber (fused), 8 potands; bot linsced oil, 2 gatlons. Botl for2 hoars longer, or custil a little of tho mass, when cooled, may be rolled isto pills. Then withdraw tho heat, and afterwards thit down with 25 gal lons oil of turpentine. Uised for from-work, $\$ 0$.
2900. Black Varnish for Mron-Work. Asphaltum, 48 pounds, fuso; add boiled oil, 10 gallons; red lead and litharge, of each 7 pounds; dried and powdered white copperas; 3 pounds. Boil for 2 hours; then add dark gum amber (fused) 8 pounts; hot linseed oil, 2 gallons; boil for two hours, proceedity us in the last receipt, thinning down with oil of turpentine, 30 gallons. Used for the same parposes as Brunswick black.
2901. Colored Oil Varnishes. Ofl varnishes are colored by grinding with them the most transparent colors, as distilled verdigris for green, \&c. Spirit varnishes are ulso colored With dragon's blood, gamboge, de. (See No. 2867.)
2902. Varnish for Grates. To 2 pounds common aspbaltum, fused in an irou pot, add 1 pint hot boiled linseed oil; mix well and boil for some time. When partially cooled add 2 quarts oil of turpentine. If too thick, add turpentine. Apply with an ordinary paint brush.

Spirit Varnishes. The spirit should not be less than 95 per cent. In preparing and using them, they should bo kept
at a distance from at candle or other flame. Kespecting the gums (resibs) employed, it may be usefol to mention that shellac is readered more sotuble by being porrdered and csposed for a Ing time to the air (zee No. 2906); sandarach give hardness to varrisbes; mastich gives a gloss to a solntiou of other gums; benzoin still mure, but its color is objectimuable: anime readity dissolves, bat remders the varnish long in drfing; copal and amber arc searcely soluble in spirit, but aro rendered partally so by other guma, and also by being preciunsly fused by heat. (See No. 2507.) Shellac gives a durable varnish, objec. tionable ouly un accoupt of its color, which may bo randered paler by charcoal. (Beasley.) (Soe No. 1723, fo.) In the preparation of spirit Faraishes, vare should be taken to pre-
vent tho evaporation of the alenhol as mich vent tho ovaporntion of the alenhol as minch as posaible, aul also to preserve the portion that evaporates, On tho kmall scale, spirit varnishes are best made by maceration in clasa hottles, In order to provent the agollutination of the resin, it is often adrantagoonsly mixed with elear silicions sand, or poanded glass, by which the murfice is invels increased, and tho aolyest power of the menstruum promoted. The teudeney of a spirit Farnisti to ohill or give a rought surfaco may bo destroy'ed by adding to the Farnish a lituo gam sandarich, oil of lavender or concentratell ammmaia,
2904. To Dissolvo Copal in Spirit. Take the copal and expose it in a vessel formed like a cullender to the fropt of a fire, and receive tho drops of melsed gum in a basin of cold water; then dry them well in a temperatare of about 95° Palir. By treating copal in this way it nequires the property of disanlving to alcohol.
2905. Copal Varniah. Take 1 ounce enpal and i an oance shellac; powder them welt, and pat them into a bottle or Jar containing it quart spirits of wiac. Placo the mistare in a warm place, and shake it occasionally, untt the goms are completely dis. nolvod; and, when strained, the varaish will be fit for use. The abore is the rimplest, unit therefore blo most usuat mothod of making common copal varnish; bat it rasy be propared in a variety of ways, where psrticular tisen may bo roquired.
2906. To Dissolve Gum Shellac. Everybody who has ever to deal with bleached gain shollag krows the diffiepities and the losa of time attending its solution. To obviate this, the gum is brocien into small pieces and macerated in a stopperal bottle with cther; afer swelling up adfficiontly, the excess of other ta poared 0it, when it will disaolve quite roadily in alcohol. (See No. 2903.)
2007. Copal Varnish. Take 3 ornces copal, melt by a gentlo heat, and drop it into Water (see No. 2904); then dry it and powder it fine. Place a bottle coataining 1 pint oil of turpenting in a water-bsth, and add the powdered copal to the turpentine in small portions at a timer it a few days decant the elear. Dries slowily, but is very pale and dnrable, and is used for pietures, \&c. In makiog this varaish, it frequently happens that the grom will not melt as reatily as it onght, which, in general, is owing to the turpenting not being anficiontly rectified; out, when that is good, it will alwuys succeed. Yt is best also to let the turpentine bo exposed for some timo in the sum, in a corkod bottle, that the watery particles tuay be gradually dissipated. The bottle shonld not be stopped quite tight.
2908. Copal Varnish, according to Professor Boett ger should be made by first dissolving 1 part by weight of camphor, in 12 parts ether; when the camphor is dissolved, 4 parts best copal resin, previously reduced
to an impalpable powder, are added to the ethereal camphor solution placel in a wellstoppered bottle. As soon as the capal appears to be partly dissolved, and lins become awollen, 4 parts strong alcohol, or methylated apirits, and $\frac{1}{4}$ part oil of turpentine are sulded, and, after shaking the mixture and lettiug is stand for a few hours louget, a thorougaly good copal rarnish is obtained.
2909. Common Turpentine Varnish. This is merely clear pale rosin dissolved it oil of tuperitino; usnally 5 pounds resin to 7 ponasis of turpentine.
2910. Crystal Varnish. Picked thasLich, 4 ounces; rectified spirit. 1 pint; animal charenal, 1 untice. Digest and filtor.
2911. Mastich Picture Varnish. Very pale nud pieked gum mastich, 5 pounds: glass pounded as small os barley, and well washed and dried, $9 \frac{1}{2}$ pounds; rectified tutpentine, 2 gallons; put them inta a clein 4 gallon stone or tin bottle, bung dowa securely, and kecp rolling it buckwinds and forvarils pretty mmartly on a counter or any other solid place, for at least 4 liours; when, if the sum ts all dixablved, the varnish may be deeanted, straiues throagh muslin into apother bottle, and allowed to settle. It should be kept for 6 of 9 months before use, as it theroby gets both tougher shit clearer. Very fine.
2912. Mastich Varnish. Mastich, 8 poands; turpentine, 4 falluns; dissolvo by a geatle beat, and adil pale turpentina vainians, I gallon.
2913. Best Mastich Varnish, Gum mastich, 6 ouncers) of of tarpontino 1 quart; dissolse. Mastich varuisli ts used for piectres, de.; when good, is is tongh, hard, brilliant, and colorless.
2914. Varnish for Paintings. Tako mastich, 6 ounces; pure turpentine, $\frac{+}{}$ onnoe; eamphor, 2 drachma; spirits of turpentine, 19 ounces; add first the emplior to the turpensine; the misture is made is a water-bath; when the solntiou is eflected, add the mastich and the spirits of turpentine near the end of the operation; filter through a cotton cloth.
2915. Tingry's Essence Varnish. Mastich in powder, 12 ounces; puro tarpenLite, if ounces; eamphor, f oupce; powdered glass, 5 ounces; reatfied oil of turpentine, 1 quart.
2916. White Toy Varnish. Tender copal, $7 \frac{1}{2}$ ounces; camphor, 1 ounce; alcohol of 95 per cent., 1 quart; dissolvs, then add mastich, 2 ounces; Venico turpentine, 1 ounce; disnolva asse strain. Very white. drying, and capable of being polished when bard. Used for toys.
2917. White Varnish. Snndarach, 8 ounces ; martich, 2 ounces; Canala balsam, 4 ounces; alcohol, 1 quart. Useat on paper, wooit, or linen.
2918. Best White Hard Varnish. Pectified spirits of wine, 1 quart; futh sundarach, 10 ounces; gum mastich, 2 ounces; gum anime, $\frac{1}{2}$ onnec; dissolvo these in a clean can, ur bottle, in a warm place, froquently shaking it. When tho grm is dissolved, strain it through a lansl sieve, and it is fit for use.
2919. Mordant, or Transfer Varnish. Mastich in tears, $6 \frac{1}{2}$ ounces; resin, 12 $\frac{1}{2}$ ounces; pale Venice turpentino (genuine) and sandarach, of each 25 ounces; alcohol, 5 pints; dissolre as before, Dsed for fixing engrasings or lithographs on wool, and for giding, silvering, de (Sec No. 2y28,)
2920. Map Varnish is prepared by pulferizing 1 ounce sandarach, \ddagger ounce mastioh, \ddagger ounco elemi, dissolving them in $\frac{1}{2}$ ounce of Venico turpentine, and adding to it a solution of 4 ounces shelloc, and 3 ounces oil of tavender, in 12 ounces alcohol. (See No. 2935.)
2921. Canada Varnish. Clear balwan of Canuda, 4 ounces; carpphene, 8 ounces; warm gent:! y, ant shake together till dissolved. For maps, drawings, de., they are first sizel over with a solution ot iajogiast, taking eare that every part is covered; when dry, the varnish is brushed over it.
2922. Collodion Varnish. The aldition of 1 part castor oil to 32 yartd collodion, makes a good varnish; it đries rapidly and does not penetrate the paper. This varaich will do very well for coating maps, lists, labels, eter. and it will keep for ycars. If, aftor a rejpest od costing, white spots shoulif appear, moiston them with ether, und they will vanish instantly.
2923. Varnish to Imitate the Chinese. Pat 4 ounces powdored gum-lac, with a piece of camplor aboub the sige of op bazelnut, into a strong bottlo, with 1 pound good spirita of wine. Sbake the bottie from tiene to tirne, and set it over some hat embers to mix for 94 bours, if it be in winter; in sumeser time it may be exposed to the simf. Pass the whote througb is fine cloch, and throw awisy what romains upon it. Let it settle for 21 houra) separato geatly the clear part in the apper part of tha hotile, and pus into moutherphal, tho remuins will serve for the first layers of coatings.
2924. Varnish for Drawings and Lithographs. Take of dextrine, 2 parta; ticobol, 4 part; wateri, 2 parta. Thesemuuld bo prepared previously wills 2 of 3 cuata of thin starch or rice bited and atrained tirolugb a cloth. (Sco No, 星27.)
2925. To Parify Dextrine. Hager givesam mothod for rendering destrind pure, or at least freer from foreign odor ind tasteFor this purposa be tispolves 10 parta of good dextrine. with ctiming, in 18 of cold diatled Water, allowd the misture bo stand for rome days, deconts nem atrains it from the sedimout, Tho elear liquil is then fo bo mixed trith onco und a half to twied its volume of alerhbl fortins (see No. 1439) ; aftee some boars the liquor if separatedfrom the pasty mass, trbiet is then otwe mure dimiolved is a strail quantity of water, buid spreal on giash of purcelaing to dry at a tompuraturo the exceceling 1402 Faht.
2926. Le Blond's Varrials, Keep 4 poand babath of cengeike wanc ita hamil of wator bath, fad tald 16 otncea copal (pros). oasly fused and curesuly pumbldeed), by aingle ounces, dafls, and atir io fropuently, Whed distolved udi as littor thio turientinc.
2927. De Sylvestre's Dextrine Varnish. Dextrine, 2 patho water, 6 parta: rectified spirit, I part. (Sre No, 2921)
2928. Tranafer Varnish. For trapsferring mod fixing emgraviug of lithographs on wood, and for gildiag. sitrering, ete, Dissolve 4 cumees mastieh (in tears), and in bunees sandatach, it 112 pints rectitied spiris; add \& pint pure Camala hatsam. (See No. 2919.)
2929. To Dissolve Amber. Thern is no difficulty in dissolvingamber in chlorofarut, but people are apt to think they fail, from the circumstance that it is only partially soluble. Take some brokets amber, reduce to is coarse powder, and place in a lonttle with rather moro than enough chluruform to cover them well; slatke often, and iu a few slays, by pouring a drop or two of the clear lipuad on a glass piate, a parmish of goal budy, which gives is strong glaze, may be obtaineil. Or an amber rarnish may be made as follows; Tiko of amber, 3 ounces; benzole, 50 ounces; heat the amber in a closed vessel to a temperature of abont 570° Fabr. When it begins to sotten and bwell, emitting white fumes, then dissolve in the benzole.
2930. Amber Varnish for Photo-
graphs. Dissolve 3 tw 4 grains amber in 1 oume chtordorm. (Sce No. 2929.)
2931. Brilliant Amber Spirit Varnish. Fusel ansher, 4 ounces; sandarach and thastich, nT each 4 ounces; highly rectified spisit, I quart. Espocen to the beat of a fandbath, with occasionil aqitation, till dissolved. (The amber is fused is a close copper vessel, baving a fuanel-shaped projection, which passes through the bottom of tive furance by Whieh the reskel is heatel.)
2932. Hure's Colorless Varnish for Photographs. Dissulve Ehellac by heat in 8 parts of whter and 1 of pearlash. Precipitate by chlorine, and divsolve in rectified spurit (See Nos. 2933 to 2985.)
2933. Bookbinders' and Colorless Varnish. Mr. A. Schmilt gires the fullow: iap dirceliuss for making these and several other beaniful varabibes: For 1 panud poed shellac take 4 onnees crystalizeil carfosate of suda, and if gillons water; put tho whule is a cleas iron or copper ressel of dottho the eqpacity, and, under cumstapt stirridg, tring is to hoiling over a slow fire. The kheltac will disoulse, and, if it is interded to inalke colorleas Fresch rarnish (see No. 2905), the sulution kas to be rua throuph a woilen cloth. For brawn lonklimules' raroish, of a colertess vamish for uapu, photogiaphs, cte, the molu(fon bat to bou for aloous ain bour longer, buts inly simbering, ant then to emul very plavily without slirfugs better let it stand orer night, abd les the firo go oat under il. Io tho morning is was like substance will be found on the xurfarz of the soluthos, wand the other imparities of the shellac as a a deposit on the luittom of the ressel. The solution is likewise to be rin thruogha as woden cloth ind then to be flterel. (Sce No. 2904.) To ruke a
 njpl-thu fittered soluther has to bo procipite. tell with dlltted mafphurie wed (I part aced to 30 parts valur), the prosipitate coilected on a cosrox mbaditicloth, and rostexi woth with cold elear water Mil!s piata through witbuut taste. (Sre Xo, 21.) Then fill a stome of troeden res. pel with loilimp water and throw the precipltate is it: it will diroctly hoften atid stick to. petber, this half mass lias to hid kneaded in tho flands, foublied up, modecd, tued drawn ont till if nownes at tige eility lastres thed drawa out tiv the desired thicknest in stirks, the candy, 3 n it is thee reculy for satution. To inako tha Bookervores' Vausisit, divenive 1 part of the prmeipitates in 21 parts 95 jor cent. alcobol. To make the Cojorless Vamsisir, dissolve 1 part of the precipitate in the razse quastity of aleobol. Add 1t drachma oil of iavonder to each piot. The entotless \%aratah wilt look bike whey, bat mora transparent.
2934. Filter for Shellac. To make a fiter for abellac, take a small wouden heg, remove the top and bottom, ind fastea to one side a prace of muslius ; of the mogsio briug about 4 inches five, waskell sind, asd on top of the sanl a layor of clean sfraw; thea pour the sulation into the filter and let it run through. Sbruld the first Ipurlion rist throupth he not parfectly elear, like rel Freacta wing, it liai to he brought hasts to the filter. When nothing more will rme throngh, pouts some cleas water on the filter to thash the N maining solittion nut.
2935. French Transparent Colorless Varnish. To tnake white Freselh trunsparent coloriess rarnish for maps, the solntion (sec No. 29033) has to be bleachel. The bleaching fluid is tunde as follown, and the proportions are for 1 pumid of shellacs Take 1 pound good English chloride of time, dissolse it in 14 pounds cold water, trifuratiog the lumps welI; let it snbside, and deemt the clear fluide ald 7 pounds of sater to the residuc,
and, when subsided, add the clear liquor to the other; precipitate this liquor with as soliltion of earlumate of solla, let the cathonate of lime settle, and deeant the elear chloride of soda; wash the setiment out with water, and add tha elear liguid to the formor, put it in a hight stone jar, and give it a rotary motion with a wooder stick, pouring in at the same time very diluted sulphurie aeid, till it assumes a greenish color and is emell of chlorine is pereeptible. Then add some of this liguid to the solution to bo bleached, under constant stirring till alt the color is gone. Erench polish wilt look like mailk, Then precipitate with daluter sulphuric secid, exactly as the rolution for bookhinders' vamish, and treat the precipitate in the same manner, in hot wator, (Sec No. 2983.) All iron must be earefully avoided as soon as the chlorino liquor is ndied. Dissolve 1 pint of the abose in 3 pints of 95 per eent, aleuhal, and do mot add any on of /avender, is in No, 2933, For plotogreiphs this solution is foo strong; 1 part of bleached shellac to 6 purtia alcoliol wilt answer. For maps the solation should not be applieit inmedlately to the paper, but tho lattor should first receive a cont of boiled and strabued etarch.
2936. Wax Varnish, or Milk of Wax. Thure white was, 1 pound; inelt with is geatlo a heat as possible, and wam spirit of wha (90 per cest.) 1 pitht; mis perfoetly, and pour the liguid out upom a cold porphyey shab; nest grind it with is muller to a porfeoly sthooth parte, with the addition of more sofitit as requitodt put the paste ints a martlo martar, make at etnalsion with 34 pints gradually addol, nud strain throagh maslia. Diod as a raryiuh fur paintingis: when dry, a het iron is phased ofer it, of heat is otbervise crenly aphlied, no ay to fise it, abd render it Lamparent; when yuito cold it is poltshed with a cleas lituet closh. Tho most protentire of all varnikbes. Nany anclunt fraiotings owe thetr freslances at the present day to thas varmifh.
2037. Wax Varnish for Furniture. Wax, 3 onnces; of of turpentine, 1 quart ; disiolve by a gendo heat, Used for furmiture.
2938. Varnish for Paper Hangings, Mapa, Printa, \&c. Tako of gonuiдs palo Canadi haluan and reetified ol of turpentine, equal parts, and mix thoroughly, Give tho articlei 2 conts of tazo before varnishing.
2039, Varnish for Card-Work, Baskets, \&c. Take black, red, or any other calores scaling-wax, nceording to fimey; break it fith spall pieces, and odd eumugh reetifles or methylated xpirit to coser it; lot the yessel stand one the fire for 2 days until it is quite diksolved. Give the article ' 2 conts of हiza beforn tarnishing, The size to mado by dissolving parelhuent entiago in boiling water. This to a blond usefitl varnish fur fretWoris, caril wonth, laskets, \&e.
2940. Water Lac Varnish. Palo shellac, bo oumes; Boras, 1 oumes whter, 1 pint; dugest at meary the looilng puint, intil diakulvoci; thes strain. Equal to the moro costly spirit varaish for muny purposes ; it is un excelletts rehiele for water colors, inks, Le, ; when dry it is waterproof.
2941. Transparent Green Varnish. A beantifully transparent green warnish is mude ly taking at sumall quantity of "Chinese bue," with atoous twice the anount of tinely powdered chromato of potash, and stirring these in copal parnish thinnol with turpentine. A thotongh erinding of this mixtaro ninsi be made for the purpose of intimately incorporating the instedientis, as otherwise it will nout be trasparent. 1 preponderance of thromate of potash gives a yellowish shado to the green, and a deficiency increases the nmont of blue. This ramish, thins colored.
produces a very strikng effeet in japanned goods, paper-hangings, etc., and can be maule very cheapty.
2942. Aniline Transparent Varnisines. The aniline colors are particnlarly well adapted for the manufacture of trangnaront lacs, which possess great intensity even in very thin films, and are hence rery suitablo [ot coloring glass of miea. The process recommended by F. Springmall is to prepare separately an alcobolie solution of bleached stulline or sandarach, and a concentrated alcuholic soletion of the coloring matter, which last is added to the lae hefore using It; the glavs ur mica to lecoated beug slight. If warmed. Colored filins of great beauty may also boobtained, acenriling to Springrahh, from colored solutions of getn ratton in ether, thas enloring hutter being here dissived in nleolol and etber, The collodion film has it clasticity groutly inereased loy the muldition of Rome turpentine vil: and whea applied cold, can bo removest entirc. The colorel firns may now be cut tato nuy pattem, and hagin attionod to tramparont, oblycetc.
2943. Anilimo Black Varnish. An zwilme black varmish of reemt Thutian produetimn, is the fithowing: Desulee ef drachus avourtuphis of talling litec, if drachus of fuchsize, and i! drachats of maphathatine jellow, ti 1 squart akcubol. The wherlo is dissolved Ly gigitation in Jest than 12 howrs. One application renders in objeet nbots black; the Farnish ena te fltored abtel will neter depmit afterwnilx.
3944. Transparent Varnish for Prints and Pictures. Diluto $\frac{1}{2}$ pani Veaice tarpentine with a gill, or thercabonts of spirita of wine. If too thick, a littlo more of the latter; if not ntuntigh, a little nore of the former; so that it in brosght to the worsisteuce of millk. Lay I coat of this on the right aide of the print, and, when dry, it will shind like glass. If it is not satisfactory, lay on another coat.
2945. To Make the Design of a Print Appear in Gold. After having laid on both sides of the print was cost of the yarnish deseribed in No. 2044, in order to make it transparetit, let it Iry is little while; then, lyfore it is quits dry, lay some gold in learea on the wrong sido of the peivt, presaing it gontly on with a cotton pad. liy these menng, all parta whero thee leaves bavo thern laid will uppear like massive gold on the tigbt side, Wben this is all thornaghly dry, lay on the rigit side of it ose cont of the varnish described thope, aud it will then be as good as any crown glass. A pasteboard may bo put bebind the print, to stippott it botter in its frame.
2946. Clear Gutta-Percha Solution. Cut gutta-percha into thin strips und put it in a glass bottle, and add fas mach chlorntorm nas makes a thick paste. This paste is then placed in very hot water, and kneaded with the fingers. After considerable manipulation the gatta- perchis loses much of its color, and if this process is repeated, becomes very nearly colorless, having only a pale straw tint. Λ chloroform solution may then be made of any strength, which is nseful for many pur-poses-when thin, as a sulustitute for court plaster, and when thick, as a stopping for decayed teeth.
2947. Solvents for India-Rubber and Gutta-Percha to Make Flexible Varnish. Rubber does not dissolre easily enongh to give a varnish by simply placing it in a bottle with the solvent. Salpharic ether is one of its regular solvents, but then it must bo pure rectified ether, and not the mixture of ether and alcohol which is sold for ether in many drug stores. It also must be
pure rubber, and not the sulphur-vulcamized artiele. Tho pare rubber minst be eat into small pieces, soaked in the ether in a warm place for about 24 hours antil they aro swollem up, and then it menst be kneaded in a mortar. In such a way rubber rartishes may be made even with common benaize. When treated with hot benzole (from coal tar, not benzine from petroletam), it swells to 30 times its former bulk; and if then trituratell with a pestle, and pressed through a sieve, it affords a homogeneoos varuish, which being applice by a flat edge of nuetal or wood to cloth, prepares it for forming waterprool cloth. Chlorotorm and the bistulphuret of carlono dissnlve Imdia-rubber and gatta-percias in the cold. Tarpentine disintegrates and dissolves Indisrubler and gutta-percha when hot. The fixed oits also readify dissulro them with the aid of beat. When Jrilia-rubber remains sticky after working it, it is a proof that the temperature mas too high, or that too much turpentime was nsed in the solutions or varnishes; turpentine rubber varnish bas paturally a teudency to dry sticky; benziole or tho fiscl wils are better. (Sce No. 2248.)
2948. Flexible Varnish for Balloons, etc. Digent cold, it sunces India-rabler, ctit small, it 1 pint of either ehloroform, salphario ether (wathed), or bisulptiuret of carbon. This dries as sonin as laid on.
2949. India-Rubber Varnish. Digest in a closed versel, at a gentle heat, 1 ounco Indla-rubtier shaviage in 1 piat of roctified mineral uaphtha, of benzole; then struin it. Thin ilries very badig, and never gots perfectly haril.
2950. Tough India-Rubbor Varnish. Ditulvo by heat 1 ounce Itsdia-rubber in i quart of drying all. This dries very tough in about 40 bours.
2951. Flexible Varnish. Boil $\$$ ounces dried white copperas, 3 onacos sugar of lead, and 4 otisces Utharge, in 1 gallon tinsoed oft 2 stir constantly until is krimga well, then cool slomly and decant the clear portion. If too thick, thin with quick-drying linseed oil.
2952, Colpin's India-Rubber Varnigh. India-rubiler it stall piecos washed and thied, oro fined for 35 bours in a elowe vereel, on a prallailly heated rani-bach. On removing from the samd-bath, open the ressel and Etir for 10 miuites, thea elve ngain, and repeat the fosion oit the follentiog day, until pomall alolotes appeat on the furface. Then strain through a wire sieve.
2953. Metallic Varnish, or Varnisher's Amalgam. Welt 4 oubces grain tin (see fudez) with 1 orace bismutld; add 1 vunce quieksilver, and stir till cold; then grind it tery fino with white of egg of varoish, and apply this zetallio varnish to the figure to be coated.
2954. Varnish for Gun Barrels. The varuibl used for gum barrcls, after they ast bronzed, is made by dissolving 1 ounce of shellae and 1 or 2 drachma of dragon's blood in a quart of alcohol, and fittering the solution through blocting paper into a bottle, which metst be kept closely corked. This varnish, being laid on the barrel, and become perfectly dry, must be rubbed with a barbisher to render it fmooth and glossy.
2955. Submarine Varntsh. Resin, 2 parts; galipot, 2 parts; essence of turpentine, 40 parts. Melt the above, and add, in tho fonn of very fine powtier, and well mized, sulphide of copper, 18 parts; regulns of antimony, 2 parts. This vamish is हaid to protect wood from worms, and to prevent the adherence of barnacles and parasites to the hottom of ships. It also preserves iron from oxidation.
2956. Varnish for Tron. The following is a method given by M. Weiszkopf, of pro-
ducing upor iron a durable black shining varnish: Take oil of turpentine, add to it, drop by drop, and while stirring, strong sulphuric acid, until a syrupy precipitate is quite formed, and no more of it is prodnced on further addition of a drop of acid. The liquid is now repeatedly washed away with water, every time renesed after a good stirriug, until tho water does not exhibit ang more acid reaction on being tested with blue litmus paper. The precipitate is next brought upon a cloth filter, and, ufter all the water has run off, the syrupy mass is fil for use. This thickish deposit is painted over the iron with a brush; if it happens to be too stiff, it is previonsily diluted with some oil of turpentine. Immedintely after the fron has been to painted, the paint
is barnt in by a gentle heat, and, after cooling, the black Burface is rubled over with a piece of woolenstuff dipped in, and moistened with linseed oil. According to Weiszkopf, this varnish is not a simplo covering of the surface, but it is ehemically combined with the metal, and does not, therefore, wear or peel off the irom, as is the case with other paints and varnishes.
2957. Brilliant French Varnish for Boots and Shoes. Tako it of a pint spirita of wine; 5 pints white wino; $\frac{1}{2}$ pumd powdered gum sengal; 6 ounces loaf augar; 2 ouncea powdered galli; 4 ounces green copperas. Dissolve the eugar and grum in the wine. When diasolved, strain; then put it on as slow fire, being careful not to let it boil. In thia state put in the galls, copperas, and Lhe alcobol, stirring it well for five minutos. Then rensove from the fire, aud, when nearly cool, strain through flannel, and bottlo for nso It is applied with a peneil brash. If not nufficiently bincle, a littlo sulphato of fron, and half a pint of a strong decoction of log-
wood, may be added, with wood, may bo added, with le ounce pearl. bih.
2958. Varnish for Fastening the Loather on Top Rollers in Factories. Dissolyo 24 onncea of gum-arable in water and a liko amount of isinglass dissolved in brandy, and it is fit for use.
2959. Varnish for Engraving on Gliss. Was, 1 otues; mastich, 1 ounce; as phaltam, $\frac{4}{2}$ ounce, turpentine, 1 drachm.
2960. Etching Varnishes. Whits Wax, 2 onnces; asphaltum, 2 ounces. Melt the wax in a clean pipkin, add the aspbalten in powder, and bohl to a proper consistence. Pour it into warm wator, and form it into balls, which must bo kncadod, aud pat into taffota for use. Or: whito wax, 2 ounces; Burgundy pitch, is ounce; black piteh, $\frac{1}{2}$ onneo. Molt togother, and aild by degrean 2 ounces powdered asphattum, and boif it till a drop cooled on a plato becomes brittle.
2961. Etching Fluid for Gopper. Aquafortis, 2 ounces ; water, 5 obuces. Mix. 2962. Callot's Eau Forte for Fine Touches, Dissolve 4 parts cach of vardigris, alum, sea salt, and sal ammoniac, in B parts vinegar; ald 16 parts water, boil for a minute, and lot it cool.
2983. Etching Fluid for Steel. Iodine, 1 ounce; iron filings, $\frac{1}{4}$ drachm; water, 4 ounces. Digest till the iron is dissolved. Or: pyroligaeous noid, 4 parts by measuro; alcohol, 1 part. Mix, and add 1 part doublip aquafortis (specific gravity 1.28). Λ_{pply} it from $1 \frac{1}{3}$ to 15 minutes.
2964. To Make Colored Prints Resemble Oil Paintings. Take of Canada balsam, 1 ounce; spirit of tarpentine, 2 oumces; mix them together. Before this compasition is applied, the drawing or print should be sized with a solution of isinglass in water, and, when dry, the varnish should be applied with a camel's-hair brush.
2905. To Varnish Drawings, or any Kind of Paper or Card Work. Dissolve 1 ounce best isinglass in abous 1 pint water, by simmering it over tho fire; strain it through fine muslita, and keep it for nise. Try tho size on is picee of paper moderately warm. If it glistens, it is too thick, and requires more water; if it soalss into the paper, it is too thin, and needs more isinglasa; it should merely dall the sarface. Then give the drawing 2 or 3 coats, letting it drg between each, being careful (particularly in the first ecat) to bear very lighely on tho brush (which should be if flat camel's-luir), from which the sizo should dow freely; atherwise, the draving may ledanaged. Then taka the lest mastiel vanish, and with it give at lenst 3 coats. This is the method nsed by many eininent artists, gha is fumbl superine to any that has been tried.
2966. Varnish for Shoes. Put $\frac{1}{1}$ pound gum khellac, broker up in small picces, mito is guart bottlo or jug, cover it with alcohol, cork it tight, ank pat it on a shelf in a Warm place; sbiske it well beveral times is diay, then add is piece of cusmphor as largo an a heara vgg, slakk it wall, and in a few houss shake it again aml aid ? oumes lampllack. If the aleohol in gond is will all lie dissolyed in 2 daya; then aluile mad nse. If it gata too thicle, add aleobol, pour ont 2 or 3 tea-spoonfols in a eanoer, ond apply it with a mall point bruph. If the mitenale aro all good is will dry in Blbout 5 minated, giring is gloel equal to patent leather, aad will be removed oily ly waaring is of. The Mlyantage of this preparation over others in, it does not strike into the legthos and make it hard, but rathains on the nurfico, and yot exelude tho water alıast jwrfeetly, Thu same preparaHon is alinimhto for harnods, and does not soil when bopehed, as is esually tho caso with lamplack Jreparations.
2967. Varnish for Harnass. Tako 95 pot eens. aleuhol, 1 gatlan; white ping turpentine it pounda; gime iteolias, it ponedo; Venien lurpentite, 1 gill. Tat chose stand in a jug in tho sum or loy a hlove untif the groms are digenlved, then amd nweet oil, 1 gilt; and lamplath, 2 nunces; rub ilve lampBlack tirst wift a litte of the varniak. This varuish is hetter than the old style, from the fact that its polinht be as good, atil it toes not crnck when tho harnena in twiates pe knooked about.
2968. Flexible Jepan Black for Leathor. Burctit wimber, H oumoes; truo asphaltum, 3 of 4 oumess ; builsed lioseed oil. 1 gallowi grind the umber with a littlo of tho off; udd it to tho naphaltom, previousty disaolved in a small quantity of tho of by heal; mis, add the remamier of the oil; boil, cool, and thin with a sufficient guantity of oil of trupentine.
2969. Inftexible Japan Black for Leather. Stellas, 1 ounca; wood naphtba, 4 otuces; lampllack to color; dissulve
2970. Varnish or Enamel for Coating the Insides of Casks. A now Hpplication of charconl has recently lieen mate in Eugland for the manufacture of a permanent enamel, or varnish for coating the insides of casks. Tho charcoal, which is mado from tha wood of Salix Albs (whito willow), ta redueed to a very fine powder, and mixed with proper proportiona of shellac and methylated spirit. Whon realy for use it is laid on with a brush, and the intide of the cask is fired, 80 as to remove the spirit and leave only the lining of charcoal and shellne; it is then coated agaia and fired a second time, after which it is allowed to stand a short timto before being naed. This composition is said to form is perfect enamel and $_{2}$, while it prevents any
ehanco of leskage, it preserves thic cansis in an extraordizary mamer. In auswers aluminhly for beer and acids, and it largely allopted by some of oor priveipal brewers.

Varnishing. The art of applyans Farnistien by varions sarfaces. Thin requires expericzoce and eare, looch in the selection of mppropriste marnithes, and in the mamer of applying theol.
2972. To Einish Wainut Wood for Varnishing. Miy, wish good whiling, fach colora as will produco as mear as prositic the color of tha wreet to bie fillel. This mistarr to lin dry. Then gipe the Froud a good coat of oil, and sptukle the mixtare orve tho work until it is pretty well eovercel; then, with a Foft rog it other woth milstances, rab thit in well. Wipe off afl anpertimoumatrial, Let dey thoroogalr, asil marnih. Thin mode is far smperior to ifans.
2073, Finishing Walnut, Fot flling walnut wood, there spo many compoumht in ase, beveral of them muder patasita, that which discolurs ther wound tha lemet wail at the
 simplo of (fem all. lowing nothiog fat fite yge floer neised arith toilod Ell, Jayan mul turpers. Lines, gruami fioe in a pamt mill, aval elighely colored with bonie unwer.
2974. To Varnish Walinat Furniture. In dressing over old fropitures the lint wing to bo done is to wash is ifrer with lintes of pods aul wates, in romesg aif ythets of freese Frope awesty batha, whilk will precwat varnish from ilowing Frealy or lusboutars wedk, If tho work requina refilioge Tos thwar, wheat
 is oll ant turpentime, will doj 3 mt I or 2 viate of whetlae ahmid to last on atpel ndbleal omnoth before afplivine tha varnith. Work
 Fited with a liarter abhatace that starch.
 both what is belter is a cempogad of, equal parts, by wriptu, wf whining, platoy of Parki, pumico atone, aml litinary, fo which may be
 dyke trown, and tera il Sloman. Mis wits 1 part Jiapar, 2 of todled ail, and 24 nf curpentine. Grmb fine in as mill liy the fotaz on with a lirnsh, rab ic is worly let it ent 21
 of 3 days, thex rab monti, and, if requiret, repeat tie poneres. Whea the thling in actue. factory, 日ith kith lhneot vil, pir of with a
 colban; finish weth it alk 1aullorechiof, wo my froe Filfice Wheo har faruiture io alcanes pant fithol, procoed at diructorl in the

2975. To Varnish Fiarniture. When the irubl is nuito chan foll to all haots of blemi/hes with sement of the zatal color. Sor that the fowle is clean, and fres from steat baits: thro dipy it in the ramish, strokn it aleng the wiru raiud armos flen buy of the
 regular coat. This mat be done as quickily as prossible; ind jes the quieklr enough to cunve the varbiab to foam or bubblo ns it leaves the brush. alsays taking care not to pass thor lirusb twice prer the same place, if it can perably le spowied. Let it atand to dry in a spoderatels warto place, that the vamish may rot el口ill. Vanirls must always be applial to is mulembely worm rombt, where the air in ilry an! fien from dust; aud care must leg talsen uever to apply's second coot until Jhe former rave has becone quite UFF. It sequifes martice to find tot how much varnish to take m the bresh. Enongh must be left
an an poright surfane tal ensure a perfect erativer; tut too moch will settle downwards before it sets sond make unsightly rilges as it dries, On a horizontal surfuce, a trifle moro varmixb ran be applied than on ati upright one, but not uuch more; 4s a too thick coatjng even if it camet pous, will dry neither lonel jur satooth, After giviag tho work aloout 6 or 7 conats, let it get quite hard (whiwh you will prove by pressing your houetles anit; if it deare a mark, it is not leard enwogh?; then, whth the first threa fiugers of the baud, rub the rarnish entsl it chafes, and procoed oyer that part of the work yous biesin to palish, in order to take ont all the streath of plartial lamps made by the lornsh; lten give it anuther coas, and let it folaus is day or two to harden. The best tessel for hudding ramish is sold at color slamps, called a carnish par. It is construeted of tis, with 4 false bottom; the interval between the two hottoma is filled with snod, phichn, ledens licated over the fire, keeps the rarmish floid, sul it flows more rendily from clie brush. There is a tin handle to it, and the falseg bettom slopes from ono end to the other, whell eatses the varnish to run to one tond. It hay ulso a wire fised neross the top, to wipe the borsh amainst.
2976. To Polish Varnished Surfaces. To give the highent degree of lustro to varnish after it is laid on, as well ps to remove the markx of the brush, it undergoes the operation of pallobieg. This is perfinamed loy first rubhise it with verg fiusly powdered pumied vhare and wratec: pforwards, gatiently, with ate oifed rag and Tripoli juitil the required pollah in groduced. The surface is then cleasod off wits suff línen eloths, eleared uf all groasiness vith powdered stareh, and then fubleal lotigit with toe palm of the hand.
2977. To Keep Brushes in Order. The brastes tasd jur raratabing ore either flat in lish or romul, tled firm to the bandle, and vade elsher of cansel'moboir or very fino Sirantlese oil varmibos aro applied with briugles of Gne litistles; lao ramiaties are dowed on with ratnel'th-Lair brnelies. It is acepssity tol lim reey carenil in cleaning thesto nthor beene ineml ; fur, af laid by with the varnele ho dient thery nte siom tproiled. Therefore, abter asing, whish them well in spirits of whige or thipmestie aceording to the matare of The varin h- after whieh they may be wasked ont with hin water and snap, when they will Low as goud sas how, and lavt a great wbilo whta ceare. The spinits that aro need for weaniup may ler neal to mix with varniah for the thore cotrition purposes, or tho brushes anay be clounal merely with boiling watar containing a bithe washing ruda, atod stront yellow somp.
2978. To Reatore Furniture, An experienced cabinetmaker intornas int that tho best preparation for cleaning picture frames and restorivg furmiture, especially that somowhat matred of seratehed, is a mixture of thiree parts of linseed ofl and one part spirits of tarpentine. It not only covers the dlafigured surface, but restores wood to ite original color, and leayes a lustre upoth the kurface: Put un with a woolen cloth, and when dry, rab with woolon.

P^{0}olishing. The beatty of cabinetwork deperuls upon the care wilh which it is finished. Sumo elean off with seraping and rubbing with glase paper. This should be done in all cases; but it is not enough, particularly where the grain is at all soft. A good glass-papet also is essential. (See No. 193i:) i polish shoutd then
be added. But, unless the varnish for ealb-inet-work be very clear and bright, it will give a dingy shado to all light-colored woods. This shonld, therefore, be a previous careAgain, some trorkmen polisti with rotten stone, others with putty powier, and others with common whiting and water; but Tripoli will be found to answer the be3t.
2980. To Polish Varnish is certainly a tedions process, und considered by many as a matter of dificulty. Put 2 ornces powlered Tripoli into an earthen pot or basin, with water sufficient to cover it; then, witha piece of fine flamel four times doubted, laid over a piece of cork rabber, proceed to polish the yarnish, always Wetring it well with the Tripoll and water, It will beknown when the process is complote by wiplas a part of the work with a spunge, sad observing whether thero is a fair and oven gloss. Clean off with a bit of mutton-suge and fino tlour. Be carefal not to rab tho work too hard, or longur than is necessary to make the fase perfectly smooth and even.
2081. The French Method of Polishing. With a piece of tine pumice-stome, and water, pass rogularly over the work with the graia putil the rising of tho grain is down; then, with powdered Tripoli and boiled linsoed oil, polish tho work to a bright face. This will ba a very superior polish, bot it requires considerablo tine.
2982. To Polish Brass Ornaments Inlaid in Wood. Tho brass-work must first bo filed very even with a smooth fillo; then, having mixed somo very finely pow: dored Tripolf with linseed oil, polish the work with a rubter made from a plece of old hat or folt, as you would polish varnish, until the deaired effest is produced. If the work be eboay, or black rosawood, take somo elders coal, powdered very fine, and upply it dry after you bave done with the Tripoli. It will increase the beanty of the polish.
2983. To Clean Sort Mahogany or other Porous Wood. After scraping nad sand-papering in the usias! maoner, take a sponge and well wet the sarface, to rasise the grain; then, with a piece of fine pumicestone, frow frum stong paticles, and est the Wuy of the sibres, ruls the wood in the direction of the grain, knejong ts moist with water. tent the work itry; then wet it agais, and the errain will he nuteth smanther, and will mon raker 90 mucti. lappat tho process, and tho setriese will hoemace perferety sinnoth, and tha tosture of that woul auch hardeued. IC this whes bot stteresi in ratisfactim, the surface may be improced le wing the pamiceotona with cobldrawt linseed wif, procerditt it the same numper as chith water. This will bo found tir give a wort beantifat as Well ast a durable fice ty the work, which moy thea bo polisbed or varniabed.
2984, To Clean and Finish Mahogany Works. Sirapis nad sand-paper the work as smponth as passibla; go over ericy part with a brush dipped in firmitare oil, and let it romain all nught, hare ready the powder of tho finest red brick, which tie up in a cotton stocking, and sift equally over tho work the next murning, amb, with a leaden or iron Weight in a piece of carpet, rui it well tha way of the grain, backward and forward, till it has it good gloss. If not sufficient, or if the grain appears at all rough, repeat the process. Be careful not to put too mutuch of the brick-dust, us it shothli not bo rubbed dry, but rather as a paste upon the cloth. When tho surface is perfectly smooth, clean it off with a rubber of carpet and fine mahogany saw-dust. This process will give a good gloss, and make a surface that will improve Ly wear.
2985. To Clean and Polish Old Fur-
niture. Thke a ganart of stale beer ur vinegar, put a hanufal of commou salt and a tablespoonfol of menriatie aejd into it, and boil it for 15 mirutes; If may bo kept in a bottle, and warmed when wanted for use. Having preciously washed the furniturs with suft hot water, to gec the dirt nff, wash it carofally with the above mixtare; then polish, according to the directions, with any of the foregoing poltshes,
2986. Mixture for Cleaning Furaiture. Cold-draws linseed wil, 1 quart; spirit of wine, and vinegar, if pint cach; Iutter (terchloride) of antituony, s ounces; spinit of turpentine, f pint. This mixturo requires to be well ahakna before it is nsed. Λ little of it is ther to be puored upos a rubleer, whieh runst bo well applied to the हnofiare of the furditare; suyezal opplications will bo necessary for new firniture, or for such as had provionsly beea Freacl palished of rublbed with bees' wax.
2987. Furniture Polinh. Disqalve 4 ounces best shellac in 2 pints 90 juer cout, alcohol; add to this 2 piots limesed oil, and $\frac{1}{2}$ pint epirits of turpeatine; when mixed, add 4 ounces sulpburic ellier, and 4 aubces smmonia water; mix thomeghly. Slakko when ased, nud apply with a sponge lightly. This is an escelteut arficle, espectally where tho varush has becomeg ohi and farnished.
2998. Polishing Paste. Talus 3 ounces whito War, f ounco Caule sosp, 1 gill tur pentine. Shave tho was and napp very foos and pat the waz to the furpentine; let it stand 24 hours; then buil the soap in 1 gill water, and add to the war athl curpention. Thia las been bighly recommended.
2989. Furniture Polish. Tees' wax, i pound athames root t raope; melt together In a piphin ratil the former ta woll colored.
 of enels \ddagger gill; atruits through a pieco of coarse mastin.
2990. Furnitnere Paste. Turpeatine, 1 pirte; allabuct move t option; diged wntil suff fiejogtly colered, thest nuld lever' vax, serapas smath, 4 omece; fiat the seesel toto hoot wa ter and atir until dismolrot. If wanted pate. the ntlanet may he omitsid.
2991. Composition for Soft or Light Mahogany. Loil together colld-druwa bitlseed vif, nuif ns much alkarel ruot as it witl cover, and to eyery pibt of oil bah I ousee of the best pose pink. When all tho color is es iracted, strain is oif, and to overy pint nidd ? gill guifits of turpeatine. This will be a ver superior compoation fur soft and light mahogany.
2902. To Wax Furniture. In waxing, it is of great importance to make the coating as thitt es possible, io order that the reins of tho wood may be distinctly seen. The folloniog preparation is the best for perfurning this operation: Pat 2 onncer white and yeliow wax over a moderato fite, in A very clecie fes. sel, and, when it is quite melted, add 4 ourices best spirits of turpentive. Stir tho whole until it is entirely cool, and yon will hare is pomade fit for wasing furniture, which mont be rublied over it accoriling to the namat method. The oil sean penetrates the pores of the wood, brings out tha color of it, canses the war to aulhere bettet, and prodgeces a lastre equal to that of varnish, withont being soliject to any of its inconreniences- The pulithmay be rencwed at any time by rubbing it with a piece of fine cork.

FIrench Polishing. The
of rabbing it on the surface of the wood, is of comparatively modern date, To put on a bard face, which shall not be so lisblo to Ecratch as varnish, and yet appear equally fine, the French polish was introdneed. Helow we give a fall direction of the process, and also the various preparetions of the different comprasitions necessury.
2994. To French Polish. The varnish being prepared (shellac), tho articlo to be polished being finished off as smoothly as possible with glass paper, and the rabber being made ns direcled below, proceed to the operation as follows:-Tho varnith, in a narmiddle of the flat face of the rabber, by layiar the rubler on the mouth of the botta and shating up the yarnish onee, ns by this means the rubber will imbilue the proper quantity to raruish a considerable extent of surface. The rubber is then to be enclosed in a soft llinen cloth, durbled, tha rest of tha clath being gathered up at tha back of the rublere to form a basdle, Moister the faco of tho lizen with a litzlo raw linsed oil, applied with tho finger to tho middle of 3t. Place tho work oppratite the light, pais the rubber quickly and lightly tver its Eurface uniformly in timall circtat strokes, tutil the rarmish becomes dry, or zearly sog Means charge the rubber as before with varninh (unitting tho oit), and repeat the rubling, uplit three cuats aro laid on, when a litcle wid may he appliel to tho rubber, and two foath more given ta it, Proceed in this way unsil the rormith har acquired tiomo thickoess; then wet the inide of tha finen cloth, bufore applying the parsinh, with alce. fiol, or woal naphthah and ruli guickly, lightly, and untformly, the whole farface, Latly, Wet tha limes sloth with a littlo oil and pleahel without varnioh, aEd rul as beforo till stry. Each coat is to bientied until tho mag㔼peary dry; und too mach rarnish mast not be pat on the rag at a lime. Bo atso very particular in letulse the ragis bo very clenas and roft, as the polisio depends, in a great messare, va luo caro taken on kecping it cleat nod free from dust dariag the operation. If the work bo purow, or the grain coaree, it will bo neconnary to pove it a cont of cienr sizo proviour to comusencing with the polish; and, when dry, gently go over it with very tino glass paper. Thie size wifl fill up tho pores, and provent the wasto of tho polist, by being
alsortbed foto the wooal, and be also of seving alsorbed fito the wood, and be alfo is saving of considerabio time in the eperation.
2995. To Make a French Polish Eubber. Toll up a strip of thick woolen cloth which has beeca torm off, so as to form a toolt clarile rdge. It should form a coil, from Ito 3 wehes in diameter, nceording to tho bize of the worlc. This rabber is to bo fecurety bonnd with thread, to prevent it from uncoiting when jt is suzed.
2996. Best French Polish. Shellac, 3 parta; gom tonstich, 1 part; gam kandarach, 1 part; spirits of wine, 40 parts; tho mastich and sandarach must first be dissolved in the spinta of wise, and then the ehtellaw; tho prooesa may be performed by putting them into a bottlo loosely corlzed, and placing it in a Fensel of water heated to a little below 173° Fatiz., or the boiling point of spirits of wine, until the sotution bo effected; the clear solution tiay bo poured off into another bottlo for use Farious receipts for tho Freach polish hare been pabliched, in which mgredieuts aro inserted tbat are insolnble in spirits of wine, atul therefore useless; and others contain ingredients that aro solnble in water, so as to render the misture mora easily injared.
2997. Common French Polish. A solution of shellac in wood naphtha, (pyroxalic spirit). (See No. 2990.)

2998, Mizstich French Poish. Palo

2999. Sumbancly Fronch Eolist. Ghellar: 2 poinds; mintion and rahdarwh (huth in purder), of earib 1 onice: conal varmidh, 12 oturues; aleuhat, 1 gadlat. All tho abore aro mate in the cult by frepquently allrring or shating the ingredients together in a weclichosed botlla or other ressel. Prenels polish fa used without filtering.
3000. True French Polish. 201 pint spinits of whoo add t ounco each puan copat
and tandarach, afd 1 purce sholae Let Cha grus bo well bsuisul, and sifoel through a pieen of mustius. Pat tho =purits and the guns togethor in a sensel chat can bo closely varked places them near a warm stose, and
frequently thake thein. In 2 or 3 days they will he dissolyed. Strain tho mixture through a pioco of musiliu, nad kecp it tight corked for uses.
3001. French Polish, To 1 pint spinita uf wins add $\frac{1}{2}$ bunce gam shollas, tho same quantity gam lac, axd tounco gous armarneh; pat theso higredionta rato a stone botte near is fre, frequently staukimg it: when tho yarous gume afo disadyel it is at for hoe.
3002. Freach Polish. Take 2 ounces woud मaphtha, 1 unues best shellac, 1 drachm gun benzoily; crush tho gums, wix hera with tho naphtha ia a bottlo; shake than frequoatly till diasolved; it is then ready for use. Thin is tha clear polisk. Tako a litio cotbon weot, apply a litito of tho polfilh to it, sower it tightly with is linen aga to whiche apely es drop of timeed oil, to pravent il from atcictian to bia Wood; uso your nubber gontly, polisting fiom a centra fil a efrentar mamer; finish with a drop of spinta of wino ate a closo rilbber, which will oxtract the oil.
3003. To Stain or Color Fronch Poltuh. Yood may bo bitained or grained nuly color ur douign, by miñu' if with tho polibl, or dippligg tha rubtuer in the color (anely powdarod), at the time you apply hio polid. (sice No .3002.) To predeec a red, $\mathrm{A} p$ the cotton iato dragou'a illood (finely powdered), imandiutely applyige tho polidit then cared with tao linan, nut poliah. Evor yollow, use the boot chrobio yoflow. Por blas, attramariuo blue, or indigo. Fer blaek ivory or lampblach, des Graining is prodaced by Louabiag or tirsakiag the wood with the eqlor, us ahave, fia iracgular thes or marks, nad iu nuch ulappus is the fancy may nogerst, then fiffiathing it with a coat of elear pothal.
3004. Water-Proof Polish. Tako 1 piat spirits of wino, 2 ounces gum-bensoin, t ounco gum kandurnch, and $\frac{t}{6}$ ounce gom auinuo; theso must bo pat into a stoppered bottle, and placod either in a sand-bath of in hot water till dissolvod; then eteain the mix:ture, and, after adding shout $\frac{1}{\frac{1}{2}}$ gill liest clear proppy oil, slanka it well nip, and jut it by for use.
3005. Bright Polish, 1 pist spirita of Wina to 2 cuncua gmu buxpin cad fonce gum-eandarach, put in is glass bottlo corked, and placed in a fand-bath of hot water until you find ail tho gum dinsolved, will make a Leaatiful clear polizh for Tunbridgeware goved, ten eaddion, des. It mast bo elhaken foon thono to time, and, when all dissolved Etrainod through a fine maslin aieve, and butted for use.
8006. Prepared Spirita for Finishing Poliah. This preppradint is useft forf finishing after any of tho firegoing receipts, ay it adda to tho lustro and durability, as well as romaving every defect, of tho other polishes; and it gives the surfaces nost brilliant appuranave. Tatio $\frac{z}{}$ pant best rectificd spirits of wine, 2 drachms shellte, and 2 dradbma
gam-beozoin. Pol these ingrealiants in an bottle, and keop it in a warm place till tho gam is ull dissolsed a $_{2}$ thatioz it frequently; when coll, nid 2 toe-apoonfuls of the best claar white pogpy mil; shale them well togocher, and it is fis for tige. This preparation Fan madd in tho bame manner as the foregoing polishes; bits in order to remove all dull places, the pressure in rabbing may be in-

creasied.

3007. Strong Polinh. Ta bo nsod in the carved parts of cabinet-work with a brush, as in standarls, pillars, claws, \&c. Dissolvo 2 onnces seed lao and 2 ounces whito rasin in I pint epirits of wiue. This sarnish or polish ponst bo baid on warm, azid if tho work can be warnacd alsos, it will les so wach the letter; at any rate, muiatura and dampness must bo avoided.
3008. How to Give Hlack Walnut a Dark Dead Smooth Surface, Take asphaltuns, pulverizo it, placo it in a jar or bottle, pour uyes if abuat twice its lult of turpenting or benzole, put it in a warm placo,
and shake it from tinus to time, When disind shake it from tinug to time, When disa eloth ut atiff bravk. If it should mako too dark a btaill, thin it with carpentind or benzole. This will dry in a fow hours. If it is defired to bring but thd graln still mors, upply a mixtmo of lebtal of nud turpentina; $t h a t s$ botter than oil alone. int no oil with
the asphaltom misture, as in will ury very slomly. Whea the oll fa dry the wood can to putithed with thu followiog: Shollac varnidi, of the usual consistency, \% partar boiled oil, it part. Slako is well before uing. Apply it to tho wood by patting a fow drops on a cloth aus rabbing lirisly on tha wool for a fove monents. This polial works well ou old Yandubhed formiture.
3009. Polish for Turners' Work. Diseulye reindarach in spirita of wino in tho propostion of 1 aunce sabdarach to + pint of ppidts; pest dars beon' wax, I ounce, end illasolse it in in sulficient quasitity of spirits of turpentise to make it into a pasto; add tho Sonact misturo by degrees to it; then will a woules clods apply it to the work while it is in mation in tho lathe, and with as soft linen rag polish it. It will afrpear at if bighly varutahed.

To Enamel Wood-Work: This ia a procosa for creatiog mar artificial, glosay sarfoce of any culur on wood, very darsbie, and highly nomamental. It cousists of threo diativet, micoessivo operations; first, tho eolored coatiog or surface; nest, the
ureparation of tho surtico for polidiaig; and prepparstion of tho
finally, poliahing.
3011. To Propare the Filling-up Color for Enameting Wood. Tho filing: ap color, which formas tho body of tho covamel,
is of the grratest importance to the altimate is of the grvelest miportatise to the work: of this roaterial there aro beveral kinds manufactared-black, brown, and yollow, for coach jaiuters, japannery, and others; bot for nso in intarior decoration it is preferalile to use the white lead filling is, by adding the necessary staining colors (which do not affect the proparties of tho enamel), a aolid hody of coler is formed, of the samo tint, or nearly so, as that vrith blich tho work is requireil to be fiptidicd, thas dofag WWay with the otjuctions which muy bu urged against the hack or dadk-colorcil tilling. It is ovident that if work which bes to bo oolor, be filled of with dark-colored filling the zumber of coats of paint réquired ta obseure or kill the dark eofor will bo so many
that thete will he dauger of the work becoming rough and unoven in parts. The white lead should har arousd stiff tu turpentine, and alout pow-fourth part of the ordinary white load, ground is oil todiden to it, in order to prevent Dur eantid cracking, which it has a lendency to flo, except there le eomet litto oil mired will it. A sufficient quantity of polishing copal or hest earriage varnish blionk now be added to lind it so that it will rulb down casily, which fact camot bo properly ascertained except by actunl trial, inasmuch as the drying properties of varnishes vary, and other causes influence tho matter. If there be too much yarnish in the etuff the work will be excoedingly diflieut to cut down, and if too little, it is apt to break up in rubbing, Bo that it is alwaye tho zafest plan to try the enambl color liefore commetioing anything imporiont,
S012. To Lay the Color on Enameled Wood. The color, being properly mizel, should be laid on the work in the ordinary manoer, using it ratber fieely. It may be mer well to state here that no filling should bet prot upos now wouk withont the bame having hal 2 or 3 conts of ordinary oil paint, nor cin old work withont its baving one coat. This gives a foundation for the filling. Bucconsive costs of the filling thond now lig laid on the wark entil thera is ansifficient thickness to cut down to in level stuffee. Ope day should intervene between vach coat, in order to allow it to harden in somo degree. When a full cient number of conts are put on (which nuzi. ber will of crurse, depend upos the ftato of the work to bo filled uip), it thould stand for 2 or 3 weeks, antil it is thorogibly baid; it will then to rendy for outting down, which in to be done with at felt rublier, gromud pmosied stone, and water.
3013. To Prepare the Rubber for Enameling Wood. The foit used ihould bo such sa tho soblptors bee for polishing marlhe, which varies in thickness from t to of an isch, and abont 3 inchea square. Trbil should he faplesed with resinous gum to square pieces of wool of the same tive, lat 1 inch thick, so as to give a good hotd for tho hand in uning. Theso piceos of wood, covered with felt, may tio male of any size or thaje to fit molded nurfaces or other inequalitich.
3014. To Preparo the Pumico Stone for Enameling Wood. The parice atove to be used phonld be of ajmorent degrees of finonoss, and should to carefally selected, so as to bo sutro that it is free from any gritty subsiance. It is sold ready grotud, but in eituations where it cannot bo conveniontly got, it may bo propared from the lump, by grinding or crushing with a stoue sod muller, sod then paseed through fine sioves or mussliu; by using these of difforent degrees of testaro the ground pumies may bo produced of dificrest degrees of Gineness. Unless great care bo exeretsed in chis matter, it will be found that particles of gtit will lee mised with it, which make deep eeratches on the work, thas casising endiless troublo and anmoyance, beeides rpoiling tho work. The greatest care is also required in teeping the folt clean and free from grit Many workmen are carcles in this matter, and, when working, eot dowir tho felt on the etep-ladder or floor, thus allow ang particles of rand of grit to get upon it,
3015. To Cut Down or Prepare the Surface for Polishing. In cutting down, it is best to ase a piece of soft lump patmico staun to takio off the rough parts. The work should then be wat with a Eponge; the felt must first he koaked in Water, thet aipped intu die porsdered pumiee, and tho work rubled with it, keeping it moderately wet, and rubhing with it cireular motion, not strajght up and down and across, and with in
light toueh, using ouly just as muph pressure us will cause the pumice to lite, wheh will le pery cleurly folt while the hand is in motion. Caro and patience aro reqnired to do (his properly, for if the prossare he too great is forces thepumicu into the liody of the filling zolon, and saruteles it insteal of eatting or grinditg it faitly down. No burry will avail in doing this work, it must have its time; hurry only defeats the end in view, and often causes much unnecessary labor, A seratch, cansed by want of care and too much heste, will often throw the work back for days, and iavolve tho cost and labor of refill. Ing, In practice tho purpose is liest answered by using tho pumice btote, tho coarser kind fitst, then the medium, wal finishing with tho fincat last. It will bo found advantageons to let a day elapse between the rabling, for when the surface is eut down the filling will iu all cases bo softer underneath, end if it ho ullowed to 5 fand for a dity, the newly exposed surface gets harder, und of course rabis down butter. Tho praice stome should be well washed off the work occasionally, in order to feo what progress in lieing made, and if it require more rubhing or not. If, after the first mabing, the кurface be found not snificiendy filled ap, it may have ote or mora additional conts of filling beforo mach labor las been *pent upon it.

3016, To Polish the Filling. When odilliciently rubled down with tho pumies stose-that is to foy, when it has been eat. dowin to a fine, loved, and tumform barface, (see No. 3010), the work showld stand for a day or two to hardum. It will now depend entirely aron the work, as to whether it muit bo polished upon the filling, or whether it will lava to lo yarnished and polfstice, if tho filing bo of the right color, und of one unifotm tiat, it fis lest to bo fimidied in this etate, because it will bave a surface and texturo Which eanat be gol by tuy other meens. Ftnished in this neafath has alf the uniformity of stifaco and ecideuco of fimiah, without that appoarance of varnilis whicts is on obfectionable. After it has stood a day or two, Tho work muat bo polisbed in this way:
Takon oleauf felt and rottea stone, efther ini oil or water, and with this rab the work at befiee, ontil tho polish begins to appear; then Luko a boss (i.e. is vall of cotton woul inclased io fioo suk), put the rotten stose upoti this and keep rubting with tha erreular mo. tion until the polish ts uniform and equel all over. The rotten btone untist now he carefilly dequed off; if it bu in oil, clean off with fino floar; if in water, with sponge and wark. leather and water, tuking care not to seratch. A olean damp chamois or wasb-lesther will now bo roquired, which mast be hold in the lof baut, loaviag tho tight perfectly at lluerty. Now uso the ball of tho right hand, presa geatly upou tho pratel, and deaw it formard: or towarid gos. If this bodone properly, it will bring le is clear peliah ppoa the work. Tho band shuuld to kopl. sliphaty damp by drawing it aeross tha leaher altaost every time tho hand is drawat forward. If this be done effectuallf, a rustling sound will lon predeted whilo the band is is motion; if this be Ho, tho polish will be sme to follow. Tho polish thus proditced on tha filliug alono will hava a beastiful sof sppearatee font if the work has to be fipithel with a lvilseart lustee suil to a high degree of polish, pronesed as tol-
lows : lows 30
3017. To Finish Wood with a Brilliant Polish. Ater luring cut down witt tha pumice and folt as directed in No 3015. thes hlling has to bo coated with two or mare oonts of the lest polighing copaf varnish, having a quantity of the best tube flaka white; this sirould bo mixed with the rarnish in suffi-
cigot quantity to form a ereamy misture, mith which the worl mast bo conted-one, two, or tireocoats, qs may bodesirable. This shonth stand for 3 or 4 trenks, watilst becomes banl; for tha hantict tolit thy better it will pol. lah. It must then be ent downa with felt and tho finest ground pumied stone in water, and polished with the rotuen stonge, as before described. By this means a luright and brilliant polish may be obtained, of a wery evdrring natare. The samu process wrill of course answer for all varnished imitationa of woods and marbles, and ell work which will ailmit of the application of oil varnishes.

JGpanning is a kiod of vornishing of lacquering, practiced in perfectiou by the Japanese, whence the name. The only diforenct betweos varnishing and faganting is that after the application of every conct of color or varaizh, the object so rarnibhed is placol in an oven or chamber called a stove. at a4 high a tomperstare as can fafely bo eatployol without injuring tho articles or causing tho sumish to blister of ras.
3010. To Prepare Metal for Japan-ning- Metal requires to other proparation than cleaniag with turpenting, to frea it from grease or oil, muless tha latter ahould lappers to bo linseed vil, in which easo tho eleaning in gouorally dlspensed with, and the artseles aro placed in tho stova and hented until tho oil is paked quitse hard.
3020. To Preparo Wood for Japanning. Wood that is intented ta be nowd for tha beat japanned work, requires to bo thoroughly dried befora it is made uph otherwhe it will bo sabject to oll tho erile of sltinking wrpang, and splitting, when esposed to tho beat of the store To arobl thess evilh the wood, aner liaving beca well acambed in the renat nisuser, by e spostiro th tha ain, is eskat out neazty to two required formis, and baked for ioveral dasyio tho japauer's stove, the hoat of which 15 eradnally increa cels ath the woul is efterwanls worbed op into chairs, tablot, trays, and similar articlet, which are afteryarda akain exponet to the heat of the store, athl any cractis of other iajucrfections, thit may be thmy ronderof apparent, ane carcfally stoppred with patif of phite fead beforo Lho japaming is commencol.
3081. To Prepare the Ground for Japarnning. Por likick japanned worls, tor groutad is lirst preparel wilt a coatiug of Thack, male by mising drons ivory hlack to as propier convistctaes with flark cotazal anime varnish, 2 , this pires a blacker surfice thos canla bo produzel by japasi alrae. If thoo surlace is required to be polishest, five of six coats of japana ste necessify to give suffirient touly to prepent tho jopara from being rublbed throagh in polishing.
3022. To Make Black Japan Vurnish. Melt together 60 pounds Xnphea asphahwis dud 8 poimulo datk gum anyon and boil for 2 houts in 12 pallowis linseed oif; then melt 10 pounds dark gutu amber, and boil it with 9 galluns ifmeeci oif; add this to the other, with a sumficient quentity of isfers, sail bnil for 2 hours louger, or umtil a little of tho mava, when conted, may lie rollud into pills; then witherane the beat, end afterwarda thin down With 30 gallonis oil of turpentine. This is excelluat for either wnoid or metats.
3023. Flexible Black Japan Varnish. A good Llark jopan is oinder of lanatt tumber. 4 oumees; truo apphaiturn, 2 ormpes, end boiled oil, I quaris Diswolye the asphaltam int first in a littlo oil, liting a muderato heat; then add the waber, frotind in vill, and lastly, the rest of the oil, and incorporato thoroughly. Thin with turpentine. It is a flexible japan,
and may be used on metal worls which requires to he bent somewhat.

3024, Colored Japan. For colares worls 100 japan is used. Lutt thicy are painted कith oniling patuters colong ground with linseed oil or forneptise, and mixed with tantue rarnish; thal the woth is dried in tho oren in the sama matser as tho black japan. To protect the colors, and give brilliancy and durability to tho surface, the work is aftergands varnished with copal of anime rarnisb, mada withont dryers. 2 or 3 conts of varpish suffice for orditiary works, and 5 or 6 for tho best works that are polished. Very pala tarmish is of course requirel for light cofors. Ornamentat derices ara painted on tho objocts in the usual mamoner, after the general color of the ground hias beens lald oni Tho colors are dried in the stove, und tho work is finally varniwhed anal polished just thes samo as plain colons, bit more carchaly.
3025. Transparent Japan Varnish. Oil turpentiog, of outheos; of lavender, i outhees; camphor, 1 drachm; broised copal, 2 ounces; dissolye. Fied for tin, \&e. Quick deviog copal rarmish fa usually sulistituted.
3026, To Color Japan Varnish. The ubore is a transparont jupar, but by tho foltowigg mudifiontums any of all of tho yarions seolor wies bu mado from it. It is itulispons sulile that tho colors bo froand to an impalpalide powdet beforo mixing with tho yarniff, and shoud then bo thoroughty groand with the varailh. otlierwise it is preferablo to apply tho color first as a paint, and varnish aherwards will the above transpurent japan. Previnat to varninhisg a painted farface, it whould bocut down with palverized pamicostome, de., Ha directed in No. 3015.
3027. To Coloy Japan Blue. Tridigo and 1russian blan buth tinely pulverized, of each \ddagger oxase: apicats of (arpuatiso, 1 pim. Mir wedl and stalin ot 100 veraliter plazed with I'rusias blace or umade; mis with the varnidt ja Nis thes,
3028. To Color Japan Red. Ver-
 in fapargioil work ia much juproved by glazing it with a thin cont of take, of ovea robe pimk. Or: Taka fpitita of Larpentiong $\frac{1}{}$ pita fadd cochinosl, $\frac{t}{}$ ounces lot struif 15 bouts, athl ctraia. Adil to tho trausparent ynurifil) (soc No. 3025) to vatit the funcy.
3029. To Color Japen Yellow. King'a yollow, turpeth minernl (stabulphate of tuercur) , and Dutch pink, all form very bright yellows, and 1 lig latter in very cheap, Seed lac varmih nishutates wilh yeliow very well; and when they aro required very luright, az improxoment may be effectet by infusing turmethe in the ramish which eovers the gromed. Or: Take 1 ounce of pulverized riont of carcuma ntul stir of it into 1 plat of the transparedt varnith (ace No, 3025) sintil the color pleases jour ; lot staud a opw howre, and
3030 To Color Japan Green. Distilled verdigris laid on a geonnt of leaf goft produces the brightest of alt greens; other grenns may be formed by mixing Fing'a yellow and bright Pritsian blue, of turpeth mineral and prussian Bhos, or Dutch pink and verdigris. Mis widh varnich. (Soc Nos. 3025 and 1421.)
3031. To Color Japan Orange. Mix a little rell with pellow tutil the desired color is obtained; and add to traspurent japan.
(Sce No, 3025.)

3032, To Color Japen White. White grounds are obtained wrth greater jitibeuley than any other. One of the beat is prepared by gribditg up flock-wbite, of fine-white, with $\frac{1}{6}$ of its weight of starch, and drring it; it is then tempered, like the other colors,
usiag the masticis varaish for common uses; end that of the hest copal for the finest.
3033. To Color Japan Pink. Mis Huffeient red (see No. 20ms) with transparent varnish (see Do. 3025) to give the desired fint of pink.
3034. To Color Japan Purple. Mix red and thete together athe ad! to tho varnish. (See No. 3025.)
3035. To Color Japan Violet, A violot jupan may bo obtaned by mixing pupla (sea No. 3034), end white (sce No. 3035), with tmasparent japan (sce to. 3025.) 3036. To Color Japan Brown. Fur brown japanned works, tho clear japan alone is used as tho gromen, or tumber is mixed with tho japan to pron the rogriped tint, and the work is rfterwards Alied in tho orten, in the вamo manper nt tyack jopart.

3037 To Japan 01d Ten-Trays, First elein them thoronglily with sorp und water and on Ltelo rottosestone; then dry them by wiping and exposure nt the fire. Now get fortio groit popal vamikh, ipix with it pond bronse powder, and apply with a brash to the denuded parts, after which set tha fea-tray it an oven, at a heat of 2120 to 300%, antil the rarnich is dry. Two coata will imake it equal to now.

Inndia Japanning. Tho graet the culvosiniag, or raition the figures, soc, atruso the sitefice or groced, mal the metaltio or broaze 3 ike hue of tho several designs; the grotesprue pppeatutee of tho meveral orpameats, whether figuren, handeapes, or whataver otter deatgna lyej aro embollished with, being no totally diferent fom every prineiplo of perspectire, abil so opposito to every thea wo lisyo of corrovt drawing. Nothing lot tha study of Cbineso models thomselves will enabis tho workment to imitate, with any dogree of prectijon, thedr deyeral etaracteristich.
3039. Ground for Chinese Japan. Mis any quabtify of the hiagst whiting to tho consistacey of paint, with fainglass aize; lay ot your wood 2 or '3 chats, ubsorvibs to pot it morenly nad duveldy, and not tho thick; let it dry; thoa rub it goatly tith a Fuft ras and water till the Eurface id frite level and polished; if a nmail portion of troney is added to tho mistare, it will remer it lean liable to crack or pecl off, If the gromsd is to ba two of tho black jupan mentioned in the comthon method of fopratining (sce No 3022), and is is prepered for cluo figares, de.
3040. Plaster Ground for Chineca Japan, Mix fino plaster of Paris with eiso not too thick, and apply it quiekik, for ft soon gets lated. Two conts, iv ronst instances, will be sufficient. Afer it id guita dry, polish it with fito glass pipert, and rab it with a wet soft cloth; them efroc it 2 or 3 coasts of drying linseed oil, or ot meth as it will enak up. When dry, it ia ready for Jupromiog.
3041. To Trace Designs on the Ground. Having drawz the figares on a pipeco of white naper either with ith or peacil, rnb the back of is with fing challs or whiting, and shake all the lonse powder off; Tay it or the grotud, and trace or go over every part of the ontige with tha end of a blunt bodkin, or other Eimilar imstrument; yot will then baye soketch in faint outline on your ground. Then proceed to put in the figares, dec., with any desirel edor, ir brunzo them.
3042. To Raise Figures on the Work. Prepare a mistare of whiting and sizc (some prefer the whites of eggs), of a
consistency to flow freely from tho pencil, the hairs uf which must be rather long. Be"fin with a figure, or otler part-but do not
do teo much at a time-and urace the outling correctly, with is free hund; then talie a piece of stick pointed at the end, dip it into tho composition, and fill up the inside of the outline. Continme to pnt more of the mistaro on till it is raised sufficiently above the sarface. Let it get quito dry, and then polish it with a emall catuel's-liair pencil and clean wroter, so as to makn it perfoctly smooth and Jevel. Caro mast bo takea in this process that the compasition is not too thin, or it will spread beyoud the bounds of the outling, but just so thick as to drop from the stick. Somo mis with the whiting a portion of flake-white, or dry white-leal. This in an inprovement, and for very particular work bhould bo adopted.
3043. To Japan Work-Boxes and Fancy Articles. There is 4 very pretty method of ornamenting boxes, cabinets, to. so that the figures appear of the color of the wood, and the growid black or colored ; this. by mang, is produced by first tracing out the pattern, and then prieking in those parts which shall appear as the ground, eitier black or any color at fancy, This is a yery tedions process, aud even when finished with tho greatest care, sill not appear regular or well delfined in the pattorm. Tho followisg mothod will bo found refy expeditious, nud at the same time very corroct; it is but littlo known, and, as such, will to the practical japanoer be the more noceptable. Is may also bo applied to many other purpoges than here sllinded to, The fullowing preparation is necesary, ant may be torned tha stoppigg oest mixture; it is made by dinsolving the bost whits bees' vis lis spirits of torpentine till it is of tho conistency of carnikh. Kerp this mistore io is lottle, enti, when wabted for aac, mis maffielont for your present purposes with whito leail in powiler, or flake white, to givo it a body-but not tou thick, only so that it will flow froely from the brmb. Haviag traced the desige, go vpes thase parts whicha are to remalu of the color of the woonl, and let it dry; then mit irory-black (or othor color as mat lio requited), in very ino powiler, with parciment or isinglass siac, and fo ovenly and moothly over every part of the work. It will sol appear wholly black, or of whatorer color that was trisel with tha size. Let tho whole got thoroughly dry; then, with a stiff lrash dipped in plain spirits of tutpentine, ruib tho Wholo of the work twell, oud those parts thet have been gong over with the ktupping-oat miature, will come off, leaving the whicis or other color perfoet. It will ches appear as if tho work had lieen pricked in, but mach sbarper, and will, if carefilly doge, hase a beantifd effect, You have now nothing more to do than Fnrnixh tho work, as wital, and polish it as direoted in Nos. 2979, \&c. To finish the work In the manner of Iullatin jarmat, kive it 8 or 10 coats of varnish, so that it will bear polfaluag.
3044. Sealing-Wax Varnish. For fancy worts, this hisk of lato years been much nsed, and, if well applied and tho wax good, will lo a very good imitation of India japas. Tho mothof of maling tho varnish or japan is very easy, being Eimply roducing the wax to a cosses powder, and pouring the best spirits of wine on itim a bottle, and letting it grailaslly dissolve without heat, shaking the bottle oecesionaily till it is all uissulved. A 2 vunce stick of the best wax will be enough for $\frac{1}{4}$ pint of spirits. Much depends on the goouncess of the sealing-war, tuld tho color of tha varnikl tmsy bo varied by wing differently colored wax. The fincat vermilion scal-ing-wax makes tha best varnish, the other colors not flowing quito as well; white seal-ing-was is very apt to elot when drying. As
this rarnish dries pery quickly, it should not be made until it is wanted for use.

Lacquers. Lacquersareusel upon polished metals and wood to impart the appearanco of gold. As they are wanted of different depths and ahades of color, it is best to keep a concentrated solution of each coloring ingredient ready, so that it may at any timso bo added to prodaco any desired tint. Lacquer should elways stand till it is qqito fine, before it is used.
3046. To Lacquer Brass Work. If the work is old, clean it first, according to the directions bercafter given; lout if new, it wilt merely require to bo freed froms dast, and rubbed with a pieco of wash-lemther, to nualca it as bright as possible Put the work ofl a bot iron plate (or apon the top of the stove), till it is moleratoly hented, but not tuo hot, ot it will blister the lacquer; then, zecording to the color desires, tako of the following preparations, and, making it warm, lay hold of the worls with a pair of pincers or pliers, and with in soft brush apply the lacquer, being earefal not to ruh it on, but stroke tha brush enatly one way, and place the work on tho bot plato again till tho varnich is hard; but do not let it remain too long. Experience will best toll you when it shoald le removed, Some, fodeed, du not placo it ons the utove of plate a second time. If it nhould not bo quito covered, yom may repeat it carefulty, and, if paias be takea with the lacquer, it will took equal to metal gilt.
3047. To Clean Old Brass Work for Lacquerizg. Mako as strong lyo of woodashes, which may be strangthened by toaplees; putt in tho brass-work, bud tho lacquer will soon come off; then havo rendy a mixtuce of mafortis and water, 6 afficiently introng to takeoff the dirt; wath it afterwaring in clean water, and lauquer it with such of the followiog compositiona as maky bo moat suitable to the work.
3048. To Mateo Gold Lacquer for Brass. Rectifed spirits of wine + pint, mis i pornil of reed.lac, picked clean, and clear of all pieces (as upon that depends tho bestity of the lacquer) with tho espirith of wine; keep them in a wam place, and sbake them repeatedly. When the seed-lac is quito dissolved, it is fit for wee.
3049. Gold Lacquer. Put into a dean four gallon tins, 1 pound ground tarmeric, $1 \frac{1}{3}$ ounces powdered gamboge, 34 onness powdered gum-iandarach, \& pound shellac, and 2 gallons spirits of wine. After being agitated, dissolved, and etrained, ald 1 pint of turpontine varnish, well mixed.
3050. Gold Colored Lacquer for Watch Eeys, Etc. Seed-lac, 6 vinces ; atmber, 2 ounces; gamboge, 2 ounces; extract of red sandal wood is water, 24 graink; dragon's blood, 60 grains; oriental saffron, 30 Erains; pounded plass, 4 ounces; pure alcobol, 36 ouncek. Tho seed-tac, amber, gamyery fine on porpbyry or clean marble, and mixed with tho pousded glass. Orer this mixture is poured the tincture formed by infusing the saffron and the extract of sandal wood in the alcobol for 21 hours. Metal artiefes that are to be eovered with this varaish are heated, atde, if they are of a kind to admit of is, are immersed is packets. Tho tint of the rartiath may the varied in any degtee roquired, by aitering the proportions of the colorine guantities nccording to circumstances.
3051. Deep Gold Lacquer. Seedilac, ounces; turiveric. 1 ounce; dragon's blood, $\frac{2}{2}$ ounce; alcohol, I pint. Digest for s weok,
frequently shaking, decant and filter. Deep gold colored.
3052. Dark Gold Colored Lacquer. Strongest alcohol, 4 oumees ; Spanish smiotto, 8 grains; powdered tarmeric, 2 drachms; red saunders, 12 grains. Infuse and add shellec, ete., as to the pale tim lacquer (sec No, 3058), and when diasolred add 30 drops of epints of turpentine.
3063. Gold Lacquer. Grohnil turmeric, I pound; gamboge, $1 f$ ounces; gum eandarach, $3 \frac{1}{2}$ pounds; shellue $\frac{4}{4}$ pound; all in powder; rectified epirit of wine, 2 gallons. Dissolve, strain, and add tarpentine varnish, 1 pint.
3054. Brass Lacquer. Tuke E ounces shellac, 2 ounces sisndarach, 2 ounces annotto, I ounco dragon'a lilood resin, 1 gullon of spirits of wine. The article to be lacyqered should bo beated slightly, and tho Jacquer spplied by meana of a woft camel's-hair brash.
3055. Pale Brass Lacquer. Take 9 gallons spirita of wine, it gimees capo nloes cut small, I pound fine pala ahellac, 1 onnce gambogo cut umall. Digeat for a week, Ebake frequently, decant anli filter.
3056. Lacquer for Bronzed Dipped Work. A lacquer for broused dipned wurt may be mula thus: Meohol, 12 gallong; seed100,9 pounds; turmerie, 1 pound to the gallon; Spunial atfron, 4 omees. The satfonu ray be omittad If the lacquer is to be very light.

3057, Lacquer for Tin Plate, Bant nloohol, 8 ouncea; tarmerie, 4 Jrnchma; Iray Eaffron, ${ }^{2}$ seruples; dragou'a blood. 4 'rerisples; red esmaders, I seraple; shellac, 1 obnce: 5 gim tandarmeh, 2 drachens; guas mastich, 2 druchmb; Canuda balsam, 2 drsohms; wher dissolved, add apirita of Lurpentine, 80 drops.
3058. Pale Tin Lacquer, Strongest alcohol; 4 ounces; powduted tammerie, 2 drachom; hay eaffros, I scruple; dragon's blood in powder, z^{2} boruples; red nanders, 1 ecruple. lafuse thia mixturis in the cold for 48 hours, poar off the elear, and strain the rest: then add powdered thellac, $\frac{1}{8}$ omace; eandarach, 1 druehm; mastieh, 1 drmebm: Gunada balsam, 1 drachm. Dissolve this is the cold by froquant agitation, Inying the bottle on its bido, to pressent a grenter sisfface to tho alcohol. When dissolyce, add 40 (tropa of spirite of turpentine.
3059. Iron Tacquer. Tako 12 parts amber, 12 parta turpentine, 2 parts resin, 2 parts asphaltum, 6 parts dryime oil, $O r$, 3 pounds esphaltram, 5 pound ahelloc, 1 gallon turpentine.
3000, Red Lacquer. Tako 2 gallons apirits of wine, 1 pound dragon's blood, 3 pounds Spanish annotto, 41 pounds gum sondrach, 2 pintaturpenting. Made as palobrass lacquer.
3061. Red Lacquer. Spanish mmotto, 3 pounds; dragon's blood, 1 pound; gum sandarach, 3$\}$ pounds; rectified spirti, 2 gal lous; turpentine varnish, 1 quart. Dissolvennd mix as the last.
3062. Lacquer for Philosophical Instruments. Gambogo, 13 oarices; gam sandarach, 4 oumees; Emm elemi, 4 ounces; best dragon's blood, $\frac{9}{}$ ounces; terrs merita, 11 ounces; oriontal ealfron, 4 grains; seed-lac, 2 outuces; pounded glass, 6 ounces; phre al: cobol, forty ounces, Thedragor's blood, gam elemi, seed-lac, and gamboge, are all pounded and mized with the glass. Over them is poured the tincture obtained by infusing the saffron and terra merita in the alcohol for 24 bours. This timeture, before being poured over the dregon'sblond, ete. Ehould be strain. ed through a piece of clean linen cloth, amil strongly equeezed. If tha dragon's blood gives too Jigh a color, the guantity may be
lessemed accoribiug to circumstances. The samo is the case with the other coloring matters. In chnowing the terra merita, select that which is sombl and compact. This lacquer bes a very good effoct when applied to many cast or monlded articles used in ornamenting fornilure, the irregularity of surface of which would render it difficult, if not impossible, to polish in the ondinary manner,
3063. To Make Lacquer of Various Tints, Pab 4 oumces best gum gamboge into 3 ounces spirits of turpentine; 4 punces dragon's blood Into tha samo quantity of spints of turpentine as the gamboge, and 1 ounce ampotto into 8 ounces of the same spirits. Tho 3 mixtures ehould be made in different vessels. They bhould then bo kept for about two weeks in a warm placo, and as much erpesed to tho sun as possible. At the ond of that time they will ha fit for use; and any deaired tints may bo obtained by making a composition from them, with such proportions of esich liquor ss the nature of the culor desired will point ont.
3064. Durable und Lustrous Black Coating for Metals, The bottom of a cylindrieal iron pot, which should be abont 18 inches in beight, in covered half an inch with powdored bituminous coal; a grate is then put in and the pot filled with the articles to bo Varnished. Articles of east iron, iron אirc, brass, sinc, steel, timned iron, \&c., may be suljocted to the samo treatment. The cover is then put on and the pot heated over a celso fire tunder a well-ilrawjug ehimaey. In the beginsing the modataro only evaporster, but soon the coking cominences, and deep brown vapors csicape, which irritate the throat. When tho bottom of the pot has been beated for 15 minutes to a dall red heal, the coal hain been mustly conrerted fnto coke; the put in then removed from the fire, and after standing 10 miautes opened for evaporation, all the articles will bo found covered with the above descrtbed conting. This lacguer is mot only 4 protection agninst osidatioa of metals, but wil stand nlso a considerablo beat only disappearing, at begisning redness, and thereforo ita tuefol application for ovens and furmacee. The coaling produced is thin, lustrons, ond cammot easily loe seratelocd, Pise iron ware articles, fuch ns sieves, aro in this manner conted with renarkable evennens, which cannot be accomplidied in any other way Articles mado of tin, ot soldored, cannot bo nubjected to thit process, ns they would fuse. Smaller orticles, like hooks and eyes, reecive this coating ly heating them togother with small pieces of bitiminons conal in a cylindrical sheet irou dram like that ased for roasting ooffee, until they presont the devired lustrous black appearnnce.

$\mathrm{M}^{\text {ethod of Marbling }}$ 1.1 Books. This is performeil by

 or by meajs of a wooden trough and gamwater as follows:- Provile a wooden truagh, 2 inchos deep, 6 inches ride, and the length of a super-royal sheet; boil in a brass or copper pan any quantity of linsued and water untel a thick mucilage is formed; etrain it into the trough, and let it cool; then grind on a marble slab any of tho following colors In small beer. Fut-Etuc, Prussian blue or indigo.
Red, rose-pink, rermition, or drop lake.
Fellow, King's yellow, yellow ochre, \&e.
Whise, flake white.
Brack; iFory of burnt lampblack.
Browis, ruber, barnt bubler, vandyko brown, siemm, burnt sienna; black mixed with yollow and red, also makes brow.

Green, blee and yellow mised.
Orange, red and gellow mixed,
Purple, red and blue mixed.
For each color you must have two cups, one for tho color after grindiag, the other to mis it with ox-gull, which must he used to thin the colors at discretion. If too much gall is nsed, the color will spread; when they keep their place on the surface of the trough, when mored with a quill, they aro fit for use. All things being in readiness, tho colors are successively sprinkied on the surface of tho macilage in the trough with a brush, and aro wared or drawn nbont with a quill or stiek, nccording to taste. When the design is thas formed, the look, tied tightly between cutling-boards of the fame size, is lightly pressed with its edge on tho surface of the liquid pattern, and then withdrawn and dried; the covers may be marliled in tho same way, ouly lettiag the liquid colors run over them. The film of eolor in the trough may be as thin as poasible, and if any romaina after the marbling, it may bo talien off by applying paper to it before you prepare for marbling again.
3103, Blue Sprinkle for Bookbindera, Strong sulpharie acid, 8 numees ; Spanish indigo, powderesh, 2 ominess Mis in a bottlo that will hold a quart, anl placo it in a waterbath to promote solution. For nse, diluto a Litule in the required color in a teacup.
3104. Blue Marble for Books, \&c, Color the edgen with Kiag's yellow, aud when dry tie the Luok Letween boards. Throw on blue spota in the gam trough, wave theas with tho iron plin, and spply the edges thereon.
3105. Brown Color for Marbling or Bprinkling Booles, Lagenod chipe, 1 part; annotto, 1 part; boil in water, 6 parta. If too light, ald a piece of copperas abuut tho size of a pen. Or: Dmber, any quantity. Grind it on a slab with ox-gall atd a little lampblack. Dilute with ales.
3106. Gold Sprinicle for Books. Put into a marble sevitat $\}$ ounce pure boncy anad 1 book of gold leaf; rub them well together until they are very fine, ald is piat of clear water, and mix thom woil together. When the water clears, potr it off, and pat in more, till tho honoy is all extracted, and nothing remains but the gold. Mix 1 grain cerrosive sublimate in is tea-sponuful spirits of wine, and whea dissolved, put the same, together with is litulo gum water, to the gold, and bottle it close for use. The edges of the book may be epriakled of colored yory durk, with green, blue, or purple, and lastly with the gold livuid, in smiall or largo spots, very regular, phalcing the bottle before using. Burnidh the edges when dry, and cover them with paper to provent the dust falling thercon. This sprinkle will have a most beautiful appearance on extra work; ladies may use it for ormamenting their fancy work, hy putting it on with a pen or camel's hair brush, and when dry burnishing it with a doj's tooth.
3107. Marble for Leather BookCovers. Wiab the cover and plair it, take a eponge charged with water, having the book between wands, and drop the water from the spongo on the different parts of the cover; sprinkle very fine with vinegar black, then with brown, and lastly with vitriol water, Observe to sprinkle ou the colors immediately affer ench other, and to wash the cover orer with a clean sponge and water.
3108. Chinese Edge for Books. Color the edgo with light lignid blue and dry; then take a sponge charged with vermilion, and dab on spots according to faney; next throw on rice, and finish the edge with dark liquid blue. Color light blue on different parts of the edge with a sponge; do the same
where there are racancies with yellow and Brazil red; dry and dab) on a little vermilion in spots; then throw on rice, and finish with a bold sprinkle of dark blue. Burnish.
3109. Wax Marble for Leather Book-Covers, \&c. This marbling must be dons on the fute edge, before the back of the book is rounded, or becomes round, when in boatds, and finisheil on the head and foot. Take bees' was and dissolvo it over the fire in an earthen vessel; tako quills stripped of their feathers, and tio them together; dip the quill-tops in the wax, and spot the edge, with largo and small spots; take a spouge cbarged with blue, green, ur red, and smear over the edgo: when done, dash off the was, and it will be marbled. This will be asefal for stationery wofk, or for folios and quartos.
3110. Yellow Egyptian Marble for Leather Book-Covers. Boil quercitrou bark with water and a littlo powdered alum, oyer is glow fire, until it is a good atrong yollow. Pour tho liquid inte a bruad veasel, nufficiently large to contain the cover when extended. Before the liquid is cool, take the dry cover, mit lay the grain side flat on the color; press it lightly that the whole nay receive tho liqnid; lef it soak somo time, and then take it from the vessel. The book mues be covered in the usual mamer, and permitted to dry from tho fire. Glair the book; when dry; place it between the wands; take a sponge and woter, and presis largo epots thereoin; dip a quill-top into the vinegar black, with it tonch the water on the coser in different parts, which will bave a fine effect when managed with care, Let it stand a few minutes, then talies off the water with a clean aponge.
3111. Green Egsptian Marble for Leather Book-Covers. Culor the cover is a largu yeseol, as meationed before, with Scott'd Liquid blue; when done, put it into a versel of clear water for an bous. Take it out fud press out tho water, then enver the book. Glair the cover; when aly, place it between wasds, and deop weak potash water from a spongo thereon; dip tac quill-top fito the strong black, and toneh the water with it. This must be repeated thl jou bave a good black. When dry, clear it with a sponge and water.
3112. Red Egyptiam Marble for Leather Book-Covers. Boil Brazil dastin rain-water ou a slow fire, with a little powdered sham and a fow drops of solution of tin, till a good color is produced. Dip a piece of calf leather into the liquid, and you may ascertain the color winted If too Light, let it boil till it is reduced to one half of the quanlity; take it from the fire, add a few more drops of the solution of tin, and puar it jnto a largo vensel. Pat the dry cover on the liguid, and let it remmin for aquarter of an bour, then press out the water. Color it over with a sponge and the quercitron barfe water, and cover the book. Glair the cover, place it between wands, dash on watír sith a brukh, also potash water; and, lasdy, finish it with tho strong vinegar black, with the quill-top. Observe that too much black is not pot on : the intention of the marble is to show the red as transparently as possible.
3113. Green Marble for Leather
 with a good bright green unly. When the color is prepared with the ox-gall, and rcady for use, a few drops of sweet oil must be mixed therein, the color thrown on with a brusb, in larpo spots, till the gum is perfectly covered. Tho oil will make a light edge round each spot, and have a good effect Blue, green, and brown may be also used separately in like manner. Sheets of paper may be done, baving a trough largo enough, and
the sheets damped as for printing, befors marbling. Spirits of turpentine may bo sprinikted on the colurs, which will make white grots.
3114. Binders' Thread Marble. Yellow tho edgo; when dry, cut pieced of thick thread over the edge, which will fall on different parts irregularly; give it a fine dark spriakle, and khake off the thread. This producos a neat marbled appearance.
3115. Rice Marble, for Leather Book-Covers, Color the cover with spirits of wise nad turmerie, then place on rice is a regular maumer; throve on a very fine npriukle of copperas water till the cover is nearly black, and let it remain till dry. Tho cover may be spotted with the red Diquil or polash water, very freely, before the rice ia turown of the boards.
3116. Orango Color for Marbling or Sprinkling Boolcs. (Groand Brazil woou, 16 parta; annotto, 4 parts; slum, sugar, and gum-aralito, each 1 part; water, 70 parts, Roil, strain, and bottle.
3117. Tree Marble, for Ieather Book-Covers. 4 marble is the form of trues may bo done by bebling the boands in littlo on tho centre nsing the same method as the common urathle, having the enver previously prepared. Tho end of a candto may be rubled on different parts of the boardis which will form knota.

3118, Vinegar Black for Bookbinders. Steep irum filiags or rasty frun in good viriogar for two or three daya, theta strain of tho liquor.
3119. To Sprinklo Books. Tako a stif brush made of bogs' lintitles, Peefectly cleash, dip it in the color; squecze out the suporduous liquhl; then rib a folding-ntick acroas tho lirukt, and in fine spripkle wil fall on the edge of the book. Which should be previonsly berywed tight is the cutting. presis Ropest the operation mutil the color is chrown equally on overy part of the leaves. The brush should bo held in the left hand, and tho stiok in the right.
3120. Chinese Marble for Lenther Book-Covers. Color the cover of the book dark brown, ayd when dry put it into the cal ting-press, with the boards perfectly flat; mix whitiug and water of a thick consistence and throw it on, it kpots or ftreaks, some larga and souso smill, wbich mast remsin till dey. Spot or sprinkle the cuver with liquid blue, und lastly throw on large spota of liguad red. Tho colors i dost be dry befora washiag off the whitiong.
3121. Orange Sprinkle for Boolcs. Color tho edge with King y jellow, mixed in Weak gum-water, then kprinklo with vermilion mixed in the samn maniver.
3122. Purple Sprinkle for Bookbindors. Logwood cbijs, 4 parts; powdoral alum, 1 parl; soft water, 24 parts, Boil until reducel to 16 parts, and bottle for nse. Or: Brazil Jast (6ng), and mir it with potash water for use.
3123. Soap Marble for Books, This is applicable for marbling stationery, book euges, or sheets of paper for lailies faucy Work. Grind, on a marble slals, Prussian blue, with water, and a littlo brown soap, to a fine pfinblo consistence, that it may be thrown on with as stall brish. Grind King's yellow in the same matoor, sith water and whita sosp. When green is intendel for the ground color, grind it with brown sonp, and King's yollow with white soap. Lake may be used for a groumd color, and Prussian blae ground with white koap; lrown umber for a ground color, and flake-white ground with white sosp. Any color of a light aubstance masy be ground for marbling.

3124 Spotted Marble for Books. After the fore-edge of the book is cut, let it remain in the preses, and throw on linseeds in a regular manter; spriuklu the edgo with any dar) color, till the white paper is covered, then shalie of thu seeds, Vanious colors may be Hesi. The edgo may be colored with yellow or red before throwing on tho seeds and sprinkling with blne. Tho seeds will wake a fine fancy edge when placed very thick on different parts, with a few slightly thrown on the spuees between.
3125. Brown Sprinkle for Leather Book-Covers. Pearlash or potash, 1 part; soft water, 4 parts. Dissolro nul strnin.
3126. Red Sprinkle for Binders. Brazil wond (ground), 4 parts, nlum, 1 part; rimegar, 4 parts; water, 4 parts, Buil until reduced to 7 parts, then nadl is suall quantity of loof-zugar and gam. Bottle for use.
3127. Black Sprinkle for Leather Book-Covers. Green copperas, I part; boft water, hot, 6 jurta. Dissolye.

Photography, Photography is thased upon the law or principle that siallight decouposes cortain combinations of the salts of silver. For instance, if a piece of paper ia first dipped into a solation of chlorido of sodium (common tablo kalt) and then, when dried, floated on a solution of nitrate of silver, it will, upon being brought to the ligat, begin to darkea, and inally assamo an absoltto black. It will be meen that if any opaque or semi-opaquo body is interposed botweon the light and the paper, that purtion which is so protected from the uetion of the light retnains white, and thus impresses upon the paper, in a negative condition, the form or Iigure of the article no used.
The entire matter emtraced in Nos. 3128 to 3154 is contributed ly the eminent photographer, Mr. Geo. G. Rockwood, of New Fork.
3129. To Maice a Photograph Without a Camera. The art of plotography has many interestige and useful applicationa other than purtraiture, one of the simplest and most beautiful of which wo here present. It can bu applied to the copying of laces, drawitga, leaves, or anything of a transparent or tranglucent nature, It is proposed to first describe the manipulations, and then givo the formula.
3130. Papier Saxe for Photography. Tho best is the papier saxe, the articlo mado expressly for plotography, atd may be obtafted from any dealer in phutographic materials. It is sold is sheets about 19 by 22 incher. The amoth side can bo easily gelected, and upon that side the print should bo made. Cut the papor into the sizes most cunyenient for tho style of picturo desired, abd prepare tho salting solution as follows:
3131. Salting Solution for Photographic Paper. Afix tugether puro water, 16 ounces ; eflorido of anmonium or of soditim, 160 grains. Take enough of this to cover a shallow dish of porcelain to the depth of i inch or more, and then immersa the paper, ono sheet at a time. When a half dozen are in, turn them all over, and tako them out one by one, in tho order in which thay were immersed, and hang them up separately to dry.
3132. Albumenized Paper for Photography. Albumenized paper, such as is used for ordinary portraiture in the galleries, is always ready prepared for silrering. It is mach tha finest and sharpest in its results, and will asually bo adopted; but the most artistic effecta will be produced by tho use of
plain papier saxe, Paper, in either of these porms, prepared with chlorilo (salt) will keep indefinitely.
3133. Silver Solution to Sensatize Paper. Thu weatrer being propitiots for printing (aclear, brightsunliqhit is preferahle), tho salted or albamenizeil paper is taken into a dartened room to bu remered sensitiva by the silver solution. Make about the asme quantity of this as of tho salting golutioo, by using, in the following propartions: Pura wi. tar, 1 ounce; nitrate of silver (is crystals), 60 grains. When thoroughly dissolved, pour tho solution into a dat poreclain dish, and carefally remoro all bobltes, ice.
3134. To Make the Paper Sensitive. Having prepared the silver solution ny above directod, take the paper by opposito comers, smooth side down if plaits pisper, glazed side if nlbumenized; lower ose corner on to the solution, and steailily lower tho rost to the surface of the solution, so that the oir is cotipletely driven out, and tho entire sarface esposed to tho action of the silver. Be very eareful that the solation does nut get un the back of tho paper. Plain paper (paspier sare) should flont 2 misuted; albunenized, a minutes. Carefidly raise the shoet from the solation, and bang up to ilry in a perfeetly dark room. It is best to proceed sitic the printing as soon as tho paper is dry. silattional brillasecy und senstiveness is Impurted to the paper by exposing it, fifer is is thoroughly dry, to the limies of numoria. This may be done by hasging it up with a clip or pin in a eloso bos, in wheth is is mali disb contahing agua ammonia PD. P. Thia fuming process hay bo diapensed with, jet the printa aro muelf more gutform when treatod with the ammmia.
3135. To Copy an Object. Having propared, in a dark room, a sbees of paper as nhove, lay it upos is pieco of glazs; place upon tho flass a leaf an trampluceot ast can be fosma, and thes abose it, to hohil it ita place, nuotlier plece of glars, and at each comer a elip, or a common spritig clothespla. Now exposo the platea so arrauged, leaf nide up, to tho smis rays. The paper will it onee begin to darlen, and in foom 5 to 10 mitutes, except moder tho leaf, bo entirely blach: If tho platea aro now taken itto a daric room and separsted, the fmage of the lent, with all its delicnta tracery and beautifn! limes, will to found upon tha paper, white, with black laekground. It would ho well to put under the sonsitivo paper is few thechnesses of suft paper, or black cotzon velvet. It rorves nas a phu or eushion, and tonds to preans the paper up into a eloger contact with tho inequalitios of the leaf, lace, of olject nsed as a negative or cliche. Small printitg framer can to purchased at a moderato ntum. which will enable the experimenter to examing the progress of the worls and ascertain when the print is suticiently uxposed to the activn of the light The exposure should cuntimue until the imaga

is mucis darker than intented yehen finiobed, as the after procesties of coning and fixing reduce or bleach the pictares Fery conaiderably. As the printa are talien ont of the frame, prt them away in tho dark again, until ready for the toning kath.
3136. Ta Prepare a Picture for Toning and Fising. It will now bo necessary to tonce and fix the pieture, in ofder that the image be rendered permabent. Tho firyt process is to sonak the print is a dish of clemr water for a ferv minutes, acd thos wash off the free nitrate of silver remaining upon the aurface of the paper. A half hour's eoaking, with one or two changes of tho water, will effect, this so that it is ready for the toning bath.
3137. To Prepare a Toning Bath. Chloride of goll is sold in bottles containing 15 grains. Disolvo thas in 30 drachms of Water, add in drop of hydrochloria acid, and preserve it ed a stock solution in a bottle; mark thfi gold solution. Hakn in another bottle as eaturated solation I washing soda, also as a stock solution; cuark it nas speh: Soda solution. Whes the prists have been warked is before directed, and aro ready for toning, mix 1 trnclias of the gold solution with 1 otures of water, acconditag to formala. Pour into a tres, and drop in a small piece of time litinns paper; it will Lecongo red. Benler tho bath alfaline by ziddiug from the soda sotetion, drop by diop, until the japer begina to change bloe asain. It is better to preparo the tonivg bath daring the day, while tho printing is beling donc, as tho bath seems to Work with moro smoathoess asdil unformity. It may be ased, hotverer, so moun as nifect

3138, To Tone a Picture. Tho print is now takort by two corners and jommersed in the golit or toving lath. At firit tho print will begity to bleach, and tura f warm rod eotor, whicls soon clanges into a beatifal warm black. Int in tha prints ene by oac, keeping theur separated or constantly on gecsthe teotion, whes tho changes alreddy spoliea of will vecur. When a deey purplo or wara blnely is oblained, remose them to a hasin of elesis vater, sad rinso them until all aro toned, When tbey aro ready for immersion in a fixing hath to render thom permaneat.

3130. To Propare a fixing Bath.

 Tako water, 6 acoces; byposulptite of sina, 1 ounce. This ablution dianolses from the paper all of tho ebturide nf edrec that has hot been actat apon by- the light, trut does nos isfore tho pietero in timate. The usual time for leaviag tho priat in thiy bath is abuat 15 minutes. If the priotia held up to transmitted light before it is placed in lifis solation, it witl apperar geito npague suil clandy in what should bo the clear parts of the pieture. After the priat bas been in the lath the proper time thifs will diappear, and the prat fave a elear, trasilicent effect Tbe jnint rhouht now bo washobl in ? nf 3 waters, and left to soak it a disat of water all night. In the Horniug it cas be hoog up to dry, sad then monnted, as the taste of tho expernumenter mag supgest. If the raving of tume is an object, the print, nher coming from the fixing bath. can be rinsed ilt water and passed through a commoa clothes-uringer a few times, each time being dipped in clean water, when the prist will bo found to be perfectly washed. When properly fixed, as alrealy describel, they are to bo washed, and finally mounted on canl or bristol board. The best pasto for this parpose is common lanndry starch.3140. Precautions to be Observed in Making \& Picture. When directions are given to prepare and keep the sensitive paper in a dark room, it shoold, of course, be understood that daylight only is to be excluded;
gas or candle light will do no harm. 4 window elosely covered with yellow paper completely filtens the light of nill actinic or chemical power, and consequently will do no harm. Bo careful that not a drop of the fixing solution gets into the gold or toniug bath. After tha final process of fixing, tako the greatest earo that the prints do not ugain come into contact with the byposulphite of sada. Sodn is good-indispensable in its place, but excoodingly harmful out of its place. So keep all tho dishes and fingers froe from it. In all of tho manipulatious, observo tho most perfect neatness. Handle the prints with the tips of your fingers, and atways with deliberation and curo. If tho silver solution grows weak by twe-s mealy look to tho prints indicates it-add a few erains of nitrate of silver. If by aso it taras a dark wime colos, and the paper is not whita when dry, set the solutiou melear sunlight for a day or two and it will elear. Filter before using agais. Tho soda (fixing) bath should not be used moro than is or 3 tines. Whero prints aro mly occasionally made, a fresh bath should bo mado each timo of printing. The gold (toming) bath worka quicker when warhed to alomt blood beak. Priots will then tono fir from 9 to 6 minntes. Priats out plain paper will tone quacker than on albumenized. If prints are undertoned they will present a warm liross appearatice; if tonod tuo tunch, a cold sted color. A iftle experience wilt sum indicute the precise atbonnt of toning reptirell.
3141. To Remove Nitrate of Silver Stains. As tnovitabla consequence of practicing this process will be stains on tho bands aoil elothing from the nitrate of afiver. Moiaten tha apots with tinetare of iodine, and then with a eaturated solution of hyposulphito of soma. Cyanide of potassimen acta zturo eaergetically, but in a very dangerous puisom. and is not recompuquled.
3142. The Photographic Negativo or Cliche. In pamber :3月2d we havo stated the geboral principles if Lte photographie art; that it was lased upon the fact that palar 1 gght Jventupases certaits coubinations of the calts of palcer, that in propartion or to tho exteat flath such wastive stofface is es. posied to the action of Bight, no in the depth of Utes stain or imsenfity of ther inage tpes tho prepared papes. Nout if we shonht eut from an opaque or hacte piece of papet, atiy form yir figure-bm mbe limbinned sikouct to would to A finiflar allustration-und place it upon tho siflered payce, the precise image or form cut in the paper would, upos remaval, be found upon the paper; the paper remaining whito tuder the figure leaf or "theoren," whito tho parts exprosed to the light hinvo curued black. In place of this figute, scienco las given us the Photographic Negrtive or Ghielic. A begtatire is un iunge produced unon plass by a caurets (ani improred form of the old camera obscura) athl derives its name from the fact that the imago is recersedt of negatite by transmitted light (looking through it), tho lightas appearing dark, and the dark parts light. The chemicals nsed to produce it aro also combinutions of the salts of silper, bat are so sensitiva to the action of light, that they are decomposed instantancousty by exposare. The formalm will follow a description of the process.
3143. To Make a Photographic Negative. In a roour illuminated only by a Ieeble gas or candle light, or by such daylight as is filtered of its chemical power through a sheet of yellow glass, a glass plate is carefully flowed with collodion. (Seo No. 3149.) When the plate has been evenly covered, tho excess is quiekly but deliberadely returned to the bottie, and the plate gently and slowly swayed from side to side until the collodion is
set, or when the surface is tacky to the touch. It is then placed ou a dipper, and, with a steady, contimous motion, immersed, collodion side pupards, in the silver bath. (Ses No. 3150.) If the plate is stopped in its descent into the bath, is check or line will show across its face. In 3 to 5 mimutes, depending upon temperature, ete., the plate is coated, of, itu other words, tho chemicals in the callodion have united with the nitrate of silver, formiog the sensitive surface or coating, If not coated sufficiently the surface will appear grecisy; in this cuso the plate must be roturned to tho bath until the film appears perfectly smooth. While this is being done it is supposed that the operator this adjusted tho camera upon tho object to bo photographed by foeussing bis lens. This is done by turninto the lens in and ont, or from and towarda tho ground glass of tho eamera, until tho point is ascertained which gives the sharpeat mages upon tho gronnd glass, All being rendy, tho operator returns to tho dark room for his sensitive plate. This is placed in a "holder," and tho gromnd glass being romoved, the holder is substituted in its place. Tha slide or cover to the holder is now withdrawn and the sensitive plate exponed to tha action of the imago of light thrown upon it by the lens. After in expoatre of 15 to 60 seconda, depending so much upon the intensity of the light that it can only be ascertained by experionce, the slido is replaced in the bolder and the plate taken to the dark room for development.
3144. To Develop a Negative. This in dute by remosing the plate from the holdor, un , holding the plate in a horizontal position, flowing it with the dereloping rolltion, (Sec No. 3161.) If properly timed or esposed, the forago begios to appear. When tho details of the ctrapery, if a portrait, appear and tha solution seemh to have lost its power, the plate in Ltoroughty washed onder a strestn of clean water. If the image is snf: finiontly ntrong and vigoroas, it is "cleared" by placing the plato in the fixing bath, and that portiou of the film wot acted npon by the light is disnoived away, leaving the image upon the glast. After a thorough washing in water, the plate is put in is raek to dry, after wbieh it ta slighty warmed and var: nished.
3145. To Varnish a Negative. The varnish (sec No. 3153) is Aowed oa and off preetsely as with the collodion. (See No. 3143.) It ghould be ngain slightly warmed to prevent the raruish from ebilling or bleoning. When drg, which will be in 5 to 10 minutes the negative is ready for nse as deferibed in Not. 3115, dec, tising the begative instend of the leaf. Should tho imago bave evidenen of full exposure by the existence of all the proper dutail, und yet want vigor or intensity, this may be impartel, before varnishing, by re-derveloyment,
3146. To Re-develop a Negative. This is done by pouring upon the plate about 1 ounce of the pyrogallic acid solntion to which has been ulded 5 ot 6 draps of the silver solution designated for that purpose. (See No. 3152.)
3147. Glass for Photography. For portraiture and ordinary landscapo photography, the best qualities of picture or window glass will suffice. There is an article sold by dealers in photographic minterinls, known us photographic or negrative glass, which is selected for tho purpose and eat into the regalar sizes used in the art, viz., stercoscopic, "quarter" size, "half" size, "fourfour ${ }^{n} \& \mathrm{c}$., the latter being 64×84 inches and the other sizes fractional parts, as their names suggest. For microscopic and scientific experiments, plate glass would be preferable.

A quality known as "chree quarter white" plate, und only of the thiekness of ordinary single thick window glass, has all the requisites for cxact photography. When it is jroposed to print photographs apon glass, for magie lanterns or transparencies, plate glass is absolutely essential.
3148. To Prepare Glass for Photography. All riew glass should be placed for a few minates in a strong solution of conimercial nitric acid (say I oubce nitric acid to 3 ounces water), and thea thoroughly wathed in clean water. While wet, pour upor the glass a solation consisting of white of epg, 1 ounce; water, 20 ounces; drain off intw a separate bottle, or plean, filter, and set up in a rack todry. The albumen and watez solution, before uaing, should be very thoroughly beaten tngether. After tho froth has snlasided, filtar the solution through a clean sponige, two or three thicknesaes of linep, or, still better, fil. tering paper. The solution above oamed will coat more plater than sn amateur would bo likely to use. Use freek eggs and a newly made solution whenect conting plates. Tho plates $k 0$ prepared will keep indefinitely.
3149. Collodion for Photography. Collevion is the whivte by whirh the phote. erapbie thonionls are viaited upon the varface of tho phats and the renxifive coating proAliked. It is mate ly diestring in equal od nearly equal propoctions of eulphnrte ether and alcohol, gen cotton or pyrosylfine togethet with eertain salts of potaseinm, cadmium, ammonitin, 4.c., in proportiona nazned is the formular- Many formalee aro publinhed for this article to which great ralue is attaches, some supposing that to its peeoliar compesition belong the principal causes of fallare of miccese. This fo oaly it a degree tree. Infortor or carclessly prepared chemicala used in any stage of the proces dor pair restils, The सriter has fised as a genmal principle in the preparation of collodicn the proportion of 1 graln of the exciting, salte (in esch ounce of eollodiou), to every 10 grains of xilter in the hath. Tif illustrates If the silper bath soletion it st 500 , or, more deGnitels, 50 grtins of silver to each ounes of wates, we would rake the cullodiot so as to contain is cach ounco of cotlodion 5 groias of the rarious ealts of cadminm, ammoniam, sc: or another way of putting th, tho bath showlh be ten times ns atrong as the coilodium. The somsitizisgsalty should bo selectel with a xpecial refereice to the peculiarities of the light or sabjecta. It can the made under one formnla to sover almost all emergencies; yet spectul kinds of work for extremes of light or khadow can be faproved by faryiog the combiostions of the exciting or kensitixitit salth For portraituro is a room of erenly diffirsed light the jodide of eadmium as the principal excitant gives softness and delicary to tho image. Thus:
I. Take of sulphtric ether, 1 oumce; 95 per ceat, alcohol, 1 gutice, guil cotton, 6 grained iodide of cadmiam, 4 grains; bremide of cadmistu, 2 grains.
II. Sulphuric ether, I aunce; alcohol, 1 ounce; fin cotton, 6 grains; iodide of cad. sivum, if grains; bromide of potassium. $2 f$ grains.
These two formula give the utmost delicacy and transparency to the shadows, and work with rapidity, whes preserving their proper relations to the silver bath solntion, of which we speak in the proper place. If more Urightness is desired to the image, instead of the iodide of calmium pat the samo quantity of iodide of ammoniam- If still greater contrasts are requirel, use iodide of potassium in place of either the caltnium or potaskium. The latter is favorable for copying engravings, maps, plans, sc., in which strong contrasts of white and black are desirable. It is well
to prepare from atl these formula and then thodify results by mixing them together as the subjects or light may demand. Farther comvinations may bo supgested; under a feeble light, or where thore are large mases of shadew, reduce the amouat of the iodide salt one grais and increase the bromide one grsin,
In Condistse tuar Iscampinsts, measura ont the required puasity of nowhol, inmit to it odd the gan cottom and fach of the nxeitiag salta as tianolve in alcohol, nul latty the ether. Shake ugtil all aze theroughly disEnlyed, and put asialn over night to tathle. Wher clear, demant inta the flowing or conting bottle for we, Such of the excitnats ns do
 as small aquantity of water an in ponsible and added to the atcokol, We., a lithe at a time, and quickly shaksen.
3150. Silvor Bath. Maken asolution in the proportion of G0 fighes nitrate of silver to 1 eonee wates. Tort the molation with litrong paper, and of sliftatly abtalite, or nomtral, atd nitric acid to givilue in faint red reaction to the paper. Tho lseat puethod is to add a few drops of chemiseally patio nitric neid to ats onnce of water, nut red thie sulntion to the silver hath a very fou drops at a time. Them coat a plate with collodion mind lot it vernaln in the bath all niplht. The frostly made colJodion esa ba abed for this parpone, and thut both cullodion nad atrer sofution or bath be made rendy for worl nt the wand time.
3151. Developing Solation. TLis may le mado in atinel fuletion of the simple sulplate of iron and sater, and then vednced in istrongth asd made ready for uso each thys. For thre shock foletion talio water, 16 ampous Sulphate of ivom, 4 ouncen, Dinsolso atul filtur. Whou trauted for hse, tako atack roluttian, 1 obuce; water, 4 owsees; beetic acid (Nu. 8) of ounce. Than ndalimm of aloont if ouncer alcobed to the above formatia often factlitates tho rimenth flowing of the solution on the phate. It is jortiectarly egsentlal when the finth bus been in long tase nad is ${ }^{\text {mathe }}$ ratoin wita ether asd atomad from the plates.
3152. Re-developing Solution, foe adeliog sigm and fotebaty lin tho notative, in made of mater, 1 ousco; pyrogalice acid, 1 grain; citrie acid, 1 jgrain. Poter into a suall beaker of copping ghays aboat 1 ounco of thil solution, and tald, by ancins of a pipotte, 5 ur 6 drops of a solition of 20 grtaias nititate of silrer dissotred ia 1 onuce vater. Tmmediately flots thite sotution over the plate, oreafiotally returning the solution to the litule beaker glast. As Badn as the molation beging
 on the pegatleo amd shotid boclosely watelied, that the negatire deed not leecome tooninterise. When sofficiently detiso, 1 brow awoy the solution and thorouphly wash buth the megatiro anil the glass. Tho lattor sbonld altrays bo kept perfectly clent and froe from any deposit from tha iceforeloping snlations.
3153. Negative Varnish of escellent quality can alfajs bee nocured at the dealer's fo plontigraphic miatorials, In ant emertrency common shellac rarmish, somephat thimed domin with alonhed, and filtered darough entton, will ansser the purpose. (Sco No, Z935.)
3154. The Causes of Failure would nimost require a cbapter by themsolves, a long oxperience conrinecs th that nimontat of orery ten failures oecur from a want of care, the presenco of dirt, neglifence. Ono camot be over-niee, rarefil mr cleamly-the best results alwars rewarding the most painstaking.
3155. To Enamel Cameo Pictures. Ordinary well polisted glass plates aro couted with normal eollodion of the usual deseription, and when the film bas set perfectly, but has not become completely dry, tho pietures,
which have proviously been trimmed and finished, are dipped mpidly into aleohol, and applien without delay to the plates. Tho priats are pressed ami rubbed down with smooth writing paper, and the operation of mornting is perceedel with as soon as the bacles it the pietures bave become white; of, is ather words, as sonn as the alewhol has again ernperated. Tho cardboard shoblh bo flomed to pomain in water for at least haff an bour peorinusly to its being omployed for mumbting. Tho mone rapidly the piefires aro apiplied rat prosed upon the colfodion rurfiec, the more beatifal will be the finished result.

3156, Photographic Impressions With Fuchsine. A piece of linea goods eohned with findsioe, and dried, was esposed to the light ouslera plotographio negative, When the fionge of tac plate became visiblo on the goods, the pirture looking groyish und fialod where the lights were strougest. Still the pletare was rather weak, and tho gouls rerot anaked for 2 days in a tath of sulphate of copper, when the pietrere was fouml to be mora devcloped. Xfter neveral rinsings in Wuter, and two days' exposire on the grass, the rest of the poocls were bleached white, lenvigg the picture of a phro violet tint on a whito backgroned.
3157. Tapioca Paper. To preparo tapioes paper, which is Fery tisent for copz. lag planangraplas by artificial light, 200 gramuey (64 Troy oursess) of tapioca are atakel for 2 days in an equal treight of waLer; 10 liters (aboutt 91 pinti) of water aro anded, and ifrertpards, for evary litre (quart) of $\mathrm{liqnib}, 10 \mathrm{grammus}$ (154 gmins) fodlde of potassinm, 30 grabumes (463 prains) chlorfde of potinsinit, 1 ghatmo (ist grainet) liromide of potaselinn, are dissolved, aut the wholo bilied for 10 mimites, athwerl to stand for a duys abd dectated and filtered tarough fine limeth. The paper isformensel, 12 or 20 sliceta at a thore-ot cin ive duaked tepon it-for 15 to 20 minnten; it is then bung up to dry in a dats rome. If it bas asahmed at durk color, that fs of no emmsequance, $n 3$ it dixappeara in thossilrer laith. This is to be prepared in the proportion of 1 ounce nittato of silver, 50 to tio grains of cittic acid in 30 ounces of water. Theo time of exporare paries from 10 soconda to 25 norutifus, necordiars to the pictera to be ecpient nud the petinic foree of the liptht.
3158, To Recover Gold and Silver from Photographic Solutions. Tho stree and gold waste that result from photoItaphie oporatians aro best eollecteal ill a Jage Dathlo or jar, tugether with anything olse that intgits Euntain either of tho twa motals. Wlien tise bottle is nearly fall, pour 4 Jittho hrdrocblarte acid and as solution of proen muphate of fron (oopperas) fito it, ated let it staud on 3 warm place bitit the supermatnut [gquill appans porfectly clear. Ald thetaftew shops moreve the hyarochlorid acill and irm solutum, and observe whether a fresly precipitate forms or nut. In the latter ense, draw the clear liquid off by means of it sipponit, anil reserve the residue. If the Loctle Lus becomo partially filled in courso of time with insoluthle chloride of sijver and metallic gulla, place the residue om at filter, wash it with vory ditute acid, atad, lastry; with water. After deyiug is is to be mized with several times its weight of dry cathonate of worla, the whula convered to a erneible, and the latter leated to n bright real heat, aui kept there fir inhout 10 minnates, ARer takiog the crucible out of the fire, and allowing it os grow cold, it is liroken, the Lutton of the alloy of pold atad silver cleaned, and heated in a suitablo vassel with dilute nitric acid, whiels will dissolve all the silver, ns nitrate of silver, nad leave the gold in a finely diviled state.

This is dissoired by nitro-hytrochloric necid (aqua regia). It is harily neenssary to say that, for photographic purposeses, both solutionit must bo cvapotated in a water-lath mitil the axcess of acid has been volatilized, when they may bo cilated with a sulficient amotnt of water, and used. (See No 3166.)
3159. Simple Method of Copying Drawings, Etc. Silvered ailsumen papor, after berig wished, may be conreniculy used for copjing tegatives as well ns positives. If keeps for wreks, and becones seusitive to ligat only after exposure to the vapors of aqua ammouin, technieally termal Enoking with ammonia. Dr. H. Vogel lus greatly stmplified the latter process by substituting for the liquill numonia the powder of carbonate of ammonia. Ha thoronghly inpregnatea a piece of fult of cloth with this powder, and lays it under the silvered sheet. separated from it by a piece of blotting-paper. He places the silsered paper, with the sulbstratum of carbouate of ammonia and the drawigg on top, betwcea two plates of glass, and, exposing it to the light of the wintow, obtains a copy quite distinet in all its detaik. The copy obtained is, of course, in white lines upon black ground. Such photographs reguire to be treated with soda when intended for lone preserration.

3160 . Lea's Solution for Cleaning Photographic Glasses. Water, 1 piat; unlpherie adid, if ounce; hiflornmate potah, 1 bunce. Tho glass plates, sarzished of otherwide, aro left, say 10 or 12 hours, of at meeh lomger is devired, in this solutions and then rinsed is clean water, sad wiped or rubbed dey with boft white joper. This preparation is by Mr. Carcy Lea, of imailulelpbia, aud fa naill to he the bent la toe. It quickls remores silrer staina from the akia withont any of the nttendant dangers of the cyanide of potaswim.
3161.

Vamish Wenderoth's Photographic

 is thin solution of fami-arabic is applied to the negatiro after fisiug and leforo Srying, the varnth will not adeet tho intenvity: This is a rery simple and nselat remedy. Mr. Wenderuthe ulas states that be hias laug practiced the cotorisg of photographio paper prituta upon both iifles with collolion saraish, and finds it a complete preserratito of the pieture. Nearly ail plotopraplas will fade away in a few pears inlest ilus punterted.
3162. Collodion Varnish for Photographic Prints. A rery effective and agrecalio polish is communicated to card of cabinet prints, etc, simply by coaling thers with a plocitont plait collodion, trinde as follows: Alculnt Janpes; other, 4 ounces: UFTosyline, 9 grains, Diosolts and fiter in the sswal mamer. The pionta are first cat to the proper tioe and Goated wat the reverso Fince morn clend water turtir they lie perfectly flat; then take one pirint at a time and place it na a piece of glase of the ame sive as itself, moist stale downmunls; it easily adhered to Hie glass. Lect the exgios of water dinin off, dind remove all moisturo from the picturo surface; wew erat it sith the colloilion and let it drais in the usual pay, then alry it beFore the fire or bin ary mamer which is mort contenient. This polish is ant as fagraut on the ope hand as the so-called camel sarface, nor so dead is an ocdinary allommen priut that lias pudergone all the operations inp to the monnting:
3163. Preservation of Photographs. II. Cooper, Jr., of Bagland, gives the fotlowing formola for a preserrative varnish which is stated to the an entire protection against fading : 1 drachm gran damar dissolvei in 1
ounce benzole, 1 drachm paraffine, dianolved is 1 ounce bictzole. Mix 4 parts of the paraffine solution with 1 part of the damar solution. Plohographic prints covered with this vanish are impermeable to water. A solntion of the jaratene ondy will dor but it is better with the grom damar.
3164. Everlasting Photographs on Enamel. First-thass ptutugraphe uther nestatives or positires, may be taken on Duchemin's chamel (sec No. 2402) without callodinu, by using Litumen, or citrats of iron, or perchtoride of iron and tartaric neio. or bichromate, of any other salt, A good solation for this parpose os, water, 100 parta by wejght; fum, 4 parts: honey, 1 part; pulverized bichromate of potash, is parts. Filter the ISquid, spreal it over tha enamal, and let it rest, after which, expose it to tho caprera. Defelop the image by brushing over it the followiug jowder: 0 side of cobalt. 180 parts ly weight; black oxide of iron, 90 parts; red lesul, 100 pirts; sand, 30 parte. 1)ceopipase the bichromate by immeraion in a liath formed of water, 100 parts by weight; lifdrochleric aceid, 5 parts, Wash it iu clem Water and dry it; anil lastly, vitrefy the proof on a cleas pieco of cost iron, tho surface of which has loea proviously ehalked. Ono minute will stalice for Cadelibly fixing and glazing the phougrmpth, whiwh must bo carefulty and blowly allowod to evol. Photor greplts on ebanael of any rize, taken in thia manner, are perfeetly vimalterabte under all atinosphenceondstioss, and may conieguontly and aply Lo called evorlasting photograpbr,
3165. Searting's Process for Photographing on Wood for Engraving.
 is fitat dampened with water, thea whiturad with enaund mathed from the surface of prod estameled visitiog carvll. teub pontly, reurovine onty the enumel, after whieh it is lernsked stiveth willa a moderately atite Lirash, frosi netht to lea nall top and down, nonking a simbth, even, aud rury thio surface. Allow thix to dry, ufter which it is flowed with a solution if albumen, mude with the white of 1 egg and 16 ouncea of water, dried by heat or allowed to iry spontanconaly. Now cont it with manther abhuapen solation mado is follows: White of $1 \mathrm{~kg} g$; Water, 4 natece chloride of numumia, to graing, Beat the shato to at thiek froth. Allow to sthaside, then Secant of filtar tarough a fiase spocugu placer it 3 blass fumbel, Potar a suflisient quanticy on one corbec of the lifock to cover it Thea spread aconad with the sid of a of or t elass (usine tbo eitgo). Alow tho nurplus solation to drata baele into tho botte. Dry this by a prentlo heat. Sust dow on, it the dark comb, balotions Ne, 3, prepared no followsf Ether. I onnce; tieolobl. I mome gan-cotton, 8 gromsi nitrate of silver, :Wi) graius; dissolse in as stmall it quantity of water hs passible, aul allas to tethe for in fow dayk, protected from the light. Again daty the blucis. by pestle beat. It in pues jewhly for exposurb onder the nepative A poreclain priating-frame, or ay y otber suitabla methool, may bo usel to priat it, Afuer printing Eolation No, 3 is remored from the surface of the lilock by dissolving ia ether and aleohul, assistell by faikbing pently with a coft sponge, The picturo can now bo tomed and fixed in the ordinary way, or fised and honed at one operation, by the bypo and gold lath. After being allowed to dry, it is rendy for the ongraver.
3166. To Recover Silver from Photographic Waste. To obtulin tho silver from a photographic bath. or from the rejected photographs and clippings, is a most iurportaut measure of economy in the art. The
common salt rulded; this precipitates ehloride of silyer, which is to be collected on a filter, dried, and washed; then the metallic silver may lio obtained from it by the action of motallic zine, astrip of which being placed in the pulpy mass, will combine with the ahloride, and leave the silver in a spongy mats of a gray color; atter washing, this may bo dissolved in nitric acid and crystallized. Another process is to mix the chloride with nitrate of potassa and fuso in a crucible-the silver ia thas obtajned in a battoin: The papers must bo incinerated, the ashes collected and treaterl with mitric acid and heat; diluted with water, and filtered; it is now an impuro solutinu of silver, to be treated in Hes samo why as the bath. (See No, 315d.)
3167. To Clean off Collodion Pictures. Λ taft of eatton ilpped in metbybe atenhol, and rubbes over the nurface of the pietare, will remove it entifcty, whother parnished or not.
3168. Paper for Photography. The paper used for photography may bo tho finest batin phat plaper, of untorm testure free from the maker'a mark, specks, sod att imperfietions. Tho papers stist to prepared by equide-light, and kept is the dark til ased.
3169. Simple Nitrsted Papor. This Is inerely paper brushod over with is stroug nolation of nitente of silver. In brushing over the paper it mast inot be croased. Its sonsitivenest if increasenl by usitg epirits of wine inutend of water. Thia paper only raquiras washing in water to lix the drawing.
3170. Muriated Paper. Tho paper is first soaked in solution of common sult, pressed with a linen eloth or bletting-paper, atell trinel. It in then branhed nver on ono
 with the rudition of nitrate of silver, and dried it the fires The otbueger tha solution, tha ubore sensitive the paper. If the barytio andution (Nee No, 3181) he vered instead of eotumon ablt, vicher khades of color are obtained. Anolution of 10 grines sal aramonias in 1 ounco watne givea a wry nensitivo paper, A due propurtion muse bo obsereed it the aifyer and salt silithiong, as follows:

Sonnitipe papor for the cariora, uto 50 groind emnenont talt ta 1 nepged wator; and 120 graint nitrafo of silyer bi) 1 omsee wator OPS 00 gtaths of the nitrate with 40 praims mutato of zemwnia, and 4 ounces waters OH 100 (fralthe ritrate wish the barytic siluLion. (Sce No. 2181.)

Less nensitive, for copyiag engraviuga, botavieat and entomological apecimens, iec. Tho salt solution to conutaio 25 grains salt to 1 ounces wates: Thin silyer colation DO grams in t entrece water.

Forcopying lace-work, featherd, patterns se. Tho salt zotutton, 20 grains; the eilyer Eota. tion, 40 grains to 1 otnees To fix the draw. fig on these papers, they must be finit washed in lukewarn water, then dipped twice in solution of hyposalplito of soda (1 ormes to 1 pint), then in pure water, aud dried.
3171. Iodized Paper. Brush over tho paper on one sule (which should be trarked) with strong solution of nitrate of silver (100 grains to 1 ounce); then dip it in solution of jodide of potassium (25 grains to 1 ounce); wash it in distilled water, dram, and dry it.
3172. Bromide Paper. Soak the paper in solution of bromide of potassimn (40 grains to 1 ounce); then brush it over with strong solution of nitente of silver, and dry in tho dark.
3173. Chromatype Paper. Simple chromatype paper is prepareil as follows: Soak the paper in the sample soletion (sec No. 3182), and dry it at a brisk fire. To fix the drawiug, earclul immersion in warm mater is all that is required. It is not sufficiently
sensitive for tho catreri.
For Coypoesd Cebomatype Papbil. Wash the paper with the compoustl solution (sec No. 3182), and dry it. After the paper has lyeen exprased to the sun with the article to bo copied sapperposed upon it it is washed over in the dark with a solation of nitrate of silver of moderate strength. A vivid picture makes its appearance, which is sufficiently fixed by washing in pure water. Bor copying engravings, \&c. Another method is to brush writing paper over with a solution of 1 drachm of sulphate of cupper in 1 oceco of water; rayl wben dry, with a strong but not aturated solution of bichromate of potash.
3174. Cyanotype Prper. Drush the paper over with a sofatiot of ammonio equesta of irum. Esipose the paper in tho ustal wrsy, then wash it over with a folution of ferrocyanide of potassiom.

3175, Crysotype Paper. Wash tho paper with bolution of ammanio-citrate of iron, dry it, and aferwarls bruah it over with a solation of ferroceacide of potassium. Dry it in a dark roon. The lwage is brozght out by brashiog it over with a neutral boitucion of gold or of silver.
3176. Calotype Paper, The paper it saturated is 1 oofice water, cootainiog 20 grains isdide of potasiun, and dried. Then malo sensitive ly suaking in 1 otuee distlited water contaiting 90 erans nitrate of tilver and I drachar glicial acetto acid, and dried in a dark room.
3177. Instantaneous Positive Paper. Mix 6 drselmat of as starated helation of biditoride of nomedoy with 1 pht diatilled war ter. Ploat ther proper on tris sulesiun in a flat dich. Dey lt; take lath a alaik place lit by a candlo rith as yothow glas, toul reuder it senstive by a molution of :d pritius nitrate of silver to t ouspeo mater. To print, espuiat to a perpendicolar light from 2 to 10 meconds in shatmer, abont if curmito in winter; then fminediately cover with a blacke cloth. The fuage, at liast tery feching th sletcloped by this solution; sulphace of from, 15 graiss; glanial acotio neid, 25 grains; thatled wates: I ouree. The dorpcoing of thet finit be mistelod, atd breftel at the proper moment. Then weat, and ofr eiti fygushlphite.
3178. Albumenized Paper for Positive Printing. White of egg and water, equal part: findide of pofasinm or chlonde of sodjam, 5 giains to t tarica water (oid birsmide of potasomm, 20 grains). (Suat the paper with thls solutith. Dry Ttmersere in the dark in bats of 120 graies viltato of salser to 1 ntrace wates. Dry agrib. This is exponeal with the ucerave orer $t \mathrm{t}$ for 10 to 15 wingtes.
3179. Propared Wix Paper. Mule 3 stroug sivo by digestiog 2s parts gelatioc, 50 of limeed, und 150 ut rice Boer, is 2000 to 3000 parts hos water. Filter tbrough a eloth. Take of this kizo, when cold, 1000 parts by weight, and dissolve in it sagne of mik, 50 parts; fudide of potascium, 35 ; bromide of potassium, 5 parts.
3180. Artificial Ivory for Photographers. Sheets or tablets of getatino or glue are tmmersed in a soluthith of alumina. Whon entirely penetrated by the altmins, the slabs are to bo removed, driet, and polished like ivory. (Masall.)
3181. Barytic Photographic Solution. Dissolye 35 grains culonide of barium iu 2 ounces distilled rater.

3182, Chromate Photographic Solutions. Simple cliromave solstiou is a saturatel solation of bichromate of perash; at little sulphate of indigo being sometimes add. ed to vary the color.

The compowas chrasate solation cansists of 10 graims biedrumate of putash, und 20 grains splphate of copper, disantref in 1 ouncis
distilled water.
3183. Hydriodate of Iron and Barytes Photographic Solution. Hydriodata of barytes, 40 graing; water, 1 ounce; pare sulphato of iron, 5 grans, mis, filter, add a drop or two dalated kalphtric acid, and when ectied decaut tho elcar liquor far twe.
3184. Hardwich's Gold Toning Bath for Positive Printing. Pure chlocile al gold, 1 groin; lyyposulphite of seda, 1 to 3 grains; hydrochloric aed, 4 minins; water, 4 ounces.
3185. Mayall's Method of Cleaning Photographic Glasses. Siake up togethel 30 parts uleubol, 10 parts strong liquid nobmonia, 40 pasts water, and 30 parts dime Tripolf. The plates are to he robbed baid aud upualy wati balls of cotton-woul dipped in the misture. Whes dry, rub again with a deas hall of cutton, and dust off tho back abd edgen with is clean hag's-bair bush.

Metals. Motala are elomentary or undecompmuded bodies, which aro Atitmmaisal by their weight, hustre, fusibility, power of condretiar beat, electricity, de. (me Nos, 8359 to 2357 inclasice), and the mumenus cumpontade which they furnigh by cambisation with one atmother, and with other bodles. TVhes their solutions are decomposed by a galvabic currobt, the motals alwajs apfrear nt the clectra-ngegtive surface, and aro lianco termed slectro-piositire bodies.
3187. Assaying. The rnethod of determining the quastity of pure gold and vilver in the alloge of there melalse This art requiren great okill and experieuce in ita performance; nad, from tho eontliuess of the prectoona anetaht, ir if the utinont farportance. A slowntard dramet funnce of ony shapo and tizo may be empleyod, proeided it will aflerd a beflioieth beat, and allow the introduction of the matle, The mufle is a pot inaile of clate atal firmibled with an opentigg at 3 on ond, io nultat the introduction of tho etpels, nad so atlow of incpaction of the procesis. It it placed do toic malleozalato, by which it is introlseat into the formace. Tho cupel is a sort of shalliove cratible, made of beno mates or burnt benca, At tha British mint the cupels are made of the caleiued enres of ex-lioriss. The pasoder is siglaty mostened with water, and is circtlar stnel monald is buled therewith, ated after boing pesied down Light, is finished ef with a mummer, having a
 fircibly with as malfot, putil tho miss bocomes sufficiently hata atel atherent. The eapel is theu carclitly semosed, bud exposed is tho air ta dry, which usually takes foom 14 to 21 days The maflle, with the ocpols properly smanzed, Deing placed in tho furnnce, the tatter ia lifled uje with charecial, and lighted at tho top by placing a few pieces, heated to Thitencss, on last. When the cupels havo been esposed for boit an hener, and bave becrmo white ly heat, the lead is put into them by henens of a pair of tungs, and as soot as this becomes (horoughly resl and cireulating, as it is celled, the metal to be assajed, wrapped in a smand piece of paper, ia added, natd the fire kept tip stronply until theinetal entera the lead, sud cicculates well, when the heat may be aligbtly diminished, and so regulated that the assay shatl npper couves and urdent, whild tbo cupel is less red-that the tudutstions shan! circulate ia all directions, and that the middlo of the metal shall appent smootb. syrronaded with a seand emole of litharge, cupel This treatmont mast be conturned until the metal becomers fright and shining, or is soid to "lightens; after which certain
prismatio colora, or rainbow Lines, stiddenly fasly acooss the globules, and undalate and eross each other, and the later metal soon after appears very lrilliant and clear, and at loggth becomes fixed and sulid. This is called the "brightening," and shows that the separation is ended. In conducting this Trueess, all the materials used must bo aceurately weighed, especially tho weight of the alloy betore cupellation, and tho restulting batton of pure metal. Tho difference gives the quantity of alloy. The preceling goneral description of the process of cupellatimu will render the fotlowing artictos iutelligible, witbont again ons tening into the mingtion of the operation. An assay is thought to be gooul when tha liend is of a romal form, with its upper aurface brillinnt, ita lower one granslar and dend-white, and whes it sepantuts reatily from the eupel. When tho surface of the bient is doll and flat: it chows that too much lieat has beom omployed; and if the motal be wilver, some mef hare been lost io tho process, by fawing or abserption, Then the beal is spongs, and of various colorts, and scaley of lithargo still remain un the orpel, thed the metal ndiceres atrongly to the latter, tuo little beat has lieen ased, and tho bitton still retaing some lead. To romedy this, tho Leat ihould be mased, nod a littlo powdered charcoal, or a fow nmall pieces of Dajer, thyowti into the copel, until the betal agaln begins to eqreadate freely. It is necessaty that the lout employed in tho process of cupellation shoula the perfectly pure, It oughe, thereforo, to bo proetwed by reducing volined litiauge, (Gooley.)

3188, Puscher's Solution for Coloring Matals. This is a new method of givigis metals a durabto eolored coaling, and can be executed quickly and cheapls. To prepare tho solution dusolve it onnee byposulphite of mods in 1 pound water, and add 11 onnees acetato of lead dissolyed is if pioted of vater. W ben this elear solution if heatad 60100° to 210° Fable, it deounposes alowly, and precip: ftates sulphtide of lead is lrows flueks. If metal is now iamersel ta it a part of tbe onl. phide of load is deposited tbereon, and aecordfog to tho longth of time and consequato thickness of tho sleposited sulphile of leai, the variuus nud beatifullustro colurs are produced. In 6 minutes thero miny le imparted to brass astieles a color rarying from a beat. tifal gold to a copperred; thoa casmine red; then davk, them lithe notitine blace to a bleo white, like sulpthido of lent; and at last a reddish wbite, Bceording to the length of time they remain in the kolation used. Tho culors posanss the broat beantifill lastre, and if the artioles to loo onlared liave been previotsisly thoronghly eleaned loy means of acids att alkalies, they adbere so dirmly that they niay bo operated nipun by the polishing steed. To produco an oven culoring, tho articles to bo colorerl mast to ovenly beated.

Iron treated with this solution tahes a steel blue color; cine, a lrown color; it the case of copper objects the first gold coler does not appoar; lead and zinc are onticely indifferent.
If, instead of the neetato of lemi, an equal weight of sulphurie acid bo added to the hyposulptrite of sodia, and tho process carried ort as lofore, tho brass is covered with a very beautiful red, which is fillowed lig a green. asd changes finally to a splendid brown with green and rod iris-glitter; this last is a rery durablo coating, and moy find special attetsfion in manufutures. (See No. 3313.)

Very beantiful marbleized desigas cas bo produced by asing a lend solution thickened with gum tragacanth on brass whicls has Leen heated to 210° Fabr., and afterwards trented by the usual solution of salphide of lead. Ttso solutions thay bo used severa! Limes, and is nut Liabluto spontaneors changer

Gold. The mast marked properties of metallic pold are ila ductility, malleahility, and iusulalility in all menstran, except agna regia and aqueoas clilorise, abd ita slight atinity for oxygen. Native gold has a speeific gravity of 13.3 to 17.7 ; pure gola, about 19.3; its greatest denity is 195 . Its fo. sing point is 2016° Pahr. It is characterized by its rellow color, its insolnbility it nitrio acid, and ready solution in nitromuriatio acid (aqua regia), forming a yellow liquill that stans the skin purple.
3190. Assny of Gold by the Use of Touch-Stones. When it is desired to 13scertain the finemest of stanll quantilies of gold, as in jewelry, de, touch-neelles and stomed are employed. The former are mada io sets, containing gold of different fineuess and differcutly alloyed with coppor anil silser. Pieces of black pottery form excellent touch-stones. Tho monte of using them is to mark the stone with tho kamplo under exanination, aud to compare its appearance, bardnets, \&ce, with that proluced by one or more of tho peedles. When the two are inimilar, che quality is considered to be the same. They are then farther examibed by moistening the stroke with aqeafortis when red bot, When the appenaices rembtion from osida tion, eto, differ accorting to the natere and quastity of the alloy.
3191. Asary of Gold by Cupellation. This procest is dlvided into five operations.
Cupeltation. Sitber of or 12 gratas of the alloy fit the wejgbt msually tation for the amny, to which is added 16 parts of lead for every 1 part of copper that it is peesumusd to contain, tholago conotiderally more lead may bo used when the ramplo does not coatain asy silver; but if the riveric to the case, the excest of lead would tead to the loss of the leftet metal, which ought not to bo separated ustil the uperation of yartiag. Whee silver ia present an udditional allorsance of lend, equal $6 y^{\prime}$ of its weight, is made on that aceomat. When, however, the quantity of silver in amall, or is not required to ba entinonted, it becomes of little comsequmee what weight of lead is oxrployal, so long as entought be axel to carry off the baso metals, at the zame timo that tho quantily is not tho large for the oupel. Tho sample is then suhaitteal to oupellation. This process does sut requirs eo turch eare fur gold as silter, as notec of this thetal is abeorbed by the curel, of lest by evaparation, zed it will safely bear the bigb. est heat of the furnace withont iojory, In other respeets the operation may be coaducted in exactly tho same manoer as for silver. (Sse Na is206.)

Quartation. After gold has piassel the eupel, it may still refain cither of tho ofher perfect metals, particalarly silver. To re: move the lattor it midergoes the operntious of guartation and parting. Quartation is performed hy adding 3 parts of vilver to one of the cupelled satuple, and fusing them together, by which tho gold is rednced to ong fourth of the thass, or uven Jess; lhenee the notme. In this state nitrie acid will dissolve out tho silser, which Drings as to the next operation. In many eases the opieration of quartation is performed conjointly with that of cupellation.
Parting. The aillog of gold und siller formed by quartation is next hammered or rolled out into a thin strip or leaf, curled up into a spiral form, aud submitted to tho action of mitric acid, specitio gravity 1.3 , diluted with half its weight of water. this being poared off, naother quantity of acid, of alonat 1.26, and undiluted, may bo employed. In each ense the acia should bo lurflol upom the alloy for nbout a quarter of nat lour. In the first ewse the quatity of givid winotd Le abrent

21 ounces, and in tho second $7 \frac{1}{2}$ nimees. The second part of the operation of parting i. called the reprisc. If the ucid he used tom strong it leaves the gold in a Etato of puwder otherwiso tha metal presorves its furm throughout the proecss of parting, It is next carefally collected, washed, and dried.
Annealing. The enmplo of pure gold has row only to bo annealed, which is dono by putting it into a small porous eracible, atid heating it to redsess in the muflle.
Faighing. The puro gold ia next aceurateIy weighed, This weight doubled (if 12 grains are under assay), or quadrupled (if 6 grains), gives the number of carats line of the alloy oramined, withont calculation. The loss of sweight by cupallation eives the amount of copper in tho sample that after parting, the amouns of silver, deducting, of course, tho weigbt of silver used in the process, which is called the roifress When the eamplo contains but very little gold, the dry method of asiayigg cannot bo depended on, and chentienl mulysis must be liad re. courso to. (Cooley.)
3192, Assay of Gold by Chemical Analysis. The richnesm of gold in any wub. statee, whether Itquid or solid, especially whero the quatity is futall, is most enilly obtained by chemical nulyais. Tho gold is tbrown down from its sidetion by maling a solntion of protosulphate of ironj; tho peeef. fthte, noter being washed, difed anel gently hestod, may he weighed as pure gold.

If 100 gralns of the anbintance be liquid ander tant loo taken for examination, thic weight in prains of the driel preejpitato will give the perventago of rold contained in the cample.
3193. To Obtnin Gold Chemically Pure. Dissolve gold fil bitrobusiatio add (a mixturo of 1 purt nitric netil with 2 paits muriatio achd, ond called aguaregin); by addTog to the feid solution al folation of proteExilphate of Fm , the pure gold if precipitated in tho form of a brown powder, which sboukh bo thorongly wasked w free it from ncid, and thea dried. In thit form it is ready to mix by fusion with other metala; or tho powder cas he redued to eohid metallic form by melting in a erncible, with a chareont fire, sprinkfing oecisionally into tho erueiblo o little raltpotro and potnsh us a flux. The gold will form a button at the bottom,
3192. Grain Gold. Cupelled gold, I part; ; silver, 3 parta ; melt and pour in a smalf stream inte water; dissolvo out the silver with nitric acid, athl lieat the grains to redness. Dsed to maite preparations of gold.
3195. Liquid Gold. Δ gitnto ether with a solution of terehbrite of grld for somo time, allow it to repose, oul decunt the sm: pernatant portions. Naplithes noil essential ails poksess the satue property as ether, of tnking gold from its sulutions. This Jiquid was formerly hela in great estecht as a cotdial medieise. It is now ouly employen for writing on stecl, gilding, \&e. As it cries, it leaves a conting of pure gols) (Sce No. 4585.$)$
3198. To Make Watch Hends Red. Mix to a phate ovir a lamp, 1 aubee earuine, 1 orues cliloride of silver, nud $\frac{1}{2}$ ounce tinterd innath. Put some of the pnsto on the hunds, and lay them face uprands on n sheet of copper, holding it over a spinit lamp until the defored colot appesrs ot them.
3187. French Method for Coloring Gold, Λ solution is menle of 2 parls nitre, 1 part Tunnan ntue, and 1 of sea salt. The jesvels or niticles of gold grolcept in the soluLjose at a boillag point tor litwe 15 to 25 minutes; and then washed in water: Thosarface of tho gold is dall, but pretecty uniform, and

ready for burnishing.

3198. To Color Gold. Take 1 part salt, 1 part alums, and 2 parts saltpetro; cach material to bo vell poutdel separately in a mortar; put them inve an iron pot with t pint water, apal beat slowly over a fire: boil gently and atir with an iron rod untit it risea. It is then ready for the reception of the artielea to bo colored, which mast he not leas than 18 carat fine. They are suspended in the color hy 18 carat wire, anul kept in motion till the ligtsid begins to sisk, then tnkes out and dipped in aquafortis piekle. The colur liquid will tiso again, nud then mother dip, and sometimes two, may le becessary to gire the artieles the proper color. This proceas of coloring is un more than taking from the surfaco the inferior metals, leaving st thin ecating of p mre gold; ita application shoult not bo too long continued, us it also dissolves a bmall portion of tho gold.
3199, Gold Coloring Solution. Tako 1 ounce nitrate of soda, nad \downarrow omene elsforido of codium, and dissolve in an slight exeess of Warm water, afterwards adding to the selp(foas about 5 drachans bydruehloric acil. The solution shonld he kept boting white tho work is is it.
3199. To Clean Gold after it is Soldered, I'nt it throegh the sames jrocess as silver (sec No, \$222), bot, fustebd of alom. water, boit it fa whe and pal-umuoniac.
3200. To Restore tho Color of Gold after Soldering. Buit thin gold, nfter soldering, in dihutid oil of vitriul; riuso in clean vator. pelish with Tripolf aifred in oll (swees ol in host), wesls and gloss with ergens on a clean cloth.
3201. Toे Clean Gold. Diseolvo a littlo murinto of nmmonin in urine; bofl your poiled gold therein, and it will betcomo elcas und brithiant.
3208, To Clean Gold Ormaments, Gold ormments may baso hia thoroughly eleased by famersion for a fow seeond in a waik solutios of sumponti. Then wash with aoap and wither.
3202. Pollahing Powder for Gold Articter. Dr. Vi, ILuSmair bis atialyoed as palsbing pirwder aold by pold workers is Gormany, whico blwaya eurnouads a very lifigh prico, mind honee, it may the inforrod, is woll nalapted fir the porpose Be fulund it to 10 a virry simplo eutupraition, boing a mixture of abant 70 per eenh sesqutioside of fros (iron rust) and 30 por cent. EMi-smmurtiar. To propare it, protgehturide of fron, obtained by ilissolving itos in hydrochloncs acill, It troatul with liquid aumania watt a precipitate bs mo longer formed. The presipitate is colluelsel en is tilter, and. withnut whathing, is driod at suels a temperature that the adberings anl-amuranime glaff tuet he volatilized. The protoxide of iron precipitato at lisst becomes chargod with sesquioxide.

Silver. This metal has a very thite color, a bigh degren of tustre, is exceedingiy malleable and ductile, and tho vest cosduttor of heat and electricity known. It is procured from its ores chiedy by amalgamation and capellation. Its specifio gravity ts 10.474, and melting-point 1873° Eaht. or bright redness. It is soluble in mitric seid, and in sulphuric ach by the aid of heat. Its gutfaco is rapidly taruished by sulphuretted hydrogen, and by tho fumes of sulphur.
3203. Assay of Silver by Cupellation, The assay potad (usually 12 or 20 grains for silver) of the alloy for examination is aceerately weighed, and then wrapped in a stanl! pieco of paper ready to undergo the process
of cupellation. (Bce No. 3191) Tho quantity of leal used is not uniform, but depends on tho nators of the alloy. It shonid be 16 times tho weight of tho copper presuased to bs prosint in the sample. This, however, camat the necurately azcortaitucd, thongh an esparionced askayer is goneraily able to guoss very acarly tho amount. If ton bioch lead be lised, tho batton obtained by expollation will be tho amall, owing to some of tho silver beiag absootbei by the cupel; and if too litule be aned, the buttun will enase out too large, from still containing soase copples. The importaneo of juatly proportioning the lest to tha quantity of copper prosent in the alloy, eagast bo too much inadited on. (Cooley).
3207. Assay of Silver by Chemical Analysia. Dissolen 10 gratios of the alloy in 100 grains of nitho aced, speciffe gravity 1.29, by tho will of heat; tho solotion beizg mato ia n tall stoppered glase tploo, formished with a Foot; then place it in a very delieate balatoce, which must to broaght juto an esuct slato af eqailithrimm, and add the tor solution (Nes No, 23205) gradnally abd cantiunsly, until tho whuld of tho silver lee throvis denw; Lat the μ tmost care must be takeat thot to esceed this poiph Tho nouler of grains now requimit to sevtore tho equilibrims of the scales gives the exact quantity of proveritver present In 1000 prorts of the sasogtes. The muldition of tho test ligupr to the polition requires the utmott exactoess, After each addition the stopper slould ha placed in the tube, and the latter rialently agitated for a sbort time, when the ligior will rapidly clear and coable it to ber tem when the uperation is coneluded. Wo mave thes, on a check; addd as sthall quansity If a solation of nitrate of sifver to tha liquor in the tishe, after faving first carefolly tatien the wreight. If too much of the tent ligure has been adilol, this arill prodace a fresls proeipetate, ant the asmay cannet then bo depouled on. Iostesid if trisflaing the quantify of teat lignow usel, a tepo gradunted into 100 partes amil holditis 1000 praitac, may ba stest iastent, eqery divispas of whitill required to theow dows the silyer, will n - rovent tho Ibtr of a grain. The babe lecing files to tho 0. 13 renty for isse, hud from boing erruluated downgard the guartity poores out may at whed be real nd. Generally speaking, however, moasurive ilocs not admit of the ssumo ancifacy no wefgives, The termination of the oporation is elearly marked, whes, oa adding is minute quantity of the test liquor Lo tho silver silatimo, so elondiness oceura,
3208. Test Solution for Assaying Silver. Dizoulso $51 /$ gidius pare sean-anli (ara
 pobs) distilles woter. Witer and beep is a stoppered lentide for uase.
3209. Pure Sea-Salt. Boil together for a few minutes. in a glas ressel, a eplotion of sals with a lituc pure Licarbonisto of soria; fitter; mhl meriatie neell matil the lignor ba neutral to litants and turmenie paper; then byapurato and crystalize.
3210. To Extract Silver from Lead. This is edsily tape is a emall way by melting the mixel metals by a strong heal in tho open air. The leal silt to comperted izto litharge, and the sfifer will sink to tho bottom of tho crucible. Ors a large scale, the silver is estracterl from tho leail by the ozidation of tho lead into a reverberatory furnace of a partienlar construetion. A shaslow ressel, called a cupel, is fillet trith asbes, trell packed and poundel stowsu, anil a carity eat out for tho peseption of the nurzale of a bellows, through which nir is forcilig driven. When the fire is lighted nnd the lead is in a state of fusion from tho reverleration of tho flame, the blast from the bellows is made to play forcibly on
the surface, and in n short timo a crust of oxide of leat or titharge is formed and driven off to tho side of the cupel opposite to tho mouth of the bellows, where a sthallow aperture is modo for it to pass uyer; another erust of litharge is formed and driven off, and this is repeated nitil nearly all tho lend las been scorified ant blown aside. The completo separation of the leal is indicated by tho appearasee of a brilliant lastre on the convex stirfaco of the melted masa in the cupel, which is uecasioned by the removal of the last ernst of litharge whiel eoverel the silver. If tho silver thuta abstracted is not sufficiently pure, it is fartleer refined in a roverberatary firnace, being placed in a cupel tined with bond ashes mal expmad to an intense licat, fo that tho lead which eserped osidation hy tho frot procest is convirtied into litharge, and is absurteral by the aslous of tho cuperl.
3211. Test for Metallic Silver. The sompounds of nilver, mixed with cartunate of sola, amil exposel on charcoal to the inner Alame of a blow-pipe, ufford whito, brilliant, and ductile metalfio globulen, without any incrastation of the chareoal. (See also Ass saying.)
3212. To Obtain Pure Silver. Pare кilver is obtained by placing a copper rod ita a Eolation of nitrats of silver, difesting the precipitato in callatio amhtonia and washing wilh water; or ly boiliate recently precipitated and with muist chalorido of sitrer in at bight iron Fersel alumg with water. (Sec No, \$536.)
3213. Solvent for Silver. Nitro. sulphurie acid. Dissolvo 1 part nitro in 10 parts oil of vitriol. Uned for diesolving the bilver froul plated goode, \&ec, It dissolfes Eilver at n tomperatmo belove 260s, thal ecarcely nets upinn cuppor, lcal, and irnot, un: Jess diluted. (Sce Now, 3716,3720, and 3791) Tho sitvor is precipitated from the solutiom, after vioderately difutiag it, by combmis qutt, and the chlorido reduced is directod is Nos. 5214 and 3215.
3214. To Purify and Reduce Silver. Salver, as ushed in the arts and cumage, is nlloged with a portion of eopper. To purify it. diasolvo the metal is vitrie acid slightig dithted, and add commen balt, which thowed down the whole of the silver in the fortis of elatorice. To resiace it into a metallic state vereral methods aro ased. The chtoride intust beropeatedly washed with distilled water, aud placed in a zino etu; a litule diluted sulpburio acid Leing added, the chiaride is soon rednced. The silver, when thorosghly washed, is guite pute. In the absence of a zine eup, n porcefain cup containing a zinc plato may je used. Tho proceks ts expedited by waming tho eltp. (Sec No. 3536.)
3215. To Purify and Reduce Silver. Proceed as above, and digest the washed chloride with pare copper and tmmontia. The quantity of ammonia need not bo sufli. cient to dissolre the chloride. Leare the mixture for a diay, then wash the silver thoroughly. Or: Boil the washed and moist chloride in solution of pure potash, ndeling a litule sugar; when wastied it is quito pure.
3216. Peale's Method of Obtaining Pure Silver from its Solutions. By adding in exeess, a saturated solution of common salt to the solation of nitrate of silver, the metal is thrown down, as an insoluble salt, the chloride of silver. Tho precipitate must then be carefully washed motil it is cll: tirely freed from the presence of nitric acid. Granulated zine must then be addel to the chloride, and stirred through the mass. The finer the gine has been granulated, the more rapid will be the reduction. Dilute sulphuric acid mast also be added, and tho wholestirred antil the reduction is complete, which will be known by the entire disappearanee of the
white chloride, and its conversion into a grey powder. A new set of aflinities takes place with great rapidity in this combination, and the chlorine is liberated from tha silver, which takes its metallio form, as above stated, in the appearance of a grey powder. Tho zinc, having been added in exeess, must now be removed by the addition of dilute sulphuric acid; after all action has censed, the solution of zinc must be decanted, or drawn off with a syphon, and the silyer washel until free from acidulous matter, after which it may be dried by presaure, or the simple application of heat in a pan over the fire, when it will bo rendy for melting, with the nasual fluxes, os re-nolut tion with nitric acid. This process id rapid and easy; is nut subject to toss; it will yjeld, in the terms of trade, pure silver, of at quality from 094 to 998 thuusandtlos fine, and is thorefore well alapted to thes preparation of puro nitrate of silver for the uso of photographers and all others who need a reliahle articte.
3217. Silver Dust. Take silver, ulissolvo it in alightly difuted nitria acid, abd procipitato it with slipt of lright cuppets; wash the powder in epirits, and dry it. Or: Ais exceedingly the wifer dast may bo obtained Ly hoiling recently procfpitated chborida of sil ver with water acisn iafed with salphurio acid, and zine.
3218. To Frost Polished Silver. To produce a froston surfice an polished Eilves, use cymide of potassitm with is beush. Tho silver khatd not be liandled daring the procoss, bak held with plies made of tazeewood or beswood, The proportion shood be 1 otmee dissolved in 1 piot of water. It is very poisounts.
3219. To Oxidize Silver, A very teautifil effeet is produced upon the onfaco of silver artieles, teclinealiy termed osidizing, which given the ghtrace an appearance of potiahod nteel. Thia can be eafily effected by takitig a little oblorido of platioum, prepared as doveribed in tho next recofpt, henting the solithin and applying it to tho sitvor when an oxdised surface is repuirch, and allowing the solution torlry upou thonilver. The darkness of tho color prodinced varies accurding to the strength of tho platioum notution, from a light ateel gray to wearly black. The offeet of this process, when combined with what in termed dead work, is fery pretty, and may be casily applied to medals, piring scope for tho axereise of taste. Tha bigh appreciation in which ornamenta in oxidized silver are now theld, render a notico of the process filluwed intoresting. Thera era two diytinet phades in use-ome produced liy chtoride, which has a brownish tint, und tho other by kulphir, which has a blueisk-black tint. To produce tho former, it is only ueeossary to wash the articlo with a solution of mal-amunviac; a much muro leantifal tint may, however, bo oltained by employing a selation composed of equal parts of sulplate of oopper und salammoninc in vinegar. The fing black tint may bo produced by a slightly warm solutios of stulphuret of potassium or sodium. (Dr. Ellsner.)
3220. To Prepare Nitro-Muriato (Chloride) of Platinum. Tho nitro-muriste of platinum is casily prepared: Take I part nitric acid, and 2 parts hydrochloric (muriatic) ucid; mix together end add a little platintm; keep the whole at or near a boiling beat; tho metal is then dissolved, forming the solution required.
3221. To Mrake a Silver Tree. Dissolve 20 grains nitrate of silver in 1 ffuid ounco of water in a phial, and add $\frac{1}{\frac{1}{2}}$ drachm pura mercury, Arrange the zine as for tho lead tree. Very brilliant and beantiful.
3222. To Clean Silver after it is Soldered. Make it just red hot, and let it cool;
then boil it in afrmi whter, is anf earthen vessel, and it will bo as clean as Then now. 3223. Belgian Burnishing Powder. A burnishing powler गII wee in Relgium is composed of I poumd firs chalk, 3 ounces pipectay, 2 ounces wbite lead, $\frac{1}{2}$ fouce hagepesia (earbonate), and the same glisutity of jewnlers ronec.
3294. To Proteat Silver-Ware from Tarnishing. The loes of silvet whioh restila fruig theipopregaatipn of our atmusphero with mhtitur onnupornds, expectally where gas is burnel, is yery great, Silfersmiths may thank one of their confraterpity-Mr. Strolloctger, of Manielh-ine a happy thought. Ho seoms to havo tried various pians to impo his sitver, if peesible Ifa eovered hid gucels with a cler white vartish, but fuund that it soon tarmel yellow in l.e windos, ned spalled the look of his wares. Then bie Lried waterglase (solution of silieate of putash), Uat this did not answer. He tried some other salgtions, to no purpone; lus at last he hif upon the erpedient of coalung his soole over with a thin coating of collodion, which bo found to asostver perfeetly. So mrse loss nf silver, and no longer ficersant labor in beeping it elean. The plau Let sdopse is thes He Hres. Farmes the artielen to bo coated, and thent paiuts them over earefally withis a thinitigh coltodion diluted vith alcuhol, udae as pile eof lmath for the purpond. Gencnilly, he Bays, it is not nulyisabiot to de cheqer avor pore thin oncer. Silvergonils, he tells us, protected is this wag, havo beex espiaed in his sioniow
 white oflegra hopsetectol hase leeome perfectty black in 1 cove muntre.
3925. To Prevent Colns and Bmall Oroaments from Turnishing. All uraimants, whether gold of vilver, ean be kept from traiathang it thos aro carenilf covered from the eir ie tow-woml vawdust, which will atio dry them after lowine wasted. The tarniat on relver-wire if mostofen alue wo milphor. A gentlemus who wents a sillver watch find that it is tarriabed from the suiphor furues of the rubber ring which bolds lagather lia ferrs ticketh. Solphur fumes onough get into the air to account for all onffeary casses of tasnishing.
3226. To Clean Silver. Tinmerse for half en boer the silver artiole ierto es sbintiont maile of 1 gallom water, 1 pound lejpesmlphite of soda, 3 eunoes muriate of ammotia, 4 ouncers liquid amenomia, and 1 outpecs oganide of potasionas; lut, as the latter mulnatance is poisvobas it cin be dispeased with if meers. bary. The irticle, beiog taken out of the solotion, if washed, and rubbed withe क wawh leather.
3227. To Clean Silver Plate. Fill a Isrge asuecpan with waters prit ioto it 1 ounce carboasto of potasli und \& puosd whitieg. Now put to all the spoons, forkn, and small plate, and heil lhem for 20 miontes; nfter which lake tbe saucepan off the find and sllow tha liquor bo lecome coll ; then take each piece out and polist with solt lenther. A nofl locush monst bo ased to clean the eulbossed and engraved jarte.
3228. Plate Boiling Powder. Mix equal parts of eream of tirtar, commoni kuit, and alum. A litzle of this powder, addel ts the water io which silver-plate is bolled, gives to it a silvery thiteness.
3229. Plate Cleaning Powrder. For eleaning siflver and plated articles, de. Mix $\frac{1}{6}$ pound joweier's roage nith i pound preparvd coalk. 0%; $\frac{1}{2}$ ponmil icrigated patty poisider, E poouil varat harthom, 1 pound prepared chalk, and I ounce roso-pink.
3230. To Clean Silver. To cleath silver, inis 2 tes-spuonfula of ammomia it a quert of hot sosp-smds. Prit in the silver-
ware and wash st, using an old nail-brash or tanth-brush for the purpinse.
3231. To Clean Silver and Silver Plated Articles. Boif 1 ounce finely powdered ave calefued harthort in I quath water, and while on the fire, insert the articles, ats marty as the vessel will bold; leave them in a short time, then take them out, and dry theon over afire; when all the articles bave bued thas ctested, put into the solution elenn woulen tags; when they are saturated, hang them un to dry. These will be excellent for palizftuing the kilrer, as well as for cleaning Grass dunt-knohes, éc.
3232. To Preserve the Polish on Silver. Whath it twice a week (if in daily 4se) With soft soap and heo water, and polish with Carton flauncl. (See next reecint.)
3233. To Clean Silver Ornaments. Boil them is soft sonp and xyater for fivo bsingles: Lhen put them in a luastin with tho sama hot soap and water, and serub them quplls with a very koft brash while liot; then ranse mid dry with o linen rag. Heat a pieco of combrom uvglazed earthenware, or a pieco of lrick or tile in the fire; take if off, and place the ornamentas upon it for the purposo of drging tbem, med causing every particle of moleture to evmerate; as the woisture, shich olherwise would remain on the silver, will cause it to tarniab, or assumo a greenibh hae.
3234. To Cleas Silger. Moisten bome Finels pownlered whiting or Poris watto with kpinits of laartahom, ratr the silver fato in, lat it dry, then rub it off with a soft cloth 4tul pulish it with chamuig Jeather, Sumo Kibdk of sitrer nonp keep tillyer looking nicoly, bat many of Domo are chemieat compoands Chat infure the aitver.
3235, To Clean Silver Plate. Whiting fincly powdored and moistened with a DiUlo sweet ail ty axcellent to clean silvor. Lat the mixture dry on, then rub it off with a wife linen eluth ath polith with chamoin leather. This givon silver a beaatifal whito appenarance, and if well dote tho silver will Neegs clean a lour time.
3236. To Remove Ink Staina from Blyen. The wpy and other porlions of siliver inkstands requently becomg doeply dineolored with tok, which is difficult to romove by ordinary means. It may, however, be completely erpdicated by miking a littlo elhturide of lime into a paste with water, and roblitse it apon the staus.
3237. To Remove Dark Stains from Silver. A curtain temedy for the most inveterate stains that are sometimes to be yeen wn teasponas and other silver ware, is to pour a litile Enlphuric reid into a saucer, wet with ita sonft linels rag, and rubl it on tho blackenod silfer till the ztain disappears. Then coas the articles with whitiog fonely powdered and cifted, and mixed with whiskey or spirita of wine. Whan the whiting has dried on, aull rested a givarter of an hour or more, wipe it with is silk lamdserelisef, and polish with a soft buckstin.
3239. To Remove Egg Stains from Bpoons. To rembere the staine on spoons, cansed by hsing them for miled egen, take n lithe corpmomsalt muist between the thumb and finger, and loriskly rabl tho stain, which हill shnt dixappear. Then wasls.
3239. To Clean Gold, Silver, and Copper Coin for Numismatic Collections. Maken weak solution of cyanide of putassium and bathe the coin in it fir 2 or 3 seconds, theti immediately mish it with 4 revg fine brush, in sosp-sads; rinse in clean cold water, and dty in boxwood kaw dust. This recejpt is particplarly good fot fine proof eniss. Be carefol not to let the coins remain in the solution louger than tho time spenfied, otherwise they
may have a frosted appearance. (See No. 2167.) As the eyande of potassium is as very deadly poison, great care must be taken by the operator not to use it unless his hands are entirely free from seratches. This solution may also be used for cleaning fine copper coins, but eare mast be taken not to use the mixtore that bas previousty been emploged for cleaning silver, or a coating of the latter retal may be the consequence. (See Nos. 3221 and 3225 .)

Silyer coins aro often covered with a dense green oxile. To remore this they should be steeped for 10 minates in a solution of ammonia, theu immersed in water and wiped with a soft towel; if necessary, a fresh quantity of tho solution may be applieil. Copper coin may bo cleazed by immersing in puro sweet oil and wiping dry with is soft rag.

Copper. This metal is found in the motallic state, and in combination with oxygen, sulphur, acids, and other minerals, and in the organic kingdom, in the nshes of plants, and in the blond of animals. The copper of coumnerce is principally prepared from eopper pyritex, a mixed sulphuret of iron sud copper, found in Corazall and other parts of tho world. Copper is onyy prepared from its ores ou the largo eeale. The copper pyrites are first roasted, and then smelted, by which pencesa coisarse metal is produced; this is again submitted to calcination and sumeting, when fine wetal is obtadbed. It after. wards undergaes the process of refining bud toughening. This metal is malleable and ductile. It bas a specitio gravity of 8.8 to 8.9, fuses at about 2000° Fahr., and volatilizes at bigher temperntures. It is easily soluble in nitric acid, and is attacked more or less rapidly by acils in gyneral. It furms numurous compounds, nill of which are more or leste poigopous, Espontire to a damp atirosplere prodnces on its kurfice a grees colored oside, known as serdigns. Cupper miny be readily alloyed with othor metald, except iron and lear, with which it unitex with difticulty.
3241. Teat for the Quantity of Copper In a Compound. The quantify of copper prosent in any compound may be estimated by throwing it duwn frum its sulation by pure potaced, after which it mast bo earefolly enilented, washed, dried, renited, and weighed. This will pico the quantity of the oxdde from which its eqpivalent of metallie copper may bo caleulated; efery 5 parts of the former being healy uqnal to 4 of the latter: onf, more acearntely, evory :30.7 parts are equal to 31.7 of ptire netallie copper, Copper may also be prectpitated at unes in the metallic state, by momersing in piece of polfishal steel into tho selntion; hat this methoul will not give very itcentate results.
3242. To Separate Lead from Copper. Oopper way be weparated from lead by padding sulphuric acid to tho mitric solution, and eraporating to dryness, when water digested ont the residum will dissolve out the snlphate of copper, but lesee the sulphate of leal lrehind. From this eulation the oxido of copper may lise tbrown Almeti ns before.
3243. To Separate Zinc from Copper. Cupper may te separated from zine by salphuretted hydrogen, which will throw downa snlphturet of copper, which may be dissolved in nitric acid, anil treated as in last receipt,
3244. To Separate Tin from Copper. Digest in nitrfe aceal; the entper will be dissoired, lut the tin sil remain in an insolublo peroxide.
3245. To Separate Silver from Copper. Digest, in a state of flinges or powder,
in a solution of ehloride of zive, which dissolves the corper and leares the silver unchanged.
3246. To Separate Copper from its Alloys. Copper may be separated in absoInte purity from antimany, ansebic, binmuth, lead, iron, \&c., as it exists in bell-metal, brass, brovie, and otber commercial alloys, by fusing, for aboct laalf on hour, in a crucible, 10 parts of the metal with 1 part each of copper seales (black oride), and bottle glase. The pore copper is foand at the lonttom of the eracible, whilat the otber uetals or impurities are either volatilized or dissolred in tho flax.
3247. Copper in Fine Powder. A solution of sulphate of copper is heated to the boiling-point, and precipitated with sublimated zinc. (Sce No. 30.) The precipitated copper is then keparated from the nelherent zino by liluted sulpharic acid, and dried by exposare th a moderato tempernare.
3248. Reduction of Copper in Fine Powder. M. Schiff gives the following proceas for ohtainiag copper in a state of fino division: A satarated solution of ralphate of cupper, together with some crystals of the salt, are introduced fato a bottle or flask, and agilated with zome gramulatel sinc. The une alaplaces the copper from ita zulation. fresh salptate dissolving as the action goes on, until the whole is exhausted. Heat is dixengaged duriog the operatine. The preeipitated copper mest the washed and dried as rapidly an prosible, to prevenit usidation.
3249. Feather-Shot Copper, Melted copper. poured is a mall stream into cold witer. It forms small pieces, with a fenthered eifge, bepce the nawie. it is used to wako solintient of copper.
3250. Welding Copper. A enmpound of 358 parts phupphate of seda and 124 parts borsecie acid ia propared, and ia usod when tho motal is at a dult red heat; the lieat is thent fncreaved till the rmetal beommes of a cberry red eutor, aud the latter is at once hammered. A bammor of wood is reoniomeated for this purpose, as the motal is llable to softea at a hijgh heat; and the bammer shoold bo used contiously. All seste and earlonaceots matter mast be removed from the marfige of tho oopper, as tho succoss of tho woblisg dopendia on tho formation of az easily fasible phospl)ate of enppor, which twould lia reduced to a plasphide by the presnaed of carlooz.
3251. To Prevent the Corrosion of Copper and Other Metals. Thas Thest meaus of preventing currusjun of metale is tir dip the artieles first into a very ditate mitric acid, immerie thear aftersards in finseed oil. and sllow the excest of cil to drais off. By this process metals are effiestaslly jrexented from rust of nxidation.
3252. To Clean Coppera and Tins. Theso are cleanes with if nurzture of nottet stone, son soap, and oil of turpeatioe trixed to tho emasistency of stiff patty. The stons should bo powderod rert fine aud sifterl; and a guantity of the warture may le waule sufficient to last fot a long white. The articles should first be wisheel trith bot watet, to romote greage. Thea a lithly of the above misture, mised with water, shooblh te rubbed over tho matal; then rab oif briskly, with dry elean rag or leather, and a beautiftil polish will be ultaincl. When tins aro much blackenel loy the fire they should be acoured with moap, Water, and fine sand.
galena, a natural sulphuret of lead, by roasting the ore in a reverberatory furnace, and afterwards smeiting it along with conl and lime. Its specific gravity, in a state of absolute purity, is 11.38 to 11.44 , but ordinary lead seldom exceeds 11.35 . It melts at about 6122° Fabre, and when very slowly cooled, orystallizes in octohedrons. It is malleable and ductile, but devoid of elasticity. Lead is not dissolved by muriatic, sulphuric, or the vegetablo acids, uniess by free contact with air, and then very slowly: but nitric acid rapidly axidizes it, forming as solution of nitrate of lead. Puro water, put into a leaden vessel, and exposed to tho air, soou corrodes it, and dissolves the nowty-formed uside; but river and spring water exert no such inflaence, tho carbonates and sulphates in such water destroying its sulvent power. Leal may be alloyed with most motala, exeept those which differ greatly from it in specifie gravity and melting point. It has a wtrong affinity for gold and silver, and is therefime employed to separato those metals, by cupellation, from other vietald and minerals.
3254. Cautions on the Use of Lesd for Cisterns, \&c, Ordinary water, which abounds in mineral salts, may bo bafoly kept in leaden eisterns; but diswilled and rain water, and water that contains searcoly any salina matter, mpeedily corrode, and dissolse a portion of lead, when kept in vessele of that tretal. When, however, leaden cisterns have iron or zinc faxtenings of bracer, a galvanid action is yet mp. the proservatice pinwer of ralino matter ceased, aud the watar speedily hecomoseoptaniuated with lead. Water eontaining froo carbotic nedd also acts on lend; and this is the reaven why tho water of somo springs, kept in leaten cisteras, wr xaised by leadert pabipe, popsesses nawhotosome proper-
 formontations or decay of vegotable matter. and besce the proprioty of provpating tha leaven of trees fafling inte water-cisteroa firmed of lead.
3255. To Test the Richnoss of Lead Ores. Letad ores, or taloma, miny bo tested in titherent whes. The tect toay is as follows: Digeat 100 graims of the ote is sulficient nittio acid diluted with a Betle tater, apply heat to espet any execsa of acid, and tarizely diluta the remainder with distilled water Next add ditute bydrmehtorio acid, by trops, ag long ats it occasions is precipitate, and filter the whale, ofter being moderately tieated, pyon a sianall paper filter. Treat the filtered liquta wita a strcam of sulphuretted hydrothen; collect the blaek precipitate, whash it, and djesent it in stronge nitric acill; when entirely dixsolvol, precipitate the lead with sapphuric acti drupped is it, exaporate tho preceipitate to dryness, the excess of sulphnric aid being expeiled by a rather strong heat applied towards the end. The dry masa should be washed, tried, and exposed to slight iguition in a parcelain cracible. The resalting ory sulphate is equal to .68 per cent. of ita weistat in lend.
3256. To Find the Percentage of Lead in Lead Ores. This can be done by applying the test in the wet way (sec No. $3405)$, aut multiplyitg tho weight of the prodact obtainel in grains by . 68 . It may also be foatd in the dry kny, is follows: Plungo a topical wroutht iron crucible into in blast furnace, raised to as high is heat as possiblo; Then the crucible has become of a dull red heat, introdnce into it 1000 grains galena (lead ore) rednced to porsler, and stir it gently with a piece of stifiron wiro flattened at the ead. This wire must never bo suffered to get red hot. To prevent the ore from adhering, after 3 or 4 minutes, cover up the crucible; and when at a fall cherry-red heat, add 2
or 3 spoonfuls of reducing flux (sec No, 3464), and bring to a full white beat; in 12 to is minutes, after haring seraped down tho scoris, ete, from the sides of the crucible, into the melted mass, tho crucihle khould bo removed from tho fire, and the contenta tilted ints a small brass moald, olsserviog to ma out the motal free from scoria, by rakiog tho latter back with a piece of green wroud. The scoria is then reheated in the cracible with i spoonful of flus, and this second reduction ndded to tho firat. The weight in grains of the metal obtaimed, divited by 10, gives tha percentage of metalice lead in the sample of
3257. To Make a Lead Tree. Dissolva 1 namee shagat of lend (acetate of lead) in $1 \frac{1}{1}$ pints distilled water; udd a few drops of acetic acid : place the liquid in a elear whito gliss bette and spypend a piece of aine in it by meaus of a fine thrend seeared to tho cork.

Iron. Iton if ouly prepared on the large sealo. It is obtained by smelting tho oro nlong with coko and a flos (either limestona or clay). Tho crude iron thiss whe tained is ran foto moodds, and then conati. tutes cant irom or $p-y$ iros. By the salusequent process of refining, (pudollige, wellinge) it is cosverted into anft iron or teronghs srou. Tho propertics and hace of iron aro too well knowis to requiro deveription. Its applieations in almost overy Lrapol of bunan induss try aro almost initnite. It in remarkably ductile, and pospesara great tenacity, Lat it is loss malleable than many of the other metalf. Its specific travity bo 7.788 , wat melts at ahout 9700° Fals. It is the hardest of all of the mulleable atal diwetile metals, and when combined with carlam or silies (nteel), ailmits of being Lompered to ahmast any demped of bardness or elasticity, Metallic (rom in distinguiabed by beigg attrneted by the magnet; by being disnofred hy dithte muriatic and sulphuric aclida, with bolation of hydregon gas, resogaized by fts tollametahilitytand the solution exbibita the usmal renethony of protoxide of iron. (Cooley.) Irmm dues not slloy casily with nther metals, prineipally on aceuunt of its high moltiog pont. It is carily attacked by acidt, nud reqsires protection from the air, to provens oxidization or rusting,
3259. To Estimate the Percentage of Iron in Ores. Freparo a crucilite of refractory clay by prossing into it suocessive layerd of moistened powdered charcoal watil fall and solid; clear out a eavity by romoving the contral portion. Take 200 grains of the powdercd ore, and mix it with the same weight of dry slacked lime, and 50 grains charconl; if necessary a litte carbomite of Boda may bo bsed with vory raftuctory ofes; fotroduce this mistare iuto the crucible and luto it up. Exposo the crucible to a moderate beat until the contents of the crucible are dry, then upply, und maintain for half ati hour the full beat of a biast firnace. Then remove tho erucible, tap it steadily on the edge of the furnace, 60 ous to bring the metallic portion of its cuntents together at the bottom; wud, when cool, break the erucible open. The iron will be found in a clean button at the bottom of tho slag. Clean the iron with a scrateh brush and weigh it. Its weight, divided by 2 , will give the pereentage of nichness of the ore under examimation.
3260. To Distinguish Wrought and Cast Iron from Steel. Elsmer prodaces a bright surface by polishing or filitig, and applies an drup of nitric acid, whith is allowed to remain there for one or two minntes, and is then wasbed off with water. Tha spot will then look a pale oshy gray on wrought
jrom, a brownish hlack or steel, a deep black on cast iron. If is the carlom present in ravious proportions which produces tho differenco in appearapec.
3261. To Impart to Cast Iron the Appearance of Bronze. The article to be so treated is first cieated with great care, apd then coated with a noiforn filen of some vegatable vil; this dom, it is expesed in a [urnace to the netion of a ligha temperature, which, hotrever, must not be strong enough to earlomize the oil. In this say the cant fron absorbs oxygen at the momient the pil is decouspesed, and there is formed at the burfrace is thin cuat of bruan okide, which antheces रery strougly to the metal, und will admit of a hiel potisb, Bivigg it guite Dhe ap. pearance of the finet linurze.
3262. Brown Tint for Iron and Steel. Disoltre in A pasts of waier, It parta crystallized chlorilecve iron, 2 parts iblorde of anti. nopy, and 1 part gallic zeid, sind hpply the solntion with a spoafge fir rloch to the sutiele, and dry it in the air Repicat this nay manier of times aceonding the senth of eotior whith it is desited $t / 1$ praduce Walk with water, tud dry, mad finally rult the articles ovef with boiled livieed wil. The sutal thus receiren a lerotsin tet find rethe moistures tha chlorite of antmony should the as litile seid ats pervible.
3263. To Blue Gun Barrels. Apply sitrie neid aml let it ast into the iron a little; theth the later mill tin covered with os. Hin film of uside. Clean the barrel, oit, and barmidh.
3264. To Ornament, Gun Barrela, A *ery pretuy phpearaped is giren to gur tuar. rela ly treating them with dilute niftic acid and vingegar. 5 whieh bing Leen added zulphate of eopper. The metalific copper is deposited irregulasly over the iron Eurface. Wush, oil, nad rub well frith a bard brush.
3265. Iron Filiogs. The noly way to obtain them jure, is to act on a piece of soft iron with a fle.
3266. To Remove Rust from Iron. We bave nerge scen any iron so badly sealed or jocristel with axide, that it couthl not be cieaned with a sulntion of 1 part kulplurig acid in 10 perts water. Paredosical as it may soem, ntrong zulpturio veid will bot attach tron wita anytbing like the marry of a solotion of the came. On withuraving the artieles from the acis soletiva they stirold bo dipped in a batla of bent live water, and held there till they beeome mo beated that they vill dry immediately when taken ont. Tben, if they are rubbed with dry liran of sawdumt, there will be an almost chemically clean sorFace left, to which aine sill adhure readily.
3267. To Keep Polished Iron Work Bright. Cotmong resin melted with 4 litulo gallipoli oil und spirits of turpentiuc has been fumbl to answer very well fif preserving pelished iron work bright. The proportions shotth the such as to forto a coatiog whioh will aithere firmly, not chip off, and yet admit of being casily detached by cautious kersping.
3268. To Protect Iron from Oxidiastion. Among the many proccsses and preparations for preserving iron from the setion of the estrsospbere the following will bo found the most efficient io all cases wherd galcanization is impracticable; and, being unaffeeted by sea whier, it is expecially applicable to the hottoms of iron ships, ade manioe work generaily: Sulplur, if pounds; caustio potash lye of 35° Raumes, 5 poupds; and copper filings, 1 pound. To be heated until the copper and sulphur dissalre. Heat, in anothez ressel, tallov, 750 pourds, and turpentine, 150 pounds, until the tallors is liquefied. The
composiliots are to be mixed and stirred together whilo hot, and may bo laill on to the iron, in the smme way ns paint.
3269 . To Protect Iron from Rust. A mastic or edvering for this purpose, phopuspd by M. Zani, is as foilates: Mix so parts poupded brich, pasises through as silt sioves, with 20 parta Itharge; the whule is then rablead op by tha wallor mith limseed pil, so as ta form a Chive paiat, wisiol may leedilnted with spirits of targestine. Belore it is applied tho irom themht lo weit demed. From as exporicices of 2 years upon locks explosed to tha sir, nad watared claily with bult watery. after lreing corveret wath a conts of thiamastio, tho groof eIfects of it liave leeed theroughly proved.
3270. To Prevent the Decay of Iron Railings+ livery one mod navo jotliem the deatencter combunation of brad nim from, froms raillages being fixed in fitone with the former rpotal. Tha reasom for this is, that the oryjphe of tha atmosplicere kcepa up a Eatyanie antion hetweea the two metals. This when ang lie prevated log substitations sine for tewh, in whiela cas tho galvania infle. enso woutt be invertel: The whola of ita
 iag uminjured, the other yesely an Point formed of the asiolo of zonc, the the same reason prosmeses icen uspused to tho atmonsphere iathinaly lether chan the ordfasty paiat Eompernil of tho aside of leabl.
3271. To Scour Cast Tron, Zine, or
 can bo nowned with great oxmenny of tabur, timo and materins, by uatar elthar glyocrite,
 allute melplauric acil.
3279. To Clean Steeland Iron. Make 1 vasee soft soaja aid $4 \frac{1}{4}$ oitseed emery inko a paste; rols is on the article twits wask-featuer fand It will have a lirilfant polish. Keroneno oil will also cleas atoel.

Steel. The addition of a simall granntity of earbou greatly incrensea the hardness nall tanaity of irun, mid converts it into steet. Tho ampunt of carbon to bo added, should be fuat that watch will prodico tho maximuan of larineoss and toughness, without reudering it betitta; ordenary stion cuntains nhaut 1 per ceat. of carbon: laari utoel 1.6 to 1.7 por cent. Tho percentage of carbon in Epglath stenl is estimatod by Berthier to Lu 1.A7. it mails at about 25003 Fahr
3274. To Convert Iron into Steel, This is usaally dose by the procoss af coment. ation, produciag whint is teribeil blisterat siecl. At tbo bothut of o tronich mbone 2 fect Equare and 14 feet long, usuall f formed of firo ctay, is placel o Jager, nthout 2 inches thick, of a crment composed of 10 parts chareoal and 1 part ashes nod common salt; spon this is Laid an tier of thin iron bars alomit $\frac{1}{4}$ ioch aparl; between and orer them, a layer of comont is spreal, then a second row of hats, and so on, alternately, intil the trough is nearly futl; lastly a layer of cement eoverel with moist sand and a closo cover of fire-tiles, no as to exclude tho air. Tho trough is exposod to the best of a coal fire, until a full red hent, abont 2000° Falin, is obtained and Lept up steadily for about 7 days. A holo is left in the end of the trolugh, to allow of a bar being drawth out for examination. When a bat, un being withdrawes and broken, ling acguinel a erystallem testere, the metal is altowel to cool dorm eralually, some days being allowed for this, and tho charge, when sual, mithitraws fom the trough. The bars
will be finud suvered with large blisters, heuce the namg of the process and increasd ahant for in weiflt. Tho steel is now tolliciontly groul fir fitos and curaser tants. Dut fin finer instruthents, zeveral variuties of finez steel ato tepluirch. (J/atins).
3275. To Make Shear-Steel. Thits is
 inta lingetha of so inetes, ant hiading them in bundles of 3 or 9 by a riug of stect, a rod being tisel ior a landle. Thisar ary bromght
 a tile harmer. The hingivg ring ia then somoved; ruth, ufter releating, the inass is fruged soilid, and estented 台to a bar. Tu canes, whero this operativa is ropentert, tho stecl is eallel donhlesticar steel. (Jatins.)
3276. To Make Cast-Steel. Cast-sitcel for thig lest varicy por all fins cattian tools. This is a mistape of sexaps of diferent varietios it Whatcrod ated, cultartel tognelackis a gout perfactary chay erteibln; spou this as Cover is fated war ic ia capobet to all intenso heat if a blat herpee for 3 or 4 hates. Tha contents we tbeh wan into moulds, Aher bebin subimeded to the blewa of a bile-hammer, the cast stotellatedy for use. (AFalins),
3277. Steel Mado from Iron Scraps, Take tron ser"perinnmal yheces, pat 40 poend ia in erutible, with 8 wancel dinfeool, and 4 ornces blake osife of butpramese; esposo tho whate $1 /$ tomes to a figh leest, and sun into isoullit.
3278. To Bluc Steel. Tho mode emphoyed in thacing itent is merely to siliject it

 Une at 560°, The teat nus the Bnoly polist-
 form tagree of bent Aecoritesty, thero aro uteres ways of coloriag: lerat, by aflogio pro-
 by) 4 futt platn of irwos, and thirdly, ly womit ahtios. Ka a very regulat dotree of heat ia beceseary, wome dace for find work bear the preforenes. The trotk mbit he curceed weet With thens, gmel varetilly natchod: when tio
 perfect. Thla culur is necmaimaily takea atf with a wery whute matation mok.
3270. To Btae Small Stenl Articles. Make as bux of theet fand, fill it withenint ramt sublject it to a great fieat. The netielay
 tamperso tho attieles for the same keepiag watoli of thes until they $n 0$ of tho pipht color, when they shand be takeit otit, atd fanmejsol in uil
3280. To Make Edge-Toola from Cast-Steel and Iron. Thinnethod cousith in lixing thean piece if wrotight imb, brought to a mofing lema, is the centre of a motht, and then pouttig in thelted stech, so at entioly to envelop the irms; and then forging the mass into the shape requires.
3281. To Remove Scale from Steel. Scale may lo remored foom steel articles by pitkltag in wrater with a Litule subplumie aeeid with emat nut astiaf trush.
3282. To Restore Burnt Cast-Steel. Take if pounds borax, 12 porumis sul-zmmomiac, $\frac{3}{2}$ ponvi prussinto of poterb, 1 oumen resing. Pound the abore Gine, add n fill cach of wrater and alcohol. Put it an irom kettle, anil Levil until it Lecemeca a paste. Do not bod too long, of it will lecemo hare pat eroling.
3283. To Anneal Steel. Fart smail quantity. Weat the siteel to aniterry red in acharcoal fire, then bory it in sawdust, is an inon bos, covering the sitwdust with asbes, Lat it stay until cold. For a larger quastity, amp when it is required to Le rery suit, puck the steel with cast-iron (lathe or planer) ehips in
 $\frac{\mathrm{n}}{4}$ iscll in ceplis of chips is the battons uf bos . put in a layer of steel, chera more chivs to fill epaces letweun tho sted. and alku the $\frac{1}{2}$ or $\frac{5}{4}$ iveh space betwesu the kides of Low and atieel, then wave steel; and, lastly, it least 1 inth in depth of chips, seil rammed dowa wi top of the steel. Host to and teeg at a red heat for from 9 to 4 bours. Dunabilistarls the bus tust cold.
3284. Engraving Mixture for Writing on Steel. Salpuste of copper, I ounce; sal-ammonace, $\frac{b}{}$ otiven; pulterize separately. adling a litele verusilion to color it, and mix with 11 ounces vinegar, that the steel with soß moap and write with a clean land peri vithout a slit, dipped in the misture.
3285. Termpering Tools, The steel is generally firnt himicned by hoating it to as chorry red, aml then plauging it into cold wator. Aferwand the temper is dramis ly modt erately heating the sted heain. 1)fferent degrees of harluos aro togrimed for different purpasex,

Ior very pale estaw colos, 4309, fur laupets. A abaule of darker yellow, 4.05, for zazors and surgical mstrumenta.

Darker ntriw sallow, 4700, for penstaires.
Still darker yellew, 400G, chisel for outting irotis.

Ereara gellow, 600 y , ares and plane-Lroma.
Yellow, allghty thigerl with jurple, 590°, table-knives soil watch-griags
3286. To Temper Drills, Irat the best ateel to at sherry red. and hommer until nearly culd, focmit.g the eend istentue requisite flatemed thape, then heat it afain to a cherry red, and plosige is inte of lowy of reaior or then givialailyer. A motition of cyande of pos
 tentieriug plompo batio but it la nol ns goodus futickilser or prith.
3287. To Tomper Gravers. These may bo tempned in the kathe wiy ai dibla: if the rot hot imstranmod spay be presed
 an inea trop bus been vat to recejve tho Eraver; the loal mettiar around and encloaing it sill give it aw ropellemt temper.
3288. To Temper Spiral Springa. Ifeat to a cherry ied if in ebsmenit tire, pod hasten it oil. To temper, Mare off the oil 3 times, tho samo as for dat tringe:
3289. To Temper old Files. Grim out tho cuttingt un one sdde, until a bright amface is ontrainedt then damp the morface trith a fitlle wh, nul ley biec sto on a pieco of moviantimy, inght sile nowarle. Iti about a minuto tha brielt variaco sid begin to tari Sellot; azal Thich the sollow har teeperied
 water
3290. To Malke Polished SLoel Strnw Color or Blue. Tho surface of pulfacd theol acquires of jale straw culer it 4600
 3291. To Temper Mill Ficks. After
 of leat hentent to the triting primt, of bieh wit he jadiental by a slight ugitaion of the zurThee. In it ithoe the esm of the jinch to tho degh of 12 bielios, ootil heried to the temperaturn of the lesil, theu plurges itwnedintely in rlear culd vater. The temper will be jest right, if tio losth is at the temperature iequirel. The pindefral ropuisitios to making mill picha ate: Finst, get good nteel. Secrud, watk it at a law hent; must blacksmiths itjutre steet by oyerheatinge Thirsl. lieat for tempering withut lifect espinsire to the fite. The leud buth acts merely ns protection ogainst the heat, which is almost aluriys too great to tentper trell.
3292. Beth for Hardening Min Picks. Take 2 gallong rain एater, 1 pumce corrusive
suthifinate, 1 of sad-ammoniar, 1 of rattpetre, $1 \ddagger$ pints rock sait. The picks should he heated to a cherry red, and comled in the bath. The sals gives harditests, and the other ingrodient tuaclasess to the stect ; and they will not liecali, if they ate lef withont drawing the termper.
3293. Composition for Tempering Cost-Steal Mill Pichs. To is gallons of water, ald 3 otnces ench nitric ncid, spinits of hartshorms sthlohate of zine, sal-ammowise, and atum; 6 opnces sait, with of double handful of boof-parings; the stcel to be beated n dark cherry red It manst he Japt corknd tight ta provert evaporation.
3294. Tempering Steel, Mo. N. P. Ames, lato of Chicopec, Mans, ther expendiof meols time mal money in experietents, found that the must successfal means of temperiog swords uxd ectlasese that would stand the United Statea Gopernment test, was by beating in a clameoal fire, hardening in pura roring water, and drawing the temper in chatrooul dame, (Seo No. 32ver.)
3295. To Straighten Hardened Steel. To strat ;htest th piece of fteel afremly hardened and temperel, larat it lightly, not cnongh to djaw the temper, and you may strnighten It. os an anvil with a hammer, if really not dead cold. It la best, bowever, to straightea it between tbe centres of a lathe, if a tumed article, or on rablock of' worgd with a mallet. Wurm, it yields readily to the btowa of tho mallet, bitit eold, it womld break like glase.
3290. To Restore tho Power of Horseshoe Magneta. Tolestore bnrsectiod magects that have leat their puwer from dis3isc, proceed as with new oting. Place tho poles of tho magnet to tho charged, agninst the pudea of monther, making oppodite polea moot. Thes draw a piece of sutf iron, placed at ripht angles upm tho magriet to bo charged, from the poies witho tend. Do this a ntmber of tirses os cacts side of tho magret. If the magoet is of good atcel, this produces in max fmam power. It is the metheil af Jambin, and is considored ono of the beft.
3297. Casu-Hardening in the operation of giviog n sarfuce of steel to pleces of iros, by which they are reudered eapable of revelt:ing great external hardnens, while the interitr portion retaim alt the bughness of goon wrought-iromi. This is nccomplished by beatfag thu irm in eontact vith antmal carbm, is clana vessels. Georga IOde says:-Tho articles iatended to be case-tardenmi nory jut inte the box with animal carlon, and tho box made ait-Light Ly latiog it with clay. Thay are then placed is tho firo and lopet at, al light rod heat for shy length of time, atecording to the dogeth reguired. In hatr an town ufuer the bok and fos contonts bise beon beatel quite through, the hawiness will searcely to the thickeess of a half dime; fo an hour, doublo; natd so forth, till tho desired depth is nepuired. The box is then taken from the fire, and the contonts omptied into paro enld water. They cau then be taken ont of the water aud dried (to leep them from rusting), by sidalling dieu is us sieve with some dry snw-ilust; and they are then ready for polishing. Caso-hurdening is a superficial embersion of iron into stoel. It is not alvinys merely for economy that iron is case-hardeaed, but for amniltitude of things it is preferable to stee), and unswera the parposo better. Delicate articles, to keep from blistoring while beating, may bo dipped into a powider of barnt leather, or hones, or other copalv ninimal mattor.
3298. To Case-Harden with Charcoal, The zoods, finished in every respect but pirlishing, aro pul inta an iron bos, and coverea with rmimal or regotabla charcon, and cemented at a red heal, for a period varying with the size and doseription of the articles

operated on.

3299. Moxon's Method of Case-Hardening. Cow's horn or hoof is to be baked or thoroughly dried, and pulverized, in order that more may bo got into the box with the articles. Or boneq reduced to dust answer tha bane purpose. To this add an equal quantity of bay kalt; mix them with stald chamberlye, or white winn vinegar; cover the Fron with thia mixtures, and bod it in the game in loan, or cnelose it in an iron box; lay it on the hearth of the forge to dry and bariea; then put it into the fire, and blow till the lump has a blood-red heat, abd no higher, lest the mixture be burne too mach. Take tho irou out, atid immerse it in water.
3300. To Case-Earden. Make a paste with a conceatrated solution of prassiate of potash and lount, and coat the iron therewith; thon expose it to a atrong red heat, and when it has fallen to a dull red, plango tho whole into cold water.
3301. To Case-Hruden Polished Iron. The iron, proviously palished and liuished, is to bo heated to ra bright rad aud rubhed or epriakled over wilh prussiate of potash. As sobn as the pruasigte appresti to bo decomponed and diasipates, plunge the artiole iuto oold water, "Wheis the procenis of case-barileming has beon weil oonducted, the snrinco of thin motal proves suffieiently haril to resiat a file. The hast two plaus are a great improvement apon the common nutthod. By the epplication of the prassinte, an in the last ruceipt, aby part of a piece of tron may be eace-hardened, without interfering with the rest.
3302. Improved Process of Hardening Steel. Artieles Hianalachared of ateel for tho purpones of entting, are, almost without an oxceptifo, tatien from the forger to the hardeacr without undergomg nay intermediato process ; and baeh is the pecustomed routiue, that tho mischier arising lau cicaped ntiservation. The ast of finging produeve is mbrong sealo or conating, which is apread over the whole of the tilato; this seale or cuating is unoqual in substanee, yarying in proportion to the degree of heat communicated to the steet inforging; ib is almest inipenetruble to tho action of waber when bismersed for the purposs of hardenimg. Hence it is that difforent degrees of laminoss prevall is mearly every razor manufuctured; this is evidently a posifive defect; athet so long as it codetinues to oxint, great differenco of temper must exist likewise. Insteall, therefere, of bardoaing the blade from the anvil, let it bo passed ins mediately from the hands of the forger to tha grinder; a slight applieation of the ntone vill reusero tho whelo of tire saale of eosting, and tho razor will then be properly prepared to undergo tho operation of bardening with idcantage. It is plain that steel in this atato heate in tho fire with groater regolaritg, and that, when immersed, beconess equally hard from one extremity to the other. The this may bo alded, that, ns the lowest possible licat at which steel heeounes hard is furfabitailly tho best, the modo bero resommended will bo foumd the only one by which the process of hardening can bo effected with a less portion of fire than is, or can loe, requireal in ony other way. These observations are decistve, and will, in all probability, tend to extallinh in genoral usa what camot but bo regarded as a very important improvement in the manufacturiug of edge steel imstruments.
3303, To Case-Harden Small Articled of Iron. Fuse together, in an iron vessel or cracible, 1 part prusaiato of potash and 10 parts common salt, and allow the article to remain in the liquid 30 minutes, then put them in cold water rad they will be case-hardened.
clean tow nround tha eleanigg rool; then taka a bucket of tepid water-sappreuds if procira-ble-aud run the rod up and down the barrel briskly until the water is quite bleck. Clango the water cutil is nims quito clear abrough the sipple; pour elean teppid water down the harrul, and rub dry with fresh clean tow; tun a litule sweet oil pa tow down the harrel for use. To clean the ntank, rub it with lintheed oil. If loiling hot whater is used tho barrel will dry sooner, and mo fear need bo apprehended of its injoring the temper of os fine gan_{4}. Sume sportamea une boiling vinegar, but wo canuot recommend this method. The reason hot water does not injaro the gua, fa that Loiling water is only 2120 Yahry and the gan wes beated to 450° to give it ite proper temper.
3303. Grease for Anointing GunBarrels on the Sea-Shore. It is raid that an ofntmeist malo of corrosive sublimate and lard will prove an effoctual protection agnina! the ruating of gun-barrelo on the aes-bhore.
3304. To Protect Polished Steel from Ruat. Nothing is ogual to pure paralline for prowiving the polished surface of iron any miee! Fropi osstutiong, The pafstfieg ahould be warmed, rablied on, and then wiped off will a Emolen rag. is will not cliniten tha color, whathor bright or Litue, and will proters tho parfam bottar than asy Faruish.
3305. To Protect Polished Motal from Ruat Thice 10 pounda gnua-porelo. 20 poundy pmettas seeh, 30 pamble her thel, 2 githas neac fonl oil, and gallos repe oll.
 miseol, and colby widh annall porsien of Jow
 bacy lie whider. Whar cold tive cermpomition is Lo be robled on the surface of lingita ated, irou, brats, of vether medal, ronuieng probec tipu from shar.

3308, To Remove Ruat from Stenl. Fust may te rethoyed from stiol liy moners. ing thm at bele in berns ue wil bue a lew doya Tho tuft will heerme or much loosened that it may easily le nibluct off. By tuid simple thethot ladly ruted kivel and forks miy le mada to proscet o tolerabile dgmaranor Imt frot thew goods there in no way to temorn chat from metai but by getsing helua li, of reseer. itg the aurfice Whero is is not deop-aphtent,
 gonds mina her refinicheri,
3309. New Mode of Rerooving Rust. Plunge tho metuelo in a laith of 1 piel 1 rydereblorin (morintio) avol stlated with 1 yuat water. Leave if there 24 hogrs; Ureutalec il
 exider will cenre ofl lide dirt weder the action of snap. Simuld nur sulf remain, as is lifiely. in the corpodel poris, retors tho ometal to the bath for a few hours more, and repeat tho serublfing, The metra) nill Iresent the appearione of dull leat. Is tumet then lee well wasbel in plain water sewcil times, and thorotghly dried before it fires Lantiy, in Iitele rolding with oil and fime cemery piotriet will reation the polisi. Slumit of ve greaso bave mingled whth the rhat, it will the recestary to remove it by a bet solation of soda beforesubmitting the metal to the acild. This last attack; tho rust slone, witherit injuming the steel; but the washitg in plaia water is all-important, hes, after the poocess, tho metal will ubsomb 0 yg geo from the atmosphere freely ir any trace of the acid lee allawed to remain.

[^7]from 250° to 300° Fahr., brittle and easily pulverixed at 500°; fuses at 773°, and sabfimes unchanged nt a whita heat, in close vessels. It is scarcely affected by exposure to ajr and moisturo; hence its general use in the arta for the manafinctare of vessela of capacity, tubing, $\& \mathrm{c}$., that requirc lightness avd durability. Acids, even diluted, nttack xine rapidly. It is also soluble ju caustic salkalies. Heated to whiteness, 941^{4} Fahts, in contact with the air, it butns with great brilliancy, and is converted into oxide, (flowers of zinc). It is very snlabla in dilats sulphurie and muriatie acid, with tho evolotion of bydrogen gas. Tho salts of zinc are colorless.
Conimercial zind is berer pore, and is oblained from the natico sulphtret (zine blende) or carhonato (onlamine), by roasting those oves, zund distiling them nlong with earbonaccons matter jal theovered carthen erucible, bavigg it bothum copnected with an iron tuhe which terminaties over a vessel of water simated beneath the furnace. The first porLioh that pasden over contains cadminm and arsenic, and is indieated by what in tectineally called the bramiu blase; bat when the metallio ropor begions to bute with a blacish whito flams, of the blue blase commences, tho pulatilized metal la collected. Zine may bo allored with must of the metala. (Cooley.)
3311. Purification of Zinc. Granulato tino by melting, fund pumity it, whild very loot, bate adome vewiel filled with wnter, Place the gruntated zine in a ilsesxing erneible, in slternate Iayent, with one-fourth its weight of atiore, wille moteres of hilra at the top. Cover the erucilide, and seewro tho 1id; then apply hral. When dollapration takes place renove form the fire, keparite the dens, and tote the eftec intor ais ingot mouh. It is guito free from arweufc.
3312. To Granulato Zinc, Graoulated vino fa obrathed by furaing the molten metal onto 14 warn thoctar sind inturatiog vigorously, with an fron puetes unill is soldaition. (Seo No. TH11.)
3313. To Color Metals. Make anolu tion of 4 ownees hyprosulphite of soda in 1s pinta of water, and add a solution of I umace acetate of lead in the pame quantity of water. Antioles to be coluted aro placed in the mix. sure, which is then gratually heated to n boilsog pofat. The effect of this solution is to give fron tho offect of blise nteel, sinc becurges lirowe, athl copper or brass becomes succespively yollowish red, scarlet, deep blue, bluesh whice, ond linally whito with a tingo of rome. Thia solution has wo effect on lead or tin. Dy replacistg the acetato of lend in the solation with sulphate of copper, brass becomes of a tive rosy tint, then green, and Jinaily, of sin ipidescent brown color. Zino does zuat color in this solution, it throws down a precipitate of brown sulphuret of copper; trit if boiled in as solution containing both lemil and copper, it Lecomes covered with a black crust, whech may lie improved by a thin coating of wat. (Sec No, 3168,)

TTin. This metal approsches silver in whiteness and lustre. When pure, it is very malleabio; is harder than lead, melta at 442° Fallry and volatilnzes at a white heat. Its specifie gravity is 7.29 to 7.31. This metal is decomposed by nitric, sulphnric, and mariatic acids; and may bo combined and alloyed with most of the useful metals. Tin occurs in bature in the stato of the oxide, and sometimes as kulphuret (tin pyrites.) In Corasall, Englanal, it is found under tho name of tin-stone, assuciated with copper ore, in
tae alate or granity rocks; and as an alluvisl deponit (streatn tis) in tha lieds of rivers. A paro artiven witheomas frum Dance. The metal is obtained trem the ore, firsit reducen! to powder in stimping mills, washen to remove earthy macies, rad then masted to expel arsenvo nul mialphur; it is then deosidizell or rednend by puncltimg with strout 5 its Weight of powdered cidm (a kiml of coal found in (Valos), and a little slacked lime; it is next reffined by lignatios (sce No. 21), followed by is ferosind smelting it the pereet portion; if is then, while in a state of fusion, ntirred with biffets of preen wond, sllowed to Eettle, and cian into noulils. The product is ternod rofinet of Lhuck-tins. Tin jondueess is peobliat erackling tutio when hent: in this

3315. Testa for the Purity of Tin. It is albiest entifely alisulated by hydrochlorie acit, yiodding a colorlest zolntium of morriate (chloride) of the. If te enntaius arserie.
 igg the ablathon, nail asomiturted hydrogrot evolved. The persmen of nthok matall in tif may ho dotertas lyy tratios: Ilem paotide of tin tolution with mitfic adit, upeelfid gracity 1.16, first in thid cold, ant Mlexwenta whis beat, tantl| alt che tin is peocipitased ia ras tosoluble peraxite: the ibreantot avh onlotion foom pute tin leaves to reafliouse nes evaporation. If there be a reshlotins. and dilution with watir becoubous a hoavy white preefpitate, the tis coptaincel bisuncti. If, after dilutiob, the maditios of n nolution of sulphate of cunusgris of of waila prolluets a white preopitate the tin contaised lecel. If rod prossiatu of potash gised a blio precipitate, it contatned fron; ant if the elear lotrhit lenves is regituam nin evaporation, it contaned copper.
3316. Grain Tin. This is mate frome block tif. The block nto beated antil they become brittlo, and then allowed to fisl from a considerablo height, ly which they are lonokut into emalt fragments, which constltute grain tin, or lin in lears,
3317. Tin Powder or Filings, Melt grain tin (see No, 2336) in an iruls vessel, posur fo in an earthen-veare mortar beated a fittle aboyo ita moiting poimt, and triturato briskIy as tho metal coold; lustly, sift the prodtact, and repoat thu procest with what remains io the aieve. Powtered tin is also prepared by filing and rasping.
3318. Powdered Tin. Take Comistly grain tin; melt it, und pour it finto a trooden box, wall rubbol on the isside with whiting or ehalk, eloze the coreer, and continue shaking it violoutly until the tin bs redseel to powder; then wash it in clean water, smi dry it immodiately.
3319. To Make Feathered Tin. The object of feathersing is to biting the tin into a state of minute sutsdivision, thicte pernits it to be much more rapidly clissolved in acids. Proouro an fron ladle haring as capacify of about 12 flaid ounces, and is wonden of stonewaro vessel containitg $\frac{2}{}$ or 3 gailo ofs of cold water. About 1 pound of pure bar tin, free from lead, is to be cut into pieces of shont 2 inches in length, and melted in the ladfe. When melted, pour tho tis in a very samall streant, fom a height of abeut a fect, isto tho cobl water. The lialko shoulht let porved around in a small circle. twen pouring, for if the whole of the melted tin strikes tho water at one paint, it will cool in temps, and reguire remelting. The frathered tin is to los patcicrved in woodea botios, the bottome of which are porforated with small holes; or, what is better, laget is meghazal stomentora
flowerpots. Solutions of tin erntaining fren of copper, or theft kalts, are culit for dyeing brieht reds (Sre Nas. 107, sfe.)
3320. Moire Metallique, or Crystallized Tin. A methel ot ornamenting tho surfiese of tin phate by avids. The plates sur wasbed with en alkaline solution, then in water, bested, atad spanzod or spriskled with the asill salation. The appentrace paries with the degree of hest and the nature and strength of the acids emplogeil. The plates, alter the seplication of the acids, are plungel Into water, slightly acidulated, dried, and covered with thite or colored rarnisher The following are sonse of the acil mistures ased: njtro-tnariatie acill, is u'flerent degrees of alitution; sulphurie acill, with 5 parts of valer, 1 part of sulphurie scid, 2 of vurtatie ueid, aud of of wateri a stroug culution of totric ncit; 1 part uitric acid, 2 sulpharie, and 18 of trater. A solution uf potash is also used.
3321 Frosted Tin. A frosted appear. ance suny lie givento shees till by a wash of liemboride nf tin.
3322. To Make a Tin Tree. Dissolvo 3 draclims muriate (ehforide) of tin in 1 pint dhatilet witer, adding 10 or 15 dropa nitric achit; rand setpered a somall roul of elean siue in a phinl coutaining the above solution.

Nickel. A white, hard, matleable, maknetic metal, eapable of receiving the ladru of silver. Its sjectic gravity, wben bammered, is ubout 8,42 . Nickel is very in fasible afariatie and nalphario actl net on it with diffonlty unlesa mixed with nitric acid, bot it is frealy soleble fo the latter. Sifkel doess not oxidizo or tamith at the ordisary tenperstars It alloya well with cop par, tin, zinc, ote. It is whtained ny fotlows: Routh the pormileral ote first ly itself tail then with efrarooal powder, till alf the arresie is espelled, atid a garlic olor ecesses to be evotred; mix the resifluuas witls 3 parts sulphar abel I part jotak; melt in a rrimihle with is gentlo luat. cont, edalenrate with water, dis. wolve is mulphuric acid mixed with a litto nitric aced, precipitate with earbmate of putasb, wath, dry, mis the precipitato with powdereil charcual, aud reifnce it by heat. Por chemical parposes puro nicket is liest obtainet by moilerately heatiog its oxalate in a eofercil erucible, linel with charceal. The palts of utekel to the anhydrous state are for the most part yeflow; when l-ydrated, gieen. and farnishitg jale green solations. Nichel if found present in meterric fron, anit is tromely maguetio, bot loses thin pruperty Then heated to 550° Fahr. It is chiefly employed in the manafactare of German silver. Sulphate of nickel is ased mediciually. with soothing and soperific effects.

M ercury or Quicksilver. This is a heavy liquid metal, possess.

 iog a nearly silver-white color, tud a frilliant metalicic lastre. Tho principal sources of this motal at the present tive are the mines of Idria in Carniola, and Almaden in Spain, where it visists unuter tho form of cinnabiar, from which the pitre metal is obtained by distilling that ure with lime or irom filings in irun retorts, by which the sulphur it contains is seired and relained, while the morcury rises in the statn of vapor, and is condensel in snitable receirers. Its specific gravity, when pure, is 13.6 ; it solidifies at - 39° (30° below zero) Palir., and when solid is dactile, malleable, and tenacious; loils at 6esz Falre, but volatilizes slowly at the ordinary temperatore of tho stmosphere, and when mixed with veater at from 140° to 160 , it fa volatilized isconsiderablo quanitities, it unites with oxy gen, forming two oxides; and with chleritios forming calomel aud curzosivo sublimato with the motals it forms amalgams, combinjug, however, with difficulty with iton, niekel, platinum, and zome other less important metals. 1ts oxides form salts with the petid. The only acids that act on metallio mereory are the smlphuric and nitrie; bat for this putpose the former must be beated.
3325. Test for the Purity of Mercury. Metallic mercury may be known by fis vola tility; and when in a fizely divided or pal. verulent state, by the microscope, or by staining a piece of copper white whmu rubhed on it, or when beated leneath it. It is totally dissipated by heat, and dissulved by siluted nitric acill, but is insolable in looiling muriutio acid. Tho acid poured off, and milowed to cool, is belther colored, bur gielda a previpitate with salpharetted hydrogen. A globale moved about ou is sheet of puper yields no trail; pure sulphario acid agitated with it (int the cold) evaporaten when heated, withme leaving any residurm.
3326. To Purify Mercury, Morenry, as imported, is usnally very puro. 1L pusy fes prepared for meslical proposes by putting if parts into a retort and distilling off 4 parta. The whule of the mercary may, bowerer, be afely drawn over. The problact is to lea egitated aud boiled with 2 fluid drachms hydrochlorie acid abd 1 fluid ounce water for eaul pound of the metal, then washed with pore water, and dried by lowat. A atrong earlhenware or iros retort, with a luw seck or tube dipping inte a basin of wator, say be nied fot this purpose.
3327. To Purify Mercury, Ono of the quiekest and best means of parifying mercury is to agitate if. with a concenitnated molation of nitrate of anereury, at a beat of 104° valis. then wabh it will distilled watom, and dry by passing several thner through slenn, ory chamois leather.
3328. To Purify Mercury, Distill equal ports of marcury and iron filings in an tron retort, fato a vessel contaising watet.
3329. To Purify Meroury. The fol lowing simplo method of purfying quickilver is by Dr. Miller: Pat the quicknitver into n botule espable of contairitig 4 times ife quantity, ald a littla puwdered loaf sugar, and stopper the bottle; shake it vigorously for a fee minnten, then opor tho bottle and blow fresh air intu it with a pait of bellows. Repent this 3 or 4 times, and filter the mixture tbrough a cono of emooth writing paper hasing its apex piereed with a fine pin. Tho sugar is left belind in the filter with tho oxides of any other metals present, and is small quantity of mercury is a stato of mimuto sivisiot.

Alluminum. This is the metallio hase of alumina, which is the plastio prinuple of certain kinds of elay. The color of altminutn is white, inclining to blue; it is yery malleable, and ductile. Its specifie gravity is muly aloot 2.60 ; jts melting point not less than 1000° Fatir. It is themost sonorous of all metals. It is thus obttaned :-Mrke a thick pasto of aluminn, powdered chareanl, sugar, and cil, and heat it in a covered crucible until all the organio mutier is destroyed; then transfer the product to a poreelain tulie, aod contrect tho one end with another tubo containing dricil ehloride of calciun, and tha other end with a small tubulated ropeiver. Then expose the purcelain tula to the heat of a srnall oblong furnuee, and, baying eonnected the ehloride of ealcium sube with a vesset dis-
engaging chlorine, pass the pas through the tupparatus, at the sames time raising the heat of the tube to redress. In 1 or 2 houre, or as toon as the tubo becomes choked, the whale must be allowed to cool, and taken to pieces, and the sesquichloride of aluminiom thus formed collected, Then place 9 or 10 pieces of potassium, of aboat the eize of pers, in a plutina cruelile, and upon them an equal number of similar picees of the sesquichloride of altumina, formed as ahove; the cover is now to bo put on and sceured in its place with a wire, and the hent of a spirit lump cautiously applied, until the spontaneous incsndeseence of the matter censes. When cold, throw tha erteriblo into a large vessel of cold water, agitato and colket the gray powder deposited, arol again wash it woll mid dry iL. Tbis gray powder cousists of sumall motaltio senter, rescmbling platina. It is nol acted on by cold water, but is dissolved by the nlkalica and some of the aeids. Heated to redness, it catcher fire and burns with great rapidity in the aiy, and in oxyget ges, witb intense brilliancs. The powder, blown apon the llame of a cinulte, displays at fimmene number of indamed points of preat Eplendor.

3381, To Polish Aluminum. The substances generally emploged for polishing uluminum tre of no utility. Monray recommenta the uge of at cmeltion of equal parta of rum and olive oil, made by shaking thesa ilquide togother in is bottle. Whes the burniabiog ntone is rised, the peealiar black etreaka firab apparing shnuld not canse sexution, bince they do not hiture the metal in the least, and way be remoyed with is woolen rag. Tho obyeetir in question may alion he brightened in potach Iyo, in whieb case, however, care must he taker not to make nise of too stroug a lye. Fot aleaning paproses, benzuto has been foumd heret. Objects of alumintm can lie electroplated without the lenst diftienity, and Mouray succeeded in imparting to them al light, white Justro in pagsing them smooeabively through a weak bath of hydrofluoric acid and aquas fortio. The effect thets obtained is ssid to be really murprising.
3332. To Frost Aluminum. The motal is pluuged into a solution of canastic potah. Tho surface, becoming fronted, doos nut tarnish on expuasera to the air.

Platinum - also ealled platina-fa the hesriest subatance but one (sce No. 47) known, having a specitio gravity of filly 21, which masy be raized to aloue 21.5 by hammering. It is wbiter than iron, barder (han silyor, infusible in the bottest furnsee, and melts only before the comperand blow. pipe at a heat of about 3080° Fahis. On this aceount it is caluable for making capsules $\& c$, intended to resist strong beat. Platinum nudergoes go change by exposmre to air and moisture, or the strongest beat of E smith's forge, and is not attacked by any of the pare acids, but ia dissolved by chloring and nitromariatic acid (aqua regia), though with more difficulty than gold. Spongy and powdered platinum possess the remarkable property of patining the union of oxygen and hydrogen gases. It is chiefly imported from South Ameriea, but is also found in the Ural Mountains of Russia, in Ceylon, and is few other places, Platinum, when allogel with silver, is solnhle in nitrie acid; the pare metal is dizmilved by equa regin, and is more or less sttacked by canstic alkali, nitre, phosphorns, do., with heat. Platinum is precipitsted from ita solutions by deoxidizing subitances under the form of a black powier, which has the power of absorbing oxygen, and again impart-
ing it to combustible substances, and thas eausing their oxidation. In this way alcohol and pyroxilic spirit may be converted into acetic and formic acills, to. (See No, 1741, also Acetic Acid.) (Cooley.)
3934. To Purify Platinum. The native alloy (erude platimum) is neted upon, as far as posaible, with nitro-muriatio scíd, containing an excess of mariatic acid, and elightly diluted with water. The solution is precipitated by the addition of sal -ammoniac, which throws down nearly the whole of the platinum in the etate of an ammonio-chloride, which is washed with a little cold water, Iried, and hested to redsess; the prodnot is spougy metallia platinum. This is made into a thin uniform poate with water, pressed in a brass mould, to squeeso out the water and render tho mass sufficiently polid to bear handling. It is them dried, carrefally hested to whitencss, aud hamusered or pressed in the heated state; after this treatment it miny bo rolled into platos or worked into any deaired shape. (Cooley).
3335. Platinated Asbeatos. Dip asbestor in a nolution of chloride of plationm, and heat it to rednese. It eacses the inflammation of hydrogos in the asme manoer an sponze platinum.
3338. Spongy Platinum. Dinolve meparately crude bichloride of platinum, and thydrochlorate of ammonis in proof apirit; add the one solution to the other ns long as as precipitate falls; this in collected, and, while still moint, formed into little balls or pieces, shich are then dried, and gradually beated to reduen.
3337. Spongy Platinum. Dinaolvo platinum, by the pid of beat, lit a mizture of deree parts nitrie and 5 parts mariatio acid, aroiding great exress of adid. To this soldtion add a strong solution of murinth of ammonia; collect the resalting precipitate on a filter, and, when nearly dry, form it futo a masa of the stape desired for the aponge. Heat this to whifeneis on eharcoal, with is blow-pipe or otherwite, and the plationim Inmains in the spongy state. Its eharncteristio properties may bo restored, when loat, by nimply heatiog it to redvess.
3388, Platinum-Black. Platinn Mohr. This is platioum in a fimoly divided state, and is obtained thrs:-Add ta a solation of bieblorife of platinum, an excess of carlonata of eoda, and aquantity of sogac. Buil ontal the precipitate whiet forms becomes, nfter a littlo while, perfeetly black, and tho supernetant liquid colorless; filler the powder, Wash, and dry it by a gentle hest. Anothermethod is by melting platins ore with twice its weight of zine, powdering, digesting first in diluts sul. phurie actd, and next in dilute nitrie acid, to remove the tine, assigting the action of the meastruam by beat; it is theo digested in potash lyo, and lartly in pure water, vier which it is carofally dried. Platinum-black possessea the property of condensing gases, more especially oxygen, into its poreg, and afterwards yielding it to various oxidinablo substances. If some of it be mixed with alcobol into a paste, and spread on at watch plass, pure acetic ncid is given off, and afforda 3 ready means of diffusing the odor of vinegar it an ayartment. (See No. 1741))

A^{n}timony. This is a blnish-white, Instrons, serpi-crystalline, extremely brittle metal, of about 6.7 日precific grsvity; impirts brittlebess to allogs; iullammable st high temperatore; melts just under reflness, 410° yahr., fumes, boils, and volatilizes at a white heat, and when suddendy expesed to
the air, inflames and is converted into teroxide of antimony, which is deposited in beautifal erystals. Antimony dissolves in hot hydrochlorie acid, forming terchloride of antimouy; nitrie acid converts it into antimotic aoid. This matal is obtained prineipally from Fradee nul Germany. Gold, when exposed to the vapors of entimony, loses its ductility and malleability, and becornes as b-ittlo as antimony itself.
3340. Testa for Antimony. An acid solution of entimony gives, in combination with sulphoretted hydrogen, an orange-red precipitate, sparingly soluble in ammonio, but readily solublo in puro potassa and alkaline sulpharets. Hydrosulphuret of ammonis throwe down from the acid solution an orsogered precipitate, readily *oluble in excerce of the precipitant, If the latter contsin aulphur in escess; and the liquor containing the re-dinsolved precipitate gives as yellow or orango-yellow precipitite on the addition of an neid. Ammonia, and potassa, ant their carbonaten (excepting in solutions of tartar ometic) give a bulky white precipitates that from mumonia beitg ineoluble in excess of the procipitant; that from potaskin rendily mo; While thone from the carlonate are only solebla on the applieation of heat.
3341. To Entimato the Purity of Antimony. Treat pulverized autimony with nitrio ticil: Lhis osidizes the abtioiony, and leares it in min insoluble state, whilst it dinaolven the ethee metals. Collect the oxide on 3 filter whah, dry, iprite, und weigh it. This weight, multiphed by .843, gives the Weight of pure metat in the matepte oxanimed. If this hat bom proviouly weighed, tho porcetatage of poro metal is elasily arrived at.
334s. To Obtain Metallic Antimony, Mix together 16 purts miphuret of antimony and 6 parta erean of tartar, buth in powder; put the misture, in amall quantitied at n timo, minto a yesuel bented to redonan; when fouctions ceases, fise the mass, nul, nfer 15 minater, pour it out nad separates the inetal from the blag. The prodnet ha ziearly pure,
Or: Kgual parta of protocide of antimotay and bitartrata of potasen (crean of tartar): mix and fuse as abose, and porm tho metal into strabll conien moyldr.

Or; 8 parts sulpharet of antimnony, 6 partis oream of tartar, atid 3 purta aitre. Created ne abtove.
Or: 2 parta saiplonest of atitimny nad 1 part iron tilisps; calcine at a atrong heat in a covered erveible.
3343. To Obtain Commercial Antimony. TJuse together 100 parts Eulphuret of antibany, 40 parts metallie rom, and 10 parts dry ermile miphate of sedis. This produces from 60 to 65 parts of mitimony, besides the seorimo of ash, which is otso valnable.

Bismuth. This metat is principally prepared in (iermany, and, as imported, gonerally contains both arsestie and copper. It is in cryatalline metal, yery brittle, of s redalish white color; melts at alout 500° Fahr, volatilizes at is strong heat, and the fomes form exystalline scales (dowers of bismath). It burns when atrongly heated is tho air, bad bas a specific gravity of alout 9.8. The addition of bismuth to other metals lowers their melting point in an extrondimary manoer, maling it a useful ingredient in the composition of (ype-metal and solders. (Sec No. 3499, etc.)
3345. To Purify Bismuth. Diesolve crude bismath in nitric acid, and concentrato the solation by oraporation. Then pour the clear solution into on Inrge bull of distilled
water, and a whito powder (sarb-ritrate of lismuth) will be precipitated. Colleet thoprecipitate and digest it for a lime in a little caustic potash, to dissol yo away any brsenious acids that may be present; next Trash and dry the sub-nitrato; heat it with nimirt $\frac{1}{2}$ its weight of charconal in an carthen erncible, and the pare bismuth will be foumul at the bottom of the erncible. (Makins,)
3346. To Soparate Bismuth from Lead. Dissolvo the mised metal in nitric arid; add caustic potash in excend, and the oxides of hismuth and henul will be procipitatod, but the lead oxide will be at poser rediseolyed by the alkali. The oxider of binmuth ean thea be separated by flitration, washed, and ignited. (Makins.)

A^{11}loys. Combinations of the motals with ench other obtafined by fusion. When mercury is ono of tho component metalg, the compound is termed an malgam. (Sce No. 3532 .) Mont of the metals unite with each other by fusion or Amalgamation, and acquiro now propertios. Thas: copper alloy. ed with zinc, becomet linas, and pospeator a different tlensity, hardneis, and cofor to either of its constituents. No goneral rulea for the manufacturo of alloys isplimable ta ench van be given; lut it may bit reniarked that, in uniting metala didering greatly in their melling points, the lowit fusiblo uhonld to metted Grist, and the others mided, one at is tioes, in their order of furibility, tho mont fasiblo metal being the lant to lis mided; aloo that, before the addition of curls suecoveding metal, the temperatiry of the alosaly fineit mash ahould bo reduced to the lowest fivint at which it will remain fluid, or as uear ay prowible to tho fosing poist of the thalal to has oest introduced, so that it jusy not cyaporate or be oxidized, and thes eanse the eompouml to bo imperfeel. This is agouspot reto, to be applied in most cnses but tharg aro oxecptions. For instanco: pold will patily tilinsolvo io meltad tin; auf platimum in many metala. If platinum wero that melted, and zine, for instance, added, the temperators necossary to obtain the fusion of platimu would be suffcient to rolatilizo the give Tho mistare in usually effected unitor $n f \mathrm{mx}$, or momo material that will provent ovapncation and esposare to the atmospherc. Thus; in melting lead and tin together, in firtugng sobler, resio or tallow is thrown upois do susfaed: ill linning copper, tho surfaco is riblbed with sal ammoniec ; and in combining some bootals, powdered charcoal is mesal for tho asmo porpose. (See No. 3470.) As two latro al retaly sisid, most of tho alloysuro prepared lof simply finsing tho metals togethert, buthif therobe a cmisiderable differenco in theit sgecilie gravitios, the heavier rery generally kubhides, mid the lower part of the mass thas diffros in composition from tho upper. This may be in a great measture frevented by agitatiog the alioy thl it golidifies, but this is 100L ulvieys convenient, Thus, in stereotype plates, whech aro cast vertically, the upper sute vsually contains more antimony than the othes. $\Delta:$ s peveral rule, the substances (elements) of natura unite together in fised and sefiuth ittamic proportions, therelry formingriep compurbds, Metala unite with non-metallie londies, atar obey tha samo goneral law; bat metals, when united with metals, appear to form an oxception, though much doubterists on the subject They seem to mix in any poopertion, and ara thereby modified, possessing thereafter properties which fit them for many purposee in commerce and art. Theeo compounds, being considored at present non-chemical bodies, are
3348. Table of the Principal Alloys of Copper. This table of the alloys of copper Is from Dr. Ure. The bronze for statues is the cumposition used by Keller Brothers, the selebrated brsas founders.

	Copper.	Zise.	Tin,	Niokul,	Antimeny	Lash,
Antique bronze sword.	87.000		13.000			
"\% springs	97.000		3.000			
Bronse for statues	91.400	5.530	1.700			1.370
" for merdals	90.000 90.000		10,000 10,000			
* for eymbaly	78.000		22,000			
${ }_{4}$ for gilding	82.257	17.481	0.238			0.024
Specalam meta	66.000 66.000	16,500	34.000			
Brase for theat	84.700	15.300				
Gilding metal	73.730	20.270				
Princes metal	75.000	95,000				
Dateh metal	84,700	15.300				
Englidh wire	70.290	29.260	0.170			0.280
Mocaje gold.	63,000	34.000				
Gua metal for bearinge, stocky,	90.300	9,570	0030			
Munta's metal.	60.000	40.000				
Good yellaw brass.	66,000	34,000				
Babbitt's motal for bushing. +	8,300		83.400		8.300	
Bell metal for largo bella..............	80.000		20.000			
Britamia metal.	1.000	17,000	81.030		16.000	
Nickel nilver, Popelish	60.000 50.000	17,800 12.600		20.200 19.300		
German silver.......	50.000	25.000				
Pinehbeek ...	80.200	20,000				

slased together under the French term of alloys. Alloga are geaerally more fusible than the least fusible of the compouent metals: but aru often harder and more brittle thas the bardeat and most brittle of the component metals. With some ereeptions, the dactility and temacity of an alloy bif lens thas that of ite fuetals.
3349. Properties of Metals. The metaly form part of tho olements of naturo, sro undocompoumded bodies, and distinguished froms the other elements by their fustre, weight, se.
3350. Table Showing, in their Order, the Comparstive Properties of Metals.

Order of Mallo ability.	Orier of	$\begin{gathered} \text { Onder of Dritule } \\ \text { ness. } \end{gathered}$
Gold, Silver, Copper, Tin, Gadmium, Platinum, Lead, Kino, Iron, Niekel, Pallatiam, Patassium,	Gold, Silvet, Platinum, Irob, Copper, Zinc, Tin, Lead, Nicket, Palladim, Cailmium,	Antimong, Arsenic, Bismuth Chrominm, Cobalt, Manganese, Molybdenum, Tellarimp, Titanium. Tungsten, Utaniam, thodium.
Orider of Tenadty.	$\begin{aligned} & \text { Order of He } \mathrm{He} \\ & \text { Copdocotiog } \\ & \text { Power. } \end{aligned}$	at Order of Fleco trical Condact Ing Powner.
Iron, 1,000 Copper, 500 Plathum, 494 Salver, 349 Goll, 975 Zing, 190 Tin, 63 Lead, 50	Gold, Platinum, Sileer, Copper, Irob, Zinc, Tin, Lead,	Copper, Gold, Silver, Zinc, Platinam, Trong, Tin. Ieard. Mereary. Pofisejurn.

3351. Lustre fs so ebaracteristic as to bave formed the commou expression "me. tallic lustre. ${ }^{\text {. }}$
3352. Weight is also a rough distinguish ing characteristic.
3353. Fusibility is a property common to all metals. Before some metals are ren-
dered tuid by beat, they become pasty; buch is an indication of malfenbility. Tho following table gives the degroes (Faher.) of heat at which metala fuso:

	142°
lamerth	$497{ }^{\circ}$
Lend	612°
Zinc.	$773{ }^{\circ}$
Antimony	810°
Silver.	1,873
Cop	1,906
Gel	2,016 ${ }^{\circ}$
Iran	2,7860

Nielcel......................2, 800° (abont)

Mamganeso...............3,0000 (about)
3354. Malleability, or tho property of being beaten out into thin plates without cractiog or breakiog is common to soceral metals.
3355. Ductility is nlso n property found it some motals. It is allied to mallentility, and offen conffunded with it. It is tho proporty of being druwn into wire.
3356. Tenacity or the resistanen ot being polled asunder by the force of tenkion, taries excecelisely in metals.
3357. Brittleness, resulting from hardnest is a property alen met with; and wharo the britulenesk if not extreme, hardness ia in faror where swbjected we entiprossion.
3358. How to Make Brass. This nseful alloy of cupper and zine is now generally made by plunging the copper in slips into the zioc melted in the u omal manner. The former metal rapidly combines with the fluid mass, and the addition is continued until an alloy is formed somewhat difficult of fusion, when the remainder of the copper is at ones colded. The brass thus formed is broken into pieces and remelted under charcoal, and a proper addition of either zine or copper made to bring it up to the color and quality desired. Small quantities of brass may lie made by melting the copper and zunc separately, pouring them together and stirring vigorously. (Sec Copper Flux, No, 3470.) it is then poured into moulds of granite. Before being submitted to the rolling preas for reciuction to thin plates, it bas to undergo the operation of annealing. In the receipts which follow, it will be seen that the larger the proportion of copper, the darker the color, the greater the
density, and, to a certain extent, the toughness, of the alloy. Zine lessens the weight and color. Tin gives it hardness and grain, and lead toughens it and renders it fitter for working. An applieation of these principles will serve as a guide for the metals and proportions to be used to produce a brass of any description required.
3359, Fine Light Yellow Brass, Melt together 2 parts copper and 1 part zine.
3360. Bright Yellow Malleable Brass. : Melt together 7 parts copper and 3 parta zinc.
3361. Deep Yellow Mallesble Brass. Mele together 4 parts copper and 1 part sine. 3382. Brass Malleable whilst Hot. Melt together 3 parts copper and 2 parts zine. 3363. Red Brass, Melt together 5 parts copper and 1 part zinc. As much as 10 parts of copper to 1 part zine may be used, the color being a deeper red for every additional part of copper employed.
3364. Brass for Buttons. Copper, 8 parts, and zino 5 parta. Thia is the Birming ham platio.
8365. Pale Brass for Buttons, \&c. Melt together 16 parts fine Light yellow brass (see No, 3359), 2 parta zine, and 1 part tin.
3366. Common Pale Brass, Melt together 25 parts copper, 20 parta zinc, 3 parts lead, and 2 parts tin.
3367. Fine Pule Brass for Castinga. Melt together 15 parts copper, 9 parth zinc, and 4 parts tin. This is rather britile.
3368, Dark Brass for Castings. Melt together 90 parts copper, 7 parts zinc, 2 parts tin, and 1 part lead. The color will be atill deoper by nsing 2 parts less of zine, and 1 part moro each of copper and tiv.
3369. Pale Brass for Gilding. Molt together copper, 64 parts; 32 parta zine, 1 parts lead, and 1 part tin.
3370. Red Brass for Gilding. Molt together 82 parts copper, 18 parts xinc, 3 parts tin, and 1 part lead.
3371. Brass for Bolder. Melt together 12 parts fine yellow brass (see No. 3359), 6 parta zinc, and 1 part tin. Used for ordinary brazing.
3872. Pale Brass for Turning. Melt together 98 parts fine brass (see No. 3359), and 2 parta lead.
3373. Red Brass for Turning. Melt togother 65 partis copper, 33 parts zinc, 2 parta lead.

3374, Red Brasa for Wire, Melt together 72 parts copper and 28 parta sine, properly annealed.
3375. Pale Brass for Wire, Melt together 64 parts copper, 34 parts sinc, and 2 parts lead.
3376. To Make Brass which Expands by Heat Equally with Iron. It is ditficult to make a permanent joint between brass and iron, on account of their unequal expansion by heat. In a recent iscue of the journal of "Applied Chemistry," a new alloy is given, for which the inventor claims an expansion by heat so nearly similar to that of fron, as to allow of a nion between them, which, for all pructical purposes, is permanent. This consists of a mixture of 79 parts copper, 15 parts zine, and 6 parts tin.
3377. To Harden Brasa, Brass is tempered or hardened by rolling or hammering; consequently, if any object is to be made of tempered brass, the hardening must be done before working it into the required shape.
3378. To Soften Brass. Heat it to a cherry red, and plunge it into water.
3379. To Cover Brass with Beautiful Lustre Colors. Dissolve 1 ounce cream of tartar in 1 quart boiling water; then add $\frac{1}{3}$ ounce protochloride of tin dissolved in 4 oun-
ces cold water. Next beat the whole to boiling, and decant the clear solotion from a trifing precipitate, and pour, under continual stirring, into a solation of 3 ounces hyposalphate of soda in $\frac{1}{1}$ pint water, then beat again to boiling, and filter from the separated sulphur. This solution prodnces on brass the varions lustre colors, depending on the length of time during which the articles are allowed to remain in it. The colors at first will bo light to dark gold yellow, passing through all the tints of red to an iridescent brown. A similar series of colors is prodaced by enlphide of copper and lead, which, however, are not remarkable for their stalality; whether this defect will be obviated by the ase of the tin solution, experience and time alone can show.
3380. To Put a Black Finish on Brass Instruments. Make a strong solution of nitrate of silver in one dish, and of sitrate of copper in another. Mix the two together, and plunge the brass in it. Now beat the brass evenly till the required degree of dead blackness is obtained. This is the method of proulacing the beantiful dead black to mbeh admired in optical justruments, and which was soloug kept a kecret by the French.
3381. To Frost Watch Movements. Mix together 1 otece each muriatic aeid, yitric acid, and common salt; immerse the article, as far as it is to be frosted, in the misture for a thort time; then immerse it, so as just to cover it, in sour heer, and scour it under the beer with a bruxh made of fine brass wire (a seratch brush); wahh it in water, and afterwards in alcohol. The surface is thed ready to gild or silver-plate if desired.
3382. To Color Brass. Altbeggh no alloy presetsty a more aprecable appearance to the rye than loras when if is is a bigh state of polish, yet the facility with which it tarnithes has rendered it necessary to color or brouse it, eapecially in those instances where ita use exposes it to the liability of being froguently handled. The following receipta are from a reliablo German source, and ara said to posseas a hugh degree of permanence. (See Nos. 3771, \$6.)
3383. To Give Bravs an Orange Tint. An orange tint, inclining to gold, is produced by first polinbing the brass and then plunging it for a fow neconds into a neutral solution of erystallized soetato of copper, care being taken that the solation is completely destitute of all free acid, and poasesses s warm temperature.
3384. To Color Brass Grey-Green. Dipped into s bath of coppor, the brass being first polished, as in last receipt, the resulting tint is a grayish green.
3385. To Color Brass Violet. A beautifal violet is obtained by immersing the polished brass for a single instant in a solution of chloride of sotimony, and rubbing it with a atick eovered with cotton. The temperature of the brass at the time the operation is in progress has a great influence apon the beauty and delicacy of the tint; in this instance it should be heated to a degree so as just to be tolerable to the touch.
3386. To Give Brass a Moir6 Appearance. Δ moiré appearance, vastly sinporior to that manally seen, is produced by boiling the object in a solution of sulphate of copper. According to the proportions observed betwren the zinc and the copper in the oomposition of the brass, so will the tinta obtained vary. In many instances it requires the employment of a slight degree of friction. with a resinous or waxy rarnish, to bring out the wavy sppesrance characteristic of moiré, which is also singularly enhanced by dropping a few iron nails into the bath.

S387. Black Lacquer for Brass.
lacquer upon the surface of brass. The one nsually employed for optical and scientific instruments consists in first polishing tho object with Tripoli, then washing it vith a mixture composed of 1 part nitrate of tin and 2 parts chloride of gold, and, afler allowing this wash to remain for nearly a quartor of an hour, wiping it off with a linen eloth. An excoss of neid increases the intensity of the tint.
By another method coppertumings are diesolved in nitric acid until the acid is saturated; the objects are cleaned, immersed in the aiolytion, and subsequently heated moderatoly over a charcoal tire. Thia process must bo repeated in order to produce a black enlor, wa the first trial only gires a deep green, and the finishing touch is to polish with olive oil.
3388. To Give Brass an English Took. Much pains are taken to give brass objects an English look. For this purpose they are first heated to redneas, and then dipped in a weak solution of sulphurie acid, Aferwarda they are immersed in dilute nitric acid, thoroughly washed in swater, and dried in sawdust. To offect a ubiformity in the color they aro planged into a bath consisting of 2 parta nitric acid aud 1 part main waterf Where they are suffered to rempin for foverna minates. Should the color not lee frod from spots and pateles, the operation must be repeated until the desired effect is produced.
3389. To Clean Brass. Brass and cop. per are beat olemed with sweet oil and Tripolf. powdered bath-brick, rotten ittone, or red brick-dast, rubted on with flannel and polialsed with leather. Vitriol aud mutriato neid make brasa and copper very bright, but they very soon tarninh, and consequently requitio more frequent cleaning. A triong lyo of rochealum and water will also improvo brask. A solntiou of osabie acid rabbed over tarniahes brass with a cotlon rag, soon romoves tho tamish, renderiag the metal bright. The achat must bo washed off with water, and the brant rabbed with whitening in powder and sott leather. When acids aro employed for removing the oxide from linas, the metal must be thoroughly washed afcorwards, or it will tarnish in a few minutes after being exposed to the air.
3390. To Give a Golden Color to Brass. 4 mixture of mariatie acid and alum diasolved in water imparts in golded color to lorass articles that aresteoped in it for a fow seconds.
3391. Paste to Clean Braso. Soft soap, 2 ounces; rotten-stone, 4 vunces ; beat them to a paste. Or: Rotten stono mado finto a paste with sweetoin. Or: Rotten-atone. 4 ounces; oxalic acid, 1 ounce; sweet oil, if ounces; turpontive enough to make is pasto. The first and last are bestapplied with a littlo water. The second, with a little spirits of turpeatize, or sweet oil. Both require friction with soft leatber.
3392. To Clean Brass Iniaid Work. Mis Tripoli and linseed oil, and dip into it a rubber maile of a piece of an old hat, withs which polish tho work and rub off with clean soft leatber. If the wood bs ebony or rose. wood, polish it with a little finely powdered older ashes; or make a paste of rotcen-atone, a little starch, sweet oil, and oxalic acid, mixed with water. The ornamenta of a French clock are, however, best cleaped with breadcrumb, carefully rubued, $k 0$ as not to spoil the wood-work. Ormoly candleaticke, lamips, and branches, may be cleaned with en nip and water. They will bear more cleaning than lacquered articles, which are spoiled by frequent rubbing, or by acids or strong alkalies.
8393. Solutions to Clean Brass. Finely powdered sal-ammoniac; water to moisten. Or: Roche alam, 1 part; water, 16
parts. Mix. The articles to be cleaned must be made warm, then rabbed with either of the above mixtures and finished with fine Tripoli. This process will give them the brilliancy of gold.
3394. Solution for Cleaning Brass Ghains. Mix togather 1 ounco sulphuric acid, $\frac{2}{2}$ ounce nitric acid, $\frac{1}{2}$ drachan saltpetro, and 1 ounce ruin water, and allow the soluLion to repose in few hours. Pass the artiele to be cleaned rapialy through the solation, and immediately wash it thoroughly with rain water. Dry in suwdust. This process will make old and discolored chains look as good as new.
3395. To Clean Very Dirty Brass. Rub some bichromate of potasaa line, pour over it about twice the bulk of sulphuria neid, and wis this with an eq̧ual quantity of water. Waah immediately in plenty of water, wipe it, and rab perfectly dry, and polish with powdered rotten-ktone. By this method the dirticat brass may lo mado immediately bright.
3396. To Give Brass Ormamenta a Fine Color. Brasis ormanents, when not gilt or lacquered, may lie cleansed, and a fine color given to them, by two simplo processes. The first is to beat sal-ammoniae fito a fine powder, then to moiaten it with soft water, rabbing it on tho omaments, which must be nfterwards rabbed dry with bran and whiting. The gecond ia to wash tho brasa work with rocho alam builed to a strong Iye, in the proportion of 1 ounce to I pint; when dry, it must be rubbed with fine Tripoli. Either of these procesues will give to bersas the brilliancy of gold.
3397. Counterfeit Gold. Fuse together 8 parts platinum, 5 parts puro copper, 2 parts pure zine, 4 parta tin, and 3 partis pura lead, using salcpotro, and-ammoniac, and powdered eharcoal as faxes. This compound metal atrongly rosembles gold in appearance, and reniitas many of tho tents ased lor gohl.
3398. Hard Gold. 4 mixture of 7 pasts gold and 1 part copper appears to afford the mnximum of hariness.
3399. Coin Gold. Melt together with saltpetro abd sal-ammoniac, 22 grains pare gold with 2 grains of pure coppor. The later American coin is alluyed with 2 grains of a mixture of 1 part silver and 2 parts copper. The copper used for alloying gold mest be puro, otberwise tho mixture will be brittle.
3400. To Make Eighteen Carat Gold. Pure goid, 18 parts, is alloyed with 4 parts puro copper and 2 parts silver. Or: 19 i parts com guld, 3 parts copper, and if parts silver.
3401. To Make Sixteen Carat Gold. Sixteen parts puro gold are mixed with 53 parts copper, and $2 f$ parts silver. Or: 17 parta coin gold, 5 parts copper, and 2 parts bilver.
3402. To Make Twelve Carat Gold. Coin gold, 75 parts; further allojed with 40 parts copper, and 22 parts silver, make a combination of good appearance, which stands acid testa well.
3403. To Make Four Carat Gold. Λ good useful metal for cheap rings, \&c., which will nut blacken tho finger, is made by mixing 4 parts gold with 2 parts silver, and 18 parts copper.
3404. To Make Green Gold. Pure gold, 19 parts, and 5 parts pere silver, combine to form an alloy of a beautifal green shade, very effectico for foliated designs in jowelry.
3405. Pivots for Artificial Teeth. An alloy of platinum and silver is used for this purpose.
3406. Chandet's Springs for Artiflcisl Teeth. Equal parts of copper, silver,
anil palladiam.
3407. Hard Silver. An alloy of 5 parts silver and 1 partcopper forms the hariest alloy of these metals.
3408. French Coin Silver. This consists of 9 parts cilver and 1 part copper.

3409, German Silver. This is a wellknown alloy, the finer rarieties of which nearly equal silver in whiteness and easoeptsbility of receiving a high polish, while they surpass it in hardness and dorability. Tbe mintare of the metals is effected in the same way as is given for making alloys, (Sec No. 3347.) The receipts here given are from the bighent authorities, or aro the resulta of actual aunlysis of the finest commercial samplex.
3410. German Silver for Rolling. Nickel ard zine, each 1 part; copper, 2 parts. Fery five. Or: nickel, 25 parts; zine, 20 parts; copper, 00 parts, Used for rolling.
3411. German Silver for Castinga. Nickel and zine, each 20 parts; copper, 60 parts; lead, 3 parts. For castings. Or, to either of the aluove adid 2 to 3 per cent. of white ibeet irum.
3412. Genuine German Silver. Copper, $40 \ddagger$ parts; nickel, $31+$ parts; zine, 254 parts; iroa, 21 parts. This resembles the gemuine German silver mate from the ore of Hildburghausen, as well as Pakfong, as analyzed by Dr. Fyte, and is equal to the beat Chinese naimple.
3413. Pelouze's German Silver. Equal parts of copper and nickel. Said to bo spperior to any of the alloyn containing rine. 2 parts of copper to 1 part of nickel make tho alloy more malleable, though not so white.
3414. Chinese White Copper. Thin concistr of 30 parts eopper, 36 parts nickel, and 34 parts gipe.
3415. Pakfong, or Whito Copper from China. Tbis is composed of 41 parts copper, 32 parts nickel, 24 parta iron, and $24 \frac{1}{4}$ parts mac The Chinese Pakrong is noid to be prepared fromi native ore. It in silvery white, takea a high polish, very wonorous, malleablo both cold asd at a dall red beat, and may be rolted into leaves or drawn into wire.
3416. White Spoon Metal. Thin is the alloy suld to Gcrnan plate. Melt together 65 parts copper, 24 parts ninkel, 16 parts zioc, 3 parts tim, and 2 parts iroh. This is a uneful alloy.
3417. Britannia Motal. Plate braes, 4 ounces ; tin, 4 ornces; when fosed aild 4 ounces cach of bismnth and matimony. This composition is added at discretion to melted tiv.
3418. To Clean Britannia Ware. Britannia waro should be firnt washed with a woolen cloth and sweet oil, then wasked in water and sides, nod mbbeel with soft leather and whiting. Thas treated, it will retain its beauty to the last. Britannis ware may also be cleaned in tho gamo way na copper, in No. 3252.
3419. Type Metal. Lead, 3 parts; mantimony, i part; melted together. Small typea are usually maile of a harder composition thna large ones. A good stereotype metal is said to bo made of leal, 9 parts ; antimony, 2 parts; bismuth, 1 part. This alloy expands as it cools, and consequently linings opt a fine impression.
3420. Bismuth and Lead. Lend, 2 parts to bismuth, 1 part, givea an alloy which dilates powerfully at the time of cooling. This property makes it extremely suitable to all eastings in which the greatest ebarpnoes and finish are desirable.
8482. Tin and Zine. Tin and sine, of esch 1 part, lo slmoat as tenscions as brass, and melts at 900° Fahrenheit.
8422. Pewter. 'Tirs, 100 parts; antimony, 8 parts; copper, 4 parts; and bismuth, 1 part, constitute the compound commonly called pewter.
3483. Alloys of Steel. Steel is successfully alloged with other metals, improving its qualities for somo purposes. Tion part of silver adds immensely to the hardness of stecl, and yet inereases its tenacity. 115 part of platinum, though not forming so hard an alloy as the siliver and steel, gives a very great degree of toughness. Rhodium, palladiam, iridinm, and osmium make steel very hard, but their use, from their cost, is confined mainly to the exporimental laboratory. Platinum, in itis malloalle state, may bo cut with a knife; bat with steel it forms an alloy not to bo tonchod with a file.
3424. Iron, Copper, and Zinc. An alloy eonsisting of 10 parts cast 3 ron, 10 copper, and 80 zinc, does not adhere to tho mould in casting, and it is of a beautifal lustro when filed and polished. Tho least fasiblo motals are melted first, and tho zinc last, in making it.
3425. Ormolu, or Mosaic Gold. Copper and zíbe, equal parts; melt together at tho lowest possible temperature at which copper will fuse, and atir so as to produco a perfoet admixture of the motals; then add gradually, emall portions of zine at a time, until the alloy acqaires tho proper color, whieh is perfectly white, whild in tho melted state. It mast then too at onco east into figured moulds. This alloy should contain from 59 to 55 per cont. of zinc.
3426. White Metal. Leal, 10 ounces; bismuth, 6 ounces ; and nutimony, 4 drachus: or, 9 pounda antimony, 8 oumces brass, and 10 ounces tin.
3427. French Alloy for Forles and Spoons. This is a beantiful whito metal, very hard, and takiag of fino polish. It is composed of G9,8 parts of copper, 10,8 parls nickel, 5.5 of zine, nal 4.7 of cadmium.
3428. French Silver. The new French sitver is appareatly an improvoment on tho old-fashioned German sillyer, and it is statod to bo applicable to all tho parposes to which ordinary oommercial silvor is applicable. It is composed of copper, 56 per cont, ziekel, 40.64, tuggsten, 2.0 , aluminum, 0.56 . It is a white, ductile, mableable, tenacions, sonorous alloy; its bpocific gravity is nine-tenths that of silver, ita metallic lustro superior to that of हilror, and its fasibility less, probably on account. of the tangstea it contains.
3429. Tho Alloys of Aluminum. Wo havo to distinguish between alloys hit which the aloninum prodominates and such oucs in which the other metals outweigh the latter. Thoso impart to the aluminum notv properties. Iron and copper do not act injuriously if tho admisture is not considerable. In regard to toughnese, tho union of 7 per cent, of irou can scarcoly to distinguished from puro nluminum. Both matals casily combino with each other. Commercial aluminum mostly oontains iron; it remains ductilo with as much as 10 per cent. of copper, anil when oontainug only holf as much, it may bo worked still easier. If alloyed with small quantities of zinc, tin, gold, or silver, the metal is rendered hard and more brilliant, bat remains ductile. Especialiy recommended is the alloy consisting of 97 per cent. of aluminum, and 3 per cent of sinc. The alloy with 7 per cont. of tin can be worked well, but does not take at very fine polish, and cannot bo east, since a more fusible alloy with a largo proportion of tin is separated. Alaminum and lead do not unite. The composition with 3 per cent, of silver and 97 of aluminum possesses a beautifal color, and in equal parts they yield an alloy of the hardness of bronze.

Tho union of 99 per cent, of alaminum and 1 of Fold is, though hard, still dnetile; its color is that of green gold. With 10 per cent. of gold, the composition is reulered erystalline. In combining aluminum with copper, tho tatter must be melted first, and the former added gradually in amall portions at a time. A combination of 10 parts aluminum and 90 parts copper produces is fine aluminum bronzo, which, however, is brittle after the first mixing; it increases in strength and tenacity only after successive fusions, but with the loss, each time, of a littlo aluminum. This bronza may bo forged at a dall red heat without presenting flaws or cracks. Liko copper, it is rondered nore ductilo by being heatel and plumged into cold water.
3430. Copper and Aluminum for Journals. The most important alloy of aluminum is that composed of 90 per cent. of copper and 10 per cent. of aldminum. It pos sesses a pale gold color, a hardncess surpassing that of bronze, is susceptible of taking a fine polish, and is easier forged than 80 in fron. Ttis alloy has found a ready market, wand, if less coself, would replace red and yellow brass. Its hardness and tenacity render it peculiarly adapted for the journala and beartuga of machinery. Christolle, of Paris, who uses it for a journal for a polishing diek, fomp that it lasted nix times fonger than or dinary journals-that is, 18 montha. Thero trero 2200 revolutions made per minute. It is further ktated, on good unthority, that a journal of thia new bronze, which whs emploged for tho axlo of a sewing machine, making 240 revolationa per minute, did excellent servico for 1 year without indicating the least deficiency. Journala of ordinary bronion do not, as is well kuown, last over 5 months. When moro than 10 per cent, of aluminum enters into tho composition of tho bronze, the alloy gradually becomes weaker nnd leas mal. leable, and at length to brittle that it is cenily pounded in a mortar.
3431. Oroide, or Artificial Gold. This material is mannfactured largely In tho Vnited States into imitation jewelry and other articles, scarcely distinguishablo from gold, oxcept by the inferior grasity; and it is a mattor of surpriso to ulmost nny ono to learn that it does not contais a singlo grain of tho proclous motal. $1 t$ is male by tahitg 100 parts of puro copper, 17 of puro tio, G of magnesia, 9 of tartar of comtnerec, 3.6 of eal-ammoniac, and 1.6 of unslacked lime. The copper is firnt melted, and tho other sobstances (oxcepting the tin) added, a littlo at a time, and the whola woll stirred for 30 minntes, so as to produco a perfect mistare, when the tin io thrown in and atirred round until melted. The oracible is then covered, and the fusion kept up for 25 minntes, and tho acum takea off, when the aubatance is ready for use. It is malleablo and ductile, and can bo worked in any form, even into leases like gold. The alloy may also bo maie by substituting granulated sinc for tin, but it will not retain its brillianey so long as when tin is employed.
3432. Talmi Gold. A beautiful goldcolored alloy, sold onder the above name, gives, on analysis: copper, 86.4 ; zinc, 12.2 ; $\mathrm{tin}, 1,1$; iron, 0.3 . The presence of the iron was probably accidental.
3433. Yellow Dipping Metal. Melt together 2 parts brass, 1 part copper, with s loge old brass, and 4 ounce tin to every poumd of copper. This alloy is almost of the color, ete., of gold coin.
3434. Alloy of the Standard Measure used by Governmient. This is composed of copper, 576 parts; tin, 59 ; yellow brass (22 eopper to 1 of sinc), 48 parts.
3435. Dentists' Tin Alloys for Moulds.
fastened, are fashioned to fit exactly to the month by being hammered between a mould and die, cast from a plaster model of the mouth. The plaster model is obtained from a mould of wax, pressed while soft into the cavities of the mouth, and allowed to harden. Duplicate moulls and dies are neeessary, at different stages of the hsmmering, in order to obtain a perfectly fitting plate. The necesBary characteristics of the metals used for the moulds and dies are fasibility, hardness, or toughness, and, especially for the moulds, a freedom from shrinkago in cooling. The metal usually employed for the dies consista of 8 parts tin, 1 part lead, and 1 part bismuth. Thia compound is much harder than tin, melts at a lower heat, shrinks Iittle, or practically none, in casting; is tough and strong. It melts at about 330° Fabr. Altbough generally a harder and less fasiblo metal is used for the first swaging, this alloy is particularly convenient for taking duplicate dies for finishing. Its tenaeity adapts it for cases of partial sets represonting the teeth. The mould or counter-die metal is mado by adding to 1 part of this misture 6 parts of lead. The result is harder than lead, and does not yield like it under tho blow, presenting is revistance sufficient to drive tho plato up well agsinst the die. Ita nhriukage is but alight; it melts at from 450° to 460°. It is designed for use when the dipping process is resorted to. This consigts in pouring the melted metal into an appropriately shaped vessel or mould, and prossing the plaster model into the metal before the moment of congelation. If used at the point of congelation, the plaster cast may be employed withont provious laking; otherwise it should be baked to espel its water of cryatallization.
3436. Fiard Tin Allogs for Dentists? Moulds. Tho following formula afforls a higbly useful alloy, where toughnosa as well as hardness is essential: tion, 16 parts ; anti. mony, 1 part; zine, 1 part. This ailoy in mach harder than the preceding die metal, and equala it in teaselty, being suited for any zind of die; it requires in bigher temperature to melt it, bat it melta sooner then tin, of than the moutd-meial mentioned in the proceding recepipt, from a matrix of which a dio may be taken by it with mafety. It afforde, in sand, a perfeet dio, does not sbrink, and, whether poured into a cand or metal monld, comes out with a smooth, bright face. It is the best combination of these thrico metals for the parpoge. But when dies are mede of it from kand monlds, and a more fusible metal is needed for taking counter-dies or mooulds from them, it may be bad by a combination of 5 parts lead, 2 bismuth, and 1 tin; or, 6 parts lead, 3 to 4 bisuuth, and 1 tin afford astill more fusible compound, although harder.
3437. Copper Alloys for Dentiate* Moulds. A rery hard and most valuable
alloy for general use may be had loy a misture of tin, 12 parts; antimony, 2 parts; copper, I part It is not mach inferior to xipe in hardness, caste without zensible shrinkage, and makes a perfect and very handsome die, bright and smooth. It is less fasible than the hard tin dio metal in last receipt, bat may bo tised for taking dies from the muold-metal mentioned in No. 3435; but, as it melts at mearly the same teniperature, this requires care. It will be found of value in connection with lead moulds made by dipping. (See No. 3435.) It is rather brittle for cies for partial sets representing the teeth, as these are liable to break on removing from the matrix; but it is abundantly strong enough for swaging purposes In combining these metals (which may be done in an ordinary chareoal farnace, as it is by no means necessary to raise the beat to the melting point of copper), place
the copper in a crucible aud bring it to a red beat, then pour in the tin and antimony, melted, and cover the whole with charcoal dust, to prevent oxidation, The eopper will soon liquefy, or dissolve, as it were, combining perfectij with the other metals, without fur ther elevation of temperatare. To guard better against volatilization of antimony, which takes place at a high red heat, it is well enough to add to the copper but half the tin at first, and when these are combined, add the antimony, and then the remaining tin. This also enables one to conduet the Eecond melting in a larger crucible, or, indeed, in an iron laile. It is best to let the melted mass cool down some, before pouring it from the cracible, as, if poured out at too high a heat, the alloy oxiolizes. A larger proportion of antimony and zine increases the hardness of the metal, but with a tendeneg to imperfect castings. If tin be used in larger quantity, the alloy is, of course, sufter, asd it Elarinks when cast. The relatise proportion of zac and antimony, in respect to each other, mas be somethat voried, without matorial modl. fieation of the qualities of the eomponand; but, for the bent results, the sum of these two metals should hold to the quantity of tin employed the ratio of aluoti i to 8, For dluidity, an eseess of antimony over copper appean to be requisite. For nom-abrinkage, the joint amount of antimony and copper whould be to the quantity of tin as aboit ito 4 ; as, for example, 8 parts tin, 1 antimens, 1 copper; or, 10 Lia, 1 I antimony, 1 copper; or, 12 tio, 2 autimons, 1 coppef. For takiag counterdies or moutda from dies of the last named alloys, a cuitable metal, fusible at about 380° Falir., is had by a mixture of 3 parta lead, 1 part biemath, and not over tada part tin. It fs wonderfut how small a quatity of tin serven to improve tho alloys of lead and bismuth, giving them a white, cleat lustre, proventing oxidation, promotitig fisibility -in thart, produciag almont a new metal.
3438. Cadmium Alloys for Dentista' Moulds. By the tise of culmium we may produce still harder alloyn that any of tho preceding, possessiog ti an equal dogree evory other desirable qually. Thus, 10 parts of tith. 1 part of antimony, 1 of copper, and 1 of cadmium, produce a compound which has about the hardness of zinc; it casts perfootly, and is nearly all that could bo desired, exeept that, like the copper die metalis, it is rather brittlo for certain castiogs. (See No. 3437,) Substituted for copper in thaso cotnsectionk, cadmium appears to confor greator hardnesa and toughness, and, up to a certain puint, promotes fusibility. 9 parts of tin, 1 part of antimony, and 1 part cadmium, furmsh a very hard and tough metal of a compact, homogeneous structure, which easts without slurnkago, forming a perfect dio with a smooth, bright face. It melts at about the melting point of tin. In tho employment of cadmium, care must bo taken not to subject it to A heat high enough to volatilizo it. To aroid this danger, it is best to unite the other metals first, and then auld tho cadmium at a heat baroly sufficient to melt it. The great objection to this metal is its expensiveness.
3439. Alloy of Nickel and Copper. A mixture of 1 part nickel and 2 parts copper produces a grayish-white metal, tenacious, ductile, and moderately fusibic.
3440. Alloys of Platinum and Copper. A compoand of I part platinutu and 4 parts copper is of a rellow-pink color, hard, ductile, and susceptible of a fine polish.

An alloy of 3 parts platinum and 2 parts copper is nearly white. very hard, and brittle. 3441. French Bell Metal. The metal used in France for hand-bells, clock bells \&c., is made of 55 to 60 parts copper, 30 to 40
parts tin, and 10 to 15 parts zinc.
3442. Bed Tombac. Put into a crucible $5 \frac{1}{5}$ pounds copper; when fused add $\frac{1}{2}$ pound zinc; these metals will combine, forming an alloy of a reddish color, but possessing more lastro than eopper, and also greater durability.
3443. White Tombac. When copper is combimed with arsonic, by melting them together in a close crucible, and covering the surfase with common salt, to prevent oxidation, a white brittle alloy is formed.

3444, Speculum Metal for Telescopes, Melt 7 pounds of cupper, and when fased add 3 pounds zine and 4 pounda tin. These metals will combine to form a beantiful alloy of great lustre, and of a light yellow color, fitted to bo mado inte specula for teleneopes. Mr. Mudgo used only copper and grain tif, is the proportion of 2 pounds of the former to $14 \frac{1}{2}$ ounces of tho latter.
3445. Bebbitt's Anti-Attrition Metal. Malt 4 poudals copper, add loy degrees 19 poutds best quality Banca tiz, of pounds rogalus of antimony, and 19 puands more tín while tho egomporition if in a melted kete. Aftor the copper la retted atul for 5 prombls of tin laved been mbderd, the heat should be fedigeed to π dall rim, ta prevent uxidation; thon add the romainder of the metal as above. It mebting tho conporition, it fa better to koop a \quad matl gometicy of powdered eharcoal on the autface of the mofal. The abovo composition is callal liardening. For lining the buses tako 1 pound of thia hardening and meit it with 9 pangils of Barea tin, which produces the lining metal fir ure. Thus, tho proporlious for lining metal aro 4 poutada sopper, 8 pound ragnies of antimotyy, and 96 peundy Baben Ein.
3446. Gonga and Cymbals. Tho accret suthint employed by the Chinese for working tho hard brfitie bronze used for making gougs aml eginbala, kecma to ba molved by the fact that tho tromze of swich theie instrementa ard intide, consiating of coppor alloyed with about 20 per cent, of tio, tath almost the brittle as glias at ordinary temperatures, becomes as matloablo as kolf irom, if worked at a dull red hint. This dipcovery was recently made in Parti, by M.M. Julien and Champion, the readit of exporiments at tho Paris Mfint.
3447. Phoaphorus Bronzes. A great atyanec has lately been mude in the construction of loronzes, by the aldition of a smalt prrecolage of phosphorus, although the precise function of tbio substance has not been bitherto well nndentood. According to Levi and Knnzel, however, one causo of the ifsfesiority in bronzo constets in the constant preseltee of tracea of tin in the state of an oside, which neta mechnatically by separstiog tho rnolecules of the alloy, thus interposing a sulostano which in itself has no teriacity. The aldition of phosphorms reduees this oxids, and readers tho alloy much more perTeot, improving its color, its tenacity, and all its physical properties. The grain of its fraoture resembles mora that of steel, its elastieity is much augmented, and its resistance to pressure sometimes more then doubled. Its durability is greater, and, when molted, it is of greater findity, and fills the mould in its finest details.
3448. Fontainemoreau's Bronzes. There is a kind of bronze known as Fontainemorean's bronze, in which zine predominstes. It is gaid to answer weil for chill moulding, that is, for pouring in metal moulds, by which method it is rendered very homogeneous. The crystalline natare of the zinc is entirely changed by the aldition of a small proportion of copper, iron, \&c. The alloy is hard, closegrained, and resembles steel. Moreover, it is easier to file than either zine or eopper. The
following table presents the propertions in use:

Zime	Copper.	Cast Irow.	Iead.
90	8	1	1
91	8	0	1
92	8	0	0
92	7	1	0
97	23	$\frac{1}{2}$	0
97	3	0	0
999	0	1	0
99	1	0	0

3449. Use of Petroleum in Turning Metals. A brouzn composed of soven parta i.f vypuler, it of zine, and 1 of tin, has been foand to be so hard as to be difficult to work, and yet of considerable value io certain waya when worked, Varions methods hava been attempted, aiming at effecting a readjw workjag of this alloy, and Ψ. Bechstcin has recently, by mosking the alloy in petroleum, attained this desirable end.
3450. To Clean Bronze. It was observed in Berlin that those parts of a brome statuo which were mach bandled by the public retained a good surfice, and this led to tho conclasion that fat bal something to do with it. An experiment was therefore tried for soma years with four bronzes. Ono, says our authoritg-Chambers' Joornal-was conted çery day with oil, nul wiped with a cloth; gnother was washed every day with water; the third was similarly washed, lat was oilod twice a year; and the fourth was teft ontouched. Tho first luoked veantifally; the third, which bad lieen oiled twice a year, was passablo; the second looket dead ; and the fourth was dull and black.
3451. Engeatroom Tutania. Melt together 4 parts copper, 8 parts regulus of antimony, and 1 part bismuth, When ndded to 100 parts of tin, this compound will be remdy for use.
3452. Tutenag. Melt Logether 8 parts of copper, 5 parts of zinc, and 3 parts of nickel.
3453. Kustition's Metal for Tinning. To 1 poand of roslleable iron, at a white beat, add 5 ounces regulux of antimony, and 24 pounds of the parest Molneca tin. Thin alloy poliahes withont the blae tint, and is free from lead or arwenic.
3454. Expansion Motal. Melt together 9 parts of lead, 2 parts of autimony, und 1 part biemuth.
3455. Fluid Alloy of Bodium and Potassium. If 4 parts sodium are mixed with 27 potassium, the alloy will havo axactly the appermace and consistency of mercury, remaining liquid at the ordinary temperature of the air.
3456. Fusible Alloys. Bismuth, 8 parts; lead, 5 parta; tin, is parts; melt toguther, Melts belos 212° Fahr. Or: Bismuth, 2 parts; lead, 5 parts; tin, 3 parts. Melts in boiling water. Or: Lead, 3 parts; tin, 2 parts; bismuth, 5 parts; mis. Melts at 197° Fabr. The above are used to make toy-spoons, to surprise chuldren by their melting in bot tea or coffee; and to form pencils for writing on aases" skin, or paper prepared by mbbing burnt hartshorn iuto it. The last may bo cmployed as an anatomical injection, by alding (after removing it from the fire), 1 part quicksilver (varm). Liquid at 1722°; solud at 140° Fahr.
3457. Wood's Patent Fusible Metal melts between 150° and 160° Fahr. It consists of 3 parts cadmium, 4 tin, 8 lesd, and 15 bismuth. It has a brilliant metallie Iastre, and does not taruish readily,
3458. The Most Fusible Alloy. There is an alloy of bisminth, tin, and lead, which, from its very low melting point, is called
fusible nuetal. (Sec No. 3457), Dr. Von Hater has found, howcrer, that tho aldition of cadmium to the alloys of the nhove mentioned metals reduces their melting point still lower. An alloy of 4 volumes cadmium, with 5 Folumes each tin, lead, and bismath, is quite liquid nt 150° Fahr. In parts by weight, the above would be 224 parts calminm, 5171 lead, 295 tin, and 1050° bismntb. (Sec No. 52). An alloy of 3 volumes of cadminas with 4 each of tin, lead, and bismuth, fases at $153 j^{\circ}$ Fahr, and an alloy of 1 equivalent of codmura with two equivalents each of theso three other metals, at 1551°, which is also the fusing point of an alloy of 1 part each of all tho four metals. Dr. vou Hauer mado thoeo alloga by fasing their ingredients in a covered porcelain erucible at the lowast practicable temperature. They all hecomo pasty at lower temperatares than those given abovo; the temperatares quoted aro those at which the allogs are perfeetly fluid. It sbould bo added that, unfortunately, all theso alloys very rapidly oxidize when placed in water.
3459. Table of Alloys of Tin and Lead and their Melting Heato.

Tis.	Lesd.	Blampth.	Fehr.
1	25	0	55.99
1	10	0	541
1	5	0	511
1	3	0	489
1	2	0	441
1	1	0	370
14	1	0	334
2	1	0	340
3	1	0	356
4	1	0	365
5	1	0	378
6	1	0	381
4	4	1	320
3	3	1	310
9	2	1	298
1	1	1	254
1	9	2	296
5	3	3	208
3	5	8	197

Fluxes. This term is applied to mbstances of cary fusibility, which are added to others more refractory, to promoto their fusion. Varions fuxeb are given in other portions of this work (seo Soldering and Enamels), but the principal Buxes are tho following:
3481. Black Flux. Cream of tartar, 2 parts; nitre, 1 part; powder, mix, and deflagrato by small quantities at a time, in a rod hot erucible. This is merely carbonato of potash, mixed with charcoal in a finely-divi. pled state. It is used for smelting metallio ores, and excreiscs a reducing action, as well as promoting the fusion. (Sco No. 11.)
3482. White, or Cornish Reflning Flux. Cream of tartar and nitro, oqual parts; defagrato as last.
3463. Morveau's Reducing Flux. Powdered glass (free from lead), 8 parts; calcined boras and charconl, each 1 part; all in fine powder, and triturated together thoronglly. Used as black fux. (Seo No. 3461.)
3464. Flux for Reducing Lead Ore. Take 6 parts red argol, 4 parts nitre, 2 parta borax, and 1 part fluorspar; pulverise well and mix thoroughly.
8465. Cornish Reducing Flux. Crude tartar, 10 parta; nitre, 4 parts; borax, 3 parts. Mix ns the last.
3468. Crude Flux. Samo as black flux, (see No. 3461), omitting the deflagration.

Used for reducing. (See No. 26.)
8467. Liebig's Flux. Carbonste of coda (dry, ses No. 2065), and cyanide of potassium, 1 part each. Used for reducing arsenions acid.
3468. Fresenius' Flux. Carbonate of potassa (dry), (sea No, 2006), 3 parts; cyanide of potasaium, 1 part. For the arsenical compounds.
3469. Christison's Flux for Arsenic. Carbonate of soda, (erystallized). 8 parts; charcoal (in fino powsider), 1 purt; mistura is graidually to bo bested to redness.
3470. Flux for Copper. Sal-cnixum (the refase from aquafortis), to bo obtained at most of tho chemical works at a trilling cost, is atrongly recommended by Larkin as a gempral Anx for copper foundings, particularIy where large masses of copper hare to be melted prior to adding the tin and sine. Nothing is equal to it. This, with charcoal, surpasses every thing else.
3471. Various Fluxes. Boras, tartar, nitre, sal-ammoniae, common salt, limestone, glase, fluorapar, resin, and aeveral other subatances aro used as fluxes in furiag metals, and soldering. On the large scalo crude tartar is employed. (See No. 3472.)

Soldering and Welding. Soldering is the art of uniting the aurfaces of metals by partial fasion, and the in. mertion of an alloy between the edges, which is called solder, it being more fusithle than the metala which it unites. Soldery aro distin. guished as hard and soft, necording to their dificulty of fusion. Hard moldera usually melt only at a red heat, bat noft soldera fuse at lower tomperatures. In prider to jois metale, it is obvious that a solder inuat bo used that melte at a lower temperature than the metals to be joined; but it may alio be necesasy that it approach as nearly as poasible to thein in point of hardness; and eccasionally, as is especially the caso with jewelry, similarity of color is an object. The heai requisito for moldering small artieles, such as jowelry, otc., is usually obtaised by emplosing a common blowpipe; ns by its wo an sudden beat may bo concentrated on a omall point. Whero a larger surfice bas to bo heated, tho flame of a spirit lamp is used. For brasing, or uniting larger wljeects with hard aoldor, a furnace, of, if necensary, a forge, may bo emploged. In working tin plates, tho solder is applied and fissed by a heated copper tool called a solderingiron. Tbe Eutfaces of parts to bo joined by sollering must bo perfectly clean + and to order to ensare this, ha wofl as to conateract tho oxidization which most metals undergo when lreated, a flux is used (sec No. 347), which neatralizes or removes these otherwise serions impediments, secaring A firm joint.
3473. To Make Soldering Fluid for Soft Solder. Into muriatic acjl pett- small piecos of xinc until all bubbling ceases; some add 1 ounco esid-ammoniac to each pound of the liquid.
3474. Neutral Boldering Fluid. Dissolyo zinc in muriatic acid as sbovo, then Farm the solution and add sufficient oxide or carbonate of tin in nowder to neatraliza it. This preyents the finid from corroding the scams.
3475. Soldering Liquid. Soldering liquid is made by taking hydrochloric acid. $\frac{1}{2}$ pint; grantlated tint, if aance; digaolvo and add somo common solder and hydrochlorato of ammonia.
3476. Flux for Soldering. For common purposes powdered resint is generally used. Stearic acid, obtained from the candle
factories, makes a good flux for fine tin work.
3477. Flux for Soldering. Iron or Steel. Dissolve chloride of zine in aleahol. 3478. Flux for Soldering Steel. This answers perfectly whes the fricture is an old onc. To a saturated solation of sine in 1 pint muriatic acid, add 4 ounces pulverized sal-ammoniac; boil it for 10 minutes; pat it, when cold, in s well corked bottle. The boiling enust be dono in a copper vessel.
3479. Soft Soldering. The solder is m alloy of 2 parta tin to 1 part lead, fasible at 340^{-}Fahr; or, for cheapaess, the proportion is sometimes 3 to 2 , fusiblo at 334°. This substance is applied with a hot copper tool called a soldering-iron, or by blowpipo flamo. Heat, however, causes the edges of the metal to pridize; therefore the edges are covered with a substanco havidg a introng attraction for oxygen, and disposing the metal to unito to the solder at a love temperature. Such substancer are called fluxes, and are chiefly borax, resia, sal-ammonise, meriato of zinc Venice tarpentine, tallow, or oil.
3480. Flux for Soldering Brass. For brass or other similar alloy, reain, sal-ammoniac, and muriate of sinc are the proper flaxes. Should the work be beavy and thick, the soldering requires to be done orer a chareoal fire in order to keep tho tool heatod within proper limits. It is is well to tin the surfaces beforb soldering; in some cases simply dipping into a pot of melted solder effects the purpose, but the dip must be done instantly to ho effective.
3481. Flux for Soldering Zinc. Zine Is diflienlt to nolder, from the fact that it is apt to withdraw the tin from the solderiag bolt, aine and copper haring a stronger affinity for each other than tin and copper. The proper flas is moriate of zine, made by dis. solving emall bits of zinc or zine drops in muriatio acid mised with an equal bulk of water.

3482, Flux for Soldering. Tin and Lead. Tio and lead requira rosin or oil as the flux.
3483. Flux for Soldering Pewter, Powter requires a flix of oil, abd may, in ad. dition to the soldering ifron proceas, bo boldered by a current of heated air.
3484. Flux for Soldering Britannia Metal. Britannia metat should havo muriato of zino for a flos, and bo soldered by tho blowpipe.
3485. To Solder Iron. Iroa requiros the surfaces to be tinned over before being soldered; the method is given in No. 3515 .
3486. To Soft Solder Small Articles, Join together the parts to be soldered, first maistening them with soldering fluid (nee No. 3473), lsy a small piece of हolder over the joint and apply heat, either over a spirit flame, or by means of the blowpipe, as the caso masy be. The neat should be withdrawn at the moment of fusion, otherwise the solder may become brittle.
3487. To Soft Solder Bmooth Surfaces. Where two emooth surfaces are to be foined, moisten the surfaces with soldering fluid (see $N a, 3473$), and lsy a piece of tin foil betweon them, press them together closely, and apply heat sufficient to fase the tin foil.
3488, Hard Soldering or Brazing. The alloy used in hard soldering is generally made of equal parts of copper and zine; manch of tho zinc, however, is lost in the procesk, bo that the real proportion is not equal parts. The alloy is hested over a charcoal fire, and broken to granulations in an iron mortar. A different proportion is used for soldering copper and iron, viz: 3 zine to 1 copper. The commercial name is "spelter solder."
3489. Flux for Spelter Solder. The fiox employed for spetter solder is borar,
which can either bo used separately, or mixed, by rabbing to a cream. or mixed with the solder in a very littlo water.
3490. To Hard Solder. When the worl is clesned, bound, fluxed, and speltered, the whole is subjected to a clear charcoal or coke fire; or, what in now becoming far more general, convenient, cleanly, and manageable, a bellows blowpipe. The air passes from a bellows propelled by the foot through A (Sec Engraving.) The gas passes through B,

and tho flame cant be directed to any point, nin soconut of ita being binged at C C. The Gamecar be exterided by mingsieveral stands, or by constructing neveral burners on one stanal. The ent is uruch igreater than from charooal, of lie regithated at pleanure, and kopt at the o tersperatura for any given timie, In 1. jirocesi of bard soldering, the water shonk lie driven off by gentlo heat; the fuaion of the flux soon follows; a glassy sabistanee nppears effer the froth, which, in ita turn, is riptaced by the alloy in red liquid form; the binn fland from tho ignited sine informes the nymerntio that the solder now fubea, so that, an kous bu tho work is flushed with solder, it must be withdrawn, allowed to net, and cooled in waten,
341, To Make Scider, The mixtaro of the metala is performed by melting them together in tho samet manner ist for alloyn (sce No. 3347), with the add of a flux, The metals omployed ohould bo pure, eapecially silver, as bilyer coin makes tho solder too hard.
3492. Bolder for Gold, Take 12 parts pure gold, 2 parta paro silver, and 2 parts сорper.
3493. Solder for Silver, Tako 5 parta pero silver-not salver cuit-6 parta brass, and 2 parts xinc. Of, 2 parts silver, 1 part commoir pins. This fa an casy flowing solder. Use a pas jet to solder with.
3494. Hard Solder. Tako 2 parts copper anr 1 part zime. Or, equal parts of copper and zing (See No, 3488.)
3485. Soider for Silver. Take 19 parts whe nilver, I part copper, and 10 parts braks.
3496. Silver Solder, Melt Logether 34 parts, by weight, silver coin, and 5 parts copper; after sooling a lietle, drop into tho mixture 4 parts xime, then heat again.
3497. Fine Silver Solder, Melt in a clean crucille, 19 parts pure silver, 10 parts braks, and 1 part copper; add a small piece of borax as a flux.
3498. Solder for Copper. Same as bard soldering (Sec No. 34\%3.)
3499. Solder for Tin Take 4 parts pewter, 1 part tin, and 1 part bismuth. Use
powdered resis whon soidenimg.
8500. Fine Soft Solder. Thin 2 parts tin and 1 part. Lead. Used for soldering tin plates, antit tinning coppier. Add resin in a fllx whem meltiug.
3501. Very Soft Solder. Equas parta of tin, lead, and bismuth.
3502. Solder for Pewter. Take \& parts tin, 1 part each of lead and bisumth.
3503. Glaziers' Solder. Take 3 parts lead and I part tiri. This melts at 500° Fahr.
3504 Solder Fusible in Boiling Water. Trake 1 part Lin, I part lead, and 2 parts bismuth.
3505. Plumbers' Solder. Taka 1 part bismuth. 5 parts lesd, and 3 parts tin.
3506. Solder for Lead. Take 2 parta lead and I part tir. This is gnod, it, when a small quatity is poured on a table, fittla bright ppot o fise is is cnols. When moldering with thits, ufe potydered resin.
3507. Brass Solder. Take 15 paris brails, 6 parts zaws and I part tin.
3508, Strong Brass Solder. Take 3 parts limase ant 1 part sille
3509. To Solder Fine Brias Work. Wel the parta with a gerong roletion of aslamuoniac, apply tin foil betwens thens, noil heat 10 morse tham is necempary to fane tho tix.
3610. To Bolder Iron. Apply great tough bruas (seo No 3tis8) with bmax mixed with water to the comsintence of cream. (Sis No, 3488.)
3511. Solder for Joining Steel. Tbis is butter thail the amal brass soldur, for uniting anst-nteel, $8 \mathrm{c}_{\text {, }}$ an it fuscu at a lower tempioratnre; and, being whitar ia apprasume. renilera the seame leas olservable. Talo 12 jiarta, by weight, fino silver; 1 purt enppits, und 2 forth brase; mote thom undor is coat of charconal duat.
3612 . Brasu Bolder for Brazing Iron or Steol. Thin plateit of tigats istn in lue meltest between the piecert that ard to Do joinout. If tha work ho very fimp-3: when tive leayos of a broken naw are to ve brazed Logother-cover \& wich puivurixed barss, diaw nolved in wator, that it misy inengroste with anmo brase powder which is added to it; the piesa must be thien espuseal to the firo with out todeling the enal fo sod teatol till the brass is seet to ros.
3513. To Solder Ferruled for Tool Haudles, \&o. Take the ferrales lap roumt tho jointing a smat pieen of bras wirn, been just wet tha fernles, ecatler ground burax on Ho joining pot it in tho end of is wire, ami hold it in the fro Lill the lirnsif fuses. it wilt fill up the joiniog. and form a perfeck soblet It may afterwirds lie tismes in the lative.
3514. To Tin Iron for Soldering, to. Drop zinc shavinger fthto muriatie (hy Jruchlorie) meid, untif it will diskolve no more: thon udd $\frac{1}{2}$ ife halle of sole water. Iran, hawover rasty, will the cleanses by this solution. and receivo foom it a unficient eoating of gino for molder to withera to. (Sie No. 36.2.)
3515. To Solder Grey Cast-Iron. First dip the cistings in eleohol, wier which. sprinkle mariato of armmonis (sal-ammoniac) over the surface to be soddered. Then hold the casting over a clazenal fire till the salammoniae legins to smoke, then dip it into malted tin (uot soller). This prepiras the metal for soldering, which oan then be done in the ordinary wby.
3516. Solder for Iron. Fuse together 67 parts copper sud 33 parts linc. Or: 60 parta copper aud 40 parts zinc.
3517. Hard Solder for Copper or Brase. Take 13 parts copper apid 1 part ajuc, Or: 7 copper, 3 zine and 2 tin.
3518. Solder for Brass in General. Take 4 partat of scraps of the metal to bee sol-
dervil, and I part xino.
3519. To Make Solder-Drops. Melt the selder, and pour it in a stesuly stream of aboust $\frac{1}{5}$ inch in diameter, from a height of 2 or ' i toinec, into cold water; tianing care that the soller, at the time of pontiag, is no botter thiso is jomit nccessary for dinidity.
3620. Alvminum Solder, Mourny employs fiva different sohters, being different proportiom of zinc, copper, and aluminum. The eopper is melted first, the alaminum is thet addest in 31 or 4 portions; when the whole is melten, it is atirred with an iron rod. The ernciblo is then withurawn from tho fire the zinc gradoally ktirred iato the mass, and the whold poural into ingot chaped mouldo, previunsly wiped out with benzine. The parts given if the following proportions aro by weight.

1. 20 parta zinc, 5 parta eopper, 12 yaria sumainem.

3531 To Bolder the above solders desolention of either of the above soldera doorrter to quirken itd freion on the metal, a mastura of 3 perts halsans of copailia and 1 part Venice surpentins ia made tose of; otherwine the ipescition is performed in exactly the kane manuer as in the brizing of other melals. Tho aluminum mider is eprond without delicy on the proviously hested sinfaces to be fastened together. In heating, the btne gas (lame of the turpentioe blart lemp in emplayed. Tho more and oftener the solder in pprend aver Lio sarface, the letter it in.
3522. Aluminum Solder. If mof nolder in fuicd with one-lndf, one-fourth, of opeeiphth of its weight of vinc amalgam (to bo maite by disaolviag sue io meroury, one No. 3539), is toore or tha hard and eavily. funible moder is sbtaineol, whirh may bia taned to adiler aliminuas to itvelf or to other metale.
3593. Welding Powder for Iron and Steel. Mor welding Iros nud sted a compostion has lately hoen patented in Helginm, consiating of irum filmps, 40 parts; borax, 20 purtu; Ledoam of copaila, or some other resinonc till 2, and al absoucoian, 3 parta. Thay arv infed, heated, aud palverized. Tha process of welding if monch the same as nowal. The slarfices to bo welded aro powdered with Ulin examposition, sad then lirought to a iblerry rod henl, at which tho powder melte, when tie purtmost to be anited are taken from Clin lime anil joined. If the pieces to be welded arn loo lagge to bo both introdeced at the same timo into the forge, one casi bo finst heated with the welding powder to a cherry-red beat, aud the nthend afterwarde to a white heat, after which the welding may bo effected
3524. Welding Composition for Cast Steel. Take boras, 10 parts; nal- ammoniac, 1 part; gridi or pound thicon roughly together, then fuse them in a metal potover a clear fire, taking caro to cuntiano the hest zntil all spume bas disappenred from the surfaco. When the lignid sppears clear, the composition is ready to be poured out to cool and concrete; afterwards, being ground to a fine powder, it is ready for use. To nse this composition, the steel to be welded is first raised to a bright yellow heat, it is then dipped among the welding powder, and again placed in the fire, until it attains the same degree of heat as before ; it is then ready to be placed ander tho hammer.
3525. Welding Powder. For iron or steol, or both together, ealcino and pulveriza together 100 parts iron or steel filings, 10 zalammoniac, 6 borax, 5 balsam copaibai Ono of the pieces is to be hested red, carefully eleanel of ecale, the composition is to be spread upon it, abd the other piece applied
at a white heat and wehled with the bemmer. 3526. Welding Composition. Fuse borax with $\frac{1}{15}$ ila weight said-ummpninc, conl, patserize, and huix with an equal weight of fuicklimo when it is to be fprinkled on tho red lot iron and the tatter replaced in the Gire.
3527. Welding Composition, Take 15 parts borax, 2 of sal-ammonise, and 2 of prassiate of potash. Being dissolvel in water, the water should be gradually evaporated ata low temperature.
3528. Welding Composition. Mix 10 parts horax with 1 part sul-anmoniac; fasa the mixture, and pour it on an iran plate. When cold, pulverize it, und mix it with fn equal weight of quicklime, ppriolite it on fron heated to redness, and roplace it in tho fire. It may bo welded below the hesual heat
3529. Gompound for Welding Steel. Tho following composition is alail th bos sh. perior to borax for welding steel. Mix coarsely powdered boras with a thin puate of Prassian blue; then let it dry. The cumbit nation seems to loe a rational ons.
3530. Antimonoid. A welling powilo, names astimonoid, has bean in wid for seme time past is Germany, and found to be of great etticisacy. The formola for ita prepara. tion has, nathl tately, lieen kept a beerot; it conaists of 4 parts firon turnioga, 3 parta boras. 2 parts butate of irom, and Iof water. 3531. Fluxes for Soldering and Weld ing.

Amalgams. Sutatances formed by makleg quinksilser with ranther metal. Alloys conataining quickailver. Marcury onites with toost of the netals hy mere contact, forming amaleams. These aro ens ployed for saroas purpasias in the arts, as silvering, gilding, conting mirrors, de,
3533. Amalgam of Gold for Gilding Brass, Copper, \&C. Plave one putt grain or leat gold is a kmall iron satucepan or tadtu, perfoctly clean, then add 8 parts mercury, and apply a gentle hent, when the gold will dissolve; agitate the mixiotorg for one minute sith a pmooth iron atirrer, and pour it out ou a clean plate or stono slab. When cold it ia ready for use
3534. To Gild with Gold Amalgam. For gilding lirass, copper, de. The metat to be gilded is fixst rubbed over with a solution of nitrato os mercury, and then covered with a fery thin film of the amulgam. On beat boing applied, the mercury volatilizes, ICaviog the gold behind. A mach less proportion of gold is often employed thau tho above, where a very thin and cheap pilding is required, ns, by increasing tho quantity of tho merolary, the precious metal muy be extended ayer a wuch larger surface. (See No. 3394.)
3535. Amalgam of Silver for SilverIng Motals. Prepare in the same way as atralgam of gold, but substituto silrer instead of gold. (Sce No. 3533.)
3536. To Obtain Pure Silver in Powder. The best process to olitain pure silver in powder, ia by alding copper to a dilute solution of silver in nitric acid, until all action ceases. The silser is precipitated in a fine powder. Before tsintg the silver powder to preparo amalgam, it must bo thoroughty whahed until the water ceases to have any acid taste, or litmus paper is unchanged by it. (See Nos, 3212, fc.) The silver in thin form, besides being necessurily purer, amal-
gamates morn readily with the quicksilver.
3537. To Make a Solution of Silver. Dissolve a gilver coin in slightly diluted nitric acild. Mexican coin is preferable, becanse it is purer. (See No. 3213 .)
3538. Amalgam for Silvering the Insides of Convex Mirrors, Glasa Qlobes, \&c. Lead and tin, of each 2 onnces; bismuth, 2 unnces; mercury, 4 ounces. Add the mereary to the rest in a melted state and remove from the fire; mix well with an frou rod. This amalgam melts at a low heat, and is emploged for silvering tho insides of hollow flass sessels, globes, couvex mirrorg, \&e. The glass, boing woll cleaned, is carefully Fiarmed, and the amalgam, rendered fluid by bent, is then poured in, and the vessel turned round and round, so thet the metal may bo brought in eontact with orery part of the glasia which it in dessired to covert At a certhin temperatare this amalgam readily adberos to glass. (Sce Nos. 3545, and 3614.)
3539, To Make Zinc Amalgam for Electrical Machines. Melt 2 ounces sing in is ladle, remove from the lire, and stir into it 5 ouncos mercury proviously heated. Stir till cold, and then powiler it. Keep it in a liphlly corked buttle.
3540. Improved Electric Amnigram. It is well knowa that a deposit of moisturo freatly interferes with the nction of eleotrical michines, esperimenta often wholly failing fron thia cause, especially in tho winter zason. Mr. F' Dietlen, of Elagenfurt, hes tiviesal a mothod by which ho obviated this it tfiently, conalating aimply in a modification of the manalgamativa of the rabber cuabion. Eor this purporo ha poura petroleum over ainc filings, anit adds an eqaul quantity of puercury (thouph an excesa of mercury facilftater tho process). The mistare is then lirought, by working together in a mortar, to the condition of a loinngennora paste, and pressed between a dunble eloth. A soft masa is thus obtained, which, however, soon hardenij; but which, being finely pulserized and toixed with a proper quantity of grease, is spread upon the rubber cushion. Thia makes tho surface ģuite glossy, ant, when the glasa disk has previously been wiped with a pieco of cotton slightly impreprated sith petrolenm or benzine, will develop electricity abandtatly, even in danip localities whero the 1abul arraggoment fails.
3541. Boettger's Amalgam for Electrical Machines. Buettgrr rooommends a mixture of 2 parta (by weight) of pure gine, while toelted, to be mised with 1 part of mereury. Thia should bo kept in pieces in a well-stoppered flask, and is eaid to bo superior to the amalgam made of 2 parta meroury, 1 zine, and 1 tin.
3542. Tin Amalgam. Amalgam of tin forma readily by inttoducing tho हolit motal into the meremy. In this way hexag onal crystallino formations hare been olserfed; there is always a decided contraction is bulk. The hurd nmalgam of tis obtairiol hy passing the liquid amalgam through fine lenther, then drying, and afterwards rubbing under Water, forms one of the plastic cements For filling teeth. (See No. 3553). It hardens within a few days, and is, besides, used for hermetically closing glass tubes. Mixed with a little silver amalgam it ia a less plastio masa and requires a littlo more mercury, but it tardens much sooner.
3543. Copper Amaigam. Copper amalgam is bost obtained by first precipitating metallic copper in a fine state of divisiun from a solution of 3 ounces of blue vitriol in a quart of water mixed with sa ounca of oil of vitriol, by means of clean wronght iron; then, after washing it thoroughly with hot water, moistening the powder with a solution
of proto-nitrate of mercary, asd finally incorporating it under water in a mortar with the required quantity of mercury. This smalgam, like the hard amalgam of tin, has the property of being softened and rendered plastio by mere trituration with a pestle. The proportions are generally 3 parts of coppar to 7 of mercury.
3544. Tin and Cadmium Amalgam. Similar properties to tin and copper amalgams belong to the compound amalgam of tin and cadmimm, which are fused together in the proportion of 2 to 1 and mixed with warmed mercury in excess, which latter is removed by pressure when cold. (See No. 3549.)
3545. Amalgam for Silvering Glass Ornaments. The silver coating of glass beads and those large sized glass ornaments now in fashion, is produced by shaking within them an amalgam composed of 8 parts bis. muth, 5 of lead, 3 of tin, and from 7 to 9 parts of mercary. (See No. 3538.) A mix tare of 2 parts each tin sni bismuth and 1 of morcury, when powdered, is used for painting as initation nilyer bronzes.
3546. Amalgams of the Alkaline Motals. The amalgama of the alkaline metals are remarkable for their hardness, thoagh the metals sodium and potassium thamselves aro quite soft at the ordinary temperatare. One per cont. of sodium in mercury produces an amalgam which is lignid, bat still quite thick, and 1 per cent. of potasuiam rendera tho mercury still more so. A very hard compoend is that consisting of 900 parta of mercary, 10 of potassium, and 1 of nodium. By means of the alraline amalgama, most other mereurial alloga may bo produced, by introducing them into the solation of octher metals. Zino amalgam is likewise used for the purpose.
3547. Amalgam of Fusible Metal. Fasible metal forms an amigam with 1 of its waight of mercury, which fases far below tho boiling point of water; calminm increaten the fasibitity atill mote. A mixed amalgam for injeoting anstomical preparations, which is bard at ordinary temperature, but becomes sof at 150°, sod fuses at 176° Fahr., consists of 20 parta of bismuth, 12 of lead, 7 of tin, and 4 of mercury. (500 Nos. 3456, Je.)

3048, Amalgam for Varniahing Plaster Casts, Melt together 1 part euch tin and biamuth, and stir in thoronghly 1 part mereary. When cool, pound the amalgam with white of egg, forming a metallio paint which may bo laid on with a broah.
3549. Evans' Tooth Amalgam. Tsko if pura grain tin, 2 parts; cadmium and jeos' wax of each 1 part; melt them togother n a porcelain crocillo at a hoat not exceedng 6000 Fahr., and cast the allog so as to orm a small ingot, which, when cold, must be roduced to filings. For use, a small pasitity of these filings is formed into an umalgam with quicksilver, the excess of the latter is aqueezed out through a piece of chamois leather, and the amalgam at onco applied to the tooth. (See Mo. 3550.) This cement is recommended by Mr. Evans as very darahte and smobjectionable. Its color is intermediate between that of silver and tin, but it is said not to darken so readily es tho simple amalgams of those metals. (See Avo. 3544.$)$
3550. Dentists' Amalgam, or Gold Stopping. The dentista, in preparing and using this, cocusnouly proceed as follows : A littlo pare grain-gold is heated in a bright iron ladle (or capsale), and enough pure mercury added to render it of a doughy consistence at the temperature of hot water. When it has become cold, the excess of mercary, if any, is removed by pressure in a piece of chamois lesther. In using it, a little of
the amalgam, as hot as can bo borne, is kneaded in the hand, and at once pressed into the cavity of the tooth, where it gradually hardons. It is an excellent and durablo stopping, and is, perhaps, preferable to all others, except the diamond tsoth cement (see Indez) for filling up crucks and cavities in the enamel, particularly of the front teeth, on account of its color and the easo of its application.
3551. Dentists' Amalgam of Silver is used in the same way as the last; but its color is less nataral, and is apt to be blackened by the sulphur in the secretions of the month and the food. (See No. 3535.)
3552. Dentists' Amalgams of Tin and Zine are also omployed as tooth cement, but are inferior in color to, darken sooner, and possess less durability, than that of silver.
3553. Alloy for Filling Teeth, An alloy, which is eold in commerce in tho shape of large, almoet white filings, shows upon analysis the following composition: Tin, 611; silver, 388 ; copper, 1 . The alloy is to bo amalgamated beforo uso by warming it in a spoon with a little mereury. The combination takes place rapidly, and the amalgam, whillo still warm, is pressed in a piece of soff leathor, whereby the excess of mercury is removed. It is now far preferable to the celobrated copper amalgam, as it rotains its whita color in the mouth, while the other turns dark. The hariness is a little leis than that of the coppor amalgam. (Sec $\mathrm{No}, 3549$.)
3554. To Recover the Silver Alloy from Dentists' Amalgam. The silver alloy may bo easily obtained from beraps of dentista' amalgam in the following manaer: Frovide 2 crucibles of different eizes, fo that the smaller one, in Ferted, will rest a littlo way within the larger. Make a Lole, nbont $\frac{1}{2}$ inch in diamoter, in the bottom of tha nmaller, to provide a vent for the mercurial vapors. Place tho pleces of amalgam in Cho larger crucible, invert the rmatler one into it, lute them, and fasten thom Grmly togother with steel wirs. Place the wbole, as soon as the loting is dry, into a blast furonce, and in a short time the mercury will all have passed off in vaper, when the crucible may be eot aside to cool, and the alloy will be found in a button at the bottom. As some portion of the tin io the alloy has been loet in the operation, the button ahonld bo remelted in a cloan open cracibie, with the addition of a little pure tin. This will now be ready to make again into amalgam as occasion requiren.
3556. Ruhmkorf's Amalgamating Fluid. Dissolve by heat 2 parts by weight of mereary in 1 part aqua regia; when disaolved, add 10 parta bydrochloric acid. A. worn-out rine will be amalgamated in a fow seconds by immersion in this fluid.

Gilding, Silvering, \&c. In this department we give processes for gildiog and silvering wood, metala, paper, and glass; together with a number of receipts for conting various metals with other metallic deposits.
3557. Implements for Gilding on Wood. A sufficient guantity of leat-gold, which is of two sorts-deep gold, and pale, or lemon gold. The former is the best; the latter very tuseful, and may occasionally beintroduced for variety or effect.
Δ gilder's cushion; an oblong piece of wood, cosered with rongh calfskin, stuffed with flansel several times doubled, with a border of parchment, sbout 4 inches deep at one end, to prevent the air blowing the leaves about when placed on the cushion.

A gilding knife, with a straight and very smooth edgo, sharp enough to cut the gold, but not sufficiently so to cut the cushion. It must be perfectly clean, or the gold leaf will adhere to it.
Several camel'g-hair pencils of assorted sizes; and tips, mado of a few long camel's hairs put between two cards, in the samo manner as hairs are put into tin eases for brushes, thus making a flat brush with a very few hairs,
A burnisher, which is a crooked piece of agate set in a long wnoden handle.
3558. Burnished Gilding. This style of gilding fa adapted for find work, such as picture. frames and other faucy furniture. We shall endeavor to give tho necessary instructions, in the following receipts, to those who wish to undertake this kind of work, and with care and practice they may perform the operation succesafully.
3559. To Make Size for Preparing Picture Frames and Other Wood Work for Gilding. To $\frac{1}{}$ pound parchment shavings, or cuttings of white leather, add 3 quarts water, and boil it in a proper vessel till re duced to nearly half the quantity; then take it off the fire, and strain it trrongh a sieve. Be careful, in the boiling, to keep it well stirred, and do not let it brom.
3560. To Prepare or Whiten Picture Frames or Wood Work. First, wilh the above siza alone, and boiling-hot, go over the frames in every part: then mix a suffeient quantity of whiting with sizo, to the consiat. ency of thick cream, with which goover every part of tho framo 6 or 7 times, earefully letting each coat dry beforo proceeding with
the next; this will produco a white grond, nearly or quito it inely in thickneate. Tho nifo must not be too thick, und, when mised with the whiting, should not lie put on aif hot as the first cont it hy ituelf. It will bo better to separate the dirty of courso parta of the whiting by straining it througha a sieve.
3561, To Clean and Polish Frames. TVhen the prepured fromey are guito dry, clesis and polish Lhem. To do this, wet a kruall plece at a time, and, with a kmooth, fine pieco of cloth, dipped in water, rub tho part till all the trequalities are removed, and for thoso parta where the figgery will not ontor, as the monldings, \&c., wind the wet eloth round a piece of wood, and by this means make tho surface all equally smooth ant even. Where there is carved work, de., is will sometimes bo necessary to bring the mouldings to their origival sharpness by means of chisole, gonges, dec, as the prepertat tion will be apt to till $\mathrm{n} p$ all tho finer parts of the work, which must be thas reatored. It is sometimes the practice, after polishing, to go over the work once with fine yellow or Roman ochre.
3562. To Make Gold Size for Frames. Grind fine sal-ammoniao well with is meller and stono; scrape into it is littlo beef-spet, and grind al well together; after whiek mix in with a pallet knife is small proportion of parchment aizo with in double proportion of water.
3503. Gold Size for Picture Frames. Grind a lump of tobacco pipe clay into a very stiff paste with thin size; dudd a muall quantity of red ochre and fine black lead, ground very fine, and temper the whole with a small pieca of tallow.
3564. To Prepare Picture Frames for Gilding. Take is small cap or pipkin, into which put as much gold xize as you judge snffieient for the wors in hand; udd parchment size till it will just flow from the lirush; when quita hot, pass over your work with a very soft brush, taking care not to pat the first coast too thick; let it dry, and repeat it two or three times more, and, when quite dry,
hrush the wholo with a staif brush, ta remove any roughnessi, The work is nove ready for applying the gold. The parchment kizo should be of such a consistenee, when cold, ats the common jelly sold in the कtores; for if too thies it will be apt thechip, and if too thin it will not have sufficient body.
3565. To Apply Gold Leaf to Picture Framea and Other Wood Work. This is the, tmist difficult part of the operation, and requires come prectice; but, with a little ceatina and atlention, it mes lic ewily performed. Turn the gole wat of the book onite the enshion, a lenf at it Gime; then, parsing tha gilding taife uqder a loar, bring it into a confenient yart of the cushion for rattiog it into the sizo of the pleces reguirel; Ireathe gently on the centre of the feaf, and it sill lay flat ou the erastion ; then ent it to tho proper niza by saming it grotly with the knifo till divided. Fiaco tho work in a position searly horizontal, and, with a long-laired counel's dair pebcil dipged if sater for with a tmall goantity of brabdy in tho weter), go oter na minch of it as the piecen of gola is to coyer: theo take 日r the goll from tha cushioa with tha tip drawige it oner the fiseloral os cheek will damp it saillaiently to sedhere to tho fold, Which meas thed esorfally be trapsferred to ita place on tha work, and, poutly breathing on it, it will sultere; but tase care that the part to which it a applied ty suffieiently wet: indeed, it coust ba flatiog, of the gold will bo apt to orsek. Procesel in this manser by a littlo at a time, and do nol attempt to covar too much at oace. Hie carefil, in procvoling with the work, if any llawi of eracks ampaf, to take a corrrasponding piece of guha, adal ap: ply it immediatoly; sompetimes, shoo, it will Do neconvary, whes the gold doen not appear to nellums sallecinatlf, to draw a pened quita filled with water otops to the colgo of tho igold. so that the water nay nas amperneath it.
3560. To Burniah Gold. Wlven Thu work is cubersel brith golht, ath it by to itry; it vilt bo reasly to beraind ier nbuut eight of tea bruraj bat this will dopend on the Warzath of the rown or btale of the gir. When is is rendy, thowe parts whath aro to bo buralabid cout be deated with a saft briskl, and, wiping the burnisher with a piee of wof! wash-leather (quite ary), bogin to hartinh sbont an inch or two io logeth at a Liom takfag earo wot to leas woo hand, lut with a coutlo and quist motion apply the toot till it Is equally brighs all over.
35E7. Matting, or Dand Gold. Thoso parts of the world which louk dull from not being harnisheel, are sow to be matted, that is, aro to bo made to louk liten deal gold ; for If len is its natural state if. will have a raf. ning appearance, which mout ho thess rectified. Grind some vermilions, or yellow behre, vety fige, anil mis a very small prortion either with the purchment sizo or with the wbite of an egg, wind with is very soff bmich lay jt even and somooth oit the parte intomilnd ta look dall l_{-}if well done it vill add grently to the beanty of the sork. The worlo matil Ie well elearel of atporfluous gold, by meate of a soif brush (a hat brnsh answens the purpmese well) previpas te burnishieg or mathes.
3568. To Finials Gilding. It is now anty nepezsary to toach the pasts in the hollows with a componition mude by krinding veruilion, gambagey anil red lead, very fine, vite of of tarpentine, aill applying it carcfully with es small bruste in the parts required, and inserting suritable bits of gold leaf with a camel'shair bruth. Sonsetimes the fonishitg is done by means of shall-gold, which is the best methout; it should bo diluted with fumarabio, and applical with a small brush.
3569. To Mako Shell-Gold. Take any quastity of leaf-gold, and grind it, with a
small portion of honey, to a tine powder; udd a littlo pum-arabic and sugar candy, with a little water, and mix it well together; put it in a shell to dry umil wanted.
3570. Oil Gilding is that which is desigued for out-door work, to stand the weather and wash, and is performed with oil and varnish. Whero tha oljeet is to give a high fiusb, paint tho work with a color composed of the tinest white leal and yellow uchre, in sach propertiuns that the color sball bo as nacer as pusaible to tho color of the gold to bo employed, mixed with oil (not hoiles), and turpenting, till of the consistenee of thin paint; this to bo laid movenly, and allowed to dry thoroughly, then ropeat it for 5 or even more conts, till it is perecived that the grain or roughness of the oblyect to he gilt is cutircIf hidden. When the last cont is dry it must be rubbed perfectly smnoth, first with pumice stone, and fimished with a piecer of wooling eloth and finely potadel punice; mul lastly, with putty powder, till it is smooth as glain. It anast then be varniabel oper with fine lao varulab saveral titnes, applying a slight degree of heat afler each rumi. This may loe done ly holding a hot iroun near it till the varnish has dowed sunath mid even oyer the surfaco. Wheu the laut coat of rarnisb is quite hard it cuast be polliahed ; this is dones by putting on a borse-buir gloye, and rubling tho Burfuco with this finat, then with Tripolf, applied with a piece of wat woolen eloth; and lastly, by wet putty powiler, first applied with woolen eloth, thon wilh the baro hand, till it is as liright as glase. It must then bo varniahed berer with ot thin cuat (the thinner the better) of Rota size, and whon eatticiently dry tho gath ia to bo apglied, beginning at, tho part that is dryest. Whon gith, it if to bo allowed to remain for two or three days, and then brasbed over lightly with a camel'eliair bruah to ramure minerfluous gold. It fa next to be varnikhed with opirit varaisb; applying beat, as before, then varntahed with copal varnibh two or threo thmes, allowing it to bocome perfoctly hand betwoen each coat; after the hat coat of varnidh it is finished by polishing. Grat wiel Tripoli, applied with asmototh and water, and then with the bare hand and a little oil, and wiped dry.
3571. Oil Size for Gilding. Grind calcibel red nelre with the boct and oldext drying oil and onix with it a littlo oil of Larpentine when lued. When the work is to bo gilded, first give it as coat of pareliment sizo; then apply the nuove sizo where requisite, either in patterns or letters, and let it remain, till, by touehing it with tho finger, it feols jast aticky; thes apply the gold tear, and dab it on with a piece of cottom; in aheut an home wash off the superfluous gold with nponge said water, anil when dry, varnish it with sopal ramish.
3572. Water Size, Water sizo (for burnistied gildtang) is parchacht sizo ground witls yellow nelire.
3573. To Prevent the Adhesion of Gold Leaf. Painters and decorntors will Givel the followisig plan an gool one to simplify a mnst troublesome part of their work: A small piece of ball fiquorice, dissolvel in water, applied with a dat camel's-hair brush to the phace iutended to bo left ungitt, will prevent the leaf alhering. Tho solution must be werk. Made thick and grommy, it is very usefol in protect ornamental parts of work that is to be repminted.
3574. To Gild the Edges of Books and Paper. The kolld rpplied to the ednes of boolis, fec, is in the kume state as for vor rions ormamental purposes, namely, an extremely this leaf. Before the ease or cover of the book is quite fibished, the volume is struck forcibly against the back, so ths to make
the fore-edge flat instead of concave, It is then placed in a press, with the exposed edge uppermost. The edgo is scruped smooth With is piece of steel, and is coated with in misture of red chulk amd water. The gold is blown out from stuall books, and spreal on a leather cushion, where it is cut to tho proper sizo by a smooth-edged knifo. A camels-hair peneil is dipped into white of egg mixed with water, and with this tha partially dry edge of the look is mojstened; the gold is then taken ap on a tip brush, and applied to the moistened edgo, to which it instantly adheres When all the threo edgea have been gilt in this way, and allowed to remain a very few minates, take a burnisher formed of a very smooth pleco of bard stone (usuully bloodatone), and rub the gold very forcibly, which gives the gold a high degree of polish.
3575. Gilding on Glass. Mir powdered gold (see No. 2517) with thiek gum-arable and powdered burax. With this trace the degign on the giasa, and then bake it in a hot oven. Thas the gum is burnt, and the borax is vitrified, at the eame time the gold is ixed on the glass.
Monograms and namea may thes be gilded on glass or chima.
3576. To Gild with Duteh Metal. The fmitation of gold or eilver leaf known as Dutch metal is mich used for common purposes. The artlele to be gilded is propared with a conting of oil size, on which the meta! is laid. The dizing ia not allowed to dry quite so long as for gold or silver leaf; the motal being faid on ma noon as the sizo has set sufficiently not to smear. Metal is not handed with a gildiag enshion and tip; bat tho books, with tho motal in them, are ent into pieces of the reçusito shase, with a pair of Ehears or meisuors, and the metal lent laid on the sixing direct from the portions of the book; after which itia pressed clope by meana of a roller covered with flansel, and finally brushed over tha eams as gold leaf, buing careffl to brush with and not against the overlap. White Dritch motal, nieoly managed, and flowed over with ahellue epirit varmish (colored with garaboge), makea a yery good, oheap, and derable mbititnte for gold leaf.
3577. Grecian Gilding. Disoolve equal parta of sal-ammoniue and corrosive sublimate in nitrie acid, and a solation of gold fa to be made with the above mixture as a eolvent; after slight concentration, the liquid is applied to the aurface of silver, which immediately becomes black, but, on being heated, exhibits a rich gilded surface.
3578. Japannera' Gilding. The Burface is covered with ofl size thinned with spirits of turpentine, and gold in powder (soe No. 2517) is gently dabbed on with a puif of wash-leather. This gives the appearance of frosted gold. A coating of varnish is next given, followed by a gentle heat in the atove.
3579 Geaf Gidding
3579. Leaf Giding. This term is commonly applied to the gilding of paper, vollum, Ec., by spplying lenf gold to the surface previously prepared with a coating of gam water, size, or white of egg. It way be Jurnished with an agate.
8580. To Make Oil Gold Bize. This Is asually mado from the sediment which collects at the bottom of the pot or diab in which painters wash their brushes, thoroughly ground and stained.
3581. Oil Gilding. The surface is pre. pared or primed with a cost of white foad is drying oil; then follow 2,3 , or 4 coats of calcined whito lead ground in linseed oil and turpentine, with an interyal of at least 24 hours between each coat, which must be carefully smoothed off with pumice-stone or shave grass, The gold pize (see No. 3580) is
sufficiently dry, the gold leaf is applied and preased on with a whid or soft brueh. After i few days for hardening, s coat of spirit rarnish is applied, und the aurface paseed cantionsly and evenly over a chafing dish of eharcoal. For midour work, it is finished off with a coat of pale oil varnish.
3582. To Gild Polished Metal. Polished silver, eopper, brass, \&c., may be pilded by the direct application of gold leaf to the surface beated to a bluish tint, pressing it an gently and carefully with the burnisher. This process is repented until the proper thickness and tone is attained. Then it is polished with the lumisher anil eolored at the stove.
3583. Gold Tracing on Metal, Writing or any device in gold may be made on polished steel or iron, by tracing on the aurface with a eamel hair pepeil, uring an ethereal solution of gold. The ether evaporating loaves a coating of goll, which may then be polished. (Spe No, 35 s 5 .)
3584. Water Gilding. This process involves several distinct operations, and can only be perfonmed successially by thase who have learned the art practically.
3585. Ethereat Solution of Gold for Gilding on Steel. This process anuwers equally well for either pold or platina. Disnolve any quantity of guild or platina in nitromuriatio acid (aqua regia), until no further efforyencence in occasioned by the application of heat. (See No. 3568 .) Evaporate the gotution of gold or platina, thus formed, to drymed, in a gantlo beat (it will then be freed from all expess of acid, which is essential), and redinolve the dey minas in as little water as possible; nest take a separating fumiel or pipetto (sec No, 2031), fill it aboat onefourth with the ligud, , ind the other three parts mast be filled with the very best sulphurice ether. Ir this be righty managed, the two liquide nill not mix. Then ploce the tubs in a horizontal position, and sontly turn it round with tho finger and thumb. The other will very soon be inppregnated with the gold ar plation, which may be known by itt clauging las colar; replace it in a perpendieslar position, and let it rest for of hours. haseng firit stopped up the spper orfice with a cork. Tho liguid will then be divided int? two parts-the darkest coloring being underneath. To neparato them, take out the cork anil let the dark liquid flow ont; when it has dizappeared, stop the tubo immediately with the cork, and whet reenatas in the tubo is fit for wie, and may be called cilding liquid. Let it lie put into a botele, and tightly corked. The trurate of gold or platina, formed by digerting these metals io tutro-muriatio ncid, must bo eatirely free from all excess of acid, because it will othersise act too forcibly on the ateel, aud causo the coating of golid to peel off. Pero gold mast be employed; the ether must not bo shaken with boo muriate of gold, az is adriseit by some, for it will then be sure to contain scid; but if the two liquids be lirought continually into eontact by the motion desoribed, the affinity between ether and gold is costrong ias to overcome the obstacle of gravity, and ft will hold the gold in molution. The ethercal solution may also be concentrated by gentle evaporation.
3586. To Gild Steel. Pour somo of the ethereal solution of gold into a wine glais, and dip into it the biule of a new penkoife, lsocot, or razor; withdraw the instrument, and sallow tho ather to evaporate; the blade will then bo found covered with a beautiful coat of gold. Tha blede may bo moistened with a clean ray, or a small piees of very dry spougo dipped into the ether, and the same eiffect will be produced. (See No, 3555.)
3587. Elkington's Patent, or AngloGerman Gilding. The articles, after being perfectly cleaned from scale or grease, and receiving a proper face, are to be susponded on wires, dipped into the gilding liquid (see No. 358s) boiling hot, and moved about therein, when, in from a fow seconds to a minute, depanding on the newness and strepgth of the lignid, the requisite conting of gold will be deposited on them. 3 By a little practice the time to withdraw the articles is readily knowa; the duration of the immeraion required to produce any given effect gradually inereases as the liquid weakens by use. When properly gilded, the articles aro withdrawa from tho solution of gold, wusthed in clean water, and dried; after which thay madergo the asual operation of coloring, \&\& A dead appearance is produced by tho application to tho articles of a weak solution of nitrate of mercury proviotaly to the immersion; or the deadoning may be given by ap. plying a solation of the nitrato to the gilded nurfion and then expelling the merenry by heat.
3588. Elkington's Patent Gilding Liquid. Fino gold, 5 ounces (troy); nitromuriatio acid (aqua rogin), 52 ounces (avoirdupois) ; disaolyo by heat, and continuo tho heat until rod or follow vapora cease to be evolved; decant tbe clear liquid into 4 nuita. ble ressel; suld distilled water, 4 gallons pure biearbonate of potassa, 20 pounds; and boil for 2 hours. Tho nitro-muriatio aeld is made with para nitrio acdd (specific gravily 1.45), 21 onnees; paro muriatio ncid (specific gravity 1.15), 17 ounces; and diatilled water; 4 antices.
3589. Gulding by Immeraion. Dis. solve teroxide or terchlorite of goll in A solution of pyrophosphato of sodn, and dip the articla to ba gilt in it.
3590. Gilding and Silvering by Amalgams. For these processes sed Nos. 3532 to 3538
3591. Gold Plating Powder, Wah thoroughly $\frac{1}{6}$ ounce chiloride of gold; then add it to as solution of 2 ouncer eyanide of potaskiam in a pint of clean rain water; ehake well, and let it stand matil tho chloride is dissolvod. Add 1 ponud prepared Spanish whiting, exposo to the air till dry', and then put away in a tight vessel for use.
3592. To Apply Gold Plating Powder. Mako nomo gold platiug powder fato a paste widh tvater, and rub it ou tho surfice of the articlo with a piece of chamois skin or cotton-flamel. Tho surface of tho article should bo thoroughly cleansed beforo applying the plating powiler.

3593. Gilding Paste. Metallic кur.

 faces aro pilt by rubbing on the following mixture : Terehlorido of gold, 36 pheres ; dix. solve fo pure water, 36 parts, and mix with a solution of eganide of potassiam, 60 parts, in pure water, 80 parta; shake well, and set by for 15 minutes, then filtor. This liquid is thickened with a powder composed of prepared chalk, 100 parts; cream of tartar, 5 parts.3594. Fire Gilding. This was extensively done before the discovery of the art of electroplating. Many a pieco of besutiful workmansiip has come down to us from ancient Rome and Greece, gilded, and probably in the same way as we do it now, under the name of fire-gilding. It requires more gold, the coating being thicker, and is therefore more expensive; but it will last longer, and is the more convenient way for gilding coins and small articles. Clean the silver piece, by means of a brush and a little ammonia water, until the surfaco is evenly bright and shows no tarnish. Take a emall pieco of gold and
dissolve it in slourt 4 times its volnme of metallic mercury, which will in a sbort time be accomplished and an amalgam formed. (See Nos. 3533 and 3534 .) Put a little of this amalgam on a piece of dry cloth, and rub the silver piece with it on all sides; then place it on a clean stone in a furnace, and hest to the beginning of redness. After cooling it must be cleaned again with a brush and a littla cream of tartar, when it will be found besutifally and lastingly gilded.
3595. To Remove the Gilding from Old China. The following method is recommended for remoring the remains of gilding from old china: Take soft water, 8 parta by measure ; nitric ucid, 8 parts; common salt, 4 parts; Bal-ammoninct, 1 part. Let it boil, put tho china into it, mod rub with a stiff beush.
3596. Wernicke's Method of Gilding Glass. Tho following are the ingredients res qrired: 1st. Solation of gold. Pare gold, free from silver, is dissolved is aqua regis, tha solution evaporated, and the residuo takien ap with water, so that 120 cubic centimeters (1 gill) coutain 1 gramme (15.4 grains) of gold. 24. Solntion of sodic bydrate (which need not be shsolutely pire) of L.06 speeific gravity, 2d. Reducing liquid. 60 grammes (771 t grains) sulphuric ach (monofydrate), 40 grammes (617 grains) alcobol, 35 grammen (539 grainit) water, and 50 grammes powdered manganic perozide, aro diatilled into 50 grammes of water antil the bulk of the latter is doubled- 10 grammes (154 graing) eane-
sugar, inverted by dissolving in 70 oubic centimeters ($\frac{1}{1}$ gill) water, and boiling with \& graume, ($7 t$ grains) nitrio acid of speciflo gravity 1.34. The diatiled liquid, the invertof sugar, und 100 cubio contimaters (${ }^{\text {Hi }}$, gill) alenhel wo misel togethers, and the mixturo Alluted to 500 enbio centimetera (1 ra 2 pints). In using thene solations, 1 rotome of the nodia, bydrato solation is mised with 4 volimes of the gold solution, and to thas mixture is ndded trom $1: 35$ to 1.30 solume of the reducing liquid. The olfiect to he gilded is placed on tha top of tho sutution haviog the starface in. tunded to to costed turned downwards. The tomperature of the lath nbonld be below 140° Eabr.
3597. Boettger's Method of Gilding Glass, Boettger has tnoditiod Wernickes prucess fur thrositug dowa gold on glass as followe: 150 proparea the sode solation by dissolving 6 grammes (128 graine) canatic noda in 100 entio centimeteri (rote giti) water; tho reducing flotd, to be made when washed, by disaolving 2 grammes (81 gruins) common atarch-sugar (glucode) in 24 grammes (370 grains) distilled water, and alding 24 cubic centimeters (t gili) alcohol of 80 per cent., 24 enbic centimeters aldehivdo of -r70 upesifio gravity: nettral solution of chlonte of gold, 1 gramme (15.4 graing) of gold in 1,200 entic centimeters ($2 \frac{1}{2}$ pints) water. Four volumes of the gold solution are mired in a snitable vessel with ono volume soda solecion and 1.16 volumea of the reducing liguil, and the liquid rapidly poured into the hollow glass globe to be plated. Five minutes is sufficient to inkaro the deposit of a thin film of golf,, lut it is bettor to allow more time. Plat platez of glass cam be laid upon the surface of the liquid, iss in the silvering process: the sarfaces of the glass should be carefully cleased with soda and alcohol, and not with acids. The greater part of the gold is thrown down in flocenli, and cam be recovered for snbsequent use-the amount deposited upon the glass being very amall. The mirrors are to be well washed and dried in the air. Where tho baths are heated, the deposition of gold takes place moro rapidly, but not so fine; it is better to keep the temperature below $140^{\circ} \mathrm{Fahr}$, and to allow the metal coating to form slowly.
3598. Upton's Gold Detergent. Quiekdime, 1 ounce; sprinkle with a little hot water to Elack it, then gradually add 1 pint boiling water, so as to form a milk; dissolve? ounces pearlash in $1+$ pints boiling water; mix the two solutions, cover up, agitate oceasionally for an boor, allow it to settle, decant the clear, put it into flat balf-pint bottles, and cork them down well. It is used to clean gilding, te., either alone or dilnted with water. It is applied with a noft spouge, and then washed off with clean water. It is es. sentially a weak solution of potassa, und may be extemporaseously prepared by diluting liguor of potassin wilhabout 5 times its velame of water
3599. Gruene's Method of Gilding and Silvering Silk. By a formula published by Graene, for silvering or gilding silk, the silk is to be sonked with a 5 per cent. solution of iodide of potassium, asd dried; then (in nou-actinia light, seo No. 3140), dipped in a 5 per cent, solution of nitrate of silver, costaining is few drops of Bitrio acil, and well drainel; next exposed for a few minntes to analight, abd then dipped in a 9 per cent. sor Iution of sulphate of iron. Lt limmediately becomes gray, from reluetion of niotalic silver, and, aftez washing and drying, oaly requires burnishigg in order to acguire the metallic luatre. Ify repeating this treatment, rarioul, howerer, by alding a littla free iodlne to the solation of iculifle of putasiom, the silver depoait beepreses stronger. By laying the deleeped atik in a very weak nolation of chlorido of gold, the silker bocomes ehforide, and gold is depositeil; sul by then removiag the elikoride of silver by a somition of hypoculplite of soda, washing, drying, and burzishing, tha appearasce of gilding is prodaced, if the deporit of tuetal be nufficiently thick, Tho parent chemicala must be used in all gilding processes, in order to secure satiofsctory resulta.
3600. Silvering Powder. Employed fir silver conang dal plates, atatpettes, and uther articles of enpper, and covering the worn parts of plated guids, proviously well cleabed, by ffictinh. They are made into a pueto with a litle water, for nse-
3e01. To Make Silvering Powder. Rub together to as line prowder 20 grains fine silver dast (see No, 3217), 30 graim alum, 1 drachan common salt, and 3 drachms ercam of tartar; 35 grains of aistrate of silver may be nubatitakel for the silver dust. Or: Diszolye ebloride nf sllrer in a sulntios of hyposalphite of sods, and make into a peste with levigated bumt hartshoris or hone dnst; dry and powder it. Or: mix 1 ounce silver dush, 4 ouncea each of summon solt and xal-athmoniac, and t ontuce corrosire sublimate. In asing the last, copper atenails are previously boiled with tartar and alum, and robbed sith this paste, then made red-hot, afferwards polished. Tastly: A good silvering powder may bo made es follows: dissolve chforide of silver in a solution of byposulphite of cods, and mix this with prepared hartshorn or other soitable puwder.
3601. Novargent. This is said to cornsist of a solition of fresh precipitate chlorido of silrer in hyposulphite of soda (or, accordfig to the Pharmacentical Journal, of oxide of silver in evanide of potassium), mixed with prepared chall.
3602. Silvering Paste, Nitrate of silver, 1 part; cyanide of potassiam (Liebig's), 3 parts; vater k 价icient to form a thick paste. Apply it with is rag. A bsth for the same purpose is made by dissolving 100 parts of pulphite of soda, and 15 of nitrate of silver, in water, and dipping the article to be silvered into it
3603. Silvering Solution. Prepare a solution of I part cyanide of potassium in 6
parts water; add it to a concentrated aqueous solution of nitrate of silcer (free from acid) until the precipitate is redissolved. Mix this solution with fine chalk, and apply after previous cleaning of the objects.
3604. Non-poisonous Silvering Fluid. Nitrate of bilver, 80 parts; dissolvo in distilled water, 36 parts; add sal-ammoniac, 40 parts; hyposulphite of soda, 160 parts; and lastly, whiting, 160 parts. Apply in the usual way,
3606, Silver Plating Fluid. Dissolve 1 ounce crystals of pitrate of silver in 12 ounces soft water. Then dissolve in the water 2 ounces cyanide of potassium. Shake tho whole together and let it stand till it becomea clear. Have ready some half-ounco phials, aut fill them half full of Paris white, or fine whiting, and then fill up the bottles with tho liquid, and it is ready for use. The whiting does not increase the coatiug power; it only helps to cleas the articles, nind to save the silt vor flaid by half filling the bottlos. This is the preparation commonly vended by pedallers.
3605. Silver Solution for Plating Copper, Brass, and German silver. Cut inth small pieces atwenty-fivo cent piece, and pith it into an earthen vessel with $\frac{1}{}$ ounce nitric acid. Put tho vessel into warm water, uneovered, until it diasolves. Add $\$$ gill of Water and 1 tea-spoonful of fino salt, and let it settle. Drain off and repeat, adding wator to the sediment until the acid taste is all ont of the water. Add finally about, 1 pint of water to the sediment, and 4 acruples cyanide of pothasians. Pat into tho solation a picce of ving about 2 inches long, 1 wide, and $\frac{1}{t}$ in thickpess. After cleaning, immerse the article to bo plated in tho eolution about half a minate, lattiog it rest on the zinc. Wipg off with a dry cloth and repeat once. Polish with buekskin. The thickness of plate can be increased by repeating.
3608, Silvering Hooks and Eyes. A patent has boen granted in Bavaria, for the following method of nilvering hooka and cyes made of iron ware. The articley aro auspended in diluta sulphurio acid until the lton shows a clean bright surface. After rinsing in pare water, they are placed in a bath of a mised solution of kulphate of rinc, sulphate of copper and cyanido of potassium, and thore remain until they receive a bright coating of brase Lastly, Lisey are tmasferred to a bath of nitrate of silver, cyanide of potassium and sulphate of sods, in which they quickly receive a coating of silver.
3606. To Plate Common Copper Buttons. Mix 2 ounces ebloride of silver, 1 ounce corrosivo sublimate, 3 pounds table salt, and 3 pounds culphate of zinc, with water, into a paste. The buttons aro cleaned, smeared over with tho misture, and exposed to a moderatedegree of heat, which is afterwards raised bearly to reduess, to expel the mercury which las united with the silver from tho corrosive sublimate. The silvered surface is then cleaned and burnighed.
3607. Simple Process for Silvering. This is an improved process for silvering copper, brass, and other alloys, by meany of a sofution of silver in cyanide of potassiom; the difference from the usual method consists in the use of zinc-filings, with which the objeots are coated; when the silvering solution is applied, an immediate deposition of a much more durable character taking place. The filings are easily removed by rinsing in water, and may be nsed repeatedly for the eame purpose. Metallic iron may be coated with cop. per in the same manner, by substituting for the silver a solation of copper in cyanide; and over this copper deposit a coating of silver may bo applied.
3608. Cold Silvering. Mix 1 part
chloride of silver with 3 parts pearlash, 13 parta common salt, and 1 part whiting, and rub the mixture on the surface of brass or copper (previonsly well oleansed), by means of a piece of soft leather or a cork moistened with water and dipped into the powder. 1 part precipitated silver powder, mixed with 2 parts each cream of tartar suil common salt, may also be used in the same way. Wheo properly ailyered, tho metal should be well washed in hot water slightly alkalized, and then wiped dry
3609. Spencer's Method of Silvering Wood. The firit opreration is to take strong alcohol or spirita of tarpentine in a glass yessel, and add to it a pices of phosphorus (is common corked phial will answer the parpose); the vessel mast now ber placed in hot water foc a fow minutes, and occusionally ohaken; by this meuns the sleohof will thke about 3 per cent. of lta bulk of phnaphorne Nest procure a weak solution of nitrate of ailver, place it in a flat diah or hasucer; the faco of the wood must now be dipped in this solation, and let it remain a few mimutes to alfow eapillary attraction to draw it into the wood. This oporation being performed, a mmall portion of the solution of phosphoms mist bo placed in a capsulo or watch-glase, and this placed on a anid-bath, that it may gradually evaporate. The wood must now be beld with ita surface over the vapor, and an fromediato change takes place; the pitrate of silver ia decomposed, and gives place to metallio nilver. When the material to be acted on fa not sery large, fasten it to the top of a beir-glasa receffer with a bit of pitch or cement, and place this over the capsule ox the sund-bath; the phosphortis vapor is by this meana equally diffased, and not dissipated, A solution of phosphorus in culpharic ether alao anwwers; and a solation of gold (chloride) may be uned. This elegant process, as applied to wood and those substances whieh raay be welled with the solution of nitrate of eilyer, answers perfectly; but it is abvionsly limited in ita application to those zuhstances which will abtorb an aqueotis solntion.
3610. Silvering Glans. Two diauinct methods aro adopted for this purpose." The one falsely called bitrering, consiats of the application of a layer of an amajgam of tin, or similar alloy, to the surface of the glass (seo No. 3614), the other in a conting of real ail. ver, precipitated from a solution of that metal. (Sot Nos. 3615, fe.)
3611. To Silver Looking-Glasses. This is usually dune by coating the glass with an malgam. For this purpose n large, perfeetly flat stone talte is provided ; opon it is evenly spread a sheet of tin fon without erack or flaw; this is covered uniformly to tho dopth of $\frac{1}{8}$ inch with clean mercury, The plate of glass, perifectly cleansed frum all grease and impurty, is floated on to the mer cury carefully, so as to exclude all air bubbles. It is then pressed down by loading it with weiphts in order to press ont all the mercury which remains fluid, which ts receivent in a gutter around the stone. After about 24 hours it is raised gently upon its edge. and in a fow weeks it is renily to frame. It is kaid to toe desirable to have the lower end of tho glass, from which the mereary was drained, at the bottom of tho frame. To convex and concave mirrors the amalgamated foil is applied by means of accurately fitting plaster moulds. The interior of globes is silvered by introducing a liquid amalgam, and turning atout the plote till every part is covered with it. (See Nos. 3538 and 3545 .)
3612. To Silver Glass. An ensy and economical process. Mix 90 parta by measure of a solution of Rochelle salts at 1.50 specific gravity, with 900 parts distilled water, and
boil them in a flisk; drop in carefully 20 parts of a salution of nitrate of silver specific gravity 2.18, and hoil again. This solution can be bottled and kept for any length of time. Another flut has to be prepared by allding ammonis to a solation of pitrate of silver phtill the precipitate if entirely dissolved; filtering and diluting 1 part of it with 100 parts of water. For ase, put cqual parts of the two prepurations in a suitable vessel, clean the glass well (sce No. 3621), and iumerse it in the mixtare until mufferently coated. The costing of ailver abould bo protected with a cont of lad varmish.
3613. Drayton's Process for Silvering Gless. Mr. Drayton mises 1 oupce nitrate of vilver, 3 ouncea water, 1 ounce liquid ummonis, and 3 ounces splrit of wibe, and filters the solution after it has stood 3 or 4 hours. To every untice of the solution he adda $\frac{1}{2}$ ounce ougar (grape sugar if posefible), dissolved in egual quantities of water and alcobol. The surfuce to be silverel is covered with this liquid at a temperature of 1000 Fahr., maintained till the deposition of silser is complete. When quite dry, the coated surface is covered with mastio rarnish. Other substances besiden angar occasion the deposition of silfer from the ammioniacal soluthon; as oil of cassia, oil of clores, and other cesential oile, al. dehyde, \&c. Dugur reconmendis is ktrong atcoholic antation of tanuit. He hal accidentally mixed in a diba a cmall quantity of a thict alcobolic volution of tannin with an equally small quantity of a strozg solution of utrate of silver; and in the eonesp of a short time he fornd the dish coated with a thin, brilliant, and miform layer of metallic אiliver. Ho diroctly repeated the experiment, and zoes with the suma reault agaib and apais. He nost proceeded to esaporate the Iquid to drynesa by placing the difh on the eurface of warn saud. As sonis as it was completely dry, the coating wsy fornd to be so fast on the porcelsin that it required the point of a sharp penknifo to vecrapo it off. Ho also sacceeded is produciag a brilliant metallic coating from a saluratol solation of sulplato of coppor by the zame solation of tannis,
3614. Pettijean's Process of Silvering Olass. Two solutions are to bo pre pared. Tho finst is composed of 201 drachms nitrate of silyer and 2 ounces aqua ammonis, dlasalvei in 1 pint of distilled water. After filtrativen the liguor is difuted with 16 times its volome of distilled water, and, drop by drop, a solution of 1162 groins of tartarie neid is sdided.
The second is prepared in tho same prander, bat with a double quantity of tartaric acid. As these bolntions are rapidly reduced, prepare in the morning the liquers to bo used during the day. Beforo silresing, the glass is perfectly eleaned, first witb chalk and a fine cloth, then with in bung and a little of the first solation. It is then rubled dry with a pioce of chanois leather. (See No, 3e21.) The glass, hid thorizontally upote a talle of cast itron, at a perfect level, is beated (by means of a cast irou water-bath beneath) to 113° Vahr, an Indiantbber raller dipped in distilled water is vext passed over ils surface, ond then its surfoce is covered with No. 1 solution. The deposit of silver commences in sbons 10 mirntes, and is completed in about is mimutes afterwarda. The glass is then tiltelt up so as to allow the liquor to run off, and rinsed with water rather moce than lukewarm to carry away the nor-adherent powder. It is then restored to its horizontal position and coverel with solation No. 2. In a quarter of an bour the deposit is comploted. The next thing is to wash the plate as before, and dry it, atter which it only remaims to polish andl lournish tho film of silver
depusited, in order to make it perfectly smooth, and give closeness to the grain. To cover a three-feet square of glase requires 5 pints of liquor. The deposit is, therefore, about if drachms to every 9 square feet. To preserve the conting of silver from sulphuration and rubbing, it is covered with is puint made with 1 pound of lead pigment, $1 \frac{1}{3}$ ounces of drying oil, and $5 \frac{1}{2}$ ounces of spirits of turpentine. Liebig has produced the same result by depositing on the silver a coating of galvano-plastic copper, but the advantages resalting from the greatest polidity of the deposit scarcely compensate for the practical inconveniences of the process.
3615. To Silver Specula and Other Glass Surfaces. Mako a bolntion of am-monio-nitrate of silver, of the streagth of three grains to the onnce. Render it very slightly turbid by excess of nitrate of silver, and then filter it. Just before osing, add to each ounce of the foregoing solution 24 grains of Rochello salts. Having ecropulously cleaned the glass intended to be silvered (see No, 3621), place it in a convenient vessel about one inch from the bottom, supported on three little cones of white wax. The glass plate may be sumpended; but in that case thero is more difficulty in ayoiding vibration, the absence of which is essential to muccess. Expose to is northern light, or any other sulduod light, and in about two bonrs the deposit of silver will be sufficiently biek. Is must now be carefully removed, washed, and dried. When the gurface next the glass is to be used as the reflector, the glase eide should be cleased by nitric neid if the state of its sarface, after the kilvering, so require; and the silvered side should receirn a protecting conting of a good tough black varnisb.
3616. Liebig's Process for Silvering Glass Mirrors. The process of kilvering glask generally rests on the reduction of metallic silyer from a solution by means of Hlecosat or sorne other organic anbatance. By Liebfifs method the deprosit of silfer is produced loy the action of a mixture consisting of 50 parts by meastre of a silver solntion, and 10 parts of a redacing solution, this latter previounly diluted with 250 to 300 parts water. The components of the silver solution are: 140 parts of is eolution containing 10 per cent. of mitrate of silyer; 100 pirts of a solution of nitrate of ammonia (free from chlorine) of 1.115 specific gravity (or a solntion of sulphate of ammona of specific gravity 1.1051,105 ;) lastly, 750 parts of caustio soda 1 ga of specific esmavity 1.650 . It easo enlyhato of arnanonia is uscd, ith rolution mast be added to the sitver solution, thet as in the chas of pittente. Tho reducing solution consists of 1 part by measure of angar liquor and 1 part of comper liquar.

The sugar tiquor is prepared by dissolving 50 grammea (7714 grains) whito sugar in water to a thin syrup, kept for 1 hour at a boiling heat with 3 d, grambies (48 grains) tartaric acid; the solution is then diluted to measure 500 enbic centimeters ($1_{1 / n}^{1}$ pints).
The copper liquor consists of a solution of $2{ }^{2}$ Hy copper in water, liy tho nid of a canstic soda solntion sedded by drops until the blue salt is dissolved; the whole is then dilated with water to measure 500 cubic centimoters ($1 \frac{1}{10}$ pints).

The glasses to be silvered, if for mirrors, are placed apright on their edge in the silvering tank and held together in pairs by clamps; when for optical purposes, they are beld in a horizontal position, just totuching the sarface of the flaid. In cold seasons the temperatnre must be kept at 68° to 84° Fahr. The quantity of silver necessury for a square yard

of surface is from 46 to 54 grains.

3620. Bird's Process for Sitvering Mirrors or Specula. The mirnop tir spectulum to be silvered is first cleaned (see No. 3621), and then snspended, face downewards, in a silyer bath prepares thus: i largo flat shallow ressel of ghas or porcelain is provided. to contain the solation. 750 grains ritrate of silver aro dissolyed in 6 vunces distillod water, and to this is added pares liquid ammonis. drop by drop, until the precipitate which is thrown down is relissolved. 2 oances canstic potash are dissolved in 50 ounces, by measure, of rain water; and 15 ouncer of this sulation are added to the ammoniacal solation, whets a brown-black precipitate will bo produced. A mmonia is again added, drop by drop, zntil this precjpitate is just rediesolved ; and 20 ounces of distilled water are then added to tho whole To this mixture is again added, drop by drop, stirring with is plass rod, a strong solntion of nitrate of silver, nutil a precipitate, which does not reclissolve, hogios to be formed. Prevints to immersing the speculum, 1 part, by weight, of powderal milk sugar to 10 parts, by measuse, of distilted water, must be prepared in a separita vesanf, and filtered unth is elear solution is obtained. Then, to 10 parts, by wenanro, of tho silvering bolution, must be alded 1 paft, by measure, uf the milk sugar solution, and, finally, 50 ornces of the comporad solation wilf be nufficient to ailyer a mpeenfan 9 inches in diamoter. To favilitate the suspendlugt a circtslar blook of wonl ia very firmily ecmentnd to the back of the speeulum with marine glae or pitch, and thrco pims insorted at equal dia. tances round the margin, to which ntriugs may be fastened. On lowerigg it into the bath, eare must be takien that no air bobbles intervene, that the apeculus be sot decpur in the liquid than half its thieknevs, aml that a depth of 2 inches, at least, intervend between the face of tho speculam and the bottont of the vossel. Ia 10 tuinutes afoer lamomion a metallic filto will be seen formung wo tho glasa, and in an liour or twò a compluct alleer conting will be latd over tho wholo striaces. Tho specuturi shouth remain in the lesth for 4 horrs, by which time the prooest to comtpletent ; it is then carultly removed, copions. ly washed with distilled water, and phased on itsedgo to dry. It is then realy for polishine (Sre No, 3622)
3621. To Clean the Surface of Giass for Silvering. As the mmenal of the nilver ing procests depends greatly un the glase sarfaco baing misto cheminally chean previons to immorsion in tho bath, the utmot paink noust be taken to accomplish this nbject. Thee athr, faco is first covered with thick whiting urwan. freo from grit, which, whot dty, ta ritbed of With the prreat cotcon wool. The marace if then wetted entirely with dilato sitric acid, and afterwards thoronghly washed with distilled water poured over it; and, last of all, the piece of couted gluss is snaspended in a flat rossel contaiding alcohol, where it remains lintil tho bath is realy to receive it.
3622. To Polish a Silvered Surface on Glass. To aceumplish this, rub the sneface gently, first with is clern pai of fing cotton wool, and ufterwards with a simitar poul cavered over with cotton velvet, which has beed charged with fine rougo. The surface will, minder this treatment, acquire a polish of intense brilliuncy, qifite free frow unyiscratehes.
3623. To Silver Glass for the Reflectors of Telescopes. The solations employed are four in number, and they require some caro in their first preparation; but once made they are always ready, and can be tused with great rapidity and certainty for depositing a lustrots, mirror-like surface of silver on a piece of glass of any desired shape or curva-

Ime:-
Solation No, 1 is prepard by dirsolving I part, br arioght, of nitate of silver, in 10 parts of distifled water.
Solution So. 2 consists of an aquearas soluLion of pure ammmia, bariag a density of

Soletivit No. 3 consints of 4 parts of puro exastie smbain 100 of distilled water.

Solntion No. 4 is maile by dissolving $12 \downarrow$ parts of the lest white loaf sugtar in 100 parts distille! water. To this pdd 1 part, by measure, of nitric acid, Doft for of minotes, in ander to invert or alter the metoular arramgepheat of the particles of the ragas, and then ddd water to inerpases the valume to 500 garta by measure, fad fually add 50 parts alcohol.
Thesn solations ivill remain ubeliunged for a long times. When required for use, prepara a sitvering liquil by pouring into is task 12 parts, by ueasure, of the filver solation, No. 1;8 parts, by messinte, of the ammoniacal solution, No. 2 ; then 20 parts of the side solation, No. 3) and, lastly, whe 60 parta of diatilled water, in order to miake up the velque to 100. If the proportious have been peoperly observed, the liquid so prepared will bo perfectly clear, but will be renderol tartid by tho ntallest aldition of nitrate of sifver sulotion. It mest be aljotrod to remain withort distarbanee for 24 bours, to jerouls the floaling particles to settlo. Tho clear hquid decanted from the seefliment sill thes be ready for tese. The surfice of the plase which thas to ba allverest must hen well cloasel with is tuft of ootton and a fow droper of sitoc acid, and then wintiel with llatilled waler. (See No, 301.) Drain it, And mephert it on the suefiace of tho altvering bath, whirh is ontipened of tha abova ilemeribed silyuring lignod, nith the addilina of ${ }^{1} 8$ or is iti volumo of tho mapar velution, 50.4. The sorface bo lee witerol, , hauld, by preference, be nt the upprer past of the ligneid. on that the sitver moy for depusital on it from felow upyant. Thero are two alfrastages in thov-fird, the degmait is fium nul mort even: and, srcomb, them ty the dauger of floatiog partleles of dast secting on the suriace it is however, weareoly neroesty to say that stlver will lin ilepo-ited npon every part of tha glass whiels is auder the sarface of the liquid,
 vesabl; mo that, be a matur we economy, is little as prosible of the lowk of the plavs should be expmend to the section of the liguid. The aetoon sentsa to bo trure rapid in the light than in darkneis. Ender tho indlaence of diffised tight the ligquil becomes yellow, then brown, and in a fiew nibutes the whole of the exposed aurface of tho glane will bo corered with a fino ispurit of silver in sbout is quarter of as hour the thicktuess of the metalice toatiog will be sufficiett to Lear the ninlisequent operations wibout injary, it funst theo be waphed with plenty of water, and rested by owo coctuer on perenal thindpesara of blotting-piper ta dry rpontaneously. Tho garface will tyy ino covered with it thits Whitish vel, slich may bo readily remoped by geatlo friction with chamois leather, it tray afterwarda bo pulikhel sith joweless rooge, when a perfectly brilliant syrace will he produced. (See No, 3622.)
3624. To Repair the Silvering of Looking-Glusses. The repairing of the silvering on the backs of looking-glossiss has hitherto been consideral a sery diffical: operation. A nex and very simple muethod, however, has been deseribind lefore the Polytechnic Socioty of Leipsic. It is as follows: Clean the lare partion of the plass by ribling it gently with line cotton, taling care to remove any trace of dust mad grease. If this cleaning be not done very earenilly, deferts will appear around the place repaires. With
the point of your knifo cut upon the back of anuther looking-glass around a portion of the kilvering of the required form, but a little larger. Tpon it placo a small drop of mercary; a alrop the size of a pin's head will be gafficient for a surface equal to the size of the nail. The merciry epreads immediakely, penetrates tho amalgian to where it was cat off with the kuife, and the required piece may now bo lifted and removed to the place to be repaired. This is the most difficult part of the operation. Then press lightly the renewed portion with cotton; it hardens nlmost immediately, and the glass presents the samo uppearance as a now one.
3625. To Repair a Damaged Mirror. Pour upon a sheet of tin foil about 3 drachma of quicksilver to the square foot of foil. Rub kmarily with a piece of backakin until the foil becunges brilliant. Lay the glass upon is flat tahle, face dowtwards; place the foil upon the damaged purtion of the glass; lay a thent of paper over the foil, and place unon it at Block of wood or a plece of marble with as perfectly flat surfice; pat upon it suflicient weight to press it down tight; lot it remain in this pasition a fow hours. The foil will alhers to the glas.
3626. Process for Silvering Animal, Vegetable, or Mineral Substances. This procera is founded tapon the electro-chomical action exeroised by cerfain lifuors in which the obljects to be silvered aro plomged. The methed of preparing these liguors is is follows:

Liquor No. 1-Take g part by weight of cauntin lisae, 5 of sugro of milk or grape bugar, 9 of gallie aceil, nod make of tham in mixturo fin 650 parts of dixtilted watur: fituer. protect from the air ad much as possible, and put in a elosely roppered bottlo until tha hament of thatig.

Laquor Nn, q. - Dissolve $_{20} 20$ parta nitrate of aitver in 20 parts solution of ammonia, and nod to this anlation 660 purts distulled wator. Whea it is intebded to operate, tho two preecoling liquors are mixed in equal quantities, und, ufter hayiug lemen well aritated, filtered. As the solation of ammonta of commerce has not alwaya the same degree of concentration, it would be better, perbapa, to disnolvo tho bitrate of silver deatined for the lifuor No. 2, finst in distilled water, then mix the solution with liquor No. 1, and thet add ammonia in quantity only juat sufficient to entirely clear Dhe mixtiore The depoxition of eilver can bo acecleratasl by the employment of hicat; in this case, the temperature depends upon tho mature of the uljecta to be submitted to tho operation. Tbo method of emplaying the abore liquors in sidvering the surfaces of different maleriala is given in the following six recuipts:
3627. To Silver Silk, Woolen, Cotton, Etc. When it is intended to silver silk, woulen, cotton, ete., commence by washing the sutistance clean; this done, immerse it for a moment in the saturated solation of callio acid: then withdraw it to plungo it for a second in another solution composed of 20 parts mitruto of silver to 1000 parts distilled water. These alternate immersione are contivued, uatil the substance from being dark becomes of a brilliant tiut; after that it is planged in a bath composed of a mixture of the Lwo liquors, Nos. 1 and 2. (Sec No. 3626.) When itis completely sil rerel, it is withdrawn and boiled in a solution of salt of tartar (carbonate of potassa) in water, and there remains nothiog more to be done but a last washing and drying.
3628. To Silver Bone, Horn, Paper, Etc. Bonle, horn, wood, paper, cte., are silserel in the cuma way (see No, 3627) with this diference, however, that, in the place of
the alternate immersious above indtcated, the objects to be silvered are operated upon with a brush or pencil dipped altermately in the gallie acid solution and in that of nitrate of silver. The silvered surfaces are then washed with distilled water, dried by free air and heat.
3629. To Silver Leather. For learher tanhed with stwach, in the place of nitrate of silver (gee No, 3627) the chloride mixed with a few drops of rosemary oil may be employed with edvantage. The silvered surface is then washed and dried as directed in last receipt.
3830. To Silver Stucco and Pottery. Stneco and pottery may be eilvered by tho same process as No. 3 hizs, bat before being sulmitted to the operation they should be covered with is coat of stearine or varuikh.
3631. To Silver Glaes, Crystal, or Porcelain. To silver glass, crystal, or poreelain, commence by washing thoroughly (sen No. 3621) the object with distilled water, and with atcobol, and theo operato as has been said with the mixture, (sce No, ;386) Objects with a plane surfece rhonld he placed in a barixontal position, and the liquer panged upon them. (See Nos. 3618, fro.) When mirrors are to be silverel, the platea of glass may be diaposed in a vertical position; place them two and two face against face, in trongbs of gatta peroha, taking care to prevant all contact with the gides; then fill with the Bquid. Precipitation of nilver corburneos in a guarter of an hoor, and at the end of a fow bours the operation is finflised. When ilry, coat the ailvered surface with varnish.
3832. To Silver the Metals, Commesce by eleansing them with nitric seid) rab them afterwarda with a mixture of cyaride of potasaium and powdered allver: then, after wailing with water, they ure plaaged altornately into tho liqgora Nis. 1 and 2 (ze No. 3626) , until they appear kuticiently 611 . vered. If wotking with jron, it shoaid be first immersed in a solution of solplate of copper. Tho process which bus lieen deseribed presents above all others the edvantago of very solid resulta, and of etnplogiag chemical agenta of low price.
3633. To Coat Copper Plates with Brass. Expose the plates, heatel stificiently, to the fames of zinc. Zine boils winl la vaporized by heating it to a white beal.
3634. To Coat the Inside of Copper Veasels with Brabs. Dissolve 1 part zing amalgam (see No. $35 ; 39$) in 9 parts morintic ncid ; add 1 part argol (crudo tartar), and add sufficient water to fill the vessel; then boil it in the vessel.
3635. To Deposit Copper upon Cast Iron. Tho pieces of cast, troit are first placed in a bath made of 50 parts hydrochlorio acid, specifio gravity 1105 , and 1 part nitric acid; next, in a second bath, composed of 10 parts nitric acid, 10 parta of chloride of copper, dissolved in 90 parts of the same hydrocaloric acid ba just alleded ter The objects aro rubbed with a woolen ragend a soft brtsh, next washed with water, nod again immersed until the desired thickness of copper is deposited. When it is desired to give the appearance of bronze, the copper enrface is rubbed with a mistrore of 4 parts solammoniac and 1 part each oxalic und acetic acids dissolved in 30 parts water.
3636. Graeger's Process for Covering Iron and Steel with Copper without a Battery. Tho objects are first well clemed, and then painted aver with a solntion of protochloride of tin, and immediately afterward with an ammoniacal solution of sulphate of copper. The layer of copper thus produced adheres so firmly to the iron or steel, that the different objects can be rubbed and polished
with fino challs without injuring the deposit. The tin solutios is prepared with 1 part erystalliaed chlorile of tim, 2 parts water, and 2 parts hydrochlorie acil. The copper solytioes, will 1 part molplate of copper, 16 parts wator, alding ouryaonia sufticient to redissolge the procipitate first tarown down by it. Zine and galvinized inn can ho treated, ac. conding to Boettger, directly by the copper golation, without nsing the tio salt. The above procesas may bo found usefnt ly gilders, and for varions ornamental purposes.
3637. Well's Process for Coating Iron with Copper. This ponces yjeifs is coating of eopper of great inightuess and strong cobesion. The olject, whether of cast or wrought irna, is freed from rust by immorion for frum 5 to 10 minates in water containing ${ }^{2}$ per cent. of mruriatic seid, and subseguent sarubling for $\frac{1}{4}$ bour with a wiro brush and ranul, then wabing in water uotil all traces of acid aro removei. It is then covered with zine wire in apiral turns of aboot 5 inches frum each other, which also servea na a meaus of mapension. The bath comsista of a rolation of a parts caustio noda in 100 parts water, of which 11 quarts are misell with 50 onnces Rocbelle sults sed 12 , oances culpheto of eopper, making a liguid of a density equal to 19^{5} Haime It rebins ita activit g as loug an tho copper is kept replaced, and depositlon from it proceectes with great regrlarity. The pmevtat of the vessel is hast whet mada of woon, lized with gotiaperelos, and carved withatwoden tid. Wher ihe coataig in of sutticient thickners, the obJeet is remored frous the loulh, first waqhed with water slighuly achilifiod with zulpharies aeid, asd then mith pore water wint the dissppestance of ali traces of acis; after this it. pastes luta a itrglag nown heated to 1320 Fahr. The mrusiceg, velicu requifod, is obtained liy a liath of atiliphide of sodlatm, or by meng of toe same bath as abote, nomewhat motilied, that is by inercaing the propertion of copper to a thresfold, in which cave the halle no louger dopeoits oopper, bith, Lo all apमearakes, lirouze. Ny redieimg the pointer of contast betweru the iros and wire, though retaining thospinat tarns at ithiformo distoces. the depeite grodually astames is number of colors in the following scries, viz: orange, sitroe-white, palo yellow, goldon yellow, catmude, greas, broven, and dark bronzec. A aboon as the itwared colar it oflained, Wre wbject in weblued in warm Fater, aul ngaindriced at 1320 . Betweou padi stincoptueat change of culor is an intectal of about 5 minates. The rebetion is more decibiod wiem tho alkalina remetion of the bafle is stroleger. Fuc indour work or ornaments the time of jmmerdoth may kary Srom 3 to is houts; for antdoor objects is mueh Jonger time would be necestar:
3038. To Tin Iron Pots and other Domestic Articles. The articles are cleanef with sanh, nut, if neceswary, with acid, and put then in 6 both, propared with 1 onaco eccum of tartar, I onnce tif tale (protochtorida of tio), 10 quiarts wraten, This liath must be kept at a lemperatare of 190° Falis, in a stobeware of woolen taniz. Bits of melullis zine are pat fito and betreen the different pieces When the enac of tin is considered thick emangh, the urtices are taken out of the fluil. wastiod with water, and dried.
3639. To Tim by the Moist Way. Makio an aolulion of I part protachloride of tin in 10 ports wader, to whiebs suld a solulion of 2 parts of easstic smda inf 20 parts water: the wixture leccames turthal, but this thes not, affert the timmise operation, which ia effected by beating the objectes to bo tithoil in this Iluid, care being taken, at tho same time, to place in the ligquid a pícee of perforated bloek tion plate, anil to stif up tha floill during tho
thming with a rod of zine.
3640. To Tin Iron Without the Aid of Heat. To 105 quarts water are added $6 \frac{1}{5}$ paumis rye meal; this mixture is boiled for 30 minutes, and nest filtered through eloth; to the clear lont thickish liquid are added 233 pounds pyrophosphate of soda, $37 \frac{1}{2}$ pounds protochloride of tin in erystala (so-called tin Balt), $147 \frac{1}{2}$ pounds neutrul protachloride of tin, 36 to 4 oonees sulphuric acid; this liquid fs placed in woll made wooden troughs, and serves more specially for the timning of fron and steel wiro (previously polished) for the nse of carding machines. When, instcal of the two salta of tin just named, cyanide of silver and cyande of potassinm aro taken, the iron is perfoctly silyered.
3841. To Cleanse Iron for Tinning. Tho tuetal must be cleansed by inmurston in an acid nolution; for new metal, this solation should be sulpharic acid and water, but for old metat, mariatio ncid and water: next scour with sami, and eleanse woll with water.
8642. To Tin Iron. Firat eleanse as above then heat the article just hot enough to mett the tin, rab the surface over with is piece of Eal-ammonine, and sprinkle nome of the mal-ammoniac in powier over it; then apply the tin and wipo it oser evenly with a pices of tow,
3643, Cold Tinning. Futs puro tinfoil ent quickstiver twgether untl the amat gan becomes soft and fuslble, clean the surface to be tinned with npirita of aalt (hydro. chlorie ncid), and, while nubst, thb the anid. gam on, and then eyrporate the quicksilser by heal.
3644 Stolba's Method of Timing Copper, Brass, and Iron in tho Cold, and without Apparatus. The object to be costed with tas must be entirely free from oxjde or rust. It mast bu carefally clewned, anal eare the taken (hat uo greaso upols aro Inf: it unkes no alifforetace whether tha obfoet bo demned mechatically or elsemically, Two poejsations are requitiofor the pirpose of tinniag, Zino paiciler-the hest in that pros. pared urtificially by melting zinc and pouring it into in iron mortar. (See No. 339.) it cas bo easily putyerized immelliately after solidification; ft shoutrl be about as fine as writing zand. I solntiou of protochlurilde of Lia, ombainizif S to 10 per cent., to which na much pulverixed ereant of tertur must bo nided as witl go un the point of a knifo.
The objeot to te tioned to triastened with the tin solution, after which if is rubled bard with the sine prowler. Tho tinoing appeard at vues. The tin kalt it decusposed by the einc, metallio tio beinf deposited, When the objoct timied is poliked brass or copper, it nppenta an beantifut ns if sil verent, uml rotains its lustre for a long time. This method may bo used in a laboratory to preserve iron, steol, aud eopper apparitus from rust; and would Texoms of preat importance if the timning couth lio mate nt thick us in tho dry way, but this has mot as yet been accomplished.
3845. To Tin Copper Tubes. W. Wollzeber recommends for still-worma copper tibes tianed insitu in the following manver: To a solution of Tockelle salls a solution of salta of tin is alded; o precipitato of ntananus tartrate is formed, which is washed and then dissolred in caustic lye. The eopper tobe, which has first been riosed with sulphuric meid and then washed, is then fillest with the alkaline solution, warmed a little, aml touched with is tin rod, which causes the deposition of a coat of metallic tin.

3646. To Tin a Worn Copper Kettle.

 A thick coating may be obtained by preparing a tinning solution of einc diskolved in munatio acid, making the solution as thick orheavily ehariged with zinc as possible, adding a littlo sal-nmmoniue. Clean the inside ot the kottle, pluse it in a churcoal fire until a pieeo of block tin placed insido melts, then culv the utelted tim with some of the tinning solution, quidelly ofr the copper surface, by means of a ball of oakam anit a litllo powderet rasin; the tin will remily adhere. Wrought fron and steel thay be tinned in the same matmers.
3647. To Tin a Copper Veasel. Foil the cupper resed with a sountion of stamnte of potasis wizesl with tin briringt, or boll with tin filmes ath caustic ulsali or cream of lattar, If a few minntes is fayer of pure tin with bo firmly atterhed.
3048. To Tin Cast Copper or Byass. Maks is faturated sulasive of oside of tin (tin putti), in potas) lya: aide is the solution home ton filika or strovitugy ; make it as hot us porsible; then tatruluee tho litess or copper uod is will be timned in a few seconds.
3649. To Galvanize Iron. The differunge hetween gatranized plates, forcalfed, and "wheet-lin." is, thise the lacter is aheet-iron ooverest witl a thin coating of bloek-tin, while the forpoey lo slient-iron envered with is thin contiog of shme Ty effeet the latter result, the irun platos ars find immersed io a cleans-
 : 1260) They aro then vorublied with emery or samd, to ctosm thum thoroveshly and detech A11 sealen if aty ame left; ofter whick they aro immersed in a propuctioy bath of eqtal parta of satiratal nolalons of stoteride of zine and thincide of awhmomm, foom which bath they iste directly tramperrod to the fuid metalte buth, conistims of 30 chomient equivalenter of zine to 1 of mergaty, be, by weight, ©40 pomall. of xizg to 100 of sharcosy, to which
 geon oh the from bas atmomel the temperatnre of thia hook that hath, which os ofly 680° Fabr., it nimy le remused, and will then be fomm thurwitgly ooatot with mites Cara
 hameremed it thit beith, of it affocsy for (rop it subly that they sugy become diknol red. This is too cage wiff two datra of weroght diamplyd in a liow surewids. It is aife, thorefare, to bet tho bats jperiauty oet on some
 It it cedor ta endiefy its townobroiently great athuty fin thit mulat.
3650, To Zinc of Galvaniza Grey Lron Casting ${ }^{3}$, Chother the articters in un ordnusy clating jult, which enneists of a
 when tho sand is all remevel, take them nnt uad twat ove by one, phuging, while bet, in a ligaid compopei as faflawet 10 paonds bydro(tiloric ueth, and sufficient Heve anne to make if kitwrettol solettosi. (Sre No, 3633.) It making this molutum, when theo evonlation of gas has cayseil, atil wariate, wr preterably
 Lo ko hot that whea dipped into this solutions and inatantly romoved, they will inmeeliatoly lisy, loaving the surface crystalfizud tike frost work on s winduw pase Next pinge them while hot, that perfiectly dry into a bath uf melted zither pinviataly skimming the oxite on the arrfaco awny, and thrywing thereon a small smount of powlerol sal-ammoniacIf tho articles aro very spall, ficlose them in a wroaght-iron hisaket of is pole, und Inwer thom into the metal. When this is done, ahake off the suparfluous metal, and cast them into 4 veswel of water to prevent them from adhering when the zino sofidilics.
3651. To Zinc Copper or Brass Vessels. Boil the vessel in a sulution of chloride
of zinc, adiding a quantity of zinc tmrnitght to the aolation.
3652. Boettger's Process for Coating Copper and Brass with Zind by a Wet Process, Placo ainc in Eruins or powler in a nou-rnetallic yessel, and cover tho zine with a concentrated solution of sal-amuporiae: warm to ebullition, asol introlace into the mixture the objects of copper or of brass which it is desired to coat, arter haviag proporly cleansed them, Affer a few minntes, the object will be corered with in brilliant. firmly adhering deposil of zime. (Sce No, 3312.) 3653 . To Cont Copper with Zinc. To granalate the zinc, a clean sulfinee of copper may ba coated with sine bf placing the two metaly in contact in a solution of caustic sods or potash. (See Fig, I, No. 3665.) In the coll the deposit of rime tales pince slowly, but at 100° it is effected rapilly.
3654. Purcher's Method of Coating Zine with Iron. Dissolve 5 ounces pure Enlphate of iron, and 3 pances sal-atmoniac, in 5 pomals of boiling water, and immediatcly famperse tho oljestst to he trestesh Afeef from 1 or 2 minuter tha loosin black depurib is removed by lerushing it off with water. The principat effoct of thit operation is a perfert cleaning of tho sorface. The immerilus in tha hot Irom volation is then regeated, with the differeece that the olijeets, when takcen out, are heated, withoot rinsilg, orer a pas of lire coala as long es the ammonianal rappors ate evolved. Whw, efter fecteral immersiona, the coating is conaidered thirk ebmyph, it is polished by lirushing, and will ever afterward. bo a perfect protection açiest, usidation. It imparts of fins hack fuitro to the coated surfreen.
3655. Proceus for Covering Articles of Zinc with Copper or Brass by One Immeration. To fivo zeso so cat of copper or brass for the piepong of a subsequent tit. vering or gitding, the following sotations are ased : Por cupper atme a solation of ailphate of coppor, salirstisd at Ure couanon tempera taro, is mixid with a sulution of cyande of potasiom, widhes as moulh of the lauct as is neecsary to redisasive the precipitato throma dowis os first. The prisicho achil disentagel during thin pperation mest be carrial of by a dranght or dan. When the mixtore is clear,值 or + of ita volune of watee of amponis is addect, amil then dilufed with water fo a thosaity of or Raumes. Fer least, stulphato of ceppoe and selphate of nive nro used in equal praportion, and prepared as before. 2 parts sulphate of stitic anf 1 of sulphate of copper give A bright brazs costiog. Provioas to their dipping, the articles of sine aro rabbed off thas. oughy with fioely-powdered pamice-atono and rimel in winet, sifter which they aro placed it tho beth and remain there for 24 hotirs. Jfter that time thoy are agnin rinsel in water ant stimply wiped off. The cupper of lorase corering has a very liright look, as if polishel, sail aiberes pecfertly. The thickrios of the coat may bo increased dfferwarls by tho aid of a battery.
3656. Dullo's Method of Platinizing Glass. This is reconmended to preyent fising of the thin end of a glass tube used for a blowpipe in draving out the end of the tubes leave tho dismeter sliglitly larger Whan is nerevary; then roaghen the narrow cuI with a file. Dip in a solution of biobloride of platinoas, containing 5 per rent. of the metalt temore excess of the drop, und heat cuutionsly till the gloss acquires a metisllio appenrance. Repent this 4 or 5 times.
3657. Boettger's Method of Platinizing Glass. Pour rosemary oil upon the dry chtoride of platinum in a porcelain dish, and knead it well until all parts are moistened; then rulb this up with 5 times its weight of

Larender ont, and leave the liquid a short time to clarify. Tho objects to be platinized aro to be thimly coated with the above preparation and afterwards heated for a few minntes in a

muflle or over a Bunsen bnmer.

3658. Platinizing Copper, Yellow Metal, and Brass. In order to obtain a platinizing faid capnble of platinizing copper, Yellow metal, and brass, add to a moderately concentrated solution of chlorido of platinum, fiacly powdered carlonate of soda, until efforrescence ceases; nest some glucnse, and afterwards just so much common salt as will catso 4 whitish-colored precipitate. When it is desired to apply this mixture for platinixing, tho objeets to the treated aro placed in in vessel made of xise and perforated with holes; tho vessel is then plared, with its contents, for a fors seconda in tho mixture thuts described, which, just precrions to using, sheuld bo heated to 140° Frhls. On being removed from tho the resment, tho objests are to bo washed with water and dried in kawdust.
3659. Stolba's Method of Nickel Plating. Into the platiag vesset-which may bo of poreclain, lut preferalily of eapper - Soplaces a coucentrated selatioss of chtoride of zisc, which is them diluted with from 1 to 2 volumes of water, and beated to boiling. If any precipitace teparates, it is to Lia redisolved by udding a Tus drops of hydroctlotie neld. As inach puwilered zine ns can bo taken on the point of a kifo is throwa in, by which the vensel hecumes covered internally with a ocatiajf of zine. The nichel tall-for which purpase ether the eltoride or sipphate may lis maed-is tren alded natil tho lignid is dis theotly meeen; and the articles to 100 plated, provianily tharoughly clemed, aro introhluced, topether with somo zine fragments. Tho luillag Is continned for 15 minutes, when tho costiug of aickel is cumpleted, atad the process is fixblaht. The articles aro well wushed with wator and cleaned with chalk. If a thicker crabling lie desires, the operation may to reprated. Prufersmr Stollin fonnd that copper veboblis thus platest were scarcely tamblied after soveral manthi' use is tho laboratury.

El cesa for depouting. This in a proating of moctal

 on objects, metallic or othorwise by the agoncy of s current of galranic electricity. Before entering into any dosoription of the methods employed, it will be becessaty to give some indisponsublo preliminary directions, in ordor that the wholo matter may be more clearly understood. Tho matter is mainly derived from the 4th edition of Napier's Manal of Electro-Metallurgy.3661. Solution of Copper for Electrotyping. Crush fine sulphate of copper in erystals, and exposa to the air for some time. This oxidizes any fron that may be present. Stir the eulphato of copper into pure cold water, pntil tho water will dissolvo no moro; then let it settle, and deeant the clear solution; add to it mbout one-fourth its quantity of water, and it is revely for nis.
3662. To Amalgamate Zinc. Immerss a plate or strip of zine of the required size in difluted sulphuric acid, for a tew moments; then rub quieksilver over the surface. Whenever tho surface of the amalgamated sinc employed in a battery begina to blacken atul fose its quicksplyer coating, the zine must be taken out of the atcid cell and mmalgamated again.
3663. To Keep the Zinc Plates of a Smee's Battery Constantly Amalgamated. The tronble of renewing the coating of amalgam on the zine plates may be obriated by a very simple contrivance. Cover tho bottom of the cell with quicksilver, and let the zine plates bo long enough to dip into it.
the zine plates, so that it will not touch the mercury. By this arangement the zinc plates draw up the mercury as fast nis it is worn off by the action of the acid.
3664. Decomposing Cell. This is a vessel of suitablo shape and dimensions, containing the plating or electrotyping solation; and is usually fornished with appliances over it for suspending and sustaining in their proper position the negatice electrodes or articles to receive the metallic coating, and their corresponding positice electrodes, or plates of metal, which serve to complete the electric circuit, and whose decomposition serves to keep up the strength of the solution. The pesitive electrode must. nlways be of the same metal as that which the solution contains.
3665. The Principles of the Galvanic Battery Explained. If a piece of ordinsty metallic zine to put into dilute solphuric acid. it is speedily acted apon by the acid, and hydrogen gas is at the same time evolved from its surface. If the zine be taken out, and a littlo mercury be rubhed over its surfhec, mamalgamation talsea place lectween the two metala, and the plate becomes of a beautifil bright silver appearance. If the aino thas autulgamated be agaio piat into the dilate ueid, thero is no aetion, for the mereury retains the sion with sufficient force to protect it from the acid. If a pieco of copper be immersed along with tho rinc, and the two netalt bo mado to touch each other, a particalar influence fa ioInced among tho threoelements, zine, copper, and weid; and the achl again acta upon the xino as if no meroury was npons it, bat the bydrugen ia now seca to escapo from the nurfoes of the copper; this action will go on as tong as the two metals are kept in contact. Or if, instead of cususing the two metala to tottels, a wiro bo attacheod to each, and their opposite enda are placed in a little dilate acid in another vessel, tho namo notion will take place between tho zine and copper as when they wero in contact; bat in thia inatance, the ends of the two wires which dip into the veasel containing acid will undergo a change; the one atteched to the zinc will give off a quantity of hydrogen gas, while the one attached to tho copper, ampposing it to bo alno copper, will raphdly dissolve.

Figuro 1. Keprobenta tho zinc and copper, placed in diluto sulphurio acil, beought into contact; io this experiment, gas will be scen escaping from the copper.

Eigure 2. Zinc and copper, placed in dilata acid. and wirvs attached, which, when connected, will extribit the same effects as in the fift case.

Figure 3. Stiows the wires connected by means of a liquid, such as acid and water, salphate of copper, etc., contained in as wineglass.

The copper and xinc, c and z, with the acid in the tirst vessel, figure 3, constitate a battery of one pair. The wine-glass in which tho wires are placed, is termed the decomposing cell (sec Na. 36i61), and is the receptacle or vessel in which the process of electroplating is effected. The above description will give 4 tolerably clear idea of the principles of a simple galvanic battery. Different kinds of batteries are only different modifications or
applicatimns of the eame principles, and have each their special excellenee; bot for electroplating, Smee's lattery is the one matally adopted.
3866. Ta Construct a Cheap Galvanic Battery. Talie a gallon stone jar, and place is sheet-zinc cylinder therein, and Inside that a porous cup (a porous flower-pot with a cork fitted in the hole will answer after a fashion). Inside the porous cap placo a piece of sheet copper. Uso a solution of common salt next the ninc, and a solntion of sulphinte of eopper next the copper in the porous cup if a stroug earrent bo desired. Tho liquids inside and outside the porons cup should stand at the zame level. Dilute sulphuric acid (1 mart ayd to 10 water) makes a very constant, lut weaker correat.
3667. Description of a Smee's Battery. This nppuratue consists of a ressel containing a mistire of sabout 15 or 20 (Morfit gives only 7) parts watez to 1 part sul. phurio acid, provided with a strip of haked and varnished wood, long enough to atand acrosa tho edge of the ressel, and grooved lengthwaya anderneath, to rocieive the edge of a silvor plate, to wbich a chort wire is attached and coaneoted throogh a bolo in the wood with a serew cap on the upper side of the wood. Twa platos of tine aro urranged, ono on each side of the strip of wood, and secured by a acrew clatap, the upper part of which is also fitted with a scrow cap. The objoct of the serew caps is to recefve atal eocare the wires conneoting with the deconpoing coll. Tha zine plates muit first bo conted with amatgam (see No. 3662, also No. $3663)$; and the vilver plate mast be covered with a cuating of platina.
(Soo No. $3 \% \mathrm{~V}$.) Tho irrangemeat of the parts will be seen it tbe cut. When two or more cells aro usad is combinativn, forming a compound battery, the silver plate of the fint coll is connected by is wire with the zind plates of the enecond; the nilvar plate of the second call is conneetel with tha zine of the thind cell; tho silver of the third with
 tho sine of the fourth, nad so on through any number of celle Tho two wires conneeting the battery with the decomposing trongb are attached, one to the zinc plates of the first cell, and the other to tho silver plate of the last cefl. In faet, the aino pole of the finst, and silver pole of the last eell, really conistituto the batlery, the in: tormediato cells each fumishing an aiditional quota, as it weto, of intenaity, to the galyanic current.
The wire connected with the zioo (or poritipe) plates is called tho negative pole or eathode; and the wire coanecteal to the sillyer (oe nega/fre) plato is called the pasition pole or asoote. The masterial used for connecting wires is asmally eopper, and should bo eloan and bright, and in order to fassure perfoetion of contact, tho ends of the wire may bo sumalgamated by dipping, first in a solution of mitrate of mercury, and thea in metallie mercary.
3638. Improved Iiquid for the Galvanic Battery. Mr. Victor Barjon's new battery liquid is mule by mixing a solation of biebromato of potash with a luths lime, and with sulpharic acid. He puts 2 pounds bichromato of potash into a gallour of boiling water, and lets the solution cool down to 68°, and adda 2 ounces of lime. After stiming, he adds sulpharic acid until the gravity reaches 35° Baum. Then, having atirred the whole,
he lety it stand for 24 hours, when it is ready for ase.
3669. Electrotyping by the Single Cell Proceas. This ia on adaptation of Dasiell's cell to the purposes of electrotyping, and dispenses with any separate decomposing coll; in fact it is a galvanic battery and a der composing cell combineil in one, and is useful, for small objects, from its simplicity. About $\frac{1}{8}$ fill a largo jar (a preserve jar without any neok is beat), with a solution of sulphate of copper (sec No. 3661); insert in this a small tabalar porous vessel of about the same height as the jar (thene porous tubes can bo found at any atoro whero chemical apparatus is sold), and poor into it a nizture of 21 parta water and 1 part sulphuric acid, untif the diluted acid in the porous tube stands at tho same level as the sulphate of copper solution ontuide it. To one end of a piece of copper wire fasten a strip of amalgamated zine (sea No. 3662), which is to be inserted in tho porons tule; to the othor end of tho wiro attach the objeet to be electrotyped, properly prepared (see No, 36e-9), and place it in tho copper solution, with its face parallel to the zinc plate, and aboat of an inel from the pide of the porons tubes. In about 24 hoars the deposit of copper will be of atront the thicktiess of a card, abs may be taken of. When not in use, the zine thould be taken out, wasted aud dried; and when in uso must on no account touch the bottom or any other part of the parotas tube. It is a guod plan to give the wire one triat round antick of wood, fiail across the top of the tube, ale as to maapuad and support the zius. A few erystala of sulphate of copper, encloved in a pieco of lawb or net, should be hung from tbe chgo of the vessel just below the surface of the copper aolation, to replace the copper that deposits on the olject being eleetrotyped, and provent the solation from becoming weaker.
3670. To Coat Silver with Platina. This is effected by the one cell proecsis, substituting for the eulphate of eopper solution, water acidulated with sulphuric acid, and containing a little chloride of platioum. The silser is firat rougheoed on tho sarface by applying strong nitric acid, and washed t it in then attached to the ond of the wiro leading from the xino plato in the porons cell, and im. mensed io the platinuth holmtion exmelly as if it wero a medal to bo clectrotyped, until the surface is covered with is lark and grunular depopit.
3671. Electrotyping with a Battery. Por this parpose a Sumed battery (see No. 3667) is vanally employed, in connection with a decomposing coll (Seo No, 3e64.) As the method for electrolypiag, or coating with copper, is aubstantiaily tho same as for other metals, A description of the first will suffico. The decomposing cell being charged with is solution of sulphate of copper (seo No. 3661). tbe object, duly prepared (see No. 3069), to bo electrotyped, is properly secured in pissition, and connected with the cathente or wire lead. ing from the zine plates of the battory. To the anoda or wire lending from the silver plate, a prositive electrode, consisting of a piece of the same metal as the solution contains (in this cuse, copper), is attached, and immersed in the solution, face to face with tho object to be electrotyped; as the copper from the solution is precipitated on tho object, the piere of copper is dissolved, and thas licops up the strength of the molution. Any number of oljects may lef clectrotyped in the same decomposing cell, provided that each is cotmected with thd zime pole of the battery, and hangs faciug a pusitice electrode. The usual arrangement for this purpose consists of a water-tight trough of suitable size and shape (usually oblong), to contsin the copper
or other metalic solution, and is provided with metal hars, long onotgh to reach tho length of the trough and rest on the upper edgo at each ond; tho bars rest on dry
varnished blooks of wood, and are laid parailel to each other at a distance of 3 or more inches apart, according as the spuce between then is required. Plates of copper of nearly the same length as the trough are suspended from the hars, and submerged in the solution paralled with theal. These hars, and consequontly the copper plates (which constitute continuons positive electroles) ato conneoted with sopjer wiro or ribtions to the apude, of silver polo of tha battery. Altemately liotwecn these bart, ather bars are placed, exaveIy uimilurly urnuged, but huving *mall peo feotions of luthons on one of their sides, to which the objects to log ebectrotypel are kechad by it wire, and nompaded in the solyfinn, fiee to fiwe with its correspoming sepper plato. Thad latter bars are connmecteal with the eathode of zine pole of the battery: It will thas he evident that rach couripuoss pair of bark ace matally positiye abl negas tive -plestrodes, and thes objects of the one mint elowaly flaed then copper plate on the other. The @econpapying ett will give pume ideaf of tho arrmagement of ond pair of barsi.
If B is tho bar contected by the wire $\&$ with the silver pole of the battery, and sapportiog is plate of coppier staspanded in the trough. th the ent, the coppee is supposed to ho trimxparent, in orider that the oljecta to

be electrolsped, suspended from the bar $A \quad A$, roay be visible; they aro anppoed to the liehond and clonely facing tho copper plates. The trar $A d$ ia connectel by tho wire Z to tho vine pole of the buttery
3672, To Obtain a Copper Mould of a Coin. A tins eopper wife tonst he put rousd tho sdgo of the coin and fastensed by Lwisting: Tben egvor the back part, and the wire, epost which the dequesit is not required, with beea' wax or fallow, os, what it better, tabled tho back of tho colin is grtas percha. Have tho foro part of face well cleazel, and then हilffice moistenerd with sweet oil, by a camel'm-hair poueil, and thon cleaned off by is silk eloth, till tha sidface appeare dry; on, instoal of oil, tha surface may be brushed over with hlack lend, whicb will impart to it a bromase appearance. The use of the vil or blew lead is to prevent the deposit acheriog to the fuce of the coin. The coin is nuw rendy to be sulljected to the kingles cell process (sce NO. 3609), by which means a perfect counterpart or mond of the coun is obtained. This mould way next be treated exactly as described for obtaining it from the original coin, and the deposit from it will be as fac-simile of one side of the coin. With eare, any oumber of duplicates may be taken from this mould, if it be properly coated.
3673. Coating for Copper Moulds. Take a gill of rectified kpirits of turpentine, and add to it about tho size of an ordinary
pea of leees' wer, When this is dissolved, wet over the surface of the mould with it, and then allow it to dry: the mould is then ready to put into the solution. Medals taken from moulds so prepared retain their leearatifully linght culur for a long time. But when fine line engravings are to be coated, the litule wax disolved in the torpentime may be objectionable; so also is black lend, for both have a tendeacy to fill up the fine lines. In this case, let the trirpentine wish be wiped off with a silk handkerchief, instrad of drying it; but for ordinary medala this ohjection will searcely apply.
3674. Preparation of Wax for Taking Moulds. Whether thebeen' Washavestearino int it or nint, it is best to prepare it in the following manper: Put sume common vifgit Kas fito an eartheoware pot or pipkin, and place it orer a slow fire; and when it in all inelted, atir into it a little white lead (flato white), or hack leail (jlumbago), say abont. 1 ounce white leal to the pound of was ; this mixture tends to prevent the mould from eraching is the cuoling, and from floating in Lhe solation; the mixtiore shauld be re-melted two or threo times before msing it for the first time. Resin bau becn recommended as a mixtere with was; mistures of which, In garious proportions, have been used with success; bat when often used, tecumposition or fame chauge takes place, which makes the mixturs granular and floxible, renideriog it lesin tusefil foc takiag mouhtr. When resin in pred, the mistire, when first metted, should be boiled, or mearly eo , and kept at that heat vatil efforvercence ceases; it is then to bo peturel out upon a flat plate to cool, affer which it may be used as deseribed.
3675. To Tuke Moulds in Wax. The medtal to the copted must bo brosked orer with a litide porvet oil: waft lorub, called a painter's sawh tool, sutits this purpone well: care nust lie takea to bruds the oif well into atl parts of the medial, affer whish the soperflawh ail mulst be xiped off will a piece of cotton of cotton woof, If the meda! has a liright polkbed aurface, very litule oif is required, hout if the surfiner lo matted or demf, it requites more care with the oil. A slip of cand-linarl or tio is nows luound round the edge of the medal, the edge of which Nip whomh rise aloot obe-fourth of an inch higher Thut the highet part on the face of tho medal. This dobe, bold the medal witb ita rim a little Aloping shen pour the wax in the lovest portion, mud gently loring it lesel. so that the melted was ouay graluafly flow over; this will provent the formation of air-bubbles. Care mitait he taken sot to prour the wax our too hot, las that ta cue great calase of failure in gotting goonl moulds; it sbould be poered on just nu it is heginning to set in the dizh. As soon as the composition poured on the melal le set (becomses solid), undo the rim, for if it was allowed to reunin on till the wax became perfectly cool, the wax would adhere to it, and would be liable to crack from shrinking Pat the medal and wax in a cool place, and in sbout an hour the two will separate eavily. When they authere, the cause is either that too little oil has been used, or that the wax was poured on too hot.
3876. To Take Wax Moulda from Plaster. If the object from which the moonld is to be taken, which we assome to bo a medal, be composed of plaster of Paria, and the mould is to bo taken in war, the finst operation is to prepare the plaster medal. Some boiled linseed oil, such es is used by house painters, is to be haid over the eurface of tha medal with a cameldehair pencil, anit continued umtil it is perfeotly satarated, which is known by the plaster censing to absorb sany more of the oil. This operation succeeds
best when the medat is heated a little. The medal shoutd now bo laid usido till the oil completely dries, when the plaster will le found to bo guite lard, and having the appearaneo of polished marble; it is, consequeutly, fit to bo used for taking the was monda, whioh ia dobe in the same mabuer na we bave described for taking is wats mould from it-metalis medal. (Sec So, 3675.) Many prefer baturating thes medal with water. This ia best dono by placing the medal bock down ill the water, Imat not allowitt it to dow over the face; tho water rised, by capillary attraction, to the anrface of tho medal roadering the faco damp withopt betug wet. The rim heing mow tied on the plaster medn, the melted was is paured lapor it, Tlis method ia equally good, but lability to fail ures is maib geviter, enased generally by the was beine too bot, The plaster melal may be katurates with skimined imflk and thon dried; by repentiag this tejee, the plaster assumes on the nurfice an appeantice like marbe, and may bo lavad for calkog wax mintlds. 3677. To Tako Moulds in Plaster. If a plaster of Parias mbild ix to bo takens fom the metalitic medal, the preparation of the snedal is the, kames at described in No, 3676 ; sad when so prepared with the rim of cardboard or ting get is haius wilh na much water in it as will lie sufficient to make a proper sised moutd (a very litule experienco will enable the operstor to know this), then tako the figent plaster of I'aris ond sprinkle it into the water, thirring it till the mixture becomes of the consiptopece of thick oream; then potr n omall portion upon the face of the medal, and, with a brash nimilar to that uined for oiling it, gontly brath the plater into overy part of the surfues, which will prevent the formation of air-bubbles; then pour on the remainder of tha plaster till it fiata to the odga of tho rime: if tie plaster in groed, it will bo ready for takigg off ith ism hour. Tho moold is then to bo placed berore, a fire, or in an oren, mitl quite dry, after which it is to be placel, lanek dinwtwrads, 3n a slballow yeseel coulaining melted wax, not of sufficient depth to flow over thin fiew of the mould, allowiug the whole to rempie over π slow fire until the wax had penctrated the plaster, nod appoars upot tho fuce Havieg removed it (1) a ceol place to harden, it will moos le ready for eloctrolyping. Glycerino afturds an oxcelleat coating for the interior of plaster moulds, to prayent tho melted wax from alboring to the inside of the mould.
3678. To Take Moulda of Plaster from Plaster Models. When a plaster moutd in to be taken, the foce of the model is preparmi difforently to that degeribed, in order to prevest the adhusion of the bwo plasters. The bect substatice for this purpose is a mixture of poft soap said fallow, upiscrably useal by potters for proqurise their moulds, and ralled hy them loeques. It is peopared in tho following manmer: \& pound aof soup it put into 3 pinta clean water, whict aro set mis clear fise, and lept in agitation by stirring: when the mistaro beging to boil, add frotn i ta 17 oupers tallow, and keep boiliug till it is rednced in bulk to nboat 2 pinta, when it is realy for use. The surface of the meitat muse toe washed ouer with thin larquer, allowing it Lo albsoth est much as it ton, when it assumes the appearance of poilshed marble: it is now prepared with is rim of paper, and the monld taken as directel for taking plaster moulds. (See Nio. 36\%\%.) When hardened, they will separate casily. Wetting the plaster model with a solution of soap before taking the cast will do, or, if the plaster model has been saturatesl with oil or milk, it has only to be moistened with sweet oil the same as is metal model,
3679. To Take Moulds of Fusible Alloy from Plaster Models. If a motild of fusible metal be required from a plater model, the plaster may be saluratert either with boiled oil (see No. 3676), or the soap and tallove lacquer (see No. 3678), and the mould taken in the same manner as from a metalie medal. (See No. 3677.)
3680. Copper Moulds from Plaster. Many electro-metallurgists prefer taking a monld in copper when the medal is of plaster of Paris. This is dose by tho electrolype process (8ee No. 80771); the plaster model is saturated with wax over is slow fire, es alrealy detailed, and then prepared for taking an elentrotype in the usual manmer (See No. $36 \pi 2$, ;c-) We need hardy meation that the model is this ease is destroyed; but, notwibastanding, to the cise of plaster modela, to take as copper manld ta the most preferable, as it may be repaired in case of slight defect, and it may bo used over and over again without deterioratiot. When in electrotyp is required of a model that is underent, or of is bust of figure, the procest which wo have described will not maswer, as the monld cannot separate from the model. In speh cirequistances the general method of proceeding is to part the moald in separato pieces, and then Joiu these together Tho materiat used for this purpose is plaster of Paris. The operition, bewever, to ho well done, requires a person of coniderable experience.
3681. To Take Moolds in GuttaPercha. Gute percha, at - is material for mouding, aerves the pidepoae must wimitrably. The method adopted for taking moulda is io heat the gutta-percha is boilinge water, of in a chamber heater to the temperature of boiting water, which maked th unft rond pliable. The medal is thted with a metallio rim, or placed in the tottom of a metul snueer with a cylin. Arical rim a Little larger than the medal; the mednl being placed back down, a quantity of gutta-perchan is prensed into the savecer, and as much added as will canse it to stand above the edgn of the rim. It is now placed in a commos cupying-press and kept meder pres. enre until it in quife cold and hard. The finpressions taken this way are generally very fino. When the medal is ont ceep cut a leas prespare may anffles, but whon the preasnre is too little the impressioni will le blunt. Gptta-perchas takes a conting of black lead remdily, and the doposit goos over it esvily. A misturo of gntta-purelia and marion glue has been recotmonded for montda hasuperior to gritta-percha alone. This method of moulding by pressurie is adopted, in prineiple, by printers, for making electrotype platea from type and engravings, employing shecta of preparel wax, at a temperature which gives it tho proper consistency.
3682. To Mould the Face of a Person in Wax, Thko 1 pornd new wax, $\frac{1}{2}$ potand resin, melt them at a sluw fire, let them cool till you can endure some of it vo jour hand without burning it; then, havisg oiled the face with olive oil, and covered the hair of the eye-lids and ese, brows with paste, with is hrush nimbly cover the face abont the thicknuss of a quarter of a dollar, being earefil not. to stop the nostrils, and that the person does not cose his eyes firmly enough to wriakle his face, because that will rendur the face deformed. Take the was off gently, and strengthen it with clay on the lack, that it may not give way. After this manner you may cast all sorts of facea; laughing, weeping, or wry fuces; also fruits or anything else, dividing the mould into two pieces with a warm knifo; then fortify them with clay and join them together.
3683. To Mould Figures in Paste.
monld it until it becomes as close as max, and very pliable; bent it, and roll it with a rolling-pin, as fine and as far as it will go; then apply it to the figure to be moulded; dry it in a stove, and it will be rery hard; and to presservo it from vermib, you may mix a little powiler of aloes with it.
3684. Composition for Taking Moulds of Medals, \&cc. Melt together enual parts of spermuceti, stearine or hard tallow, and white wax. Or: Mix together by melting, 娄 pound black resin, 1 pound hard tallow, and 6 ounces becs war. This last is more adapted for coarse work, such as architectural ormaments, de, and is poured on the object to be copied (previoualy oiled) in a melted state. Articles in plaster of Paris mast bo finst soaked in water, observing that nono remsins on the surface so as to interfere with the de8ign.
3685. To Make and Ure Elastic Moulding. The process patented by Mr . Porks for taking a mionld of aay kind of model in one piece, is excellently adapted for the electrotypist. The material is composed of glue and molasses. 12 pounds glue arozteeped for meveral houra in ps much water as will moisten it thoroughly; this is pat into a metallie vessel, which is placed in a bot bath of boiling water. When the glue falls into a fluid state, 3 pounds of molasies aro added, and the whole is well mized by stirring, Sappose, now, that the mould of a small bust is wanted, 6 cylindrical vessel is chopen so deep that the burt may stand in it an inch or mo unider the edge, The inside of thin rewsel ia viled, a piece of stoat paper is pasted on the lenttom of the bust to preyent the fluid inisture from going inside, aod if it is composed of plaster, band is pot insido to prevent It from flosting. It is next completely dreacbed in uil and placed mpright in tho vessel. This done, the melted pistore of glve and molasses is poured in till the buat is knbmerged to the depth of an inch. Thio whole prout stand for it least 24 hours, till it is perfectly cool througbust-after wbich it is taken out by bevertiag the rexsel upon a talle, when, of course, the bottom of tho bust is preseated thite. The mould is now cut ly means of a stiarp knife, from the bottom pi tho lack of the frast ta the front of the hend. It is next beld open by Ule operatorr, when ant assidant lifs vat tho bust and the monld is nllonred to ro. cloce, A pioce of broven japperis tiod round it to keep it firms. The operator has now a couplete meald of the butst in one piese; but he caunol treat it like kax moulds, as its subsfance fy soluble in water, abd wonld bo destrogrif if put into the eolstiom. A mirture of pax atul resin, with ocensionally a litule soet, is melled and allowed to stand till it ia on the point of setting, when it is poured earefalty inito the monld and tof to cool. Tho moult is then uttied and opened ap as beforo: the wax bust is laken out, and tho mould may be tied up fur other casts. Besides wax and resin, thete are several other mistores used-deer's fat is preferable to common suct, stearine, ete. The object is to get a miatura that takes a good chot and beconies soltd at a hent less than that which would melt the monla.
3686. To Take Moulds of Figures. If the model or fignire be composed of plaster of Ihats, a mocld is often taken in copper by deposition. The figure is saturated sith war (sec Nó 3688), rod copper deposited upon it stfficiently thick to lear handling without davago when taken from tho model. The figure with the conper deposit is carcfully sawn in tro, and then boiled in water, by which the plaster is softened abd casily separated from the copper, which now serves as the mould in thich the deposit is to be made.

It is prepared in the same way as we have deberibed for depositing in copper moulds. (See No. 3672.) When the deposit is made sufficiently thick, the copper mould is peeled off, and the two halves of the figure soldered together. The copper monlds which are deposited apon the wax models taken in tho elastic moulding are often treated in the same manner; but more generally these moulds aro used for depositing silver or gold into them, to obtain fac-similes of the object in these metals, in which case the copper monlds are dissolved off by acids.
3687. To Coat Figures with Copper. When plaster busts or figures are wanted in copper, the usual way is to prepare the figuro with wax (see No. 3698) and to coat it over with a thin deposit of copper, letting the copper remain. Somo operators, when it can bo done, remore the plaster and wash over tho inside with an alloy of tin and lead melted. In this case the copper must proviously bo cleaned by washing finst in a sofntion of potahb, and then with chloride of sinc. The lattor modo will cause the alloy to alhero to the oopper and give it streagth. In either of theas cases the deposit mast not be very thick, or it will throw the figures out of proportion, anch as the featares of a bust, eto. Any slight roughness of deposit may be ensily smoothed down by means of fine emery or glass paper, (See No. 1935.)
3088. To Prepare a Plastor Cast for Electrotyping. First dry the plaster cast in the oven thoroughly, thon get equal parts of bees' wax and common resin, melt them togother, apd boil tho cast until it will not absorb any more; when cold, get some good black lead and cover the cast entircly, not thick, but a bright surface. (Sce No, 3689.)
3689. To Prepare Non-Metallic Moulds to Receive Deposit, Wero any of the plaster or wax moulds, deseribed abovo, athsohod to the zino and immersed in tho copper aolution in the ramo manaer as described in No, 3669, no deposit would bo obtained, becausa neither tho plaster nor the wax is a conductor of electricity. Some substanco mast now bo applied to the eurface in order to give it conducting power. Thero aro several waya of commmicating this property, but the beat and most simplo for the articles under oousideration is to apply common black lead (carbaret of iron) in the following manner: 4 copper wire is put round the edge of the modal, or, if wax moulds aro used, a thin alip of copper may be inserted into the edgo of the mould-or, being slightly heated and laid npon the back, the two will ndhere. A fino brash is now taken (a small hat brush is very snitable) and dipped into fino black lend, and brashed over the eurface of the metal. Tho brashing is to be continued until all the faco round to the wire upon the edge, or slip of copper forming connection, has a completo metallic lustre. 4 bright polish is neces. Rary to obtain a quick and rood depesit. In brushing on the black lead, caro shonld be taken not to nllow any to go apon the back or beyond the copper connection, or the deposit will follow it, and so cause a loss of copper, and make the mould more dificult to separate from the deposit; being, as it werc, incased. When the face of tho monld is properly black-leaded, the copper wire conneoted with it is attached to the zino plato in the porous cell, and the mould immersed in the copper solution; the deposit will immedistely begin upon the copper connection, and will soon spread over overy part, completely covering the black-lead surfaco. When the deposit is considered sufficiently thick for re-moving-which, in ordinary circomstances, will requiro from 1 to 3 days-the medal is
water, and the coancetion is taken off. If the deposit has not gono far over the edgo of the mould, the two may bo separated by a gentle pull; if otherwise, the saperfluous deposit must be eased off, and if care be taken the wax may be fit to uso over again; but when the mould is plaster of Paris, however well it mey bo saturated with war, it is seldom in a condition to nso again. If the plaster mould bo large and thick, it is advisable to coat the back with was or tallow, which is done by brushing it over with either subatance in a melted state; the monld, being cold, will not absorb the wax or tallow; hence it may bo recoyered again. The salphate of copper possesses so penetrating a quality that if the slightest imperfection ocears in the faturation of the mould by wax, the solution will penetrate throngh $\mathrm{it}_{\text {, }}$ and the copper will be deposited upou the face of the object adhoring to the plaster, giving to tho metal a rough, matted appearance, and sorionaly injuriag it.
3690. To Use Metal Moulds. Tho morkd in fusiblo alloy does not require to bo black-louded, but the burfaco to be electrotyped must be prepared with turpentine, \$0., (see No. 3673), and the back and edgo must be protected by a coating of wax or other non-condueting material ; it may be connected with tho zine pole by putting a wire round its edge provions to laymg on the not-conducting substance, such as tallow or was, which ubonld also cover the wire. Or a slip of copper or wire may be laid upon the back, and tastened by a drop or two of sealing-wax; tho boek is then ooated, but care muat bo taken that the wax does not get between tho connection and tho medal, whieh will preyent deposiL. Tho deposit on this monld goes on instantaneously. When sufficiently thick, it may bo takeo off in the kame mancer as from tho wax monld. These monlds may be used soveral times, if care bo taken not to leat them, bs thoy easily melt. The medala obtained from metallio monlds prepared with the tarpentine solution have is bright gurface, which fan not liablo to chango easily, but if the mould has been prepared with oil or composed of wax or plaster, the metal will either bo dark, or will very easily tarnish. For tho meana of preserying them by brouzing seo Nos. 3771 , 40.
3691. Precautiona on Putting the Moulds into a Solution. In putting moulds into the enpper solation, the operator is often annoyed by small globules of air edbering to the starface, whech either provent the deposit taking placo upon theso parts, or, when they are very minnte, permit the deposit to grow over them-caasing small hollows in the monld, which give a very ugly appearance to the face of tho medal. To obviate this, give the mould, when newly put into the solution, two or three shakes, or givo the wire attached to it, whilo the moald is in the solution, a gmart tap with a key or knifo, or anything convenient; but the most certain means we have tried, is to moisten the surfaco with alcohol just previons to putting it into the copper bolution. A little practice in these manipulations will soon enabla the operator to avoid theso annoyances.
3692. Electrotyping on Large Objects. When busts or figures, whether of wax or plaster of Paris, are to be coated with copper, with no other conducting surfaco than black-lead, it is attended with considerable difficulty to the inexperienced electrotyper. The deposit grows over all the promment parts, leaving hollow places, such as armpits, neck, ctc., without any deposit; and when once missed, it requires considerable management to get these parts costed, as the coated parts give a sufficient passage for the current
of electricity. It is reconmended by somo electrotypists to take out the bost, and coat the parts deposited upon the was, to prevent any further deposit on them; but this practice is not good, especially with plaster of Paris, for an electrotype ought never to be takea out till finished. Sometimes the resistance of the bollow parts is occasioned by the solution becoming exhausted from its position in regard to the positive pole. In this case a change of position effects a remells. It may be romarked that when a bust or any large surface having hollow parts upon it, is to be electrotyped, as many copper connectiona as possiblo ought to bo maile between these parts and the sinc of the battery. Let the comnections with the hollow parts be made with the finest wire which can be bad, and let the zine plate in the cell have a large surface compared to the surface of the figare, and the battery bo of considerable intensity tions, the most intricato figures and basts may bo covered over in a fow bours. Care has to be observed in taking off the connections from the deposit, or the operator may tear off a portion of the deposit; if the wires used are fine, they should be ent off close to the deposited surface.
3693. To Coat Busts and Figures. Busta and figures, and other complicated works of art, whioh cannot be perfeetly coated with black-lend, may be covered by a film of silver or gold, which serves is a conducting medium to the copper. This is effected by a solution of phosphorus in aulphuret of carbion. The solation of phesphoras is prepared by adding to each pound of that sobstance is poends bisulpharet of carbon, and then thoroughly agitating the mixtare; this solution is applicable to yarious uses, and, amoanot others, to obtaining deposits of motal upon non-motallie substances, cither by combining it with tho sabstanees ou which it is to be doposited, as is the case of wax, or by coatiag the surface thereof. Any of tbe known preparations of wax may bo treated in this way, but the one preferred is composed of from 6 to 8 ounces of tho solution, 5 pounde wax, atal 5 pounds dents fat, melted together at a low heat, on aecount of tho iaflammatle nstore of the phosphorus. The eomposition thus obtained is acted opon loy en electrotypling solttion as readily as if it wore conted with the black-lend.
3694. To Gild or Silver-Plate Flowers, sec. If the sulution of phosphorns (sce No. 3005) is to be applied to tho surface of the article, an addition is made to it of 1 pound was or tallow, 1 pins spirits of tappeatine, and 2 ounces puro India-rubber (dissolved with 1 potsd asphalt, in bisulphoret of carbon), for every pound phosphorus contained in the solation. Tho wax and tallow being first meited, the solation of India-rabber and asphalt is stirred in; then the turpertine, and after that the solutinn of phosphoras is added. The solution prepared in this nunner is op plied to tho surfeces of non-metallic sulstances, such as wood, flowers, etc.; by immersion or brushing; the article is then immersed in a dilute solution of nitrate of kilver or chloride of gold, is a few minutes the surface is sovered with a fine film of metal, sufficient to ensure a deposit of any required thicknees on the srticle being connected with any of the electrical apparatus et present omployed for coating articles with metal. The solution intended to be used is prepared by dissolving 4 oupces silrer in nitric acil, and afterwsids diluting the same with 12 pallons water; the gold solntion is formed by diseolving 1 ounce gold in nitro-muristic scid (aqus regia), and then diluting it with 10 gallons water. The solutions of kilver and gold, pre-
pared as above, will last for a long time, and serve for a great many articles. When it is couvenicut it is best to use both solations. The connecting wire should first be attached to tho articlo to be coated, before being dipped into the phosphorus solution, but connected at eneh parts us will not hurt the appearance of the object by leaving a mark when it is taken off. Caro should bo taken not to tonch the article with the hands after it is dipped into the solation. The object supported by the connections is immersel in the phosphorus solution, where it remains for two or three minutes. When taken out it is dipped into the silver solution, and, as soon as the surfaco becomes black, having the appearance of a piece of black china, it is to be dipped several times in distilled water, and then immersed ia the solution of gold about three minates; the surface takes a bronzo tinge by the redaction of the gold. It is next washed in distilled water by merely dipping. not by throwing water upon it. Tho wire connection is now attached to the zine of tho battery, and then the article put into the copper solu. tion, and in a few minates tho article is coated over with a deposit of copper. A thin copper surfaco may thius bo piven to small busts or figures without sensibly lintorting the features.
3695. Electrotyping on Wood, Dip the wood in metted was, then brach over with black-lead until polished; Insert a wire of copper, and seetlat it is also covered with tho plambapo, and in contact with that already on the woul; now attach to tbo pole of tho liattery, and immerse in the solution of eulphate of copper. The battery should not be too stroug.

Electroplating. Tho foregoing matter refers to electrotgping, that is,

 copper-coatinge, Ly galranism. Etectroplatiag, or coating with silser, is conducted in a kimifar manner to electrotypiog an far as general principles and manipulation are concerned, but differs in the solntions resed, ns well as in the preparation of the objects to be electroplated.3697. To Prepare Cyanide of Silver. Firsl distolso 1 vunce purs sitser in 2 ouncea nitric acid and 2 ounces hot water, after whiebs forther dilute with 1 quart hot water. The propriety of diluting the nitrate of ailver before precipitating liy tho cyavide of potassinm arikes from the fact that tho nalta of potasla aul soda (such as tho nitrates, chlortides, and sulphates), when in ktrong solution, dissolro amall quantitios of the silver salt, and thes cause a loge, which is provented by prerious dilution with water. The nitrio acid used must bo freo from hydroebloric (muriatic) acid; to a small quantity of the acid add a few drops of solution of nitrate of silver; If it gives a milky white precipitate, it contains muriatic acid, and should be rejected. Then dissolve 5 onnces cyanide of potassium in 1 quart water. Add this by degrees to the silver aolution until the whole of the silver is precipitated, which may be tested thas; Stir the mixture and allow it to settlo; then drop into the clear liquid a very small quantity of the second preparation, from the end of a plass rod; if tho elear liquid is renrlered turbid, it is a proof that the whole of the silver is not soparated; but if tho liquid remains unchanged, it shows that the silver is enticely separated. Tho clear liquid is then to be poared off, and the precipitate, which is cyanfde of silver, washed at least 4 times in hot water, dried and bottled for use. The ose and handling of cyanide of potassium requires great caution, as 11 grains of it aro sufficient to kill a grown person. The fames thrown
off while dissolving the silver in nitric acid are also highly deleterions, and must not be inhaled; it is better, therefore, not to dissolve silver in a close room.
3698. To Malre Silver Solution. The solution of silver used for plating consists of cyanide of silver dissolved in potassimm, adding a solution of cyanide of potassium to the cyanide of silver until it is all dissolved. The resulting solution constitutes the cyanide of potassium and silver, and forms the plating solution. It ought to be filtered previous to nsing, as there is always formed a black sediment, composed of iron, silver, and cyanogen, which, if teft in the solution, would iall ppon the surface of the artiele receiring the deposit, and make it rough. The sediment, howover, must not bo thrown away, as it contains silver. The cyanide of potassium, used to dissolve the cyanide of silver, may bo so dilated that the plating solution, when formed, shall contain 1 ouneo of Eilver in the gallon; of course tho proportion of silver may be larger or amaller, but that given is best for platiog. In dissolving 100 ounces of silver, tha foltowing proportions of each ingredient aro those which have been found in practice to be the best. Tako 7 pounds of the best nitrie acid, and 61 ounces of cyanide of potassiam, of the averago quality; this quantity will precfpitate the 100 ouncea of nilver dissolved in the acid nolution. After this is washed, take 62 ounces moro of cyanide of potassiam, the eolntion of which will dissolvo the procipitate; thia being done, the plating solution is then formed. Of course these proportions will vary according to tho difference in tho quality of the materials; but thoy will serve to give an idea of the cost of the silver solution prepared in this manner.
3699. To Diasolve Cyanide of Silver in Yellow Prusainte of Potash. Dissolve tho eyanide of silfer by yellow prussiate of potash (ferrocyanide of potasiam), 3 pounds of which aro required to dissolvo 1 ounce of silver. This forms an excellent plating solution, and yields a beantiful surface of silver. It minst havo a weak battery power, and consequently tho silver fa rery soft. The positive electrodo does not disaolve in thiasolution; there is formed upon its surface a whito scaly ernst, which drops off and falts to the bottom: and the solntion soon beoomes exhanated of silver, and will need to be renewed.
3700. Bolution Made with Oxide of silver. A good nilver solation for electroplating white metal and brass is made by dissolving 1 part oxide of silver in 8 parts cyanide of potassium and 64 parts warm water. Ox. ide of silver is mado by precipitating a polation of the nitrate by a dissolved alkali like potassa or baryta.
3701. To Make Bilver Solution by the Battery. The best and cheapest method of making up the silver solution is by the battery, which saves all expense of acids and the labor of precipitation. To prepare a silver solution which is intended to have an ounce of silver to the gallon, dissolvo 123 ounces cyanide of potussium in 100 gallons water; get one or two flat porotus vessels. submerge them in this solution to within half an inch of the rim, and fill them to the same height with the selation; in these poraus vessels place small plates or sheets of iron or copper, and connect them with the sine polo of a battery; in the solution outside the ghallow vessels place a sheet or sheets of silver connected with the silver pole of the battery. This arrangement being made at night, and the power employed being a Smee's battery of 6 cells, the zines 7 inches square, it will be found in the morning that there will be dissolved 60 to 80 ouncea of silver from tho sheets. The solation is now
ready for use; and by observing that the articlea to be plated have less surface than the silver plate forming the positive electrode, for the first two days, the solution will then bave the proper quantity of zilver in it. Oc easionally a little silver is found in the porous cell; it is therefore not advisable to throw away the solution in them withont first testing it for zilver, which is done by adling a little mariatic acid to it. The amatear electrotypist may, from thia deseription, make'up a small quantity of solntion for silvering his medals or figures. For example, a balf-ounce of silver to the gallon of solution will do very well; is small quasntity may bo prepared in little more than an hour. As the cyninide of potassium diasolves silver withont the aid of a battery, a plating liquor may bo formed by merely allowing a piece of Eilver to steep in this solution for a few days; bat this is tedious and uncertain, althongh for small operstions, and where porons vessels aro not convenient, it will serve the purpose.
3702. To Recover Silver from Solution. When a silver solution gets out of order, and cannot bo renderel fit for use agoin, tho silver may be recovered by ndding to tho solntion any acid that will neutralize the alkall; if nitric or wulphario acid be nsed, the silver precipitates as cyanide, bat if hydrochlorio ach bo used, the silver will be presipitated as a chlorido; in either case tho solution should bo dituted, or a portion of tho precipitate will be rediabolved. The precipitate fit allowed to deposit, the elear liquor decanted, and the vessel filled sith water to wash the precipitato, which is afterwards col. lected upon a filter and dried, and then mised with twice it weight of carbonste of potash, and fased in a Hessian crucible for 15 minutev, or until the fosed fluid ceases to er fervesce. On removing the crucible, and pouring the whote inte an iroo ladle, when cool the nilver will be found in the metallic gtate at the bottom of the ladie. In these operations, when pouring the acid fnto the cyanide solution, great care mest be taken not to inhale the fumes given off, which are very sbundnat and poisonous. The operation ahould be done in the opea air, and eren then it ts bad. Instesd of throwing down the silyar by an acid, it is better to evaporate tho solntion to dryness, and to fine the product na dencribed; in which case the cyanide is an excellent reducing flux, requiring no addition of carbonate of potash, and anves the necessity of evolving poisonons fumes.
3703. Test for Free Cyanide of Potassium in Solutions. If wo dissolya a small quantity of sulphate of copper and ndd to it an excess of ammonia, therv is produced a deop blue color. Gyanile of potassium will destroy the btue color, in a fired chemical proportion. To obtain thia proportion, take ton grains of pure cyanide of potassitum asd dissolve in water; then tako a certain quantity, say 100 grains, of sulphate of copper, and convert it into ammoniuret, the whole measuring a given quantity, atd pour from atn alkalimeter this blne liquor into the cyanide of potassiom till it ceases to destroy the color, then mark the number of graduations required, and that amount of copper solution will represent 10 grains cyanide of potassium - a quantitative test will thus bo got for the full cyanide of potassium in the solation, and should be used as follows: Say that the color of 60 graduations of the blue solution was destroyed by the 10 grains of cyanide of potassiom; then, to test the quantity of freo cyanide of potassiuin in the plating solution, take 60 gradustions of the bfue liquor in any convenient vessel, and add to it from an alkalimeter the plating solution, till the color of the blue liquar is destroyed, then note the quantity

Which contains 10 grains free cyanide, from which the quantity in the whole solution may be calculated.
3704. Test for the Quantity of Free Cyanide of Potassium in Solutions. It has been already mentioned that the cyanide of silver, as it forms npon the surface of the silver plate, is dissolved by the cyanide of potassiam. This renders it necessary to have always in the solution free cyanide of potassium. Were we to use the pure crystalline salt of cyanide of potassium and silver, dissolved in water, without any free cyanide of potassium, we should not obtain a deposit beyond a momentary blush, as the silver plate or electrode would get an instantaneous coating of cyanide of silyer, and this not being dissolved, the current would stop. The quantity of free cyanide of potassium required in the solntion varies nceording to the amount of silver that is present, and the rapidity of the deposition. If there bo too tittla of it, the deposit will go on slowly if there be too much, the silver plate will be disBolved in greater proportion than tho quantity deposited, and tho solution will consequently get stronger. The proportion we have found best is about half by weight of free cyanide of potassiam to the quantity of silver in solution; thus, if the solation contains 2 ounces of eilver to the gallon, it should bave 1 ounce of freecyanide of potassium per gallon, This is lnown by taking some nitrate of nilver. dissolving it in diatilled water and placing it in a common alkalimeter (sce No. B2), grailnated into 100 parts. The proportion of the nitrate of kilver in the nolution is to bo wuch that every two graduations of the solution should contain 1 grain. A given quantity of the plating solution is pow taken-may 1 onnce by measpre, and the test solution of nitrato of silver is added to it by degrees, so long aa the precipitate formed in redinsolved. When this ceases the number of graduations is then noted, and tho following equation gives the quantity of free cyaside. Every 175 nitrate of silver aro equal to 130 cyanido of potansium in solution. Suppose 20 gradnations wero taken, equal to 10 grains nitrate of tilver, then $175: 130: 10: 7.4$ grains free cyanide of potassium. Thin, multiplied by 160, the number of fluid ounces per gallon, will make about 21 oancer. We bave taken 2 graduations to 1 grain of nitrate of silver, that the solution may be considerably dilute and less liable to error. The following table is calenlated at a half grain nitrate of silver to the graduation, and will be a guide to the student or workmun. The quantity of solution tested is 1 ounce by measure.

Number of gradastiona unect.	Freocyanido per gallon.		
	BE.	dwt.	gr.
1	0	2	13
9	0	5	3
3	0	7	16
4	0	10	6
5	0	12	19
6	0	15	9
7	0	17	28
8	1	0	13
9	1	3	1
10	1	5	12
11	1	8	5
12	1	10	19
13	1	13	8
14	1	15	29
15	1	18	11
16	2	1	2
17	2	3	14
18	2	6	2
19	2	8	11
20	2	11	0

3705. To Cleanao Articles for Blectroplating. Articles that are to be plated aro first boiled in an alkaline lye, to free them from grease, then washed from the Ije, and dipped into dilute nitrie acid, which remores uny oxite that may be formed upon the sarface; they aro aflerwards brusbed over with a bard brosh and fino sand. (See No, 3381).) Tho alkuline lyo Eloonld bo in a calstic state, wbich is easily effected by bolling the cartionated alkali with slacked lime. antil, on the nuldition of a littlo aejd to a smad drop of tho solation, no efferyescenco oseetrs. (Sec No. 101.) Tho lime is thin allowed to rettle, and tha elear liquor is fit fir use. Tha lyo should have about \& ponnd soda-ash, or pearl-ash, to the gallon of water. The nitric aseil, into which the articlo is dipped, may bo diluted to buch an extent that it will merely act upon the metal, Δ ny old acid will do for this purpose. In largo factories tho acid used for dipping boforo plating is generally aflerwardas ensployed for the aboyo parpasa of cleaning.
3706. To Prepare Articles for the Decomposing Cell. Tho artiela being thoooughly cleaned and dried, has a copper wire attachod to it, either by twisting it roumd cho articlo or putting it through bay open part of it, to malntain it in sumpenation. It is then dipped into nitric acid as quickly as possible, and washed through water, and then immersed in tha docomposing cell containing silver solation, kespending it by the wiro whith connects wilh the xine pole of tho battery. The nitrie acid generally used and found hert for dipping has a speciico gravity 1.518 , nul contanins 10 per cent, sulphuric acid. Thio article is instantaneounly conted with uilyer, and ought to bo taken out alter a fow seconds and well brushod. On a largo eale, brushes of brasa wiroatteched to alathe aro used for this purpoogo but a bard hair brush with a Butle fine sand will do for small work. This bruskiag is used in caso say particle of foreiga matter may bo still on the Burface. - It is them roplaced in tha solation, and in tho course of a fow hours a coating of the thickness of tissuo puper is deposited on it, having the beautifal matted appearance of dead silver. Any thickness of alfver may be givan to a plane by continuing tho operation a proper length of timis. 1 安 to 14 ounces of silver to the squars foot of surface will give as excel. lent plate about the thickness of ordinary writing paper. Wo may remark that, in depositing salver from the solution, a weak battery may bo used, though when the bat tory is weak tho silyer deposited is soft, but if used as strong as the solution will allow, the silyer will bo equal in hardhess to rolled or hammered ailver. If the battery is stronger than the solutiou will stand, or the article very small compared to the size of the plate of silver forming the positive electrode, tho silver will be deposited as a powder. Gas should never be seen escaping from either pole; and the surface of the article should always correspond as nearly as possible with that of the positive electrode, otherwise the deposit runs the risk of not being good; it requires more care, and the solution is apt to be altered in strength, because if the positive eleotrode be largo compared with thenegative, the solution will become stronger in silver, while if smaller in proportion the solution will becomo exhausted of silver.
3707. To Silver-plate Large Articles (such as those plated in factories), it is not
alwaya sufficiest to dip them in nitric acil; wash and immerse them in the solution, is order to effect a perfect adhesion of the two metals. To secure this, a small portion of quicksilver is dissolvel in nitrie acid, and a bittle of this solution is sided ta water, in sufficient quastity to crable it to givo a white silvery tint to a piece of copper when dipied into it; the article then, whether made of copper, brass, or Germah silter, after being dipped in the nitric acid and washel, is dipped into the nitrate of mercury solution til the surfaco is white; it is then well washed by plunging it into two separato vessels comtaining clean water, anil linally pot, into the plating solution. This secures jerfert adhesion of the metsls. One ounce of quicksilver thas dissolved will do for a long timo, though the liquor is used every day. When the mercary in this solution is eshausted, it is liable to turn tho article black upon being dipped into it; this mast bo avoided, as in that caso it also causes the deposited motal to strip off.
3708. To Prenerve the Dead, Matted Appearance of Silver after Electroplating. If it is desired to preserve tho surfico in this condition, the article must bo taken out of the electroplating solation, care being taken not to touch if by the hand, and immersed is boiling distilled water for a few minates. On being sithdrasm, sulificient heat has been impartof to the metal to dry it instantly. If it is a nedal, it ought to be pat in an air-tight frame immediately, or if a figure, it may be at ooce placed abder a glasa thade, as a rery few days exposare to tho air tarnishes it, by the formation of kulphuret of silver, especially in a room where there is firo or gas
3709. To Remove the Chalky Appearance of Silver after Plating. When articles are taken out of the electroplating solution they are swilled in trater, and then put into boiling water. Tbey are afterwards pat into hot eawlust, shich dries them perfeotly. Their color is chalk-white. They aro generally weighed before being scrateb. brushed; that ly, brushed with fine wire brushes (see Nos. 3381 and 3700), nad old ale, beer, or water containing in volation is littlo gam, glue, or sagar, but the amatent may use a hard hair bruith. It may be afterwarla burnished accorling to the usaal method of buraishing, by rabbing the surface with corsiderable pressure with polished steel or the mineral termed bloodstone Altholigh thia operation does not displace any of the silvor, stijl, in taking off tho chalky appearance, thero is a slight loss of weight. Tbo appearanco after scratebing is that of bright metallio silyer.
3710. To Increase the Brightness of the Deposit. A liblo sulphares of carbon added to the plating polution preverits tho chally appearance, asd gives the depreit the sppearance of metallio silver; the reaction Which takes place in this mixtare is not yet understood. The best method of applying tho sulphuret of cartion ts to pat one or two oumees into a large bottle, then fill it with ktroug silver solution having an excess of eyavide of potassiom, and let it repose for several days, shaking it oceasionally. A little of this silver solution is added, as required, to thia plating solution, which will gire the articles plated the same appearance as if seratehed. It is also found that the presence of sulphuret of carbon prevents the solution from going out, of order; indeed, we bave seen a solntion that has been constantly working from tiwo to three years, while, generally, they were subject to go out of order for a timee, in less than one year-althongh, after standing a time, they would recover-but these are curious re-
actions not fet investignated.
3711. To Insure Success in the Electroplating Process. Ift wder u o insuro specess in filver-plating upory metals and motallio alloys, tra solutions of Eilver are requisite; the first, to whiten or fix the silvor to strich metals as iron, steel, britanmia metal, and German uilver; the second, to finish the work, as any amount of pare silver can be deposited from the second rolution.
3712. First, or Whitening Solution. Dissolve $2 \&$ trog pornds cyanide of potasfium, 8 ounces carbonate of soda, and 5 ounces cyanide of silver in 1 gallon rain or distilled water. This solution should be used with a compound luattery of 3 to 10 pairs, aceording to the rize of the work to be plated. The usie of this solution will insure the allhesion of kilver to all kindn of brass, brozze, type metal, \&e., without emplaying mercury, the frequens use of which is injurious to the health of the operator.
3713. Second, or Finiahing Solution. Dinolve $4 \frac{1}{2}$ troy ounces cyanide of potassiam, and is ounces eyanide of silyer, ifl 1 gallon rain or distilled water. This solution should be used with one large cell of Sinso's battery, observigg that the gilver plate ia placed is near the uturfice of the articles to be plated is possible.
3714. Boettger's Test for the Silver on Bilver-Plated Metala. Tho test fluid consista of a vaturated solution of bichromate of potaska to nitrio acid, specifie gravity $1: 2$, Any dirt or varnush having beon removed by atrong alcoliol from the metallic surfices to be teated, a drog of the toxt tluid is applicd to it by menus of a glass rod, ant impediately alterwarde washed uf with some cold water. If puro silver is prowent (as regards sifeer coins, these are left in contact with the test fluid for a greater length of timus), thero will appear clearly a blood-red colored mark (chromato of silver). Upon German silvor the teat liquid appeara brows, bat after wash. ing with water tho blood-red colored mark does not rpperar; the uo-called britania-metal it colored black; on platinum no uetian is yisible; metallic surfaces conted with as amalgam of morcury yield a reddishs speek, which, however, is entiroly woshed off by water; ob lead and bismath the teat liquid forms a yol-low-colored precipitates; zind and tin are both strongly acted upon by this test liquid, which, as regards tho former metal, is entirely romoved by water, while, as regisrda the latter, the tost Hiqud is volored browaish, and addition of water produces a yellow precipitate whiel somewhat adheres to the tin.
3715. Plating on Iron or Steel. Take 2 quarts mits water, dissodve 9 poutuls cymide of potassints, and filter. In order to plate steel or iron, dip it into purio sulphurie acid for ohe minute, then clean with pumicestone, and lorash; ritse, and hang in solution of cyanide of potassimm for threa minuted or until it becomes whits; thoul bang in sifver solution until plated heavy nomagh. (See No, 3608.)
3716. Taking Silver from Copper, Etc. Jirat by stripping of disolving it off; this is donc by putting iato a stoneware ar copper par some strong sulphuric acit (sitFiol), to which a little nitrate of potases is added; the articto is laid into this solntion, which will diasolvo the silver withont materially affecting the copper; nitrate of potassa is odded by degrees, as occasion requirea; and if the action is slow a little heat is applied to the vessel. The eilyer being remored, tho article is well washed and then passed through the potash solution, and finished for plating. When the sulphuric acid becomes raturated with silver it is diluted, and the silver is pre-
cipitated by a solution of common salt; tha chloride of silver formed is coliected and faser] in a erncible with carbonate of potash, when tho silver is obthined in a metallio state, as a knob or bntton. The crucible shonld not be over two-thirds foll, and shopld be kept in firsion till effervescence ceases. The cruciblo is then removed from tha fire, and, when cool, it is brokeh. (Sco No, 3702.) Tho artiele thos stapped by acids often shows a little roaghness, not from the effeets of the acid, but be cause the copper inder the silver has not been polished; it is therefore a necessary practice in the electroplating fuctoriea to polish the orticles betore plating. This is dona by meins of a eiredlar brush, more or less hard us required, fixel upou a lathe, and a thin paste maile of oil and pumice-stone ground as fine ns fomm By this procesn the surface of any article ean be grootbed and polished; bat it little experience is required to enHurs snccers, and enuble the operator to pulish tho surface equally without letving bruah marks. After this the artiela mast be cleaned in potash before it is platen.
3717. To Recover Silver from Copper. Inatead of atripping off the bilver by means of ncid, as in No, 3716 , it is a more conmou and preferable mode to lorngh off the silfer by the operation jnst deseribed. In thfi enea the brusking? must be collected, Iried, and lasined; this may be done in nis irom pas, kecping it at a red beat ontilall carlumaceous mattern are consumed; the remainder if fesed with carbongte of Butic or putishs, when tho silver is obtained, in comhnation with a Leste copper.
3718. Cyanide of Sulver and Potansium, its Decomposition During the Plating Procoss. The silver salt in the plating molution is is trie double nall, being. in alresdy desoribed, in compound of 1 equivilent of cynnide of silyer, shal 1 of egande of potassium-two distinch estits. In the decomposition of tho silyer solution by the eleetrie ourreat, the former, cyanide of pilver, is alone affected: the rilver fa depesited, and the cyanogen pusaded to the positive plate of electrode. The cynnile of potaAsinm is therefore set at liberty n pon the surfice of the arlicle recuiving tho difyer deposit, and ita nolation being specifically lighter than tho geveral imass of the plating solution, rises to the top; this couses a current to take place along the face of the article being plated. If the articlo lan is fat sorfnee, supposis that of as waiter or tras, upon which a prominuene existr, wa mounting round the edge, it will cause lincis ath ridges from the lsettom to the top. Nowly formed solutions are most serliject in prodice this manuyance.
3719. Dead Silvering for Medals. Tho perfeat smonthmast whigh in inedat genefally fonsessos on the butface, renders it tery difficult to obision is coutimg of dead silser upon it, heving the beantioul silky lustre which characterizes that kind of work. except by giving it is very thick eoating of nilver, which takes sway tho sharpaess of tho impression. This dead sppearance can le easuy obtained by putting the modal, previous to silvering, in a solution of copper, mil deposittig upon it, by meats of a weak current, s mere blush of copper, which gives the face of the medal that besutifil erystalline richness that deposited copper is known to give. The medal is then to bo washed from the copper holution, and immediately to be put into the silver solution. A very alight costing of sil. ver will suflice to give the dead frosty lastre so mach admired, snd In general so difficult to obtain.
3720. To Recover Silver from Old Plated Goods. Oil of vitriol, together with 5 per cont. of nitrate of sods, is heater in a
east-iron boiler, or a stonemare pan, to 212° Fahr. The silver-plated clippings ane placed in as sheet-iron bucket or cullender, which is fastoued to a pulley that it may be moved shont in the acid. As soon as the silver is removed, the cullender is raised, allowed to drain, then immersed in cold water and emptied, to be again nsed in the same manner. When tha seid bath is fresh, the desilvering proceeds rery rapidly, and even with heavy plated ware takes but a fow mimutes; with the gradual gaturation of the bath more time is required, and it is readily perceived when the acid must be renewed. Thesmall amount of acid salution adhering to the copper, precipitatea ita silver when brought into the water. To obtain its complete removal, the elippings, when raised from the desilvering bath, and before immersion in water, may be dippod inta a becond bath prepared in the saine manner, which is afterwards to be used in place of the first. The saturated bath, on cooling. congenls to a crystallina semi-aluid mass of sulphate of copper and of soda. The silver is removed by chloride of sodium (common salt) which is nudded in stmall portions at a time, while the solntion is yet warm. The chlorido of silver separates readily, and is washed snd reduced in theusend mapber. The seld solntion ecmtaing bot a very small portion of copper, hardly asoagh to pay for Tecoveriag:

3721 . To Recover Silver from Copper. This process is mpplicd to recoper the bilrer from the plated imetal, whict has been rolled down for battons, toys, etc, whithout deatroying say largo portion of the eopper. For this purpose, a dissolving solation fa componsel of 3 poands oil of vitriol, 1t ounces nitre, and 1 pound water. The plated metal is builed in it till the silver in dismolved, and than the nilver in rocovered by throwing cammon salt frito the solution. (See No, 3215.)
3722. Test Flaid for Silver-Plated Goodis. For this purpoto a textiog fluisl is propered by adjing pare nitrio acid to pespdered red cliromato of potaw, and nisiug them in such a manner that a part of tho latter remaine in suspensiots, the whole being kopt well stirred during tho mixing. Equal parts by weight of each may be takieo. The matric must bo quito freo from hydrochloric acid, and have tho proper degree of concentration, botug neither too firming zor teo illute; it rhould have a specific gravity between 1.20 and 1.25. When tho mixture bas been propared for s few boung, asd beon stirred neveral Eimos, the reddish-culored liquid is poured off from the reatus and kept in n stoppered bottle.
3723. To Test Bilver-PLsted Goods. The ordinary cond very accurate method of teatiog of ailver is founded apon the insolubility of chloride of ailver in dilates acide and in water. This otherwise sastisfactory test is, bowever, diffionlt to carty ont when at articlo is vers thinls plated. A drop of the test Ifquid (seo last receipt) is then brought in contact with the tuetal to be tested, and immediately washed off spain with whtor. If is visible blood-red apot remaing, silver is present. This method requires only the following precantions: The metalio surface mnst have been quite cleatised from gresse or vanuish with epinits of nime-water minst be poured over the treated surface beforo judging of the culor, as that of the teating fluid is altered by the metal, and the red precipitate is not fistinctly risible until the colored liquid bas leen washed off. The red spot can afterwands be very easily removed with the linger. By this method the slightest trace of silver in an alloy may be ascertained. When an articleis suspected to be only thinjy plated, a very minnte drop of the testing fuid shonld
be used. With no other motal or alloy does this red spot, so cbsracteristio of silver, appear; in some cases the testing fluid only corrodes the surfice of the metal, whilst in others colored precipitates ara formed, which, however, cannot be conformed with those of silver. German silver bronght into contact with the testing Iluid affords no red spot after being washed. The spot will, however, hevo been strongly corroded. Britanmia metal fields a black spot; sinc is strongly eorroded; platinum is not attacked; lesd gives a yellow precipitato; tin is strongly faffeeted by tho finid; when the brownish-colored testing fluid is washed off, n yellow precipitate is perceived, which alheres tightly to the metsl; copper is strongly attacked, a tamished surface of this metal is brightened by the metion of the asid.

Electro-Gilding.

The operathon of gilding, or osvering other metals with is conting of gold by the battery, is performed in the stmin manner as elactroplating, with the exception of n few practical moditicutions.
3725. To Prepare Chloride of Gold. Dissolvo 1 part jofld in 3 patts nitro-bydrocblorio acid (agua regia) eviupurato until Fapors of chloribe begin to bo disengaged, thes set the rolation asidn to crystallize. Agun regib conkisth of 1 pact nitrio neld and 2 parts (both by fenensmi) murintic (hydrochlotic) acta.

If then fararugio be sdded to th solution of
 sollow slegost, which may to eollected, कraslice, and dried. This is tho manonituret of gold, athl must be lumuled and propared with grent cantions it listug tho fismiante of Bold.
3726. To Prepare as Solution of Gold. Add n solntiom of cyaudo of potasitum to a solation of chabode of gold (see No, 3725) antil all the jreelpitale is rediadvelv: but this gives chloride of potasisiam is the nolation, which is not good. In the preparation of the solntion by thia mesns there are notue interesting reactions. As the oblinfido of gold ban always an excess of neid, the midition of cyanide of pestasmidm catres viotent effervencence, and nio procipitate of gold takes place until all the fres arid is nentralized, which cunses a considerable loses to the eyanide of potassitum: Therg is niwaya formed in this deposition is patatity of ams. momia nud carbutue selif, frum the depusition of the cyarnate of potoshs ; und it the chloride of gold bo reenntly propered, and tuot, thoro is oflen formed some manto of smmonia (fulminate of gold), whict precipitates with the vagide of gold. Wero this precipitate to bo collected and dried, it would exploda when slightly heated. By previously dilating tho chloride of gold, or usimg it cold, this compound is not formed. After the free seid is neutralized by the potash, ferther mddition of the cyanide of potassium precipitates the gold as cyonids of gold, having a light yellow color; lut as this is alightly soluble in ammonia and some of the altaline salts, it is not adrisable to wash the precipitate, lest there be a loss of gold. Cyanide of potassinm is generally added until the precipitate is redissolved; consequently much impurity is formed in the solution, namely, nitrate and carbonato of potesbe with chloride of potessium and ammonis. Notwithrtanding this solation works very well for is short time, and it is very good for operations on a suali scale.
37\%7. To Prepare Cyanide of Gold. Dissolve I ounce of fine gold in 28 pennyweights nitric acid and 2 omoces muriatic acil, and ald I quart hot water. Precipitate
with the second preparation used for cranide of silver (sec No. 3697), and proceed in the Bunc manner.
3728. To Prepare a Solution of Gold. Dissolve 4 troy ounces cyanide of potassium and 1 ounce cyanide of goll in I gallon rain or distilles water. Thisisolution is to lse used at about 90° Febtri, with is battery of at last tryo cells, Gold can be deposited. of various shades to smit the taste, by oulding to the gold Holution a small quantity of the eyanides of silver, copper, of xinc, ant a fow drups of bydrosulphuret of ammonia.
3729. To Prepare a Gold Solution by the Battery Frocess. To prequre is galton of gold solution, diszalve i ounces cyanides of potasainm in I gallon water, and heat the solution to SJur Falor, How take at semall prorous cell and fill it with Disu evahide solution, and place it insile the pallon of folletion; into thik eell ia pert a mmall plate of jrous or copper, and attached by o wire to tho gine pola of a battery, A pleces of gold is placed into the largo rolution, fumer the plate in the porous eell, and attached to thiongere of the battory. Tha wholo is allowed to reanifu in action uptil the goll, whieh is to bo taken out From time to tine and weighed, has loat the quantity reppired in solntion. Ry this monns a solution of Bny atrengeth can bo miale, becoviling to the tine allowed. The stalathos in tha provons cell, utess tha action lon cons. timued long, will have wo gold, and may lo thrown awny. Half an lour will sulfice for is umall quantity of solution-of common any quantity of selution may bo mado op liy tho Hatno meana. Forall tho mperatione of gilding ligy the byantite sulation, is mint be heated to ot kast 1:00 Fuhr. The articlas to be gitt trie elearied ith tho way deacribed for silver (see No, 5705), but aris uot dippucd into nítrio rued provions to boink pue into the gold sola-
 fild any trmall article. Δ fter tha articlen are cleanerl and stried they arn waished, sund, When stit, thoy aro wetglest igatin; thea Lho jparitity of gald iloposited is sacerLained Ary vorivotiont means may bo alopted for facating tho nolntion. The une reaumally adopted is tor pot a atomemare pat contninine tho rolation into an imts or tins plata versel tithed with watec, whieh in kupt it sho boiling point either ly being placed ipion is hol plato no oter igtas. Than hotter tho solutina the foss ladery pownor is roguired. Genorally a hattory of 3 or 4 cells is used for sideteg, and the sulution to kept at 130° to 150° Enhr, Thit 1 cell wilt smswer if thosoleis brited ta 800^{3}
3730. Process of Electro-Gilding. Tho process of gitding is generally performed upon silver articlos. The methon of proceseding is as follows: Whert the articles are eleaned ad deseribed in No. 3705, they are Feighed, and well keratclaed with wire branhos, wbich eleanso away any tronish from the sarfase, and prevents the formation of nirhubbles. Thuy are then kept in clean water until it is couvenient to innuerse them in the gold solitions. Ono immersion is then given, which merely Imparts a blush of gali; they are tuken out alid again brushed; they aro then put back into the polution arui kept thero for 3 or 4 mitantes, which will be sufticient if the solution and battery are in good cosdition; but the icagth of timo necessarily depends ots these two conditione, which must be studied and regulated by the operator.
3731. To Electro-Gild Iron, Tin, and Lead. Iron, tin, and lead aro very diffienlt to gild direct; they therefore gemerally have a thin coating of copper deposited upoa them by tho eyanide of copper solution (seo Nos. 3754 and 3756), and immediately put into the gilding solution.
3732. Conditions Required in ElectroGilding The gilling solution generally contains from ome-half to sin onnce of gold in the gullon, but for coverug small articles, such is medals, for tioging daguerreotypes, giliting rings, thimbles, ete-, a weaker solution will do. The solution should bo suflicient in rimantity to gila tise artieles at obee so that it shouk noot hare to too doue bit by bit; for when there it in prart in the solntion nind is part out, there wi!) gencrally be a line mark it the point tonching tha surface of the solufion. The rapidity with which metals are acteil upor at tho simpfice lime of the solution is remarkable If the presitice electrode is whot wholly immerscil in the solation, it will, in a shant time, he citt through at the kwrface of the water, fas if cut by h knife. This is also the case in silven cripuer, and other solu(Tonss
3733. To Maintain the Strength of the Gold Solution. As the gold rustution evaporates by befng lint, diatilled water muit from time to tingo low alded. The water shouh alwaya be ddded when the operation of gifding is over, not when it is about to be commenced, or the solution will pot give so satisfactory s reasit. When the gilding operition is continued kucceasively for several days, the water shonld bo nodded at night. To obtain a depoxit of a good color, mach depenils upon the stale of tho nolintion and battery; it is thernfore meceasary that atrict attebtion bo paid to theas, and the more eo ne the gold sofution is very liable to change if the size of the article receiving the dejowit is mot the samo na that of the positivo electrode plate. The reablt of a beries if observabions and us. periuseats, eoptinued daily throngtiout a period of nime mmiths, nhowed that in five iastances ouly Doo depunst was exactly equal to the quastity sliatolved frotn the fositive plate. In onany eqses the diGeresea dill not exeosd 3 per cetit., though occasionally it rose to 50 per cent. The average differunce, howevar, was 45 per cent. In mome cares donble the quantiky desolved was depmated, in otheri thin reseraes necurred-both rewulting from alterations male in the renpective procebine; for in thews esperimests, the stato of the wolntion and tha rolative kizns of the nefs ative and pontico eloctroiles wece varimd, ns far 89 praoticable. Tho tonat simple methoul of koopibg is constant regiater of the state of the solvition is to welgh the gold electrude before putting it into the nolution; and, whes taking it ont, to compare the loss with the anount deposited. A little allowance, bowe over, intast lo suale for small portions of tuetal diesanced in the spletion, From dio articles that are gilt, which, when gilding is performed daily, is considerable fin a year. I constant control cat thus bo exercinel oves tho solution, to which thero will have th le addod Irom timo te timo a lilles cyanido of potazsiom, a simple test of requirement being that tha gold puaitive ejectersle should ni come out clean, for if it has a film or crust it is a cortain indication thint the solotion is doficiont of cyanido of potassium. Care must bo taken to distinguish this ernst, which is oceakionally dark green or black, from a black appearasice, which the gold efectrode will take when very buall in comparison to the article boing git, and which is caused by the teadoney to erolve gas. In this case an addition of cyanide of potxssiam would increase the evil. The black appearance from the tendeuey to tho escape of gas has a slimy njpearance. This getierally takes place when the solution is nearly eshanstel of goWd, of which fact this trppearance, taken conjointly with the relatiro sizes of the electrodes, is a sura guide.
3734. To Regulate the Color of the

Gilding. The gold upon tho gilt artucle, on coming out of the solution, should be of a dark yellow color, approaching to brown; bat this, when scratehed (sec No. 3709), will yieht a beantifully rich deep gold. If the color is blackish it ought not to be finished, for it will nover either lirash or burnish a good color. If tho battery is too stroug, and gas is given off from the article, the color will be black; if the solution is too cold, or the battery rather weak, the gold will be light-colorgal; so that every variety of albale may bo imparted. A very rich dead gold may be made by adding ammoniuret of gold (sce No. 3725) to the solution just as the articlea aro being put in ; or, what is better, add some sulphuret of carbon in the same way as for silver solutions (sne No. 3710), which affecte tho color and appearance of the gold in the same way as it does the ailver.
3735. To Improve the Color of Gilding. A dafectivo colored gildity may bo improved by the belp of the following mesture: I parts nitrate of potassm (saitpetre), 1t parta alum, if parts sulphate of zinc, and it parta commous sait, are pot into is small quantity of water, to form a sort of paste, which is put apon the articles tor be colored; these aro then placed upon an irou plato over a clear fire, so that they will attain oearly to a black heat, when they are saddenly plunged into cold water. This gives them a beantinal high color. Difforcut bines may bo had he a variation in the mistare.
3736. To Electro-gild with Red Gold. Gold having the reil color of 14 caras Eold may be depositeal by the tattery in tho fallowing manner: Propare a solation of oymide of copper by adding cyanide of potass: simen to a solution of sulphate of cupper until the precipitate at firat thrown down is redissolved. Add to this a solutiots of cyauide of gold (Nec No. 3727) in enficient quatity to give, un trial, the devired celor of gold deposit. When using thin polution, the positivo electrode plate shmuld be of gold of the same culor ine that desirod to be doposited.
3737. Practical Suggestions in Elec-tro-gilding. According to the zannunt of gold depusited, so will be its durability. A few gramn will нerve to give a gold color to a vory large aurface, but it will not last. This proves, boweser, that the process may be used for the most inforior quality of gilding. Gold tbinly laid upoth silver will be of a lights color, because of the property of gotd to transmit light. Tho solation for gilding silser shivuld bo made very bot, but for eopper it should be at its minimum heat. A mern blush may be sufficient for articles not subjected to wear; lut on watch eases, pencil cases, chaink, and tho like, a good coating stopult the given. An orilinary eized wateli case should bave fotm 20 grains to a penoy. weight; a mero coloring will be sulficient for the inside, but the outside should have as worts ns possible. A wateh case thus gitt, for ordinary wear, will last five or six years without becoming hare. Small silver ehains should have 12 grains; pencil cases of ordinary sizo should have from thres to five grains; as thimble from 1 to 2 grains. These suggestions will serve as a puide to amatear pilders, many of whom, basing imparted osly a color to their pencil cases, feel disappointed upon seeing them speedily become bato; heneo arises mutech of the olloguy thrown upon tho process.
3738. To Deposit Copper, Silver, or Gold by the Battery on Paper and other Fibrous Materisl. The whole question ia to make the paper a good conductor of eleetrivity without conting it with a material which may peel off. One of the best methods is to take a solution of nitrate of silver, pour
in liquid ammonia till the precipitate at first formed is entirely dissolved agnin, and place the paper, silk, or muslin for one or two houra In this solation. After taking it out and dry. ing well, it is exposed to senrent of bydragen gas, by which operation the silver is redaced to i metallic state, and the material becomea so good a conductor of electrieity that it may be electroplated with copper, silver, or gold, in the usual manner.
3739. To Dissolve Gold from Gilt Articles. Befory regilding articles whieb are partly covered with gola, or when the gilding is imperfect, and tho articles require regilding, the gold ahould be removed from them log putting them into atrong nitrio acid; und when the articles bave been placed in the acid, by adding some common salt, not in solation, but in crystals. By this method gold may bo dissolved front any metal, even from iron, without injuring it in the least. After coming out of the acid, the articles mast be polished. The best method, however, is to brush off the gold as deseribed for silfer (see No, 3706), which gives the polish at the same time.
3740. To Recover Gold from ita Acid Solution. When the acil has vecomes sathrated by the gold that has been diasolved in it, or when it ceases to dissolve the gold rapidly, it is diluted with eoveral times its balk of Water, sud then soda or potash added till the greater portion of the aed is neutralized. A Eolution of oulpbate of itun (coppers) is then ndded, so long as a precipitate is formed; when this settifes downititic carefally collected upon a paper filter. washed and dried, and then fised ita a cruciblo with a little horax and commen salt, wben the gold is foupd as a button at the bottom of the crucible. When the gold is brashed off, the bruebings are burued at a red heat, and tho residive fosed with carthonate of noda and a little borax; in this case, the gold will aot bo pure, and will bave to bo refined.
3741. To Soparate Gold from Giit Copper or Silver. Take a yolution of borax in water, apply to the gilt surface, and Eprinklo over it some finely powdered sulphar; mako the article red bot, and quench it in water; then scrape off the gold, and recover it by means of tend. (Sce No. 319L)
3742. To Recover Gold from Gile Articles. Gold may bo stripped from articles that have been gitt by placing them in strong nitric ncid, in which sotte salt bas leen previoutly dissolved. When a number of artueles have been etripped in the solution, it beging to work slowly, and it is time tben to abandon it, and use a new one. The gold may then be recovered from the old solution, by evaporating it to derness, and finsing the residumm with a small piece of soda or potash, tho gold being fused into a buttots. The nuldition of a littlo salcpetro will tend to make the refining process more complete. As there if sorno trouble connected witt this process, it is Ecarcely worth ndopting where very small quastities of gold are cosecmed. In sueh a caso it is a better plan to suspend the article, from which the gold is to be removed, in the gilding bath, in the place of tha nuode, when gilding another article.
3743. Electro-Gilding Without a Battery. Dissolve 9 parts terchloride of gold in 1000 to 2000 parts pure water; then add 360 parts bicarbonate of potasss, and boil for two hours. The metallic article, it not copper, is covered with a film of copper simultaneonsly with its being immersed ivto the boiling gidaing liquor, by placing a piece of theet-copper along with it. As noon as a deposit of copper is olserved, the piece of copper is taken out, and the liquor continued

The article is then taken ont, waiked off with Water, and rabbed with a metallio brosh. When the fiquor bas agnin become clear by settling and decanting, it is again heated to boiling, the artiele immersed, while the piece of copper is moyed about in the fluid without touching the other. The esme operation mas be renewed ad libilum, uptil the desired thiekness of gold is obtaned.
3744. Plating and Gilding Without a Battery. Watts gives the following very useful solntion of silver or gold for plating or gilding without the aid of a buttery: Take 1 ounce nitrate of silver, dissolved in 1 geart distilled or rain Fater. When thoroughly dissolved, throw in a few erystals of hyposulphite of soda, which will at first form a brown precipitate, but which eveatunlly becomes redissolved if sulficient hypopn/pbita has been employed. A sijght excess of this salt mast, however, bie added. The solation thus formed may be ased for contiog emall articles of steel, hraws, or German silver, by simply dipping a spapgo in the polation and rubbing it orer the aurfice of the article to be coated; the silver becomes so firmly atlached to the steel (when the solution bat been carefalls made) that it is removed with conididerabledifficulty. A solqtion of gold may be made in the same way, and applied an dencribed. A concentrated solution of either gold or silver, thus made, may be used for coating garta of articles which bave stripped or blatered, by applying it with a catneflimir pencil to the part, asd touching the spot at the same time with a thin elean strip of rinc.
3745. To Distinguish Gold from its Imitations. The ondinary methed of teeting gold by the tourhatane in founded upon the insolubility of this retal io mitrie acid. If a mark be made on the tonelistone with the artiete noder examination, the gold is not dissolved by this acid, wherons polden colored allogs of inferior ralue ere dianolved atd dibappent immediatels. Whesi artieles bro very thimby gileded, the detection of the goid in this masuct is pheertain, in whieh care tbe followise mothod may bo wedt 4 ith adsno-lage- (Sce No. 31100 .)
3746. Test Fluid for Gilded Articles. A jittle carionate of copper is put into a tent-taties, aut to thes is added, drop by drop pare hydrachlorio ncid, till the bleio jrowilur has dissolred to a clear green fluid, oecnasionnilly warming it over a 1 pirit lamp. Tbis concerterated solationi of rlslonide of eup. per is diluted for use with from 10 to it ifmes its tolame of athtilled water.
3747. To Test Gilded Articles. Bofire testing, the metalic yurface tenet bie wril elemed. This can be tone effectually by breshing it for s minute or (wro will a little spinits of wine, or, better, will shendute aleobol. The sturface haviog dried, a little of the texting fluid (sec last receipe) is dropped on and alluwed to remain in contact for sbout a minnte. The flaid is then removed by mesiss of a small pipette, and the eurface of the metal completely dried with Bibulors paper; if no dark spot be then visible, the article is coated with pura gold. If the metallic aurface is but lighty gildel, a very slight blookening is sometimes remarked, which may throw a doubt upon the result. In such a case, to make quite certain, a little of the ourface msy be scraped off, and then the testing fluid agsin applied. If a dark spot is then perceived, the article may be constdered as very thinly gilded.

Hectroplating with Va -
receipts furnish the means of conting objects with tin, zine, brass, German silfer, and other metala.
3749. To Electroplate Copper, Brass, or German Silver, with Aluminum, take equal measures of sulphuric ucid and water, or tata 1 measure ench sulphuric and bydrochloric acids and 2 meakures water; add to the water a small quantity of pipe-elay, ili tho proportion of 5 or 10 grams by weight to every ounce by measure of water (or $\frac{1}{2}$ ounce to tho pint), Rub the clay with the water until the two are perfectly mised, then add the weid to the elay solation, and boil the mixtura in a covered glass vessel 1 hour. Allow thatiquid to mattle, tako tho clear, fuperatant solution, while bot, and immerse in it an earthen porons cell, containing a mistire of one measure of salphario acid and ten measkres of water, togather with a rod or plato of matgamated xine; take a small Smen's batlery of ' 3 or a colls, and connect ita positive polo by is wire with the piece of giac in the porous cell. Having perfectly cleated tha suffuce of the artiele to be coated, connect it ley is wire with the negativo polo of the battery, and fmmerse it in the bot elay solution; immediately abundance of gas will bo evolved from the whole of the imuserged surface of the article, nind in is fow minutes, if the alze of the sirticle is adapted to tha quantity of tho current of electriclty pasping turougb it, is tino whitodeposit of nluminum wil sppear nll oyer thu barface. It may then be taken out, washed quickly is clean water, and wiped dry, and polinhed; but is a thicker enathigg is reguired. it must be taket oft when the deposit becomes dull in appearance, washed, dried, polished, and reimpereed; soil this mast be reponted at interrald, by often as it becomed dnll, thtll the required thickness is obtainel. With small artictes it is not nhsolutely neces. eary that as peparato battecy lie coploged, as the artiele to bo contod tray be connected, as in the ore coll methul (see No, 3669), bo a wire with tha piece of kine in tho porous cell. and immorsed int tho unter liydid, when it wil receive a deposil, bet more blowly thes twhen a battery is nemplayed.
3750. To Electroplate with Tin. Tin in cavily deposited from is solution of protoobloride of tin. If the two polel or electroden be kopt about 2 inches npari, a must buatiful phenomenon may be observed. The deenmpordion of the aolution is Bo xapid that it shoote out from the negative electrode liko Fealers, towarda the poostive, which it raches in a fow neconds. The space between tho poles mems like a mass of erystallizad threals, and tho electric current pasees through thera Without affectisg forthor decomposition So tender are theso metallio thresuls that whon lifed ont of the solation they fall opon tho plate like colvwel. Seen through a glaga they eshikit a beautiful cysatalline straeture, Tin may also be depasited from its nolution in canstie potrish or soda.
3751. Galvanic Tinning. M, Maia-trase-Dupré, it appears, bui been commis sioned by the French gusernmest to apply, by malyninic means, tin upon divers objects which had been made of so-called galvanized fron-that is, irme covered with zinc. To this purposo he applied galvanic elements mado of copper and zinc plates, tho length of which is 48 inches, the width 28 inches, placed in a lenden trough and separated and isolated by means of wooden partitions. The copper sheet was immersed in a mixture of equal parta of acetate of lead and common salt, and the zine element was placed in weal sulphorio acid, specific gravity 1.060. This battery remains in constant betion and working order for 8 days, at an outlay of only 2 frames. When the objects which are galvanically
tinned aro afterwards heated to the meiting point of tin, the goodness and durrability of hot-timned materials is thus obtained. Copper thus tinned (galvanically), sud afterwards heated, is superficially converteil into bell metal, while the method of tinning Ralvanically has the great advantage over the old method, that it cas lic applied to objects to which the method of tioning in ordinary ase is not applicable.
3752. To Electroplate with Brass. Brass can los iloposited when the solation is composed of 1 part sulphate of copper in 4 parts hot water, 8 parts sulphate of zime in 16 parts of hot water, 18 parts esamide of potassium in 36 parts of bet water. These are mised, and 250 parta of water added. Instend of a eopper pesitive electrodo plate, one of brass is uecessary; the solation is regnired to bo kept neirly bofling, and a powerful battery to be used.
3753. To Prepare Cyanides of-Copper and Zinc. For copper, diasolve 1 ousce of sulphate of espper in 1 piot of hot water. For zine, dissolvol oaneo of the malphate of xine in i pint of bot water, and proceed the sumens for cyauide of silver. (Sce No, 3697.)
3754. Cyanide Solution of Copper or Zinc. Dissolve H onaces (truy) cyanide of potassiam, and 3 ounces cyanile of copper of kine in 1 gallon of raiu or dbititled water. They should be ased at abont 1000 Fahr.; with is compound battory of 3 to 12 cells.
3755. Cyanide Solution of Copper. To proparo copper nolutiona ly meana of cyanide of potarsiam, for coreriag irou and other positive metals, there aro beveral methoda, hat the method adopted io toanufactiring purposes is os follown: To an molution of π ut. phate of copper, ald a solution of farroeynaide of potassium (gellow prnssiate of potassa), so lobg as a precipitate continnes to be formed; this in allowed to sottle, and, tho elpar Hiquor being decsated, tha vensel is filled with water, and when the precipitato retles, the lignorts agnin decanted, sud these washinga aro repeated unth the smlphate of potash is wasbed quita cut. This is known by adding a listle efloride of bariun to asmall quactity of the washinga; if no white precipitate is formed by this sest, the preepipitate is stilfciently washed. A nolation of cyanide of potinaium fis now added to this precipitate until it is diasolyed, during which procesa the solution becomes warm by the chemieal reaction that takeg place. Tho sulation is fittered, and allowed to repose all night. If the solution of oyandide of potassiom that is nsod is strong, the greater portion of the ferrncyavide of potasaimm erystallizes in the solation, and may bo collected and preserved for nye again. If the solution of cyauide of potassinn used to dissolve tho precipitate is dilutn, it will bo necessary to condense the liquor by evaporistion, to obtain the yellow prossiato in crystals; the remaining solntion is the coppering solution. Should it not be convenient to separato the yellow prussiate by erystallization, the presence of that sult in the solution does not interfero with its power of depositing copper.
3756. To Prepare Iron for Costing with Copper. When it is required to cover an iron article with copper, it is tirst steoped in hot canstic potash or soda, to remove any grease or oil. Being washed from that, it is ploced for a short time in dilute suipharric acid, consisting of about 1 part of acid to 16 parts water, which removes any oxide that may exist. It is then washed in water, and scoured with eand till the surface is perfectly clean, and finally attached to the battery, and immersed in the cyanide solution. (See No. 3755.) All this must be done with dispateh, so as to prevent the iron combining with
oxygon. An immerxim of five minates d durar tion in the cyanido solution is sullicient to deposit upon the iron a film of copper. But it is necessary to the complete protection of the iros, that it should have a tolerably thick eneting: and, as the cyanile process is expengive, it is preforable, when the iron las reenived a fifm of copper liy the eyanide solistion, to take it out, whsh it in water, and attach if to a single cell or weak battery, and pet it into a solntion of sniphate of copper. If thero is any part not intificiently covered with enpper by tho cyanide solution, the enlphate will make these purts of a darls color, Which a touch of tho finger will remove. When such is the esso, the article must be taken out, ecoured, and put agaiu into the cyanide solntion till purfectly cavered. A littlo practics will render this rery easy. The kulphath notution, when usel for covering inon, should be prepared ly adding to it by degrees at Fittle canatic sodo, so long na the precipitate formeed ta redissolved. This mentralizes a great portion of the sulphurio acid, wal thus the frud is not on readil) acteol iopun.
3767. To Coat Iron with Zinc. In covering iron with ainc, the prechitionh neeessary for copper ars nut requirad; wine keing the prositive ruetal, aeide have a ntroager afinity for it than for iree, and therefore an seid rolution may lie nied. The asolution generally used is tho sulplate, nief lo the samo *ay as medplate of ecoprer, (Soe No, 3c61.)
3758. Teat for Gulvanized Trom. When sing in deposited os iron by galvinio agancy, it ahould form scherpical combination With the irott, and not bo merdly attuched therelo. It is yrupused by Mr. T. Brnee Warreo. of Fongland, to haso this fiet for practically lustiog the otheicsecy of the gavvanizaLhoa. If mereury ho pourol over the vurface, the ziec that is ably lecally attacbed whif form an analpant with tho mercary. Mr. Warrea also lave thin as a quantitative tent, to verify the amount of zue in vmbination with the from.
3759. To Maleo a Cyaride Solution of Brans. Dinsolve 1 prund (troy) Eynride of potariuins, q ouveres eyanido or copper, aul 1 ousce cyaxita of zrac, in 1 galion rain or diftithed water; themald 2 ounces mariate of zmmonis. This sulation is to be nsed at tom Fahic. on emonth work, widi a couppound battary of 3 to 12 culls.
3760. Electroplating with PLatinum. This metal lias never yet locen survesefally ileponitol as a protecting conting to other matali. A solinews may be made by dissoly. ing it in a mixturo of nitrie and murintio acids, the samen as is cmployed in diskotring gold; but beat mast bo applied. Tho solation is them eraporated to drymess, abd to the remainigg uass is nofled a solution of cyanide of protasturn ; teest, it must be ilightly heated for a ghort time, and ther fitered. This soluLion, evaporated, jields heautifal cryztals of syanile of plationm and potassixu ; hot it is umecessary to erystallizo the salt, A very weat battery poswet is rempireal to depostt the metal; the sofntion sbuuld bo hented to 100°. Great care must be taken to oltaits a fine metallie deposit: imbeel, the operater may not sucteed once in twenty times in getring more than a mere coloring of metal over the surface, and that not fery adkefive. The causes of the dificelty are prohahly these the platinum nsed as un electrode is not acted uport; the quanticy of salt in molntion is rery Hetle; it requires a particular bettery strength to give a good deposit, atul the elightest strength beyonit this gises a black deposit; so that, werg the proper relations obtained, whenever there is any depocit, the relations of battery and solutiou are chapged, and the black puiferaleat deposit follows.
3761. Electroplating with Palladium. Palladium is a metal very easily deposited.
Tho solutinu is prepared by dissolving the The solatinu is prepared by dissolying the metal in nitró-muriatic acid, and evaporating the solation pearly to dryness; then adding
cyanide of potassimm till the whole is dissolved; the solution is thon filtered and ready for use. Tha cyanide of potassium bolds a large quantity of this metal in solution, and the electrode is aeted upon while the deposit is proceeding. Artieles covered with this metal assume the appearance of the metal; but so far as wo are aware, it bas not yet been applied to any praetical parpose. It requires rather a thick deposit to protect metals from the action of acids, which is, probably, the ouly use it can be applied to.
3782. Electroplating with Nickel. Nickel is wory easily deposited, mind may bo prepared for this purpuso by dissolving it in nitrie acid, then addiag cyanide of potasnium to precipitate the metal; after which tho precipitate is washed and dissolved by the addition of more cyanide of potansium. Or the nitrate rolation may be precipitated by carbonate of potash; this should be well wasbed, and then dissolved in cyanide of potassium ; a proportion of carhonate of potash will bo in tho solation, which has not beon found to be detrimental. The metal is very ensily deposIted; it gitalde a color appronching to silver, which in not liable to tarnish on exposure to the aif. A coating of this motal would be very unefit for covering cormmon work, nuch as gasbliers, isad other gas-fitting and nven conmon plates Tho great dificulty experienced in to obtaia a positive electrode: the motal is vory dificult to fuse, and so brittle that wo have never lieen able to obtain either a plate or a theet of it. Conld this dilfieulty be essily overvome, the application of nickel to the coating of other metals would bo uxtonsive, and the property of zot boiag Hisule to tarmish would make it cmisently useful for all poonral purposes.
3783. Nagel's Method of Electroplating with Nickel. A process devised by Mr. Nayol, of Hanlarg, for coating iron, steel, and othur uxidiziblito metala with an electro doposit of nickel or colralt, consists io taking 4 parta. by weight, of pare sulphate of the protoxida of nickel by erystallization, and 2 parts, by weight, of pure ammonia, so as to form a donblo salt, which is then dissolved in 60 parts of distilled water, and 12 parts of nommosiacal bolation of the specific grarity of .200 added. Tho electro deposit is effected bof an ordinary galsanic eurrent, essing a platimum positive pole, the solution being tho galyanic curreat is regulated according to the avimber of objectat to be conted.
3734. To Profoct Steel from Rusting. It has beon found by experiment that an elec-tro-depositeil coating of nickel protects the earface of polished stcel completoly from rust. Swords, knives, and other articles of steel liabla to exposure, may be conted with nickel without materially altering the color of the imetal.
3765. To Protect Copper and Brass. Gopper and loriss are cqually well protected by nickel (see No. 3764), bat, of course, with change of color on the surface. The nickel facing, when burnished, has a whiter color than polished steel, but not as white as silver, being tuearer in appearance to platinum.
3766. Nagels Method of Electroplating Metal with Cobalt. For couting with cobait, 138 parts, by weight, of pure sulphate of cobalt, are combined with 69 parts of pure ammonis, to form a double salt, which is then dissolved in 1000 parts of distilled water, and 129 parts of ammoniacal solution, of the samo specific gravity as before, aro added. The
process of deposition with cobalt is tho same as with nickel. (See No. 3763,)
3767. To Electroplate with Silicium, In the following manner, \& coating of siliciuns can be obtained direct from siliea: Tako the following proportions: 霉 ounce, by measure, of hydrofuoric acid, \ddagger ounce hydrochloric roid, and 40 or 50 grains either of precipitated silice, or of fine white sand (the former dissolves most freely), and bond the whole together for a fow minates, until no moro siliea is dissolved. Use this solution exactly in the same manner as the clay solution (see No. 3767), and a fine white deposit of metallie silicium will be obtained, provided that the size of the article is adapted to the quantity of the electrio curtent. Common red kand, or, indeed, any kind of silicions stone, finely powdered, may bo nsed in place of the white sand, and with equal suecess, if it be previoualy boiled in hydrochloric actl, to remove the rell oxide of iron or other impurities. In depositing both aluminum and yinlicjum, it is necessary to well eaturate the acid with the solid ingredients by boiling, otherwise very little depasit of metal will be obtained.
3768. To Prepare a Brasa Solution. For each gallon of water used to make the soIntion, take 1 pound earbonate of summonia, 1 pound cyanile of potassium, 2 obnceas cyanide of copper, and 1 ounce cyanide of sine. This constitutes the solution for the decomposing cell. It may be prepured, also, from tho above proportions of carbonate of smmonia and cyanide of potassium, by immersing in it a large abeet of brass of the desired quality, and making it the anode or positive electruda of a powertut galyanio battery or magnetoelectrid machine; atad making a small piece of metal the eathode or negativo electrode, from which hydrogen must bo freely evolved. This operation is contimued till the solntion has taken up a sufficient quantity of the braws to prodnce a regaline deprosit.
3789. To Electroplate with Brass, The solution (see No, 376) roay bo tesed cold; but. it is desirable, in many cases, to heat it (accorling to the nature of tho articles to be deposited rapon) to 212° Fahr. For wrought or fancy work, about 150° Fahr. will give excellent results. The galvanie battery, or magneto-electric machine, tuast bo capable of eyolring bydrogen freely from tho cathode or negative electrode, or articlo attached thereto. It is preferred to have a largo anode or positive electrode, as this fasors tho evolution of hydrogen. The article or articles treated is before deseribed will immetiately becomo coated with brass. By continting the process, any dosired thickness may bo obtained. Should the copper have a tendency to come down in a greater propurtion than is desired, which may be known by the deposit assuming too red an appearance, it is cortected by the addition of carbonate of ammonia, or by a reduetion of temperatare, when the solation is beated. Should the siuc havo a tendency to come down in too great a proportion, which may be seen by the deposit being too palo in its appearamce, this is corrected by the addition of cyanide of potassium or by an increase of temperature.
3770. To Electroplate with German Silver. The alloy, German silver, is deposited by means of a solution consisting of carbonate of ammonia and cyanide of potassimm (in the proportions given above for the brasa), and cyanides or other compounds of nickel, copper, and zinc, in the requisite proportions to constitute German silver. It is, however, preferred to make the solation by means of the galvanie battery or magreto-electric machine, as above described for brass. Should the copper of the German silver come down in too great a proportion, this is corrected by
ndding earbouato of samonia, which brings down the zine more freely; and ahould it be necessary to bring dowa the copper in greater quantity, eyanide of potassium is addedsuch treatment being similar to that of the brasa befora described.

Bronzing. This is the procest of giving a bronze-like or an antique metallic appearance to the हnnface of eopper, brass, and other metals. This is geuerally effected by the action of some salstance which combines with and clanges the nature of the surface of the metal. The application of powdered lronzing subotances, made to ailhere by sixing. Ae, to the surface of other matorial than metal, swel as wood, plaiter, te., is termed surface litouzing. (See Nos. 3383, (f0)
3772. Brown Bronzeo for Medals, \&c. Take a wine-glase of sater, and add to it 4 or 5 dropa vitric acid; with this solution wet the medal (which ought to have been provionsly well cleaned from oil or grease) and then allow it to dry; when dry impaitt to it is gradual and equable heat, by which the sarface will he darkened in proportiun to the heat spplied.

3773, Bronzing with Crocus. Make a thin pasto of erveus and wator: fay this pasto on the face of the medal, which mat then be por into an oven, of lail on an irop phato over a slow fire; when the paste in perPactly reduced to potsder, brosh it off and lay on another coaling; at the same time quicken tho fire, taking core that the alditional bea! is aniform; at soon as the srevad application of pasto is thoronglily dried, bruits it off. The medal being now efoctually necored from grease, which often occasions failurea iu bronzing, coat it a third time, but add to the strength of the firs, and smbait the heat for a considerable time; a little experimese will soon exable the operator to decide when the medal may be wibilraws; the third coatiog being rosuosed, the surface sill preseat it beantiful brown bronze. If the lironat it demined too light the procest can be reperted.
3774. Bronzing with Black-Lead. Aner the medal has beets well cleabed from wax pr greate, by wsoling it in a litule caustio alkati, lirush smme black-lead over the face of it, sml then heat it in the same way as deacrilet ia No. 777 for croms; or a thin prate of Whelclead may lee used, and the proceses alrewly referrel to be reprated until the desifed brown tiat is obtained. In thas kind of bronze a litho bematitic ifom are, which has in unctuous feel, may be brajhed ovet the face of the bitorex, lig which a beatuiful lustro is imparted to it, and a considerablo variety in the shade may be obtained. In the litows beoness the copper is alightly oxidized ion the surface.
3775. Plumbago Bronze. This lurenze is obtained by locuaning the kartace of the medal with plumbege, then placing it ona clear firo cill it is mailo too hot to le tonched, and applying a plate brtsh wo somat has it ceaves to bo hot envugh to burn the brash. A fem strokes of the Urish will produce a dark brown polish, approsehing black, but entirely diatinct from the well known appearsace of black-lead. If the same operation is performed on a medal that has fiem kept some days, or lipom one that has heen polished, a different, but yers brillinat tiot is prodnced. The color is betwoen rell and brown. The richness of color thes produced is by many preferred to the trae lark brown.

3776, Chinese Bronze, Take 2 oubces each venligris and veruiliou; 5 ounces each ulam and sal-ammoniac, all in fine powder,
and sufficient riucgar to make a paste ; when apreed it oser the surface of the copper, prevottsly well eleaned und brightened; milCormly warm the article by the fire, and afterWards well wash and dyy it, whem, if the tivt be not deep tanomh, the process may be repeated. The suddition of a bittlo sulphate of copper inclines the color to a chostnat lirowa; and a letalo boras to a yellowish brown. Much caployed Ly the Chinese for copper tea-hinas.
3777. Carbonate of Iron Bronze. Beautifil tints are prodneed by using phatoposider or rouge, After moistening with water, it for applial und treated in precisely tho same mazuer as tho plumbugo. (Sce No, 3775.)
3778. Black Bronzes. A very dark colored hronze may be obtained by using a little sulpharected alkali (sulphuret of amnomia is betst). The face of the medul is washed user with the zelation, which should bo dilute, aut the thedal dried at at gentlo heat, abd uferwarda polished with n hard hair brush. Sulptomrettesl hydrogon gat is sonnethues ompteyed to givo thim haek bronze, but the efleot of it is not so grom, und tho gas is very deleterions when breathed. In thesa brumzer the surfice of the eopper is converted intos as rulphuret.
3779. German Mathod of Bronzing Brass Black. Thers are two plethods of procursing at baek hequer apua tho fudhes of lepues, The one whiels ha that untally employod for opthat atad scieptilie fisserumenti,
 Tripolf, thom washag it with it mixure eomfored if 1 park sittate of tin und 2 parts clatoride of poht, and, after nthowing thia wash to reanala 00 for mhant is or is misutes, wiping it ofl with al liten cloth. An excess of ache thereanes the inturaty of tho tint. In the othez method, cujpoct tarnioge aro dis. sulved io blute neid butil the acid is saturated; the oljectabro immersel in tha molution, cleaned, and atheqquenty heatud moderatoly over a chareoal flre. This procean must be rejecated ia urder 20 premlucer is black color, as the find thial only grves a deep grea; when the desfred colur is uttuined, the tinishing touch is given by polishing with ofive ofl.

3780, Black Bronzes. Many metallic molations, soch as weak acid relutions of platitatio, Fola, philadmat, antiotony, ete, will ingart a dark color to the sutace of mealala whes thay are sipped iuto them. The medal, after leving dupeal into the metallie selution, is to be well washod and brashed. In sach brouzes the metals contaned in the sofotins are frecopltated spon the fuce of the repper medial, whith effect is recompanied by a partial bolafloh of the copper.
3781. Green Bronzes for Figures and Buats. Green bronzes require a littlo more time than those already described. They dupend apon the formation of an acetate, carbonste, or other green salt of copper apon the surfaco of tho inedal. Steeping for some days in a strong solution of common salt will gire a partial bronzing which is very beantiful, and, if washed in water sud allowed to dry slowly, is very permanedt. Sal ammonise may bo substituted for common salt. Even is strobg solation of sugar, alone, or with a Fittleacetic or oxalic acid, will produce a green bronze; so also will exposure to the fames of dilate acetic noid, to weak fumes of hydrochlorie acid, and to several other Fapors. A dilate solution of ammonia al. lowed to dry upon tha copper surface will leave a green tint, but not very permanent.
3782. Bronzing with Bleaching Powder. Eleetrotypes may be bronzed green, having the appearance of ancient bronze, by a very simple process. Take a
mmall portion of biegching powder (chloride of lime), place it in the bottora of a dry vesael, and suspend tho medal over it, and cover the vessel; in a short time the medal will acquire a green coating, the depth of which may be regulated by the quantity of bleaching powder ased, or the time that the medal is saspended in its flames; of course, any sort of vessel, or any means by which the trlectrotype may be exposed to the fumes of the powder, will answer the purpose; a few grains of the powder is all that is required. According as the medal is clean or tamished dry or wet, when suspended, different tints, with different degrees of adhusion, will ba obtainud.
3783. Fine Green Bronze. Diszolve 2 ounces verdigris and 1 ounce sach-amistotliac in 1 pint vinegar, and dilute the mixtare with water motil it tastes but alightly metallic, when it mutt bo boited for a fow miputes, and filtered for use. Copper medula, 4 e., proviously thoroughly cleaned from greasio and dirt, are to bo steeped in the liquor at the boiling point, until the desired effeet is produced. Care mont be taken not to kerp them in tho solution tou loug. Whent taken obt, they should be carofully washed in hot water, and well dried. Gives ant antiqueappecrande.
3784. To Bronze Brass Orange, Greanish Grey and Violet Tint, An orango tint, inchoing to gold, is produced by firat polisting the braes, wnd thet plunging it for a few seconds into a nentral sulation of erystallizel acetato of eopper, card being taken that tho aolntion is eotapletely destitote of all free acid, and possesses a warm temperature. Dipped Lito a bath of coppor, the rosuting tind is a greyiah green, whilo a beastifot violet is obtamed by lemmerding it for a single instant in a solution of chleride of asLimong, and rabling [t wit) a stiok covered with cottos. The semperature of tho bruss at tho timo the operation ia in progreda bai a groat influnuco upon the beably unsd deficacy of the t int ; in tho last jestanco it shoutd be heasted to a degree so as jost to be tolerable to the totech.
3786. Moiro Bronze, A motro appearance, vastly superior to that usually scen, it prodecod by bolling the objeot in a solation of nulphate of eopper. Aceording to the proportions obsorvel between the zino and tho copper in the compositiots of the lirasis article, so will the tints obtained vary. In many ittstances it requires the employmens of a elight degres of friction with is resinots or weax varaish, to bring out the wavy Bppearance ohuracteristic of matre, which is also bingularIy enlunced by dropping a few iron naila into the bath.
3786. French Bronze. At emineat Parisien seblptor makes use of a mizture of \dagger ounce Enl-anumpnjac, $\frac{1}{}$ ounce comman kalt, 1 onneo spirita of hautshorn, und 1 ituperial quart of vimugar. A gool restile will also bo obtained by substituting an additional bouneo sal-ammonine, insteat of the spirit of harts. horn. The pieco of metal, being well cleaned, is to bo rubbed with oue of these solutions, and then dried by friction with a clear brush. If the hate be found too pale at the end of 2 or 3 days, tho operation may be repented. It is found to be more advantareous to operate in tise sunshine than in the shade.

3787, To Bronze Copper with Sulphur. When objects mede of copper are immersed in melted sulphur mixed with Lampblack, the objects so treated obtain the appearanco of bronze, and can be polished withont losing that aspect.
3788. Antique Bronze. Dissolvo 1 onnce sal-ammoniac, 3 ounces eream of tartar, and 6 ounces common salt, in I pint hot water; then add 2 ounces nitrate of copper,
dissolved in i pint water; mix woll, and apply it repeatedls to the article. placed in a damp situation, by mesns of a brush moistened therewith. This produces a very antique effect.
3789. Antique Bronze. Rulh the medal with a solation of sulpharet of potassium, then dry. This produces tho appearatice of antiqne lirume very exactly,
3790. Bronzing Liquids for Tin Castings. Wesh the⿱s ever, after being well cleased and \%iped, spith a solution of 1 part sulphate of iron, and 1 part stilplate of copper, in 90 parts water; afterwards with a nofution of 4 parta veriligris in 11 of distilled vibegar; leave for en lower to dry, and then polish with a soft brush and croctus,
3791. To Bronze Iron Custings. Tron castínga miny bo bronzed lve tharongh cleating (one No. 3011) and solisequent immersion in a solntion of sulplate of copper, Whan they nequire a coat of the latter melal. They must be then washed in water.
3792. Surface Bronxing. Thisterm is applied to the process of inparting to tha strfaces of Eigusea of wool, platter of Parit, de., a metallie appearance. This is dono by first giriog them a oint of oil or sizn varniah. and when this 占 bearty dry, applying witha dablurs of cotton or a eutnel-hair pencil, nay of the metallic lomase powsters; in the powder may be placed in an liutlo faig of mustion, and duated pees the surfacs, and afterwarda finighed off with a wad of litep. The surfoca muxt be afterward rambikel.
3793. To Bronze Paper. Paper is lironsed by musiog the jowder up widh a littlo grum nad water, nud Afterwards barniphing. The pager used shoidld contain sumfient sixing not to alssorb tho gum.
3794. Beautiful Eed Bronze Powder. Mis together mulphato of cuppor, 100 tarts; carbonate of soda, 60 parts; appl's heat ontal they unito into a masa, thea cont, powder, athd add eopper filingi, IS parts; well mix, and keep thom at is white heat for 20 minutes, then cool, powier, wash thoroughly with water, and dry.

3796, Gold Colored Bronze Powder. Verdigris. 8 ounces; tatty portider, 4 oubeen: borax and witre, each 9 ounces: linchluride ot meroury, \& vopeo; make them into a paute with ofl, and firse them logether. Fieal in Japanning ea a gold color. Or: Gritud Dutcb fotl or poregoldlear to an impalpable powder. (Soce Nos, 2491 anil 25 th.)

3796, Silver White Bronzo Powuer. Molt together 1 ounce euch bistanth and lin; then add 1 oogen nubinigg guicksitrer; cool and powder.
3797. Graham's Quick Bronzing Liquids. The following 10 receipts ane propharations for lerobiang brass copper, awl zinc. log simplo immorsion. Their action it immodiate.
3798. Black or Brown Bronzing for Brass, Copper, or Zinc. Diswalre 5 drachuis vitrate of fron in I pint water. Or; 5 drachass perolderive of iron ta 1 pitst water. A black may also lie oblained frota 10 nunces muriate of arssonic in 2 pitsts pemuriate of itun, ahd I pint water.
3799. Brown or Red Bronzing for Brass. Dissolvo 16 drechms nitrato of iron, ard 16 drachms hyposmlphite of soils, in 1 pfrit water. Or: 1 drachm nitric weid may ha suldstituted for the nitrate of irom.
3800. Red-Brown Bronzing for Brass. pissolve 1 onnce nitrate of oopper, and 1 ounce osalic acid, in 1 pint sater, bronght to the boil, and theo coulesl. Or: 1 pint eolation of forrocyanide of potassiom and 3 drachms nitric acid. This latter is slow in sctimn, taking ans hour to produce good re-
3801. Dark Brown Bronzing for Brass. Mix I ounce eyanide of potassium, and 4 drachms nitric acid, with 1 pint water.
3802. Red Bronzing for Brass. Mix 30 grains tersulphite of arsemic, 6 drachma soIution of pearlash, and 1 pint water.
3803. Orange Bronzing for Brass. Mix 1 drachm potash solution of solpheter with 1 pint water.
3804. Olive Green Bronzing for Brass. Dissolve 1 pint permuriato of fron in 2 pints water.
3805. Slate-Colored Bronzing for Brass. Dissolyo 2 z drachms sulphocyanide of potissium, and 5 drachors perchloride of iron, in 1 pint water
3806. Blue Bronzing for Brass, Mix 20 deachins hyposulplite of seda with 1 pint water.
3807. Steel-Grey Bronzing for Brass, or Copper. Mix 1 wheo murimte of arsenic with I pind water, and wo at a beat not less than 180° Fahr.
3808. Dark Drab Bronzing for Copper. This is prepared ly adding 2 drachma kulphocyenide of potasium to the mixture given in No. 3807, Or: mix 1 ounce sulphato of copper, 1 ounce hyposulphito of sodn, 2 drachms hydrochlorio need, and 1 pint water.
3809. Bright Red Bronzinf for Copper. Mix \& frachan mulphide of antimony, and 1 ounco pearlash, in 1 pint water.
3810. Darlc Red Bronzing for Copper. Dinsolve 1 driactim sulpbur, and 10 opnce pearlanh, in 1 pint water,
3811. Dark Grey Bronzing for Zinc. Mx 1 dravtion protpelalorive of tin, and i drachm sulphocyanido of protession, with 1 pint water. Or: 1 isispolvo 1 drachm each stal. plate of copper and muriate of iron, in 2 pints water. A nimilar effect may be obtained by mising muriate of lead with water to the cotsnistency of ereati.
3813. Green-Grey Bronzing for Zinc. Dissolve \& drachm muriate of irnu in 1 pint water
3813. Red Bronzing for Zine. Uso garastise (maddet-red) indupiun boiling hot. 3814. Copper-Colored Bronzing for Zinc. A gitato the articles in a sulution of 8 drachus bulplate of copper, and 8 drachens byposulphite of soda, is L piot, water.
3815. Copper-Colored Bronzing for Zinc Plates. Make a solstion of 4 drachma solphate of eoppers, and 4 drachms pearlash, in 1 pint water. Immerse the zino plato in it, conticcted ut me end with a plate of copper, as represented in Fig. 1, No. 3665, This, it will be seen, induces a galvanic current, and is electroplating on a small scale.
3816. Purple Brozzing for Zinc. Immurse in a boilitg infusion of log wood.
3817. Lurkin's Bronzing Fluids for Alloys of a Silvery-Grey Color. Mr. Lapkin states that, for the purpose of rendering allogs which are of a silitery-grey color, perfectly suitable as substitutes for copper, bronze, lirass, and other metals, the color proper to the metals which they are intended to sobstitute is inparted to them by means of myy solution of copper. The bydrochlorate of copper is found to nnswer best, and is employed as directed in the five following receipts.
3818. Directions for Using Larkin's Bronzing Fluids. In either of these methoda of coloring, a solution of sal-ammoniao may be sulistituted for the liquid ammonia. The quastities of each ingreduent have not been stated, as these depend upon the nature of the alloy, the shade or hue desired, and the durability required. The bluish-bronze color may be superadded to the red or copper color, whereby a beautiful light color is produced on
the prominent parts of the article bronzed, or on the parts from which the blackish-bronze color may have been rubled off. Theso new alloys may bo nsed as substitutes for varions metals now in gemeral nse, stech as iron, lead, tin, or copper, in pipes and tubes; and bronze, brass, and copper, in machinery and manufactories, as welf as for most of the other purposes for which more expensive metals are employed.
3819. Blackish Bronze Coloring. For giving silvery-grey alloys a blackishbronze color, they are treated with a solntion of hydrochlorate of copper diluted with a considerable quantity of water, and a small quantity of nitric acid may be added.
3820. Lead or Copper Coloring. Ta impart a lead or copper color, add to the solution of hydrochlorate of copper, liquid ammonia and a littlo acetio acid.
3821. Antique Bronze Coloring. To impart a brass of antique bronao eolor, either of the three following means may be adopt-ed:-A golution of copper, with some acetic aeid. Or:-The moans before described for coppar color, with a large proportion of Bquid Anmonia. Or:-Water acidnlated with nitrie acid, by which beautifal bluish shades may bs produced. It mast be observed, however, this last process can only be properly employ: ed on the alloys which contain s portion of coppor.
3822. Drab Bronze for Brass. Brass obtains a very bountiful drab bronzo by loing worked in moulders' damp sand for a short time and brushed up.
3823. To Make Bronze Powdor for Plaster Casta, \&c. To a molution of sodasoap in linseed oll, elearod by atraining, add a mixtare of 4 pints sulphate of eopper colntion, and 1 pint zalphate of iron folution, whioh precipitates a metallio poap of a peeuHar bronze bue; wash with cold water, atrain,
and dry to powder.
3824. To Bronze Plaster Cests, \& The powdered soap of the last receipt is thus applied: Boil 3 pounds pure linseed oil with 12 ounces finely powdered litharge; strain through a coarso canvas cloth, and allow to stand until elear; 15 ounces of this soap varnish, mired with 12 ounces metallic soap powder (see last recifpt), and 5 ounces fine white wax, are to bo melted together at a gentle heat in a purcelain basin, by means of a water-bath, and allowed to remain for a time in a malted state to expel any moisture that it msy contain; it is then applied with a brush to the surface of the plaster previonsly heated to 900° Fahr., being carefal to lay it on smoothly, and without filling up any small indentations of the plaster design. Phace it for a fow days in a cool placo; and, as Eoon as the smell of the soap varnish las gone off, rub the surface over with cotton wool, or fine lines rag, and variegated with a fow streaks of metal powder or shell gold. Small objects may be dipped in the melted mixture, and exposed to the heat of a fire till thoroughly penetrated and evenly conted with it,
3825, To Make Bronzing for Wood. Grind soparately to a fizo powder, Prubsian blue, chrome yellow, naw bmber, lampblack; and clay, and mix in anch proportions as will prodace a deaired dark green bue; then mix with moderately atrong glue rive.
3826. To Bronze Wood. Fint cont the clean wood with a mixtury of size and laimpblack; then apply two coats of the green colorod aizing in tho last receipt; and hustly with bronze powiler, such at powicred Ditich foil, mossic gold, \&c., laid on with o brash, Binish with a thin Bolation of Cutile soap; sud, when dry, rub with is soft woolen cloth.
3827. To Bronzo Porcelain, Stoneware, and Composition Picture Frames. A broazing process, applicable to porcolain,
stoneware, and composition picture and look-ing-glass frames is performed as follows: The artioles are firat done over with a thin solution of water-glass (see No. 2816) by the aid of a tof brush. Bronze powder is then dusted on, and any excess not adherent is knocked off by a fow gentle taps. The article is next heated, to dry the silicate, and the bronze becomes firmly attached. Probably, in the case of porcelain, biscuit, or stonoware, some chemical union of the silieate will take phace, but in other cases the water-glass will only tend to make the bromze powder adhere to the surface. After tho heating, the hronto may be polished or lsurnished with agate tools,
3828. Browning for Gun Barrels. Mix 1 ounce each aqua-fortis and sweet spirits of nitro; 4 onnces powdered blue vitriol; 2 ounces tincture of jrom, and water, $1 \frac{1}{\mathrm{f}}$ pints; agitato until dissolved.
Or: Blue vitriol and sweet spirits of nitre, of each 1 ounce; water, 1 pint; dissolvo as lant.

Or: Mix equal parts of butter of antimony and eweet oil, and apply the mixtare to tho iron previously warned.
3829. To Brown Gun Barrels, The gran barrel to be browned must be first polished asd tien ribbed with whitlog to remove all oily matter. Its two ends should be stopped with wooden rods, which serve as handle日, and the tonch-hole filled with wax. Then rab on the bolation (see last rocoipt) with a linen rag or aposge till the whole kurface is equally moistoned. Let it renwits till tho noxt day thea rub it of with is seiff brush. The liquad may bo ngafn applied tutil a proper eolor is produced. When thia in the ouse, wash in pearlash water, and afterwards in clean water, and then polish, either with the burnisher or with lees was; or apply a coat of shellad varnish. (8ce No. 8954.)

Absinth, to make.................. 97, sc.
Acacia Flover Water, to digtill+... 1072
Acetous Fermentation..... $+\ldots+++++16$, 867
Acid Preparations of Tin+++.++t+++.. 107
Acid stains, to remove from garments, 6 c 366 , Sc.
Acidity in Beer, to correct ++++++, +. 868 Actaity In Wine, to remedy 753
Acidity in Wine, to test............. 760
Acidin, Cement to resise. . + 2232
Acids, Efrect of on colors............ 361
Aldehyde-Purple Dye Cor Cottons.171.fic,
Acrated Lemonade. 906
Age, to impart apparent to Deer $k+++875$
A1abaster, Cement for2160, 2177
Albuminized Papor for Photography ++3132 3178°
Alcoholate of Roses . . + 1017
A1dehyde. ++2557, 4308

A1e, Fining for. $6 .+871$
A1e, to brew.
Ale, to clarify..
Ale, to fire..................................... 747
Alkali-B1tue Dye. 2606
Alkali, Caustic, to test........584, ze.
Alkali stains, to remove from garmentrs, \& C. 368
Alkali Stiffening for Hata............ 336
Alkalies, Effect of an Colors....... 361
Alkaline Metals, Amalgams of 3546
A1kanet-Red Color 2630
Alloy, Expansion. 3454
Alloy, Fluid................................... 3455
Alloy of the Government Standard Meas-
ures. 3434
Alloys,3347; K.c.
Alloys for Dentists Moulds... 3435 , \&C.
Alloys, French, for Forks, sc.......3427
Alloys, Fusible............................ 3456

Alloys of Gold. + + + + + + + 3393, EC.
Alloys of LeadAlloyn of Quicksilver, pee Amalgams.Allays of Silver......................3404. KC,A110ys of Steel...............................3423 3421 . 3426Alloys of Tin and tead, meltiog heat of3459
A110ys of 2 inc............................ 3424
Alloys, Test for Copper in...........3241
Allaya, to separate Copper $\mathrm{from...}$.
Almond Extract............................... 1033 1033
Almond Paste.
Almond Paste. Bijtter. 1124
Almond Soap. 557, 592
Almonda, Emlision oE. 1140, 1155
Almonds, Esbence of943
Alpaca Dre 485
Alum P1umb. 114
Alum, to test.115
Aluminus.
3330
3330
Aluminum, 3429
Aluminum, Solder far.....+.......3520, 3522
Aluminum, to electropiate with....... 3749
Alunimus, to frost 3332
Aluminum, to polish. 3331
Aluminum, to solder 3521
Amalgams. 3543
Amigas for Anatomical Preparations. 3547Analgam for Dentists.............3549. BC,Amalgans for Electrical Hachines. 3539 kc .
Amalgan for Silvering Mirrors.
3535, 353e, 3545
Amalgan Cor Varnishing Plaster Casta3548
Analgam, Gold................................ . 3533
Amalgam, Gold, to gild vith............ 3534
Amalgam, Silver................................. . . . 3535
Amalgam, Tin....................................... 3542
Amalgam, Tin.. 35444

Amalgath, Varniehers' 2953
Amalgam, zine....+1+...................+. . 3539
Amalgamating Fluid. 3555
Amande, Pate de, au Mlel................1134
Amandine, Colored.......................... . . . 1120
Amandine, G1ycerine. 1119
Amandine, to make...... 1117
fmandine, to 1ase. 1118
Atber, Cement For, 2176
hrber. Eau Royale de. 994
末eber 011-Varnibhes. 2879, 8.0.
Amber Spirit-Varnlah. 2930
Amber, to diasolve. . +1.............. 2929
Anbergris and Nusk, ofi of,...........1237
Amborgris, Essence of959, 963
Ambergris, oil of................. 1227, 1240
Anbergris, Tincture of963, 1024
Anbretce. Eau of Etaprit de.............. . . 995
Ambrette, Easence of +...................... 968
Ambrosin Syrup, +++++++++*................. 1422
Arethyst, Imitation++.+........ 2356 , 2441
Amonla, Hydrosulphate of,.........+., 1203
Asmonia, Hydrosulphuret of, +. .2...... 1203
Ammoniluret of Cold. 3725
Anatonical Preparations, Amalgam tor3547
Angelica Water, to disti11....1071, 1073
Anglo-German Gilding...................... 3587
Aniline Black Varnish+,+.,.............. 2943
Anlline Colors + + + + + + + + + + + + +. 2552, KC
Aniline Colors, effects of impure Alco-
hol on. 2559
Aniline Colors, soluble in water.,., 255 B Aniline Coloris, to remove. 2565 Aniline Colors, to remova Sugar fromi2562 Aniline Colors, to test for Sugar in2561 Aniline Colors, to test quality of . 2560 Aniline, difficulty in Dying Cotton with 2570
Aniline Dyes +++.......332, \&c., 2552, \&C. Anilite Dyes, Directions for using.. 2563 Aniline Dyes, Mordants for............ 2567 Aniline Dyes, to distinguish........ . 2564

Aniline Inks．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2497 Aniline Marking Ink．．．．．．．．．．．．．．．．．．．．．． 2511
Aniline Stains，to remove froo hands 2566 aniline Varnishes，Transparent．．．．．．． 2942 Animal Fiber，to detect in Mixed Fabrics 294
Animal Substances，to silver．．．．．．．．． 3626 Anise，Green，to distill，．．．．．．1071， 1073 Anfseed Cordial． .780 Anisette Cordial．．．．．．．．．．．．．．770，778， 802

Annotto Dye for Cottons．．．．．．．．．．．．．．． 159

Annatto，Purified．
2622
Annotto，to propare．
Anode of a Battery
Antimonoid．
Antimony，Commercial
Antimony，class of ．．．．．．．．．．．．．．．．．．．．．．．．． 2370
Antimony，Testa for＋＋，．，．．．．．．．． 3340 ， 3341
Antimony，Metallic，to nbtain．．．．．．．．3342
Antique Bronze．．．．．．．．．．．．．＋．．．．．．．．．．．．．．．．．3788
Antiscorbutic Dentifrice．．．．．．．．．．．．．．．．．．1306
Apple and Mulberry Wine．．．．．．．．．．．．．．．72a
Apple Essence，Artificial．．．．．．．．．．．．．． 1054
Apple Syrup．
Apple Wine．
723
Apples，to press．for Cider．．．．．．．．．．．．．a33
Apricot Essence，Artisicial ．．．．．．．．．．．1047
Apricot Wine．
Aqua Marine，Imitation．．．．．．．．．2359， 2442
Aqua Regia．．．．．．1，．．．．．．．．．．．．．．．．．．3725， 3879

Areca－Nut Charcoal
1302
Areca－Nut Tooth Paate．
1307
Areca－Nut Tooth Powder．
Armonian Cement
．．．．．．．．．．．．．．．．．．．．．21522 2485
Aroma of Cordiala．．．．．．．．．．．．．．．．．＋＋．．．．．．． 812
Aramat ic Ginger Wine
Aromatic Splrits，Diatilled，．．．．．．．．．．． 941
Aromatice，Proportions of，for Perfumed

Waters．

Aromatic Waters，Diatilled．．
1070
Aromatic Watern from Ensencen．．．．．．．． 1001
Aromatic Waters from Essent ial 0ilas． 1030
Arrack，Imitation，
700 ．be．

Ablat ic Black $1 n k$ ．．．．．．．．．．．．．．．．．．．．．．．．．． 2466
Attar of Rosea．
975
Aureolin Yeliok． 2700
Aurine Aniline Dye． $+2595$
sutographic Ink． 2551
Aventurine，imitation．．．．．．．．．．．．．．．．．．． 2443
Azure Bsue，or Smalta．．．．．．．．．．．．．．．．．．． 2607
Azure Paste for the Skin．．．．．．．．．．．．．．1114

Batavia Arrack，Isitation．．．．．．700，sc．

Bay－Rue，West Indian．．．．．．．．．．．．．．．．．．．．． 1028

Bean－Flover Water，to distili．．．．．．．． 1072
Bear＇s Greave． 1277
Bear＇s Grase． 1278Beaute，Eau de．1146ed－Tick，to clean
Beechwood Mahogany． 2日4R
Beer，Bitter Halls for
Beer，Bucking．
Beer，Pinings for，．．．．．．．．．．．t，
Beer，Flatness in，to renedy．
Beer，Foxing．
64 ． 868 ． 868 880 880 871 871
864
864
864
880
880 879
Black Lace Veils，to Wash． 466
Black Lacquer for Notals．
Black Lacquer for Notals． 3774
Black Luster－Color for Pa
Black Luster－Color for Pa 2626 2626
Black Pigments
Black Pigments 2719 2719
Black Reviver
Black Reviver 45 B 45 B
Black silks，to clean．
Black silks，to clean． 457 457
Black Silks，to restore．
Black Silks，to restore． 459 459
Black Stain for Wood，．．．．2843，2850，
Black Stain for Wood，．．．．2843，2850， 2864 2864
Black Varnish for Iton Work．
Black Varnish for Iton Work． 2900 2900
Black，Vlnogar，for Book
Black Walnut．See WhlNuT
Black，Vlnogar，for Book
Black Walnut．See WhlNuT
blackberry Syrup
Dackberry Wine． 1404
Beer，Frosted，to recaver
Beer，Goresan
Beer，Frosted，to recaver
Beer，Goresan ，882 Beer，Ginger． 893．Lc．Blistered Steo1． 104. 104. 731
4786 731
4786
sc 902 Block Tin + ．．．．．．． Beer，Ginger．Povders for 3314
076 Blond Hale Dye Eeer，Hot Drops for 391 Blond Pouder for the Hair 1206
Beer，Lenon． 899 Biond，White Silk，to clean＋ 1104
Beer，Must iness in ，to remedy， 177 Blood Cement． 2172
beer，Root．Root 802 B100m or Roses 1113
Beer，Ropiness in，to remody．．．．．．．．．．．fis！Blue Cement． 2188
日eer，Spring，to brev．．．
日eer，to bre， 00
Beer，to ripen．bc．Beer，to test，ror Clarification．．．．．．Belgian Burnishing Powler．
Bell Metal． ． 3346.3441
Belting：Cements for jo
Benzine，Caut lons about
Benzine．Cepont ro resistBonzing，to purify2161
genzoin， 011 ot 1242
Benzoin．Tinctur 1262
4567
Derganot，oll of ． 227
Bergamotte，Esppis de， ．． 999
sessiner＇s Varnín 2442
2694$+227$2223
Ginghan＇Washing Mixture2223
Alrd＇s Mode of Silvering on glass． 2620
日ismarek－irown Anilime Dye． 25913344Bibimuth，Caution aginst as Cosmetici111
Binmuth，Co purify，．．．．．．．．．．．．．．．．． 3345
Binmuth． 33462692
bitter Almond Paate． 1124
Bitter Almond Kater． $\begin{array}{r}1073 \\ \hline 943\end{array}$
Bitcor Atmonds，Essence of 1033
Bitter A1
ous． 1034 ous． 1034
dittern，Brevers 870
869
Black Aniline Dyes． 2571Btack Bronzes．．．．．．．．．．．．．377e，3796． 3819
Hlack，Brunswick．3819
Black Cement． 2283， 2193
black Cherry Essence，Arciticlal．．．．． 1050
1073black Crape，to renovat
462Black Crape，to clean．
Black Curcant Mine．470
black Dyes for Cottons． 138．black Dyes For Cotton and Wool mixed， 288Black Dye for Cotton Silk and Wool mixed291．be
black Dye for Silk． 234，bc． 304lack Dye for the Hix 1201 ．
G1ack Dye for the Hair to use ．．．． 1202 1202
black Dye for Wood
Black bye for Woolens．Black Dye for Veneers．192，222， 303
lack Enamela． 2380,2398
Black for Miniature Painters 2716
Black from Colorless Líquids． 2627Black Inks．

	925	ICK ${ }^{\text {＇S }}$
Bottle－Green Dye for Woolens．．．．．．． 226	Bronze，	Carmine Ink．．．．．．．．．．．．．．．．．．．．．．．．． 2501
Bottle Coctail．．．．．．．．．．．．．．．．．． 924	Bronze，Phosphorus．．．．．．．．．．．．．．．．．．．． 3447	Carmine Purple Dye．．．．．．．．．．．．．．．． 2629
Dottle Fax for Sealing	Bronze，to clean．．．．．．．．．．．．．．．．．．．．． 3450	Carmine Rouge．．．．．．．．．．．．．．．．．．． 1112
Bottles，Castor，to clean．．．．．．．．．．．433	Bronze，to electroplate an．．．．．．．．．．． 3711	Carmine，to brighten．．．．．．．．．．．．．．．．．． 2679
Bottles，Cements for sealing．．．．t＋ 2238	Bronzing．．．．．．．．．．．．．．．．．．．．3771．SC．	Carmine，to make．＋．．．．．．．．．．．．．．．．．． 2677
Bottles，G1ass for．．．．．．．．．．．．．．．．． 2341	Branzing Fiuids．．．．3317，5c．，30．，3778，6c	Carpets，to clean．．．．．．．．．．．．．．．．．．．．． 444
Battles，Gold Labels for．．．．．．．．．．．． 24	Eranzing for Hood．．．．．．．．．．．．．．．．． 38.25	Carpets，to remove Grease from，．．．．．． 358
Botties，to elean．．．．．．．．．．．．．．．．．． 4331	Bronzing on Brass．．．．．．．3779，3784， 3797	Carpets，to remove oil from．．．．．．．．．． 357
Bottles，to cork．．．．．．．．．．．．．．．．．．t＋ 939	Eronzing on Copper．．．．．．3772，3780，3787	Carpets，to sweep．．．．．．．．．．．．．．．．．． 447
Bottles，to cut．．．．．．．．．．．．．．．．．．．．＋＋ 2369	3807，Sc．	Carriage Varnishes．．．．．．．．．．．．．．．． 2877
Houdet＇s Depilatory ．．．．．．．．．．．．．．． 1221	Eronzing on Iron Castings．．．．．．．＋．．．．．3791	Carthamine．．．．．．．．．．．．．．．．．+ ．．．．．． 2683
Bouquet de Millefleurs．．．．．．．．．+1065	Bronzing on Medals．．．．．．．．．．．．．．3772，56．	Cascarilia Water，to distill＋．．．．．． 1071
Houquet de Rondeletia．．．．．．．．．．．． 1066	BronzIng on Paper ．．．＋t＋＋＋＋＋＋＊，．．．．．．． 3793	Case Hardening，＋．．．．．．．．．．．．．+ ＋3297，\＆c，
Bouquet，Eau de	Bronzing on Plaster Casts．．．．．．．．．．．． 3824	Caseine Glue．．．．．．．．．．．．．．．．．．．．． 2294
Eoquet，Espr	Bronzing on Porcelain．．．．．．．．．．．． 3627	Casks，Leaky，Wax Putty for ．．．．．．．．．． 696
Boquet，German，		Casks，to clean．．．．．．．．．．．．．．．．．．．． 854
Bouquet，Jockey	日ranzing on Zinc．．．．．．．．．．．．．．3797， 3 311	Casks，to prepare，for Cider．．．． 839.854
Bouquet，Soap，	Bronzing Powders．．．．．．．．． 3794 ，6c．，3823	Casks，Varnieh for Inside of．．．．．．．． 2970
Bourbon Whiskey	Bronzing，Surface．．．．．．．．．．．．．．．．．．．．．．．． 3792	Cassia，Essence of ．．．．．．．．．．．．．．． 970
Boxvood，to stain，	Brown Aniline Dye．．．．．．．．．．．．．．．2589， Le ．	Cassia，oil of ．．．．．．．．．．．．．．．．．． 1227
Boyle a Lute for Reto	Brovn Eronzes．．．．．．．．．．．．．3772，3798，6c．	Cassia Pomade．．．．．．．．．．．．．．．．．．．．．．．．． 1262
Braconnot＇s Glue of Case	Hrovn Dye far Cotton．．．．．．．．．．142，Se．	Cast Iron，see IRON
Bran，Prepared，for the Hair．．．．	Grown Dye for Cotton and Wool．．．．．．．．． 289	Cast Iron，to coat，with Coppor．．．．． 3635
Brandy，B1ackberry．．．．．．．．．．．．． 782 ，${ }^{\text {Bran }}$（	Drown Dye for Silks．．．．．．．．．．．．．．241，kc．	Cast Iron，to coat，with Zinc．．．．．．． 3650
	Brown Dye for Woolens．．．．．．．193，223， 305 Brovn Enamels．．．．．．．．．．．．．t．t．．．．．．．2382	Cant steel ，see STEEL，．．．．．．．．．．．．． 1311
Brandy，Imitation．．．．．．．．．．．．．．．676，Sce，		Castings，Brase for ．．．＋，．，．，．．．．．． 3367
Brandy，Peach．．．．．．．．．．．．．．．．．．．765， 813	Brown Hair－Dyes．．．．．．．．．．．．．．	Castings，German silver for．．．．．．．．． 3411
Brandy，Pepperminc．，＋．．．．．．．．t．+ ＋+767	Brovn Marking－1nk．．．．．．．．．．．．．．．．．．．．．．． 2513	Castor Botties，to vash．．．．．．．．．．．．．． 433
Brandy Punch．．．．．．．．．．．．．．．．．．．．．．．f＋＋919	Brown Sealing Fax．．．．．．．．．．．．．．．．．．．．． 2321	Castor Dil Pomade．．．．．．．．．．．．．．．．．． 1276
Brandy Smash＋r＋＋＋．．．．．．．．．．．．+ ＋+925	Urown Sprinikie for Bookbinders，3105，3125	Catavba Champagne．．．．．．．＋．．．＋．．．．．．． 719
Drass．．．．．．．．．．．．．．．．．．．．．． 3358 ，b6C，	Brown Staip for Boxvood ++ ，＋，r，，．．．． 2865	Catechu Dyes for Cottons．．．．．．．．147， 181
Brass，Bronzing for，．．3779，3784， 3797	Brown Stain for 61a85，＋．＋＋＋，＋，＋．．．．， 2361	Catechu，to prepare，for dying．．．．．．．．． 96
Brass，Dark，．．．．．．．．．．．．．．．．．．．．．．．． 3363	arown stain for Harble．．．．．．．＋＋，＋．，．2038	Cathay，Creme de．．．．．．．．．．．t＋＋．．．．．．． 1128
Brass expanding equally with Iron．．3375	Bruwn Staln for Mond．．．．．．．．．．， 2853 ，bc．	Cathode of a Battery＋．．．．．．．．．．．．．． 3667
Brasis，Fiux for saldering．．．3480， 3531	Grown Tint for Iron and Steel．．．．．．．． 3262	Caustic Alkali，to test．，．．．．．．． $584, \mathrm{bc}$ ，
Brase for Butto	Brown Windeor Soap．．．．．．．．．．．．．．．．．．．．．． 559	Caustic Lye，Soapmakera＇，．．．．．．．519， 588
Brasif for Cantinga．．．．．．．．．．．．．．． 3367	grunsvick Black．．．．．．．．．．．．．．．．．．．．．．．． 2899	Caustle tye．Tables of ．．．．．．．．．629， 630
Brasis for Gilding＋．．．．．．．．．．．．．．．+3369	Brunavick Green．．．．．．tor＊＊．．．．．．．．．． 2710	Caustic Potash．．．．．．．．．．．．．．． 101 ， 4192
Brass for Solder＋．．．．．．．．．．．．．． 317	Brushes for Varniahing．．．．＋＋＋＋4．．．．． 2977	Cauntic Potash，to test．．．．．．．．．．．．． 585
Brass for Turning＋．．．．．．．．．．．．．．． 33772	Brushes，Hair，to clean，＋＊＋＊4＋＊．．．．． 416	Caumtic Soda．．．．．．．．．．．．．．．．．．．．．．． 102
Brase for Wire．．．．．．．．．．．．．．．． 23759	Bryant \＆James．blacking ．．．．．．，3092， 3099	Caustle Soda，to test．．．．．．．．．．．．．． 5 目
Braes，Inlaid，to elean．．．．．．．．．．．． 3392	目uchner＇${ }^{\text {a Carming }}$ Ink．．．．．．．．．．．．．．．．．．． 2501	Cazenave
Brask，Inlaid，to poitsh．．．．．．．．t＋＋2902	四acturer＇s Soluble Soda diasa．．．．．．．．． 2819	125 B
Brans，Lacquert for＋．．．3048，GC．． 3347	四ucking Beer．．．．．．．．．．．．．．．．．．．．． 880	Cazenave＇s Pomade．．．．．．．．+ ＋ ．．．．．．．．． 1288
Bratir，Malleable＋＋＋．．．．．．．．．．． 3360		Ceilings，Cement for．．．．．．．．．．．．．．．．． 2171
Dras，ornamente，to color，．．．．．． 3396	Duff Dye for Sitkx．．．．．．．．．．．．．．．．．．．．．． 269	Celery，Extract of ．．．．．．．．．．．．．．．．．．．． 1043
Brass，Pale＋＋＋＋＋3365，3369，3372， 3375	Buliding stone，Artifielal．．．．．．．．．．．． 2219	
Drass，Paste for cleaning．．．．．．．．． 3391	Buisson＇a Purple of Camblun＋．．．．．．．．．2723	Cement，Colored．．．．．．．．．．．．．．．．．2182，Kc．
Bras5，Red ．．＋．．．．．．．3363，3370，3373	Bungs，Leaky，Wax Putty for＋＋1＋．．．．． 696	Cement for Building ．．，，2173，2181， 6386
Erase，Sheet ．．．．．．．．．．．．．．．．．．．．3344	Bust \％，to Bronze．．．．．．．．．．t＋＋＋＋＋＋．．．． 3761	Cement for Seallng Bottlos．．．．．．．．．． 2239
Brase Solder ．．．．．．．．．．．．．．．．．．．． 3512	Husts，to Electrotyper．．．．．．．．．．＋．．． 3693	Cementation，Steel made by ．．．．．．．．．．． 3274
Hrasa，Solder for．．．．．．．3507，GE．． 3517	隹utter，to Color．．．．．．．．．．．．．．．．．．．．．．．． 2635	Cementing，see ArTicle to be joine
Drasis，Solutions for cleaning．．．．．． 3393	Huttong，Brasn tor．．．．．．．．．．．．．．．．．．．．． 3364	Cementina，General Directions for．．． 2151
Brass，to elean．．．．．．．．．．．．．．．．．．．．． 3389	Iuttons，Copper，to silver－cual．．．．． 3609	Cenette＇s Process tor Carmine．．．．．．． 2678
Brasa，to clean．For lacquering．．．． 3047	，	Cerise Aniline Dye．．．．．．．．．．．．．．．．．．．．． 2578
Brass，to Coat Motal Mith．．．．．+3633 ，sc，		Chalk，Camphorated．．．．．．．．．．．．．．．．． 1290
Brass，to coat，With silver．．．．t＋＋＋3607	Cabinet Varnigh．．．．．＋＋＋＋t．．．t．t．．．．． 2893	Chalk，Precijitated，．．．．．．．．．．．．．．．．．． 1291
Brass，to coat，with	Cacao Pomade for the Lips， $\mathrm{Cc},11136$	Chalk，Prepared．．．．．．．．．．＋＋＊．．．．．．．． 1292
Brass，to coat，with Zinc．．．．．．．．． 36551	Cachou Aromatise．．．．．．．．．．．．．．．．．．．．． 1336	Chameleon Mineral．．．．+ ＋＋＋ ．．．．．．．．． 2637
Brass，to coat zine vit	Cadsium Alloys，Dentists＇．．．．．．．．．．．．． 3438	Chamomile Water，to disti11．．．1071， 1073
Brass，to color，3188，3313，3379，3 sc．． 3390.	Cadailus Analgas，Dentlstis ${ }^{4}$ ．．． 3544 ， 3549 Cadmium Red．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2700	Champagnat＇s India－Rubber Varnish．，．，2889 Champagne，Cheap．．．．．．．．．．．．．．．．．．．．723，L．C．
BEass，to electroplate on．．．．．．．．．．．．．． 3711	Cadaluis Yellow．．．．．．．．．．．．．．．．．．．．．．2638， 2700	Champagne，Homo－Made．．．．．．．．．．．．．．． 730
Brass，to electroplate W1th．．．3752， 3769	Calicos，to clean．．．．．．．．．．．．．．．．．．．．t＋，448	Champagne，Imitation．．．．．．．．．．．．．713，B．C，
Brass，to frost．．．．．．．．．．．．．．．．．． 33311	California Brovn Dye for Silks．．．．．t＋241	Champagne．Syrup for＋．．．．．．．．．．．．． 715
Brass，to give an English look to．．．33ae	California Champaigne．．．．．．．．．．．．．．．．．． 720	Champagne，to gas，．t＋＋．．．．．．．．．．．．．．718
Brass，to qive a Moire appearance．．． 3386	Callot＇s Zau Forte，or Etching Fluid2962	Champagne，to prepare for Charging．．．717
Brass，to harden．．．．．．．．．．．．．．．．．．． 3377	Calotype Paper ．．．．．．．．．．．．．．．．．．．． 3176	
Brasas，to lacquer，．．．t．＋．．．．．．．．．．．．．． 3046	Cambric，to clear－starch．．．．．．．．．．． 501	Champagne－Cider，Imitation．．．．．．．．． 8487
Brass，to platinize．＋．，＋．．．．．．．．．．． 3658	Camphor BLack，．t＋t＋＊．．．．．．．．．．．．．．．． 2716	Chaps，Borax Lotion for ．．．．．．．．．．． 1157
Brass，to protect．＋．＋＋＋4＋．．．．．．．．．．． 3765	Camphor Icev．．．．．．t＋＊＊＊．．．．．．．．．．．．．．． 1132	Charcoal，Alumenized．．．．．．．．．1730， 4314
Brass，to put a elack Finish on．．．．． 3380	Camphorated Chalk＋，＋，＋＋．．．．．．．．．．．．．．．． 1200	Charsoal，Areca－nut，．．．．．．．．．．．．．． 1302
Brass，to scour．．．．．．．．．．．．．．．．．． 3271	Canada Varnish＋+ ＋＋＋＋＋＋＋＊．．．．．．．．．＋．＋． 2921	Charcoal for Dentifrice．．．．．．．．．．． 1317
Brass，to soften．．．．．．．．．．．．．．．．．． 3378	Cane Seats of Chalrs，to clean $+4++++419$	Charcoal．Prepared．．．．．．．．．．．．．．．．．．．．． 1294
Brass Solution，to propare．．．．．．．．．． 3768	Cane，Staining for．．．．．．．．．．．．．．．．．．．． 2866	Charcoal Tooth－Paste＋＋．
Brass，Yellov．．．．．．．．．．．．．．．．．．． 3348 ， 3359	Canella Water，to diatili．．．．．1071， 1073	Chartreuse，Liqueur de la Grande806，6291
Brazing or Hard Soldering ．．．．．．．．．．．． 3486	Cantarides，Vinegar of ．．．．．．．．．．．．．．．． 1178	Chaudet＇s Springs for Artificial Teeth． 3406
Brewing．．．．．．．．．．．．．．．．．．．．．．．． 8856	Canvas，Flexible Paink for，．．．．．．．．． 2765	
Brewing，Important Hinta on．＋．．．．．．．．．． 863	Cabutchouc Cement．．．．．．．．．．．．，＋．．t． 2257	
Brewith，Utensils fur． Bricks，Red Wash for．．．．．．．．．．．．．．．．．．．．．． 2809	Caputchoucine．．．．．．．．．．．．＋＋＋＋＋＋＋．． 2249	Chemlcal Glasses，Cement for．．．．．．．．， 2237
Brickwork，to pencil or point．．．．．．．． 2792	Capsicum，Extract of．＊．＊＊＊＋t＊＊．．．．． 1040	Chemical Soap．．．．．．．．．．．．．．．．．．．．．．．．．．． 546
Bristles，to Dye．．．．．．．．．．．．．．．．．．．．．． 662	Caramel ．．．．．．．．．．．．．．．＋＋＋＋＋694， 1368	Cherry Bounce ．．．．．．．．．．．．．．．．．．．．．． 793
Bristles，to stiffen．．．．．．．．．．．．．．．．．．．． 661	Caramel，to purify ．．．＊＋＋＋＋＋＋．．．．．． 2632	Cherry Brandy．．．．．．．．．．．．．．．．．．．．． 784
Britannia Metal．．．．．．．．．．．．．．． 3348,3417	Caraway Cordial．$+\ldots .4 . \ldots . .769,789,6292$	Cherry，Currant，\＆Raspberry wine．．．． 728
Britannia Metal，Flux to solder．．．．． 3484	Carbolic Acid Soap．．．．．．．．．．．．．．．． 581	Cherry Essence，Artificial．．．．．．．．．． 1049
Britannia Metal，to clean＋．．．．．．．．．．， 3418	Carbon Irk．．．．．．．．．．．．．．．．．．．．．．，2514， 2530	Cherry Juice．．．．．．．．．．．．．．．．．．．．． 791
Britamia Metal，to electroplate on． 3711	Carbonate of Lead．．．．．．．．．．．．．．．．．．．．． 2693	Cherry Laurel Lotion＋．．．．．．．．．．．．．． 1161
Brittleness of Metals，Comparative．． 3357	Carbonate of Soda	Cherry Laurel Water．．．．．．．．．．．．1071， 1073
Brocatelle Curtains，to clean．．．．．．．． 450	Carbuncle，Imi	Cherry Syrup．．．．．．．．．．．．．．．．．．．．．．． 13131
Bromide Paper，Photographic．．．．．．．．． 3172	Cardamos，Tincture of ．．．1023，4540， 4568	Cherry Wine ．．．．．．．．．．．．．．．．．．．．．． 728
Bronze．．．．．．．．．．．．．．．．．．．．．．．．．． 33484	Card－Work，	China－Crape
Bronze－Brown Dye for silka．．．．．．．．．．． 245	Card－Hork，Varnish for ．．．．＋＋＋＋＋．．．．． 2939	China－Ware，see PORCELAIN

Chinese Dop	Coins, to keep froo Tarnishing. . . . 3225	Corali ine, Innoxious.2588
Chinese Japanningf.t. . 3038	Coins, to take Moulds of 3672, scs.	Coralline, Solvent for 2587
Chinese Marble	Colcothar...................... 2703, 4154	Cordials, Aroma
Chinese Vart	Cold Cream.1125, sc.	Cordials, Filter Bags rok. 811
Chinese White Cop	Cold Silvering 3611	Cordials, Finings for 807, Ac.
Chintz, to cle	Colepress's Mine, 728	Cordials, to clarify,704
Chintz, to	Collodion, Flesh Colored.1168	Cordials, to mako++t+4....., $, \ldots, \ldots+$ + 767
Chintz, to Wa	7	Cordials, to make, by Distillat fon. . 796
chloride of	Collodion, Glycerinated.............. 1169	Coriander, Extract of............... 1041
Chloride of Iron.......t.+.t....117, 4165	Collodion, Photographic....+6+t,+, 3199	Corlander, Tincture of1014
Chtoride of Mer	Collodion, Pictures, to clean off ++3167	Corking Bottles, Directions for9930
Charide of platinum. 3220, 4084, sc.	Collodion Plastic Material + . 2204	Corks. Cement for sealing. 2238
chloride of Silver. 3214.3216	Collodion Varn	Corks, to tie down+...t,
Chocolate Dye	Collodion Varnish for Photography... 3162	Cornelian, Imitation.1.......... 2427 , ¢2.
Chocolate Syrup	Cologne, Essence of 9390	
Chilatison's fiux for Arsenic.... ${ }^{3} 369$	Cologne Tooth-Kasht..........t++++++1329	
Chromate Photographite Solutian...... 3182	Cologne Water, +......................976, Cologne Water, soncentrated. .	Cosmet ic Balsam of Honey
Chromatype Papar.............................7173	Colored Asandine. 1120	Cosmetic Gloves . 1176
Chrome Dyes for wo	Colored Bronzing for Brass 3783, 3797, S0,	Cosmetica for the Hair. Caution on,. 1286
Chrome ore	Colored Cements.,	Cosmetics for the Skin, bc. ., , 1116 , be.
Chrame or	Colored maslin	Cotton, Anlline Dyes for $+1 . . .+2569$, bec,
Chrome Red. ,	Coloring for Curacoa++....................... 800	Cotton. Diffichlty bying kith anilither.4
Chrome ye	Coloring for the Hair, 1215	Cotton, Dyes for, see COLOR of Dye
Chrysiol ite, Imltation................... 2437	Coloring, see ARTICE	Cotton, Remarka an Dyi
Cider, Anti	Colors, Aniline..............., 25S2, se.	Cotton, detecting
Cider Barkels, to cleanse. 844	Colors, Eff	295, Be,
Cider Champagne.. 844, 60.	Colors, Improved Vehictas for, +..... 2724	Cotton, to remove Mildew from. 128
ciaer, Butes for	Colars	Cotton, to Silver. 3627
Cider, to Potrle..............t+t.....843	Colors of Fabrics, to preserve.,487, 491	Cotton Cloth, to bleach.............. 125
Cider, to can	Colors, substantive............... 93	Cotton Cloth, to prepare, for iying w 124
cider, to clarify.t........f.ft+6842, 853	Colors, to reatare,	Cotton Goods. Starch for....+4....... 497
Cider, to fine.t. +......t.t.t.t. +, 797	Colora used for Marbl ing Books. 3102	Cotton Coods, to Dye.131, se.
clder, to fimita	Coipin's India-Rubber Varniah........ 2952	Cotton Goods, to fix the Colors of...491
cider, to ke	Combs, to clean......................... 416	Cotton Goodra, to renove Stajns.,126, 127
Cider, to make + + +i+ 032	Complexion, Connetics for the 1116	Cotton Yarn, to Bleach.......fat. 123
cider, to prome	Composite Soap ++, , + + + , 545	Cotton Yarn, to prepare Dyin
Cider to	Compositios for Moulds. 3684	Counterfelt Gold
Clder Wine. .. 732	Composition for ornamentan..... 2202,6234	Cowalip Pomade.
Clgars, Ant	Componition Cor Welding + 3523.6 LC .	Crape, Black, to renovate.............462
Cigars, Disinfecting. 1390		Crape. China, to Waish.........nin...dt6s
Cinnabar. 2682	Concrete for Fioors and Kalks....... 2206	Cream, Cold..................... 1125 , bs,
Cinnamon-Broun Dye ror Cottons. 144	Cooley's B1ack Ink. 2464	Creap, O1ycerine....... 1129
Cinnamon, Essence of.97t	Copal ofl varnish. 2876	Cream, Rose Clycerine. 1130
Cimamon, Extract	Copal picture Varnish.2907	Croam, Shaving.
Cinnamon, 0i1 of,t.e....1227	Copat Splric Varnish...........2905, 2907	Cream, Snaw. 1131
Cinnamon Pomade. + 1262	Copal, to diasolve, In Spirit........ 2904	Cream Syrup, 1mitation................ 1430
Cinnamon Soap . 573		Cream Syrup for Soda Water1425
Cisterna, Ceme	Copper, Al2oys of 3348, 3409,6c, ,3439,3440	Crome de Cathayt.t....1128
Civet, Esaence of 972	Copper, Allays of, for Dentistis..... 3437	Crene de Platache.r...................1139
civet, ofl ofrtt+ . . . 121220		Crame de Paychet+...1137
	Copper Arsenite. 2711	Cremitz White .i.i. 2699
Claret-Red Dye for Konlets. 198, 300	copper, cement for 2172	
Claret Staios, to renove............. 369	Copper, Cyanide of 3733	
Clarot Syrup.1423	Copper Enamel, +,t+,.... 2400	
Claret, to flavor, Yith Ambergrill.... 964	copper, Etching Fluid for, $++++4+6,2961$	Crimson Dye for Si1ks..............246, 251
Cleaning, bo., Goneral llecefpst, 337, 6e.	Copper, Feather-Shot.......+,...... 3249	Crimaon Dye for Woolens..........195; 309
cleaning or Cleansing, see	Copper, Flux for Reducing + .+i+1.	
be cleaned,	Copper, F1ux for Kelding. 3531	Crimson Stain for Mood.
Cleansing in breving. 862	Copper, Moulds for Electrotypling... 3672,	
Cleveland's Tc	3640 Noulds to coat 3 . 3673	Crocus. or Indian Red
Close's Indestructible trik. 2528	Copper Moulds, to Coatw.................. 3673	
Cloth, Cementy for joining2745		Crown Glas
Cloth, Cotton, to bieactie............ 125	Copper Solution for Eiectrotyping ...36616	Crucibles, Lute
Cloth, Cotton, to prepare for dying.. 124		Crystotype Paper 3175
Cloth, Printed, to clean.............452		Crystal G1ass................ 2347, 2352
Cloth, to cement, to Metal......... 2233		Crystal Spirit Varnish. 2910
Cloth, to paste, to Wond. 2275		Crystal, to Silver, ...t.t+t+,....... 3611
Cloth, to Faise the Nap on+........ 4646	Copper, to coat Metals vith. ... 3635 , KC .	Grystalline Window G1as5 +. + + + + + 2365
Clathes, to told, after drying. 5083	Copper, to coat Cast Iron vith. 3635	Crystallized Pomade.............+....... 1247
Clothes, to iros. . . +1+..+1......... 503	Copper, to coat 'Iron with. 3756	Cullet
clothes, Wooler, to c	Copper, to coat, with Brass....3633, 3634	
Clothes, Hoolen, to 654	Copper, to cast, with 511 ver .3607 .3609	Cupellation, Assay by 3191, 3206 Curacoa. 771, 777, 799
Cloves, 011	Copper, to coat. vith Tin............ 3644	Curacoa, Coloring for 8000
Coathupe's Ink....................... 2484	copper, to coat,	Curacoa d Hollande 7 76
Cobalt Blue.		curd Cerent
Cobalt, to electroplate	Copper, to platinize................... 36518	Curious Esaenc
Cochineal, Adulteration of + + 2680	Copper, to provent Corrosion of 3251	Curling Liquids for the Hair........ 1191
Cochineal Dyes for Woolens...... 246, ${ }^{\text {de }}$.	Copper, to protect.................... 3765	Currant Wine...................728, 734
Cochineal Liquid Coloring......2623, 6	Copper, to reduce, to Povder.......... 3247	Currant, Cherry and Raspberry Wine...728
Cochineal Liq	Copper, to separate, from Alioys..., 3246	Currant and Gooseberry Wine.......... 728
chineal Pa	Copper: to separate lead from.......3242	Curtains, Damask, to clean.......... 450
Cocktail, Bot	Copper, to separate Lead fron.......3242	Cyanide of Brass Solution.....3759, 3768
Cocoa-Nut oil	Copper, to separate siver fros......3344	Cyanide of Copper, $\ldots \ldots \ldots \ldots .3753$
Cocoa-Nut oil Soap ++542, 593		Cyanide of Copper, Solution of.3754,3755
Coffee Cream-Syrup + 1433	Copper, to separate Zine from.+3243	Cyanide of Gold, 3727
Coffee Flavoring for Liquors. 673	Copper, to veld. 3250	Cranide of Potassium, Caution.......1160
Coffee Syrup for	Copper, White. 3414, bc.	Cyanide of Potassium, Lotion of , ..., 115
nac Br	Copying, see ARTICLE to be copied	Cyanide of Potassium, Zest for Free, in
,	Copying Ink. 25.2520	Solutions. 3703

	Dutch Meta1, to Gind with........... 3576	Electrotyping 3660, sc.
Cyanide of Silver and Potassium+.+.. 3696	Dyes, see ARTICLE to be Dy	Electrotyping on Large objects......3692
	Dyes, Aniline........332, Sc., 2552, sco.	Electrotyping on Paper, Silk and Pibrous
anotype Pap	Dyes, Aniline, Mordantss for.........2567	
3446	Dyes, Aniline, Test for sugar in.... 2561	Electrotyping on Wood..............3695
D	Dyes, Aniline, to Distinguish. 2564	Electrotyping, to Prepare Moulds for
	Dyes, Aniline, to Remove. 25.2565	3672, sc.
Damask Curtains, to clean............. 450	Dyes, Aniline, to reamve Sugar from. 256 .	Electrotyping with a Battery.... . . . 3671
Dark Green Dye for Cottons, 163		Electuaries, Tooth.............1305, 6.0.
Dawson's Patent Soap.................. 545		Elixir Vegetal de la Grande Chartreuse
Day and Martin's \$1acking. 3101	Dyes, Chrone, for Cottons,, 183, sc.	
Decanters, to clean	Dyes, chrose, for Wo	Elkingtonts Gilding Liquid. 3506
Decayed Wine, to remody 752	Dyes for the Hair.........1198, 6c, 6401	
Decoloring, sce ARTICLE to be decolared	Dyeing, Art	Eisner's Zinc Greon..................... 2691
Decomposing Cell for Electrotyping. . 3664	Dyeing, see COLOR of DVE	
Decomposition in Kines, Remedy for ++, 756	Dyeing, Panily Receipts for	
Decosposition in Hines, Test for, ,...755	Dyeing, to make solut ions	Emery wheels, Cement for 2246
Density of Syrupg, to determine the.1363	pyeing Veneors. Directions for. 21317	Enalsion of Almond5.1140, 1155
Dentifricea., 1288 , sc., 5469	Dyeing Mood, Directions for.........3124	Enamel Pouder for the skin...........1115
Dontist's Alloys. + +t++ + 3435 , So.	E	Enameled Woed, to Pollish..... 3015
Dentiats' Analgams......f.+.+++*3549,		Ethameling on Wood. 3010 , sc.
Deadorizing, see APTICLE to be deodorized	Eagie-Marine, Ieitation............., 2438	Enaneling, Rubber for,, , ., .f... 3013
Depilatories, + + , 1219, 6c.	Earthenware, to clean............+., . 434	
Depliatories, Caution in Applying ... 1225	East-India Ponade. 1272	
Depliatories, to apply.......1223, 1224	Eau Dotot + .+t++6., 1324	Enfleurage, Fomade perfured by, 1263
Derbyahire Spar, Cement for......... 2218	Eau d'Ambre Royale, 994	Engestroom Tutaria. 3451
Deschamp's Dentifrice	Eau a'Ambre	Singlineerst Cement. 22225
De Sylvestre's Dextrine Varnish..... 2927	Eau de leaut	Engraving on Glasa. 23776
Deteraive Dentifzic		Engraving on Diatss, Yaralsh [oz. 2959
extrine Paste	Rau de Colo	Engravinge, Slaing for............... 2647
Dextrine, to puelify. 292929	Fau de Cologne, Asmonlated,1096	Engravinge, to renovil Yellow stalnu from
Dextrino Varnith. 6 ¢, 2929	Eru de Cologne. Concentrated..........950	413
mamond Paste.f.ft+++.... 2352 . 2420 KC .	Eau de Hel lotrope. 2003	Eramuts Mi1non's liafr Wank. 1182
Miamond. [mitalion. 2352	Eau de Lav	Ksprits. 999
anonds, fimitation, to make, brililant.	Eau de Lavande, A=soniacale. 1090	Esprit d Ambrette........ 9995
2436, 2459	Eau de Lavande de milefleuri.......1009	Emprit de Berganet. 9999
\%,	Eay de'Marechalet.+...t...............9993	Emprit de Bouquet. 1002
lickaon's Cochtreal	Eau de rei	Esprit de tammin Ddorant. 1004
pliplomas, Wax ror 2327	Eau de Mie	Esprit de Rone. 11001
hatilation of Cordials............ 796	Eau des Carses.........................9898	Essences. 941, ke.
Distillation of Now England Kum. 931 , Le.	Eau Forte, Lor Copper Engraving.+..., 2962	Estenc
distiliation of Poerurod haters. . . 11073	Eau Royale + + + + . . . 999	Essence tor Scenting Pomader. 1261
Dintiliation of Whiskey........931, 6C,	Ebony Stain for Wood..........++++1..20944	Essence of Almonds. 943
platillation vith or vithoue a heater937		Eswerice of Al1splce. 952
Sistisied Aromatic Spirits....+tiott 941	8dge-T0013, Eve	Essince of Ambergris,,959, 963, 964
Dibtisied Perrumed Watera	Eftertrescing Lemo	Essence of Ambrette. + . . 968
Sistisied Perfuned Wa		Easence of Apple, Artificiulatio54, 4303
tor. 1073 dertur		Ennence of Apricot, Axtificial.......2097
10 d Perfumed Water		Eanonce of Bergambt 969
Suggeationd For, 1076	Elastie Mo	Exsence of Ditter A1 monds. 943
Stilied Perfumed Wators.		Engence of Black Cherry, Arriticlal, 2050
Apparatull for, 1077		Essence of Cansia.970
ist liled Perfumed Haters, to		Easence of Cher'ry, Actificial. 1099
fram Souring, 1075		
istilied Perfumed Waters, to remove the		Essence of civet. +972
Buent Smell from, 1074		Essuence of Cognac. 675
Wonebtic Brandy, Tritation+.......... 678		Essence of Colog
	Electro-diding, Conditions required 732	Easence of Fleurs dxarange...........9961
oor-Ptates, to cleav. 512		Esserice of Franglpahio. 998
oppet Kummel. 769 , 6292		Essence of Sooseberry, Artificial... 1056
loualt Wieland 'n Paste for Gems..... 2425	Por, 3737	Eesunce of Grape, Arificlad........ 1055
Dove-Colored Eamily Dyo.............. 331		Essence of Lavender:4+*.............. 973
rab Dye for Cottons.............177, sc.,		Esence it Lexob. 959
tab Dye for Cotton, Silk and Wool... 293	Electro-Gilding: to ipprove Coior in 1735	Essence of Lesoh, Artilicial..... ++1051
rab bye fok silk.............. 272,310		Essence of Melon, Artiricial. 1059
Drab Dye for Woelens.......213, 215, 210	in. 3734 ind.	Essentice of Musk.956, Sc.
rawing Ink. 25.311		Essence of Mask-5eed. 968
rawings, to Copy 3159		Essence of Myrtie, Artiriclal.......io6a
rawings, to Yarnish................ 2965		Essence of Nerolf...... 961
rawings, Varnish for 2924	rous Materiala. 373 ,	Essence of orange.......................9950
rayton's Method of Silvering Glass. 3616		sence of Oranye, Aftifieial ,1053
resses, Black, to romove Staingt++t+470	Electro-plating, to improve the Depasit	Essence of orange-81ossoms + + + + + . . . 9 961
resses, Colored, to vash............ 485	in.3710	Essence of Orange-Flowers.
resses, to clean..	Electro-plating, to insure succeas. 3711	Essumce of orange-Peel................ 951
r111s, Lubricator for 2366, 6273	Electro-plating, to prepare Articles for	Essence of crtis, Actilicial.......... 949
rilis, to Temper 3286	$.3705$	Esserice of Patchoul 966 , 8c.
ropa, Fronch, for Scouring. 354		Essence or peach, hrtificial........ 1046
Props, Hat, for Beer, 891	tace in.370	Essence of Peach Kernels..............943
props, Prince Rupert's............... 2373	Electra-plating, to remove the white	Essence of Pear, Artificial....1052, 4302
pruggists! Show Colors.........2648, SC.	Surface after. 3709	Essence of Pimento. 959
ruggists' Stow Colars, to keop	Electro-plating with Aluminum. 3749	Essence of Pine-Apple., 953
Ereezing. 2672	Electro-plating with Brash....3752, 3769	Essence of Pine-hpple, Artificial ... 1060
yers for Paints. 2735, 6c.	Electro-plating with Cobalt..........3766	Eswence of Pouchapat. 966
rying of1s, + 2726 , 80.	Electro-plating vith German Sliver.. 3770	Esssence of Rasplorry, Artificial.... 1057
ubbing for Leather, 3078	Electro-plating vith Nickel $++3762,3763$	Essence of Rondeletia.......... 946, 1062
chemin's Ename	Electro-plating with Palladius...... 3761	Exsence of Ro:
	Elimetro-plating with Platinum. 3760	
Dul10's Platinized Glass. 3656	Electro-plating with Silicive....... 3767	Essence of Sp
Duanolin's Liquid Glue, 2285	Electro-plating vith Tin............. 3750	
Dupuytren's Pomade................... 1282	Elactro-plating with various	Essence of Strawberry, Artificial... 1058
ockereau's Cologne Water. 980	Sc	Essence of

Face, to Mould the in Wax. 3682
Face-joints, Coment for, .,.........+. 2169
Fancy Boxes, to stain....................285s
Purina's Eau de Cologne.

.982, 985

Eat, to Color, for Pomates.
Fat, to Deode
Fat, to keop from getting Rancid+53i,
335 , 1491 , ge,

Fann Dyes for Cattons...... 146, 150, sc.
Faun Dye for Silks. 3249
Feather Shot Capper 3249
Eeathered Tin....
107. 3319

Feaathers, to bye.
Fences, Whitexash for 2803
Fennel Water, to fist i11...... 1071,1073 Fermentation,
Fermentation, Acotous, in Heer......... 667
Fermentation in Brewing.....1............ 861
Fermentation ot
Fermentation, to Arrest....................766
Fermentation, to Induce...........765
Fermentation, to prevent in cidera37, 852
Fig Soap.
601

Filter Bags for Cordfals.
Eilter for Brandy.
Filter for Shellac
Filter for Hines..
Fining for Ale or Deer............................ 871
Fining for Cordials........................... 706
Fining for
fint..................
Fining for Ginil...
Fining for Wines.
ire-Gilding
Fireproof Paint.
Fireproof Whitewash.
Flannel, Old, to Bleach.

Flannels, to Kash and Shrink.
Flatness in Beer, to remedy..
.493

5

 Flatting for House-painting............ 2753Flavoring Extracts..
Flavoring for Beer.......

orings for
Flaxen Hair-Dye.+,.................... 1206
Flesh-Color Sta
Flesh-Colared Collod
Fleurs d' Orange, Essen
Flexible ofl-Varnishes
Flexible Spirit-
Plint Glasa
Floating Soap
Floors, Conere
ploors, to clean
Floors, to Extract o
Florida Wat
Flowers, to Glid, on Sil
Flavers, to preserve for Pertunery., 13
Fluid Alloy of Sodium and Potassium, 3455
Fluxea
Fiux, 日lack
Flux, Cornish
Flak, Cornish
Flux.
plux for A
Plux for Coppe
Flux for reducing le
Flux for moldering

Fiux for Spelter Solder, 3469
Flux for Welding Netals............... . 3531

plux, Reducing. 3463
Fiux, White. 3462
Fontainemoreau's Bronzen................ 3440
Fontanler's Bate for Artificial Gems 2424
Forka. Fretch $4110 y$ for 3427
Yorks, to clean.+.+........................ 421
Forks, to fasten Handies on............2221
Forks, to keop, in good order.........4.422
Foxing seer 060

Frames for Hot-beds, Yarnish tor..... 2090
Vrames, Picture, to clean............. 2971
erangipanni..
rangipanni, Estencen or Extrait of . . 940
Frang 1panid Soap. .. +t+...................... 562
Frear stone.
2223
Yrockie Batsas.
1122
reckles, Locions to reapovel141,1136, Sc.

French Alloy tor Yorks, BC.3424
French Bel1-Meta1.............................
French Boot Vacnish......................... 295 ?
French Brandy, Imitat fon.661
Vronch Bronze..........t.................. 3786
Vronch Brown Dye for Cottons. . . 149
Fretich Champagne, teisation+..........72. 72
French Cherry Bounce.+1+++1+1+2........ 795
Frenct Cognac Bitters.........................815
French Coin Silver..................................2939
Prench Huiles............................... . 1244.
French Lip Salve.
1294
French wethod of Coloring Cold
3197

rench Polish.

2996,
French Polish, Spirits for Pinishing 3006
French Polish, to color or stain.... 3003
French Polisih, Waterproof.........+13 3004
French Polishing2961, 2993, be.
Erench Pollshing. Rubber for 2995
French Porades $+\ldots+. .$. 1262
French Process for Turkey Hed.......... 189
French Silver. 3628
French-White bye for Silkss............... 263
French-Mhite for the Camplexion. 110 A
Fresnius' Flux......................... 346 a
Fretting in Wines.+.......................... 757
Frit for Artificial Gems.......2352, 2419
Frit for Enasels.......................... . 2379
Frosted Beer, to Recover 879
Fruit Acid...................................1401
Fruit Essences, Artificial......1045, bc .
Fruit Stains, to Resove.....364, 86. . 370
Fuch's Soluble Potash Glass.........2817 2818
Fuch's Soluble Soda Glass...............2818

Fuchsine, to Dye with.................2613
Fuchsine, to Photograph with........ 156

Furniture, Paste for Polishing2988, 2990
Furniture, Polish for2987,
Furniture, to clean......2985, 2986, 6411
Furniture, to Restore.................. 2978
Furniture, to Varnish............ 2974, se.
furniture, to kax, 2992
Fusibility of Metals....+.+.t........... 3353
Fusible Alloys..................... 3456, 3504
Fusible Alloys, Amalgam of3547
Fusible Alloys, Moulds of 3679

Calvanic Battery, improved Liquid for 3668
Galvanic Battery, Material for Cell:22213
Galvanic Battery, Principles of, Explaíned. 3665
Galvanic Battery, to Amalgamate Zinc for 3555. 3662

Galvanie Battery, to construct a.+.. 3666
Galvanic Battery, to Etectrotype with. 3671
Gaivanic 且attery, to keep the Zinc dmalgamated, 366]
Gaivantc Finning+.+3751
Galvanle Troughs, Cement for..........2170
Galvanized Iron.......................... 3649
Galvanized Iron, Test for,3758
Gants Cosmet iques 1176
Garnet. Imitat Ion+............... .2357, 2424
Gauge Sturt for Plantering.+, 2200
Gens, Artificial..++............. 2419 , be.
Gemp, Imitation. 2353
Gems, to Cement, to Metal............2152
Geriach
Geriach* 5 Tables of Soda Solut ions. . .627
German Lip Salve
Gerean Plate.

German silver ror koiling................3ati
German Silver, Genuine 3412
German silver, Pelouze'thith....... 3413
Cernan Silver, to coat, with silvor, 3607
German Silver, to Electropiate on... 3711
German Silvec, to Electropiate vith. 3770
Cerman Wine, to cocruct Actdity in... 753
Girding. .. 35
Giding, Brase for,j3269, 3370

Cilding, Eluctro, bee ELECTEO-GILDIN:
Gilding. Fire.
.3594
Giading, Grecian.
3577
Gi1ding, Leaf 3579
Giiding. Liquid for cleaning. 3598
i1ding Metal.3384
Gi1ding, oif Size for...............3571, 3580
Gisising on Book Edges.................. 3574
Gisiding on flovers.+.t., $+++1, \ldots, \ldots, 3694$
Gilding on Diaue, , , , ., $, 3575,3596,3597$
Gidding on Ivory....................................... 20015
Gfiding on Japan-ware.........
Gilditig on Metal, ...3533, sc.. 3582, bc.
ilding on Metal by Inmerbion. 3587, bc 3743
Gilding on Metal, Solutions foc 3505, bc
Gilding Paste............................ 359
fildings on Picture framos, Size for 3562
Gildiog on Silk.

Gilding on Steed.......................... 3566
Gilding on Hood......1.1+1.1....3557, be.
Gilding, to Burnish.......................3566
Gilding, to Finish.,.,.,
Gilding, to propara Pictare Frames fox. 3559, 6.C.
Gliding, to Renove from old China.... 3595
G11ditng, Water . 35 . 3 .

Ginding, Water size far................... 3572
Gilding with Dutch Netal..............3576
Gilt Articles, Test fluid tor........ 3796
Gilt Articles, to dissolve the Gold from 3739, 8 C .
Giit Articles, to test 3747
Gilt Back-ground for prints, bC..... 2945
Gin, Finings for 706
Gin, Imitation.

THE SURVIVOR Vol. 2	929	
Gin. to	Gold,	73
Gin, to Clar	Gold, Chlorides of3725, 4075	Green Cement.+...ti+ 2thib
Gin, to remo	Gold, Coin. 3399	Green Dye for Cotton5.....,161, EC., 188
Ginger Beer	Gold Coins, to clean................. 3239	Green Dye for Feathers., , 326
Ginger Beer, Powders for 902	Gold-color Bronzing Povder......... . . 3795	Green Dye for Silks........., 276, \&c., 317
Ginger, Extract of 1031	Gold-colored Dye for Sllks.........,.,268	Green Dye for hoods.2830
Ginger Pop	Gald-colored Sealing Max..........., 2318	Green Dye for Woolens.206, SC, +226, 319
Ginger Syru	Gold-colored Stain for Marble. 2041	
cinghams, to preserve the Colors of..48	Gold	Green Glaz
Girambing (Lemon Ginger Beer) , +....., 901	Gold, Coun	Green Ink.
Glass, Various kinds	3431,6364	Green Marbling for Books ++++ , $1111,{ }^{\text {a }}$, 113
G1ass, Amalgam for Silvering. 3538,3545	Gold, Cyanide of +..................... 3727	Green Mould, to remove from Hricke, 2809
Glass, Cements for Joining. 2153,2516,	Gold Detergent...................,+,+, 3598	Green Pigments...........2691, 2701, 2710
${ }^{2237}$. 2247 , for	Gold, Differ	Green Sealing Wax, +++................ 2129
Glasa, Coloring for, +...................... 2361 Glass for Photography...........3147, 3148	3400, 8 c .	Green Stain for Glass .f.t........... 2361
G1ass Bottles, to clean,.............,431		
G1ase Globes, to Clean.........	Gald, French Method for Coloring 3197	Green, to color Pat...................... 28.1260
Glass, Ground, to imitate.....2372, 6408	Gold, Grain......................... 3194	Green, Varnish, Transparent.............. 12941
Glass. Lead, +, +, +,................. 2352	Gold, Green......................... + + 3404	Grey Cement....................2184, 2194
Glass, Light House. 2362	Gold, Hard. 3398	Grey Dye for Yeneers................., 2041
Glass, Mucilage to Adhere to.++t+t+2309	Gold Ink. 2491	Grey Dye for Woods., ., , , , 2436
Glass of Antimony 2370	Gold Labels on Glass Bottles........ 249	Erosvenor's Tooth
Glass of Bor	Gold Lace, to clean+.................414	Ground G1ass, to Imitate..... 2372 , 6409
G1ass, Staining for,...........+.+.+,2361	Gold Lacquer for Brass, sc.............104a	Graene's Gilding and Silvering on Silk..
G1ass Syringsa, Cement for.......... 2166	Gold Leaf, to apply.	
Glass, to Clean, +............t417, 6330	Gold Leaf, to burniah...................... 3566	cuignolet.t.t. 798
Glass, to Break, in any required shape..	Gold Leat, to mat or deaden.........+,3567	Oums, Anti-acorbutic Dentifrice for the. 1306, 1310
Glasa, to clean, for silvering. 3621	Gold Leat, to prevent adhering....1, 3573	Gume, Sore, Lot
G1ass, to Cut, without a Dianond 2367,hc.	Gold, Liquid...1.	Gums, Wanhen to harden the., , 13211
G1aas, to Drilif................... 2366		Gon-Barrely, to Blive................, 3203
O1ass, to Engrave on................ . 2376	Gold Plating Powder..................... 3419	Gun-Barrela, to brown................ 3628
	Gold plating Pouder, to apply+++.... 3992	Gun-Darceld, to cleaf............... 3304
Class, to Joi	Cold, Polishing Povder for ++++*++1..3204	Gun-barrels, to ornamant +f......... 3364
2261, 2262	Gold, Shell................+++... 3569	Gun-Darrels, Varnlah for, ...1........2954
Glasa, to Mend. 2156		Guri Metal.+............................ 3194
G1asi, to platinize. 3656 , 3657	ald. So	Qutta-Perchs Conent. 2247 , 2256
Giatis, to poliah silvered.......tit 3622	379	Cotta-Percha, Cement to unite to wilk,
Glans, to Silver, With Amalgam...., 3613		$5 \mathrm{Cc} .2250$
G1asa, to Silver, by Solutiona. 3615, be,	Gold Sprinkle for Bookbinders.,...... 3106	Gutta-porcha, Cenent to upite, to Leather. 2251
Glass, to Krite on......+.+.+.+2371, 2373		Qutta-Percha Moulas, to wake., 3661
		Gutta-Percha Moulds, to prepare, for B1-
G1ass, Varnish for Engravinge on, .. 2959	Cold, to clean, after soldoring...... 3200	ect rotypling, 2669
glass Vessels, Lute for Protecting... 2270	Gold, to Color................3197. ${ }^{\text {a }}$,	Gutta-Percha Qil-Varniah. 2808
Gasss for China and Earthenware2404, Sc,	Gold, to dlatingulah fromitimation, 3745	Qutea-Fercha Solution, ciear 2940
Glaziera, solder 3503	Gold, to recover from Gife Artieles. 3739	Gutta-Percha. Solvents for.......... 24
O1osa-Finish on Woolens, to reatore.. 469	3741	H
	Cold, to rec	Mair, Black Pouder for
gloves; Kid, to clear.439	3158, 3740	Hair, 盿onde Povder for the
gloven, Kid, to remove stains Grom, , 433		Mair, Depliatorles for removing..., 1210
g1ue. + + . + + 2277, 5c.	Goid Tracing on Metal...............22583	Hair, Pomades for Strengtbening. $1279,6 \mathrm{e}$.
g1ue, Caseine+.4. + 22294	Gold Match-Manda, to	Hair, Prepared Exan for the 1102
		Mair. Rose Bandoline tor the. 1195
a-rubber +. 22291 , 2293		Halr. to Breach......t..............1214
G1ue, Isinglasa,t+ + + 2292	Gooseberry and	Hair, to
Giue, Liquid.......2284, BC., 2298, 2303	Gooseberry Easence. 1056	Bair, to Dry a Lady' $5+\ldots \ldots$.............. 1197
dive, Marine. 22291	Goosoberry Wine.720, 734, 735	Hair -Cleaneing Liquids.
due. Mouth. 2307		Halr-Coloring.........................1216
g1ue, Portable. 2308	Governaent Stazp Mucilage. + + +2300	Hair-Cossetics. Caution About., 1286
gue, sizing, to make................ 2815	Gov1and's Lotion. 1155	Hoir-Curifing Liquids................i1191
giue, to Appry,+1+, 2296	Graeger's Copper- Coating tor Iran... 3636	Halr-Darkening Preparations.......... 12 213
Glue, to keep from Souring. 2282	Graham's Branzing Liquids. 3797	Hair-Dyes.1198, he.
giug, to prepare, for Ready Use 2283	Grain Cold.+............. 3194	Hair-Dye, Black. 1201,6401
Siue, to prevent, From Cracking 2278	Grain of Paradise, Tincture of....... 1021	Hair-Dye, B1ack, to use.............. 1202
give, to resist Moisture. 2260,2290		Hair-Dye, Blonde...................... 120.12
01ue, Tungistio.+.............+++*+. 2281	Grain Tallav Soap.+ +++++++... 5 S44	Hair-Dye, Brown+...............1211, ic.
61ue, Strong, to make................ 2279	Grain Tin............................ 3316	Halr-Dye, Caution in applying....... 1213
lue, Waterproof + . \cdot. + + + + + . 22291	Grape Essence. Artifieial. 10	Hair-Dye, Flaxen+....................1206
glycerine Amandine. + + + + , 1119	Grape Syrup. 1414	Hair-Dye, Prorogaliic. 1200
slycerine, Caution about. 1152	Grape Wine..................726, 734, 740	Hair-Dye, Red ++,+.++.................. 1206
glycerine Composition tor Leather ... 3073	Grates, Varnish for 2902	Hair-Dye, Walrut.+ ++1+,...............1199
gycerine Cream, 1129	Gravel Walks, Concrete for ++........ 2207	Hair-Dye, Yellov. 120 , \$c.
glycerine Cream, Rose................ 1130	Gravers, to Temper . . . + + +rt+t+...... 3287	Hair-Dye, stains, to remove......+1..38S
Glycerine, Deflagrating. .f. .++,+++, 2137	Grease, Bear's. + + + + + + . . . 1277	Hair-G1oss.........................1.1.1196
Glycerine Ink. 2471	Grease, French Scouring Drops for.... 354	Hair-0i1s, Cheap.................... 1249
glycerine Lip-5alve.................1173	Grease, to Preserve...........536, 6309	Hair-0i1, Color1ess............1231
Glycerine Lotions.1147, \&c.. 1150, 1153. 4839, bc.	Grease, to remove, froa Boards........ 395 Grease, to renove, from Carpets....... 357	Hair-0il for strengthening the dair. 1250
Glycerine Paste++...+., 2299, 5226	Grease, to remove, from Cloth. 345	
Glycerine Regenerative Hair-Mash.,.1181		
Glycerine Soap...................570, 574	Grease, to remove, fros Papor.....31+1410	Hair-0i1, to Color..................... 1232
G1ycerine, Tests for..........1151, 4364	Grease, to remove, froa silk....350, sci	Hair-0il, to Per
G1ycerine, use of, in Nine. 725	Greas-Spots, to kill before Painting 2778	Hair-7
G1ycerinized Collodion............... 1169	Grease-Spots, to remove.344, sc.	Hair-V
Goid. 3189	Greasy Paper, to wric	
Gold, Alloys of 3398, ${ }^{\text {co. }}$	Grecian Gilding on Silver.....+1..... 3577	Hair-Wash, Cleansing..........1187, bc,
Gold Amalgam. 3 . 3533	Green and Crimaon, to Dye. 285	
Gold, Amalgam, to Gild with.........3534	Green and Pink, to Dye................ 284	Hair-Wash, Darkering............ 1183 , sc.
Gold, Assay of 3190, s.c.	Green Aniline Dyes..............2598, sc.	Hair-Nash, Drying..................1194, 1197

 Hands，to rem
2566,3141
Hard and Soft Soap $+++\ldots \ldots \ldots \ldots . . \ldots+\ldots 520$
Hard Soap，to make，．． 520 ，6c．．S82．
Hard Soap，ta p
Hard Soldering．
34日目 5c
Hardwich＇s Photographic Toning Bath． 3184
Hare＇a Colorless Phatograph Varnish． 2932
Harness，Blacking Ear ．．．．．．．．． 30 al，Sce
Hartuess Blacking，to apply．．．．．．．．．．． 3085
Harmess，Jet for ．．．．．．．．．＋＋＋＋＋＋＋．．．．． 3079

Harness，to preserve．．．．．．．．．＋．．．．．．．．．．．3074
Harness，to restore the Luster of ．．． 3066

Hartshor＇t，to Purify．
.1293
Hak－目lack Dye Cor silks．
Hats，Alkali Stirfening for $+1+\ldots336$
Hats，Spirit Stiffening ror＋．．．．．．．．．．．．335
llats，to Dye．
.334
Hausmann＂日 Indertructible Ink．．．．．．．． 2527

Hel lotrope，Eau de．．．．．．．．．．．．．．．．．．．．．． 1003
Herbs，Soupr Extrack of ．．．．．．．． 10444 Heuslerian Red Ink．．．．．．．．．．．．．．．．．．．．．．．．．．．2490 IIckory－Nut Fiavoring For Liquors．．．．．671
Higainst stucco．
$+2201$
Iloek Syrup．
$+1123$
Hoffaxan＇s Aniline Purple．．．．．．．．．．．．．． 2608
Itome－Made Champagne．．．．．．．．．．．．．．．． 750,6417
Home－Made Soap＋．．．．．．．．．．．．．．．．．．．． 549 ， 551
Home－Made Wines．
1134
Honey and Almond Pante．．．．．．．．．．．．．．． 11124
Iloney，Conmetic Balsam of ．．．．．．．．．．．．．

Honey－Soap，Imitakion．．．．．．．．．．．．．．．．．． 561
Honey－Soap，to make．．．．．．．．．．．．． 560
Honey－Soap，to make．
Honeyauckle Pomade．

llorn，to Dye．．
2013
Horn，to Imitate Tortoineshold with． 2016
Horn，to Polish．．．．．．．．．．．．．．＋．＋．．．．． 2019

Horn，to Silver，
.3628
Itorseradish Water，to Distili．1071， 1073

House－Painting．．．．．．．．．．．2745，SC．．， 2756 House－Painting．Flatting for．．．．．．．．．． 2753		

House－Painting，Fiatting For．．．．．．．．． 2753
House－Painting，Inside Fork．＋＋＋＋．．． 2751
House－Painting；outside Work ．．．．．．．． 2749
louse－Painting，Preparing for．．．．．．．．． 2746
House－Painting，when to do．．．．．．．．．．． 2755
Houses，01d，to Paint．．．．．．．．．．．．．．．．．．．．．． 2773
Hubbeli ${ }^{\text {i }}$ Cream Syrup．．．．．．．．．．．．．．．．．． 1428 Huckiebeer wine，
Hudson＇s Cold Cream．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1126
llaile a I＇Ambre．
Hulle A la Vanille
Huile d＇Ambergris．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1240
Huile Musquee．．．．．．．．．．．．．．．．．．．．．． 1236
Huile Royale．
Huiles，French．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1244
Mungardan Pomade
.2174
Hydriodate Solution for Photography＋ 3183 Hydrosulphate of Ammonia．．
Hydrosulphurat of Amenonia．
Hyssop Water，to distiti．．．．．．．．1071， 1073

Ice，Camphor．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1132
Imper ial Peach Brandy．．．．．．．．．．．．．．．．．．．．．．． 786

Impliments for Gilding on Wood．．．．．．． 3
Indelible Ink Stains，to remove 129 ，
Indel ible Marking Ink．．
Indelible Pririting Ink．
Indelible Writing Fluid．
Indentruct ible Inks．．．．．．．．．．．．．．．．．．．．．．．．．． 248269
India Japanning．
3038，8c．

Knots, to kill before Painting 2777
 Kustitien's Metal for Tinning....................................

Lardner ' 8 Tooth Powder +i. 1294
Larkin's Bronzing Fluida. 3817
tavender Dye tor Cottone. 174
Lavender Dye for Silka........................ 260
Lavender, ofl of +.t+..................................... 1227
Lavender Pomader...+..................... 1262
Lavender Water..+.+.989, Sc, 1071,1073
Lawns, Printed, to preserve the Colors of 487
Lead
.3253
Lead. Alloyn of3419, 3426
Lead and Tin Alloys, Melting Polnt, 3459

tead for Claterns, Cautions about... 3254
Lead, oxiden of++..........2744, 4106
Lead, Solder tor...................+...... 3506
Lead, to electro-gild on.................... 3731
Lead, to extract Silver troes......... 3210
Lead, to separate Biamuth from. 3346
Lead, to separate, from Copper....... 3242

Lesd ores, Fiux for Reducing.3464
tead ores, to teat the Richnesis of +3255

3256

Lead Pipen, Fiux for Soldering........ 3531
Lead Tree, to make a....+t+.+............ 3257
Leat Gilding. 3579
Lea'n solution tor cleaning Photogrephic
Lea'n Solution tor cleaning Photographic
Glasses. 3160
Leather, Blacking for 3086, be,
Leather, Cement for 2245, 2256
Leather, Gement to Join, to Gutta-percha
2254
Leather, Dubbing for, 3078
teather, Giycerine Composition Cor.. 3073
Leather, Invisible Patches on........... 2256
Leather, Japan Black Varninh for 2968,2969
teather, Patent, Polish for +.................... 3072
Leather, Preaervation of3065, sc.
Leather, Ruseia, to tan+4................... 6244
Leather, to Cement Metal to........... 2230
Leather, to clean.+.+ + . + 3076
Leather, to rasten, on Rollers......... 2958
Leather, to join, to steel, \&C........ 2259
Leather, to join, to Steel, SC........ 2259
Leather, to make, Materproor.......... 3069
Leather, to paste, on Wood............... 2276
Leather, to remove 0il from.............. 3077
Leather, to remove 0il-atains from.... 359
teather, to reatore softness to...... 3067
Leather, to restore the Luster of 30663060
teather, to Silver, 3629
Lemlond's Varnish++, M....................... 2926
Lemery's Lute for Stiils or Retorta... 2265
Leghorn Dye for Cottons. 158
Lemon Beer...
I.emon Essence, Artificial............. 1051

Lenon Extract. + 1031
Lemon Ginger Beer. 901
Lemon, Perfumed oil of.................... 1227
Lemon Soda Nectar............................. 917
Lemonade, Effervescing906, BC.
Lemonade, Plain... 909
Lenonade, Portable. 915
Lemonade Poudera. 908, 916
Lemon-Color Dye for Cottons. 185
Lemon-Juice, Imitation. 911 , bl.
Lemon-Juice, to keep. 914
Lenses, Transparent Cement for 2236
L.iebig's Flux +.+.+............................... 3467

Liebig*s Silvering on Glass................ 3619
L.iefchild's Patent 810e...........+*+,. 2617

Lilac Dye for Cottons..............169, 175
Lilac Dye for Peatherㅍ........................ 327
Lilac Dye for Silks........................... 262
L.11ac Dye For Noolens........................ 212

Lily of the Valley Boguet. Initation.

1067

Lime, Nitrate of 2223
Lime Water +... 103 , 4760
Linden-Flover Water............... 1071, 1073
Linen, Sonrched, to restore. 504
Linen, to 目each.............t+............ 506
Linen, to detact in Mixed Pabrice. . . . 296
LInen, to make Starch for..................497
tinen, to remove Fruit-stain from 365,370
tinen. to renove Ink-Btaine rrom.....3384
Linen, to remove Iron-mould $\mathrm{from.379,384}$
Linseed oil, Boiled....++++.....2727, Lc.
finseed Oil, to clarify, for Varninh. 2869
Linseed 0i1, to prepare, for Varnish206e
Linseed 0i1, Wilk's Retined. 2871
Lip Salve, Yrench.
. .1174
tip Saive, German.

Lip Saive. Peruvian........................... 1170
Lip Saive, Red.
1170
Lip Salve, Rose.
1170
Lip Salve, White
.1172
Lips, CaCao Ponade for.
1136
Lipe, Crese de Psyche tor.................1137
Lips, Pemade Rosat for...............1135
Liquieurs.
767 , Le,
Liqueur de ia Grande Chartreuser.006,6291
Liquid Boot Blacking.................3066, LCe,
Liquid Colora.. 2614 :
tiguid Colors for bruggists.....2648,
Liquid Colors Tor Mapa, SC......2640, WC.
Liquid Give.............................. 22e3. bg .
Liquid Gold.+........................ . 2516, 3195
Liquid, Hair-curiling r......................... 1191
tiquid Sliver.
.2519
Liquid spectroscopes.............................. 2364
Liquor, bleaching. + 104
t.lquor, Cochineal. 106
Liquor, Iran. . 106
L.fquor, Plumb.

Liquor, Red.
.......................................111100
tlquors, Flavoringn for+...664. Kc .
LIquare for shampooing 1189
Liquars, Initation . +....................... 663
Liquorn. White, to blanch. 705
liquorn. White, to blanch.
2547.8 c .

Lithographic Ink, to test................ 2550
Logvood blue Dye for Cottone........... 160
Logvood Lisac Dree Ior Cottons..175, 6C
London Gin, o1d Tow. Imitation.........698
tooking Glasses, see mipRoRS
Lorme's tye Tables.
Lot ion. Bichloride of Kercury 1145

Lotion. Borax, G1ycerlnated $++1175,1162$
Lot lon. Cherry-1aurel...................+.+1161
totion. Cyanide of Potansiun. . 1158, 1159
Lotion, Ciycerine....1147, AC.. 4839, Bc.
Lotion, Goviand ${ }^{\text {s }}$
1155
totion, Iodide of Potaselum.11444
Lotlon; Iodine.1143; 4851
Lotion to remove Freckles. 1142
Loysel's Pante Eor Artiricial Gems.. 2423
Luster for Brasia. 3379
Luster, Mutalific, Cor Pottery......... 2414
uster of Metals.i++ +....................... 3351
utes for various purposes......2263, bc.
ye, Caustic Soda, Table of 630
yye, Home-made Caustic............. 548,550
Ye. Kurten ${ }^{*}$ s Caustic Soda.......+...... 589
\qquad

Lye, to Test. 590,621
Lye, White, for Washing.

Macassar ofl... 1248
Hachinery, Alloy for Journals of 3430
Madiera Wine, to Fine.........................
Magenta Dye. for Silk or Wool,.,314, 2575
Hagenta Ink. .4. 2497
Magic Hair Colorer and Restorer...... 1217
Magic Tooth-pante. + 1315
Magnets, Horseahoe, to restore. 3296
Mahogany, Artificial...................... 2849
Nahogany, Beechwood, 284
Hahogany, Composition for Light. 2991
Mahogany Stain for Kood. 2845, kc,
Mahogany, to clean. 2985, 6411
Mahogany, to Darken++....................2855
Nahogany, to prepare for Palish2983, bc.
Nahogany, Varnish for+...2893, 2895
Halleability of Netsis.................... 3354
Malliforca d'Espagne.........+....... 781, 805
Mallov Liquid Coloring.t. . 2631
Malt Liquorts. Anti-ferments for....... 764
Malt Liquore, to Brev............, B56, sc,
Halt Liquors, to test, for Clarifieation 672
Malva Liquid Coloring + 2631
Manganese, Borate of , +...... 2735
Maple Syrup +.... 1408
Maps, Colors for 2640
Maps, Varnish for $,+\ldots+, 2920,2935,2938$
Maranchino.772, he., 801
Marabchino di Zara..
Marble Cement. 2209
Marble, Cement to join.2160, 2180
Marble, to cement Metal to...........,2231
Marble, to Clean...+1+................396, KC,
Marble, to Dye or stain......... 2036. K.
Marble, to Extract Dil-staine from... 394 401
Marble, to remove Ink or Iran-mould from 402, 514
Marble, to remove Match-stainn from. 517
Marble, to remove stains from, 400, kc.
514, 6e.
Marble Soap, ...+i+............................. 556
Marble- Norkers Cement 21 B0
Harbled Sealing Nax. . + +................ 2319
Marbiing Books, Method of,.+.,.i.. 3102
Narechal, gats de....................+.+...... 993
Marine Cement. 2254
Narine Glue.................................. 2291
Marking-Inik for Linense., 2509 , \&C., 2532
Marking-Ink for Packagen, 2521 , \&C.
Marking-Ink, to renove \ddagger rom Linen.... 3 3 3
Marbon plye for \$ilks....+.+............... 253
Marrow Oil. + + +. + ... 1245
Martin'a Depilatory. $+++\ldots 1220$
Nashing For Dreving....................+....658
Hason's Cemont . 2181
Massicot.
2744
Hantic Cemente.21799, 2196, \&c.
Mantich French Polish. + + +. . . 2998
Mastich Pleture Varnish. 2911
Mastich Varnish......................2912, bc,
Match Stains, to renove from Marble.. 517
Mats, Sheepskin, to clean....+.+....... 420
Kats, to prepare sheepskins for, 647
Hatting, Straz, to clenn.................418
Mauve Dye for 5i1k or Nool, 315
May Blossom Pomade.......................... 1263
Maybali's Method of cleaning Photograph-
ic Glasees. 3185
Mayence Base for Artificial Gems.... 2421 Mead Nine.
Medals, to Bronze.......................3772,. SC
Medals, to take Moulds of $3672,3675,3684$
Kedicated Soaps, Caution about......+. 579
Medicine Botties, to clean. 432
Heernchaum, Artiricial 2047
Meerschnum, to Polish.................... 2046
Melillot Water, to Distili...... 1071,1073
Melisse, Eau de............................... . 988
Helon Espence, Art ificiai...................... 1059
Mercurial Soap........+t+...................... 577
Mercury. 3324
Hercury, Sulphuret of. 2681, 2682
Mercury, Test for 3325
Mercury, to Purify + +...........3326, 8 C ,
Merino, to preserve the Colors of
Merino, to preserve the Colors of4 48 ;
Metal Expansion.
Metals, Nesay of $++\ldots, \ldots 3187,3190,3286$
Metals, Black Laequer for $+\ldots, \ldots3064$
Metals. Cement to join....+...+........... 2247
84 47
tye. Soapeakers'519. 588, 610
tye, Table of Strength of.
Lemon, Essence of 955 Lye, Table of Strength of 623

Metals，Cement to Join，to Glass．．．＋ 2262
Metain．
Motals，Properties of，＋．．．t．．． 3749
Metais，Solutions for Coloring．318日， 3197
3113
Metnls，to cement Gems to，．．．．．．．．．．．．+2152
Metals，to coment，to Leather．．．．．+2230
Metals，to cement，to Marble，Stone or
Hood． 2231
Meral s，to Gild．．．．．．．．．．．．．．．．．．．．．．．．．．．3582， 6 C ，
Motal н，to prepare，for Japanning ．．． 1019
Metals，to prevent Corrosion in．．．．＋．3251
Metalq，to Silver．．．．．．．．．．．．．．．．．．．．．．．．．．3632
Metal Letters．5a attach to Glams＋＋ 2261
Hetailic Lasters for Pottery ．．．．．．．． 2414
Hetallie Paint，Vaשnish for ．．．．．．．．．2894
Metailic Varnish，．．．．．．．．．．．．．．．．．．． 2953
Metropolistan DísinEecting Fiuid．$+\cdots++693$
Metropolitan Disintecting Fiuid．＋＋t＋＋693
Mexican Tooth Wash．＋．．．．t．＋．＋．＋．＋．＋． 1326
Mlldey on Cottopi to remove $+\ldots \ldots$ ．．．．．+128
Milder Spets，to renove．．．．．．．．．381，EC．
Miel，Eau de．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1006
Milk of Hax．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2936
HIJk，Painting in $+\ldots \ldots+\ldots+\ldots+\ldots . .+2769$
411k Pumeh．

MilL－picks，to Harden $+\ldots++++++\ldots+++3292$

Millefleur，Essence of，for Scenting Por－ mades． 1251
Mi）efleur，Extrait den＋＋＋＋＋＋＋．．＋＋＋ 1063
Milletleuri 051 of $++\cdots \cdots+\ldots+\ldots+1227$

Hills，3pice，to clean．．．．．．．．．．．．．．．．．．423
Mineral Green．
Mineral Subrtances，女o 511 ver $+\ldots+\ldots+3626$
H1retal Naters，Syriaps for ．．．．．．．．．．．．． 1384
Mint Mater，to dintili，．．．．．．．． 1071.1077 Mirrorth，Amilgnm Car＋．＋．．．t．t＋3538， 3545
 be．
Mírors， 50 S114日r＋．．．．．．．．．． 3613 ，Ac，
 Kixed Fabricsi 40 detacy Cotton in．．． 295 Hixed Fabrics；to detere Linen in ．．．． 296 isixed Fabsies，to detect Sisk and Wool in． 300
Hixed Yabrlca，to Dye $+\ldots+\ldots+++283$ ，Ler， Kixed Scentonn．．．．．．．t＋4．4．．．．．．．．．．．．．．243 Hixed Sharpoo＋．．．．．．．．．．．．．．．．．．．．．．．．i188，KC．

 Ho1ybdentam Eor $\$ 1$ ue Dye．．．．．．．．．．．．．．．．．．．．．2633

 Mordant Varnisih． 2919

Morollin Wlme
Hpytitig bentifrice．．．．．．．．．．．．．．．．．．．．．．．． 1296 Moresco Leather，to rontoro．．．．．．．．．．．．＋ 3068 Moroce日 Leather，to tar $+\ldots++\cdots+\cdots+++\ldots 643$ Morveaits Reducing F1uxi，＋1＋．．．．．． 3463 Mosaic Goid．．．$++\ldots \ldots . . .3348,3245,6362$ Mother of Poarl，to Polish．．．．．．．．．4． 2033 Mothe，to Keep from Clothing ．．．．．．．．．．．．．654 Mottled Soap Hal1s．
Mouldings Eot Roomi，Stuft for．．．．．＋i＋2200
Moul3t，Componition forn $+4+\ldots \ldots . . .3 .3684$
Mallads，Copper，Coat ing for ．．．．．．．．．． 3673
Houtdrs，Copper ．．．．．．．．．．．．．．．．．．．3672，3680
Mouldg，Elagtic．．．．．．．v＋i＋．．．．++++3685
Moulds，Eusible－niioy $\ldots+++\cdots+\cdots++++3679$

Moulds，Paste．．．．．．．．．．．．t．＋．．．．．．．．．＋． 3683
Moulds，Precauttons in Electrotyping3691
Moulda，Prepared Wax $^{\text {for }+*+\ldots3674}$
Moulds，to poat，with Metal．．．．．．．．．． 3689
Moulda，to peepare，Cor Electrotyping ．．
3689， 3690
Movidet，Hax．．．．．．．．．．．．．．．．．＋＋．＋．．．3675， 3682
Molastelitus de Ladne presses，to warh． 485 Housseline de Laine，to preserve the co－

1ors of． 487
Houstache Pomade．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1287

Mason＇s Case－hardening．．．．．．．．．．．．．．．．．．． 3299 Mucilage for Labels． 301
Mucitage for office use．．．．．．．．．．．．．．．．．．． 2299 Mucilage for Polished Surfaces．．．．．．．． 2309 Mucilage for Soda Wacer Bottles．．．．．． 2302 Macil age，Gum－arablc．．．．．．．．．．．．．．．．．．．．．． 2304 Mucilage，Postage－starp．．．．．．．．．．．．．．．．．．．．．．． 2300 Nucilage，Quince．．．．．．．．．t＋＋＋＋．．．．．．．．．．．．． 1154 Mucilage，to keep from Moulding，．．．．． 2305
Huclage，Tragacanth＋，＋．．．．．．＋i＋t．．．．．．． 2310
Mulberry and Apple Wine．．．．．．．．．．．．．．．．．．．．．． 728 Hulberry Wine．
Molder＇m Calorless Drying oil．．．．．．．．． 2731
Mulled Wine with Eggs．．．．．．．．．．．．．．．．．．．．．．．．927
Muntz＇s Metal．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3348
Muslcal Instruments；to Stain．．．．．．．．．2858
Musk and Ambergris， 011 of ．．．．．．．．．．．．．． 1237
Musk，Essence of ．．．．．．．．．．．．．．．．．．．956，\＆C．
Musk，oi1 of，．．．．．．．．．．．．．．．1227，1228， 1236
Musk Soap．．
1227，1228， 1236

Musk，Seed，Essence of ．．．．．．．．．．．＋．．．．．．．．96B
Mualin，Colored，to vasab．．．．．．．．．．486， 490 Muslin．to cont，with Metal ．．．．．．．．． 3738 Musiln，to Starch．
$\begin{array}{r}500 \\ \hline\end{array}$
Hustiness in Beer，to remedy．．．．．．．．．．． 877
Wunt Incess in Mine．to remove．．＋，＋＋，．．．．756
Mut ton Suet．．＋＋＋＋．．．．．．＋＋．．．．．．．．．．．．．．．．．．．．．．．524
Myrrh and Dorax Mouth－vash．．．．．．．．．．．．．． 1333
Hyrrh Tooth－vash．．．．．．．．．．．．．．．．．．．． 1332
Myrtle Blonsmen Pomade．．．．．．．．．．．．．．．．．．．． 1263
Myrtie，Estrenee of，Isitation．．．．．．．．． 1068
N
Nage！＇a Cobalt Electroplating．．．．．．．． 3766
Nagel＇n Nickel－Electroplating．．．．．．．．．． 3763
Nankeen Dye for Cottons．．．．．．．．．．．．．．．．．．．． 136
Nankeen Dye for tilkw．．．．．．．．．．．．．．．．．．．．．．． 269
Nap，to raise the ，on Cleth．．．．．．．．．．．．． 461
Naplen Vellov．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2709
Napoleon－B1ue Dye for Cottone．．．．tt＋i， 132
Farcinmun Ponade $+\ldots, \ldots+,++++\ldots, \ldots,++1263$
Nectar Crean Syrup．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1434
Nectar Lenon Soda．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 917
Nectar syriap．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1419 se．
Nezoli，Ensence of $+\ldots \ldots . .++++\cdots+++961$
Nero11，oil of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1227
Nev England Rum，to Distil1．．．．．．．．．．．．．． 931
Wev England Rus，Yeast for ．．．．．．．．．．．．．． 932
Micholson＇s Biwe Aniline Dye＋．．．．．．．．． 2606
NJcke1 ．．．．．．．．．．．．．．．．．．．．．．． $0410,++\ldots \times 3323$
 Whcket Silver．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．348
Wfickel：to glectroplate with．．．．．．．．．． 3762
kinon de I＇Inc108，Pomsde de．．．．．．．． 11156 Nitrate of Copper Solution．．．．．．．．．．．．．．．． 97
Nittrate of Iton．．．．．．．．．．．．．116，4171， 4172
Nitrate of tiee．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2223
Nicrate of silver stalins，to remove． 3141
Nitrated Photographic paper ．．．．．．．．．．．． 3169
Nitromuriate of Platimum．．．．．．．．．．．．． 3220
Novargent ．．．．．．．．．．．．．．．．．．．．．．．．．． 3602
Notmeq．Extract of ．．．．．．．．．．．．．．．．．．．．．．．．． 1037
Nutreg，Tincture of ．．．．．．．．．．．．．．．．．．．．．．．．． 1015
Nutimeg，oll of ．．．．．．．t．．．．．．．．．．＋．．．． 1227
Ochre．．2702
odontine $++\ldots++++.+1313,1314$
odoriferous Water＋．．．．．．．．．．．．．．．．．．．．．．．．．． 1070
0t1，Blacking for Boots，ho．．．N3087．6C．
oil，Bolled，for Drying．．．．．．．．．2726，6c．
pil，Bolied，for Varnish．．．．．．．＋．．．．．．． 2872
oil－Cloths，to clean．．．．．．．．．．．．．．．．．．．．．．．． 425
oil－Cloths，to kneep，in order．．．．．．．． 424
of1．Cocoa－nut．．2761

0i1，Drying fort＋1＋．．．．．．．．．．．．．．．．．．．．．．．．．．． 1251
Gi1 Gilding．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3570， 3581
011 of Ambergris．．．．．．．．．．．．．．．．．．1227， 1240
oit of Ambergria and Musk．．．．．．．．．．．．．．．．． 1237
Oil of Ambergrin 1
011 of Benzoin．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1242
011 of Berganot．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1227
011 of Cassia．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 122727 1465
0i1 of Cinnamon．． 1468

ol1 of Cognac．Test ror＋．．．．．．．．．．．．．．．．．． 677
Oil of Lavender ．．．．．．．．．．．．．．．．．．．1227． 1465
oil of Lenon．．． 1227

011
011 of Millefleur．． 1236

0i1 of Neral1．．． 1227
oll of Orange Flowers．．．．．．．．．．．．．．．．．． 1227
Oil of Rose．．．．．．．．．．．．．．．1227，1229， 4752
Oil of Storax or Styrax，＋．．．．．．．．．．．．．．．．．．．．338
oil of Turpentine for Bleaching．．．．．．．510
oil of Vanilla．．．．．．．．．．．．．．．．．．．．．．．1239， 1247
0il of Vanilla，．．．．．．．．．．．．．．．．．．．．．．．．．．． 339
oil Paintings，to clean．．．．．．．．．．4406，kC．
oil Paintings，to cemove the Varnish from． 405
011 Paintings，Varnish For．．．．2914， 2936
oil．Palm．．． 528
0i1，Palmy to Bleach．．．．．．．．．．．．． 537 ， 1509
oil Size for Gilding．．．．．．．．．．．3571， 3580
oil－Stains，to remove，from carpets，． 357
oil－Stains，to remove，from carpets，． 357
oil－Stains，to renove，from Cottons＋ 126
oil－Stains，to remove，from beather．． 359
oil－stains，to remove，from Marble．．． 394
Dil－Stains，to remove，from Paper＋．．． 359
oil Varnish
olis，Hair，see HAIR OIL
011s，Perfumed．．．．．．．．．．．．．．．．．．．．．．1226，\＆c．
Oils，Perfumed by Enfleurage．．．．．．．．．．． 1229
0ils．Perfuned by Essencea．．．．．．．．．．．．． 1227
oils，Porfumed by infusion，＋．．．＋，＋，＋1228
oils．Scented．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1226
01d Tom Gin．Imitation ．．．．．．．．．．．．．．． 696
Olive－Drab Dye for Cottont．．．．．．．．．．．．．．178

OI ive－Dye for Woolent ．．．．．．．．．．．．．．．209， 228
olive－Ename1．f．．．．．．＋．．．．．．．．．．．．．．．．．．．．．．．．．．． 2384
ol ive－dil Soft－soap＋＋．．．．．．．．．．．．．．． 6695

Oplate Tooth－pante．．．．．．．．．．．．．．．．．．． 1320
opticlans＇Cement．．．．．＋．，．．．．．．．．．．．．．．．．．．． 2229

ormolu．
 2229

orangeade．． 910
orange，Anliline Dye，．．ti＋．．．．．．t．．．．．．．． 2596
Orange－Blonsom．Essaence of ．．．．．＋．．．．．． 961
Orange－B1ossom Pomade ，．$+\ldots+\ldots+\ldots+\ldots 1262$

Drange－Color Dye for Silkn．．．．．i．．．．．．．． 271
Drange－Color Dye for Mood．．．．．．．．．．．．．．． 2835
orange－Color Dye for Woolene．．．．．．．．．．． 203
Orange－Color Hair 0il ．．．．．．．．．．．．．．．．．．．．．．．234
Orange Enamels．．．．．．．．．．．．．．．．．．．．．． 2385
Orange Ennence．．．．．．．．．．．．．．．．．．．．．．． 951
Orange Evsence，Artificial．．．．．．．．．．．．． 1053
orange Extract＋．i．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1032
orange－Flover，Qil of ．．．．4．．．
orange－Flover Soap．．．．．．．．．．．．．．．．．．．．．．．572
Orange－Fiover Syrup．．．．．．．．．．．．．． 1417
Orange－F1over Water．．．． $1009,1071+1073$

Orange－Karble for Books，．．．．．．．．3116， 3121
Orange－Peel，Esaence of ．．．．．．．．．．．．．．．． 951
Orange－Peel Fi avoring，．．．．．．．．．． 667

Ores．Flux for Reducing．．．．．＋．．．．．．．．．．． 3464
Ores，Lead，to Tent the Richness of， 3255
ores．Iron，to Test the Bichness of． 3259
Orgeat 5yrup．
orgeat Syrup，Imithtion．．．．．．．．．．．．．．．．． 1416
ornaments，Composition for．．．＋．．．．．．．． 2202
oroide．．．4．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3431
Orris，Esisence of ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 949
Orris Povier ．．．．．．．．．．．．．．．．．．．．．．．． 1101
Otris Tooth－Paste．．．．．．．．．．．．．．．．．．．．．．．． 1321
orris－Root Flavoring ．．．．．．．．．．．．．．．．．． 669
orris－Root Pomade．．＋．．．．．．．．．．．．．．．．．． 1262
ostrich Feathers，to clean．．．．．．．．．．．．．． 655
ottawa Root Beer．．．．．．．．．．．．．．．．．．．．．． 802
otto of Roses．
Ox－Gail for renoving Spota．．．．．．．．．．．．．． 373
0x－Gall for Washing．．．．．．．．．．．．．．．．．．．．．．． 489
ox－Ga11 Soap，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 552
ox－Gall，to refine．＋＋＋＋4＋＋，＋＋＋＋，＋．．．．．． 441
oxide of Chromium．
oxide of Lead．

Paint，Fireproor．．．．．．．．．．．．．．．．．．．．．．．． 2772
Paint．Flexible，for Canvas．．．．．．．．．． 2765

Paint，for Boat Bottomn．．．．．．．．．．．．．． 2771
Paint for Boilers．

2774

Paint for Iron－work．．．．．．．．．．．．．．．．．．． 2768
Paint for old Houses．．．．．．．．．．．．．．．．．．．．．．．．．．． 2773
Paint for Out－door Work．
Paint for the 5kin．．．．．
Paint for Weatherboards．
Paint，Table for Mixing．．．．．．．．．2761，\＆c

Paint. to clean. Paint Stains, to remove from Clothes, 339

Painting, to kill Knota before...... 2777 Painting, to prepare Malla for2763, 2780 Paintings, see OIL PAINTIMOS.
Pakfong .
Palatine-orange Aniline Dre.....3412, 3415
Palladium, Electroplating vith....... 2596

Palm oi1, to bleach. +.............537, 1509
Palm oil Soap. .543
Palm Soap. 567
Palma Chriati Pomade.1276
Paper, Albumenized Photographic3132, 3178
Paper, Bromide Photographic........... 3172
Paper, Calotype. .3176
Paper, Chromatype
Paper, Crysotype.
Paper, Cyanotype. 3173
Paper, Cyanotype... 3174
Paper, Fancy, Cement ror............... 2159
Paper, Iodized Photographic. 3171
Paper, Muriated Photographic.......... 3170
Paper, Nitrated Photographic, +....... 3169
Paper, Photographic.................. 31687
Paper, Taploca Photographie.............. 3157
Paper, to Bronze.........+.,............... 3793
Faper, to Electrotype, Le., on,+...+,3738
Paper, to G11d onv.+i+i, $3574,3579,3738$
Paper, to prepare. for Photography.. 3131
se., 3177
Paper, to romove Greane from...........411
Paper, to Silver................... 3620, 3736
Paper, to Varnish..................................2965
Paper, to write on Greasy. 2506
Paper, Waxed Photographic. 3179
Paper-Hangers Pante.................. 2272

Paper-Hanging, G1ue-sizing Ror,...... 2015
Paper-Hanging on Whitewanhed walls.. 2808
Paper-Hanging, Paste for. 2012
Paper-Hanging, to prepare Walls for, 2011
Paper-Hanging, Utenailn for 2012
Paper-Hanging, Varnish for. 2938
Paper-Hangings, to clean.............. 409
Paper-Hangings, to clean.4409
Paper-Hangings, to remove Grease from410
Paper, Hall, to apply..................... 2814
Paper, Na11, to prepare, for Hanging2013
Papler Mache, to clean............+.+...+415
Papler Saxe.
3130
Parchment Size. ... 3559
Parchment, to G11d on. 3579
Parchment, to vrite on................... 2506
Parent's Nethod of Preacrving Ninee. 761
Parent's Method of Preaerving Winea.. 761
Paria Round Soap..................................... 596
Paris Toilet Soap............................... 595
Parisian Diamonde............................. 2444
Pardsian Wash to darken the Hair.... 1183
Parker's Cement................................ 2210
Parrish's Cologne Water + + +*. +*.......... 983
Parrish's Sarsapari11a Syrup.......... 1391
Parrish's Stravberry Syrup + + + +....... 1374
Paridsh's Syrup Filter.+..+............ 1359
Paste, Almond.
Paste, Alwond and Honey,................. 1134
Pante, Azure for the Skin.................. 1114
Paste, Bitter Alwond. 1124
Paste, Depilatory 1223
Paste, Fiour \cdot.
Paste for Artificial Gemg......2352, 2419
Paste for Cementing Leather or Cloth to
Wood. 2275
Paste for cleaning Brass.................. 3391
Paste for Enamelf.............................. 2379
Paste, G1ycerine.................. 2299, 5226
Paste for Gold-plating 3593
Paate for Paper-hanging +.......2272, 2812

Paste for Polishing Furniture.2968, 2990
Paste for Silver-plating
Paste, Shaving.
1165
Paste, to make Moulds of Figures in. 3683
Pasteur's method of preberving Winea. 759
Patchouli, Easence of 966
Patchou11, Extract.of........................ 1069
Pate diAmande au Miel.................... 1134
Pate pour faire la Barbe.................1165
Patent Base for making Artificial Gems. 2422
Patent Blue Ink. . $+\ldots \ldots2481,2488$
Patent Dryer:.. 2739
Patent Dryer * *******..
Patey's Orris Tooth-paste. 1321
Peach Brandy, 785
Peach Brandy, Initation. 813
Peach-Colored Dye for Cottons. 174
Peach Essence, Artificial............ 1045
Peach Flavoring for Liquors: ..674, 6294
Peach-Kernel. 5, Easence of 943
Peach-Leaf Water 1071, 1073
Peale's Method of obtaining pure Silver 3216
Pear, Essence, Artificial. 1052
Peari White for the Skin............. 1109
Pear Syrup. ... 1411
Pearl Dentifrice................................. 1303
Pearl Povder for the Skin............. 1110
Pearl Tooth Povder. 1303
Peari White Dye for Silks............... 263
Peau d'Eapagne ... 1355
Peligot's Bohemían Tube Glase. 2340
Pelietier ia Ouinine Dentifrice...... 1304
Pelletier'a Odontine

Pancil, to, Brick-vork.
pepper, Black, Extract of
Peppermint Brandy + ..t.......................... 1039

Perfumpd oila,++*+*+.............1226, Kc,
Perfumed 011a by Enfleurage........... 1229
Perfumed 0iln by Infusion.............. 1228
Perfuned oils from Essential oils.. 1227
Perfuned Povder:
Perfuned Sealing Nax........................... 2335
Perfuned Spirits.............940, 976, 998
Perfuned Watera........................ 1070 , bc.
Pertumed Naters, Practical Hints for... 1076
Per rumed Natere, Proportions of Aromatics for, 1071
Perfumed Naters, Soubelran's Apparatus for. 1077
Perfumed Waters, to Dietill....t......1073
Perfumed Naters, to prevent Erom Souring. 1075
Perfumed Waters, to remove the Burnt Smo11 from. 1074
Perfumery, General Recelpta for939, KC. Perfumes, Economical....................... 1026
Permanganate of Potanas Halr Dye... 1211 Persoz's Anilifne Black.

2574
Perapiration, to remove staino of.... 505
Feruvian Bark Tooth-pante............... 1310
Peruvian Lip-Salve.
1170
Peruvian Pomade. 1269
Peruvian Tooth-paste. 131 1
Fetroleum, Cement to resiat........... 2162
Petroleum for turning Metalin........ 3449
Fettifean's Silvering on Glase. 3617
Pev's Composition + 2173
Pevter.

Pevter, Solder for $+\ldots \ldots+\ldots$.
PFundheller's Barytes White........... 2698
Phenol or Phenyle.................. 2588, 3916
Phials, to Clean. 432
Philocome... 1270
Philosophical Instrumente, Lacquer for.. 3062
Phosphine Aniline Dre..................... . 2597
Phosphorous Bronzes.
2597
Photographers. Indla-rubber Give for 2293
Photographic Cliches, to ,ake........, 3142
Photographic Impressions with Fochsine.
3156
Photographs. Cameo, to Enamel......... 3155
Photographs, Collodion Varnish for... 3162
Photographs, Developing solution for..
3151, 3152
Photographs, Enamel Ior................. 2402
Photographs, Everlasting, on Ename1.3164
hotographs, Fixing Bath for
3139
Photographs, Fixing Bath for $+\ldots \ldots \ldots 3139$
Photographe, Negat ive Gloss for 3147,3148
Photograph. Negative, to Develop.
3144,3146
Photographs. Negative, to make.
. . . . 3142
Photographs. Neqative, Varnishish... 3145
Photographs, Negative, Varnish for,,3153
Photographs on Wood.
Photographs, Paper for,
saxe for, 3130
Photographs. Preservation of.......... 3163
Photographs, Tapioca Paper for $\ldots,+3157$
Photographs, to clean Glass for 3160,3185
Photographs. Varnish for2932. 2935, 3161
Photography. 3128, sc.
Photography, Aluminized Paper for
3132, 3178
Photography, Artificial Ivory for ... 3180
Photography, Causes of Failure in.... 3154
Photography, Collodion for 3149
Photography, Ivory for, 2010
Photography, Precautions in........... 3141
Photography, Silver 是ath for., 3150
Photography, Solutions for.....3181, ic.
Photography, to prepare Paper for.........
3131 , $\mathrm{sc} . .3169$, tac
Photography, Toning Bath for.. 3137, 3184
Photography, Wax Paper for............. 3179
Photography vithout a Camers.. 3129,3135
Pleklea, to Colot, Green.............. 2636
Pleric Acid....+.............................. 2601
Picture Frames, to Bronze............... 3827
Picture Frames, to clean. 2978
Pleture Framien, to Gild,, 3559, sc.
Pleture Varnishen..2907, 2911, \&C.t: 2944
Pictures, to Clemn.
.407
plerre Artificielie.
2196
Piesse'n Eau de Cologne. 977
Plg Iron.. 3258
Pile, to raise the, on Velvet, \&c..., 463
Pimento, Essence of 952
Pinchbeck.
.3348
Pineapple, Eesence of, Artificina.

953, 1060

Pineapple Syrup............................... 1405
Pink and Green, to Dye Hixed Fabrics,284
Pink Pigmente.

Pink, to Dre SLiki.......................... 248
Pink, to Dye Wooleni...................... 201
Pipes, Brandy, to Planter, +. 695
Piques. French Kethod of Nashing 490
Piques, to Starch.............................. 500
Piques, to Starch.
500
1139
Pistachlo Cream, 1139

Plantor, Depilatory.1224
Plaster Caste, Amaiqam for Varninhing,
3548
Plaster Ground for Chinese Japanning 3040
Plaster Moulds, to Make, w.3677, fo.
Planter Moulde, to prepare for Electrotyping. 3688, We.
Plaster of Parin, to Bronze...,3792, 3823
Plantered Kalle, to prepare for Painting 2780
Plantering sturfs and stucco. 2197
Plastic Naterial. ...t....................... 2204
Plate Glabs ++........+.+.............2349, KC.
Plated-Ware, Lo Clean++...512, 3227, Sc.
Plated-Ware, to test.+i++..... 3722
Platina, see PLATINTM
platina Mohr
.3338
Platinated Asbeston 3335
Plating, Electro+....................3696, KC.
Plating Povder, Gold,................... 3591
Plating without a Battery,.,+......... 3744

Platinum, Alioye of,............................323, 3443
Platinum, Black. 3338
Platinum, Chlorides of3220, 4084
Platinum Luster for Pottery 2417
Platinum. Nitro-Muriate of $\ldots+\ldots . .$.
P1atinum, Spongy. 3336
P1atinum, to coat Copper with........ 3658
P1atinum, to coat Glass with...........3656
Platinum, to coat silver with......... 3670
P1atinur, to Electroplate with,..+.+. 3760
Platinum, to Purify. ...t....................33344
Plum Essence. Artificiai............ 1048
Plum Colored Dye for Worsted, Siik or
Cotton. 320
Plumbago Bronzing. 3775
Plumbers, Cement.....+.+........................ 2226
P1umbers* Solder + + + 3505
Plumb Spirit, for Dying...............iii, 112

Plush，to ralse the Pile on．．．．．．．．．．．． 463 Pocket－Handkerchiefs，Sisk，to Nash．， 477 pointing Brickwork．．．．．t．＋．．．．．．．．．．．．．．．．． 2792 Poison in Bitter Almonds，to Neutralize 1034
Pollsh for Furniture．．．．．．．．．．．．．．2987，ac． Pollsh for Harngas．．．．．．．．．．．．．．．．．．．．．． 3075 Polish for Patent Leather，＋．．．．．．．．．．．． 3072 Polish for Turners ${ }^{\text {P }}$ Work＋．．．．．．．．t．，．， 3009 Polish，to Make．．．．．．．．．．．．＋．．．．．．．．2995，be． Polish White． 2979 2760 Pollahing．．．．．．．．．．．．．．．．．．．．．．． 2979 ，sc． Polishing，French．．．．．．．．．．2981，2993，bc． Polishing Paste．
Pollahing Powder for Gold．．．．．．．．．．．．．．． 3204 polishing Varnished surfaces．
2976．2900，sc
Pollack＇s Cernent．．．．．．．．．．＋．．．．．．．t＋t＋， 2211
Pomade a 1a RoRe．．．．．．．．．．．．．．．．．．．．．．．．．．． 1262
Pomade a 1a Vanilientrt＋t＋．．．．．．＋t＋＋．． 1262
pomade a la violette．．f．．．．．．．．．．．．．．．．．．1263 Pomade a la Jasmin．．．．．．．．．．．．．．．．．．．．．．．． 1263
Pomade aux Fleurs d＇orange．．．．，1262，．1263
Pomade，Castor 011．．．．．．．．．．．．．．．．．．．．．．．．1276 Pomade，Cacao，for the LSph and Hande．．
1136
Pomade，Comnon－1．．．．．．．．．．．．．．．．．． 1265 ， 1266
Pomade Contrel＇Alopectic．．．．．．．．．．．．．．1204
Pomade，Crystallized．．．．．．．．．．．．．．． 1274

Pomade de miliefleur．．．．．．．．．．．．．．．．．．． 126 126
pomade de Ninon de 1＇Enciaa．．．．．．．．．．．．1164
Pomade d＇orlent．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1272
Pomade des Indes．
$6++1272$
Pomade Devine
.1275
pomade for the phuntache－．．．．．．．．．．．．．． 1237
Pomade，Prima Chirlati．．．t＋t＋．．．．．．．．．． 1276
Pomade，Persvian．．．．．．．．．．．．．．．．．．．．．． 1269
Pomade，P1sin．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1265
Pomade Rosat for the Lipa．．．．．．．．．．．．．． 1135
Pomade，Pone．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1267
Pomade，Tonquin．．．＋．．．．．．．．．．．．．．．．．． 1246
Pomade，Traneparent．．．．．．．．．．．．．．．．．．．．．．．． 1273
Pomade，Vantila．．．．．．．．．．．．．．．．．1247， 1271

Pomades for inctpient Batdnenes． 1279 ，bc． Pomades for strengthening the Halr
1279，sc．
pomades，Mixed or Compound．．．．．．．．．．．．1264 Pomaden，Plonne＇s Mothood of scentingiz62
pomades，to color Pat for．t．．．．．．．．．．． 1257
Pomades，to Pintah off．．．．．．．．．．．．．．．．．．． 1296
Pomaden，to perfure by ifn fieurage +1263
Pomades，to perfues，by Inrusion．＋1，1262
Pomades，to perfues Fat for．．．．．．．．．．125s
Pomades，to purify Pat for．．．．．．1253，SU．
Pomatum，see PoruDr．
Potictine soap．
porcelain．Cpments for．．．2153，be．．． 2247
Porcelain，clazes for．．．．．．．．．．．2404，kc，
Porcelain，to Bronie．．．．．．．．．．．．．．．．f．． 3827
Porcelain，to $621 d$ ont．＋．．．．．．．．．．．．．． 3575
Porcelalit，to rempe chiding from＋t， 3595
Porcelath，to Siver，．．．．．．．．．．．．．．．．．．．．． 3631
port Vine．Imitation，．．．．．．．．．．．．．．．．．．．．． 728
Fort Nine Staine，to remve＋．．．．．．．． 369
Port Wine，to Fine．．．．．．．．．．．＋．．．．．．．．．．． 746
Portable Glue．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2308
Portable Lemonade．．．．．．．．．．．．．．．．．．．．．．．．．．．． 915
Porter，Aister Bailn tor．．．．．．．．．．．．．．． 870
Porter，to Brer．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 856

Postage Stamp Mucjitage．．．．．．．．．．．．．．．．．．．． 2300
Patash，Caustic．．．＋．．．．．．．＋＋＋．．．．．101， 4192
Potanh，Caustic；to Tent．．．．．．．．．．．．．．．．．．584
Potash，Caustio Lyes，Table of．．．．．．．．．． 629
Potash Lye，Home－made．．．．．．．．．．．．．．．．．．．． 550
Pot．ash t．ye．Soaparakers．．．．．．．．．．．．．．．．．．．．519
Potassa，silicate of ．．．．．．．．．．．．．．2816，te．
Potassium，Fluid A110y of＋．．．．．．．．．．．．． 3455
Pottery，Metali ic Lusterb for＋＋．．．．． 2414
Pottery，to Silver，．．．．．．．．．．．．．．．．．．．．．．． 3630
Pouchapat，Essence of ．．．．．．．．．．．．．．．．．．．．． 966
Poudro a is Vanilie Brume．．．．．．．．．．．．．．． 1105
poudre a 1＇oeillet Compoaee－, ．．．．．． 1106
Poudre，Blonde for the Hair．．．．．．．．．．． 1104
poudre dIris．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1101

povder for boiling plated－ware．．．．．．3228
Powder for cleaning Plated－ware．．．．． 3229
Powder for Gold－plating．．．．．．．．．．．．．．．．． 3591

Povder for silver－plating．．．．．．．．．．．． 3600 Pouter，Ink．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2474 pouder，Polishing，for Gola．．．．．．．．．．． 3204 Povier，Polishing，for Silver ．．．．．．．．． 3223 Povders．Anti－incrustation，for Boilers． 2334
Poudery，Ginger－beer ．．．．．．．．．．．．．．．．．． 902
Pouders，Lemonade．．．．．．．．．．．．．．．．．．．908． 916
Powters．Perfumed，for the Skin1099，tc．
powders，Spruce－begr．．．．．．．．．．．．．．．．．．．．．．．．． 903
Poviers for Surface－bronzing ．．．．．．．．．． 3794
Powders for Melding．．．．．．．．．．．．．．3523．sc．
Precioan Stones，see GEMS
Precipitated Chalk．．．．．．．．＋．．．．．．．．．．．．．． 1291
Preparations，Acid，of Tin．．．．．．．107．bc．
Prepared Aran for the Hair．．．．．．．．．．．．． 1102
Prepared Chalk．
Prepared charcoal＋1．．．．．．．．．．．．．．．．．．．．．．．． 1294
Prepared $0 x-g a 11++\ldots .373$
Prapared Paper，Ate PAPEs
Pricked Mine，to remedy．
752
priming tor flouse－painting＋．．．．．．．．．．．． 2746
Prince Rupert＇s Drops＋＋．．．．．．．．．．．．．．．．．． 2373
Princ＇s Metal ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3348
Printers＇Inks．．．．．．．．．．．．．．．．．．．2543，2c．
Printers＇，Ink，Varniah tor．．．．．．．．．．．2897
Printers＇ink Roplers．Coeposition for．． Printers＇Ink Rosiers；Composition for \cdot
Printees＇Ink Rollers，to clean．．．．． 2542
Tejnting Irk，to renove．．．．．．．．．．．．．．．．．40d
Frints，Calored．so look Like oil Paint－ In9世， 2964
Prints，to Gild the Dackeground of +++2645 Prints，Varnish for ．．．．．．．．．．．．．2938， 2944 Frune Fiaver Ing for Liguine s．．．．．．．．．． 664 Proselan D1ue．．．．．． 2674 ．KC．． 4167,4169
Primesian Plue，Sioluble．．．．．．．．．．．．．．．．．．．2615
Pruenlan blue，to Lest．．．．＋＋4＊＊．．．．．＋．2479
Prassic Acid，Action of，nn Iron．s．． 2676 Psyche．Creime de．．
Puee Dye For Cottorse．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 179.175
Puce Dye ror Moolent $+\ldots,++4+\ldots, \ldots+++212$

Pumice steme，te prepace．for vee．．．． 3014
Puruch，Irandy．
Parich．Claret．
Purich，Milks．
Purich，Regent．
Punch，Regen
Muych．Muw．
.921

Punch，Whi nkey ．．．．．．．．．．．．．．．．．．．．．．． 920
Panch，HIne．．．．．．．．．．．．．．．．．．．．．．．．．．．．711，be，
Purcher＊$\frac{1}{}$ iron－conetimg for 2 inc．．．．． 3654 purple Anilitne Dyes．．．．．．2607，bec．．． 2611
purple Dye for Dottonn．．．．．．．．．．．．172，20．
Purpie Dye for Nenod．
2834
Purple fye for Wroleha．．．．．．．．．．．．．．218， 229

Piarple Ink．．．．．．．．．．．．．．．．．．．＋．．．．．．．＋＋＋＋＋＋2494
Purple Marble For Boukbinders．．．s．．． 3122
Puspla Marking Ink．．．．．．．．．．．．．．．．．．．．．．．．2512
Furple of Cannive．．．．．．．．．．．．．．．2720，BC．
Purple Staln for GLa日5＋$+++\alpha+\ldots+\ldots++++2361$
Purple Satain for Mood $+\ldots++\ldots \ldots+\cdots+++286$ I
Puscher＇s Solutlon Cor Caloring Kntais．s
I上月日
Prutty，Hard or otd，to Renove，2705，2786
Putty．Hard，to softern．．．．．．．．．2784． 2790
Fully，Paintere＊．．．．．．．．．．．．．．．．．．．．．．．．．．． 2242
Pulty，Grick Hardening ．．．．．．．．．．．．．．．．．．2243
Putty，to remove from 01ass．．．．＊．．．．．2793 putty，to sorten，In Windov Frames．2784
Fut，y，Wax，for Lesky Caskes．$+\ldots+\ldots+\ldots .696$
Futtying in Houso－painting ．．$+4+2+.2748$
pyroqa11fi Hair－dye．．．．．．．．．．．．．．．．．．． 1200
Qulcksitiver，see mepcupy

Quinine Dentltrice．．．．．．．．．．．．．．．．．．．．．．．．．． 1304
Quinino Tnoth Patte．．．．．．．．．．．．．．．．．．．．．．．．．．． 1319
R
Rabbit 3×2 nes，to Cure．．．．．．．．．．．．．．．．．．． 649
Raisirt Plavoring for Liquors．．．．．．．．．．． 665
Raisin kine＋＋＋．．．．．．．．．．．．．．．．．．．t．＊．．．．．． 729
Raspberry，Currant and Cherry Wine．． 72 日
Raspberry Essence，Artiticial．．．．．．． 1057
Raspbercy Shrub．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 905
Raspberry Syrup for Cordialm．．．．．．．． 1372
Raspbercy Syrup for Soda Water ．．．．．．．．1403
Rasploerry Sycup，Initation．．．．．1373， 1403
Raspberry Wine．

Reade＂s Biue Writing Fiuld＋．．．．．＋＋＋＋＋，2488
Reagenta，to restore Colurs destroyed by
362

Rectification．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3848
Rectifying tub，to pack a．．．．．．．．．．．．．．．．．． 938
\＄ed Bronzing Powder ．．．．．．．．．．．．．．．．． 3794
Red Cement ．．．．．．．．．．．．．．．．．．．．2190， 2227
Red Currant Wine．．．．．．．．．．．．．．．．．．．．．．．．．．．． 728
Red Dye，Anilline ．．．332， 2575, BC．， 2617
Red Dye for Cottons．．．．．．．．．．．．．．．．．．．．．．．．． 153
Red Dye for Feathers．．．．．．．．．．．．．．．．． 328
Red Dye ror silks．．．．．．．．．．．．．．．．．．247， 250
Red Dye for Nood．．．．．．．．．．．．．．．．．2831，sc．
Red Dye for Woolens．．．．．．．．．．．．．．．．．．．．．．．．．． 197
Red Ename1s．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2388
Red Halr－Dye．．．．．．．．．．．．．．．．．．．．．．．．1204，sc．
Red Hair－oin，．．．．．．．．．．．．，＋f＋，．，．，．，＋＋，．，1233
Red Ink．
2498 ， 6 c

Red－Lead Cement ．．．．．．．．．．．．．．．．．．．． 2169
Red Lip－salve．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．1170
Red Liquor for Dying．．．．．．．．．．．．．．．．．．．．． 100
Red Marble For Book－Covers．．．．．．．．．．．．． 3112
Hed Pigments．．．．．．．．．．．．．．．2704，2706，2718
Red Sealing－vax ．．．．．．．．．．．．．．．．．．．．． 2313
Red Spirits for Dying，．．．．．．．．．．．．．．．．，, 108
Red Sprinkle for Books．．．．．．．．．．．．．．． 12726
Red Sprinkle for Booka．．．．．．．．．．．．．．．．． 3126
ked Stain for Furniture．．．．．．．．．．．．．．．．．．．．．．．2s6
Red．Turkey，French Process for Dying189
Bed Wash for Bricke．．．t．．．．．．．．．．．．．， 2809
Red Nines，to Fine．＋．．．．．．．．．．．．．．．．．．．．．．．．745
Redvood＇s Indelible Marking Ink．．．．． 250 B
Redwood＇s Red Ink．．．．．．．．．．．．．．．．．．．．．．．．． 2503

Reppsi Worsted，ter cJean $+\ldots+\ldots+++\cdots+451$
Repln Spap．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．541
flesin spote，to repove，from Silk．．．．．336
Resin．to hacden Tallow vith．．．．．．．．．．．641
getorts，Gas，Coment for．．．．．．．．．．．．． 2234
Retorts，Luté for．．．．．．．．．．．．．．．．2265，Kc．
Hhabarb Hine．
734
Rlbbonis，to cieani．．．．．．．．．．．．．．．．．．．．．．．．．．437
Ribbons，to reatore creased＋1＋1．．．．．．， 964
Rice Narble for Leather Bonk－Eovern． 3115
RImbann＇s Green Pigment．．．．．．．．．．．．．．．．2714
Ripe Gooneberry Hine ．．．．．．．＋＋＋ 4 ．．．．．．． 735
Roman Cement．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2207
Roman Vitriol．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 120
Rondeletin．Bouquet de．．．．．．．．it．．．．．．．i1066
Fondeletia，EBBence or ExtEait de $\ldots+\cdots 4$
946， 1062
Roofe，Leaky，Cenment Fot ．．．．．．．．．．．．．． 2224
Rooms，Cement for Coating $+++4+\ldots+2171$

Ropinems in Wine，to remed $\gamma: \ldots749$

Rosat．Fromate Tor the tipg．．．．．．．．．．．． 1135
Hobe Bandal ine．．．．．．．．．．．．．．．．．．＋＋＋． 1195

Rone Giycerine Cream．．．．．．．．．．．．．． 1130
Rone Lip－palve．．．．．．．．．．．．．．．．．．．．．．．． 1171
Robe， 011 of ．．．．．．．．．．．．．．．．．．． $227,1229,4752$

Rose Water，to distiil．i07i，1073， 1079
Rose－Coloced Dye for Veneers．．．．．＋＋＋ 2840
Brose－Caloced Dye For Wood +++++++++2833

Robes，λt tar or otto ot ．．．．．．．．．．．．．．．．．．． 975
Roses，Essence of $+\ldots+\ldots . .+\ldots+.+944$ ，$\frac{6 \mathrm{C} \text { ．}}{}$
Rotses．Extract of $\ldots+\ldots+++4++4 \ldots \ldots \ldots 1033$
Roges，Htik ot ．．．．．＋．．．．．．．．．．．．．．．．．．．．．．． 114
Rougee for the SKin．．．．．．．．．．．．．．． 1099 ，SC．
Hound Soap，ParlB．．．．．．．．．．．＋．．．．．．．． 596
Royal－ Blue bye for Cottons．．．．．．．．．．． 133
Hoyal－siue ore for silke．
Rtayale，Eatr．
.994
Rayale，Essence $+\ldots+\ldots+\ldots \ldots \ldots+96$
Ruby－Colored Dyee for Sikks＊＊＊＊＊＊＊．253
Ruby，Imitation．．．．．．．．．．．2355，2432， 2445
Rugs，Nearth，to clean $\ldots \ldots+t++4.445$
Ruhmikorf＇s Zine Amalgamating Fluid＋． 3555
Rum，Imitation．．．．．．．．．．．．．．．．．．．．．699， 702
Rum，Nev England，Distillation of 931 ，bec，
Rum，Nev England，Hash for $+\ldots \ldots \ldots \ldots \ldots .932$
Rum，New Encland，Yoast for
Rum Punch．
Runge ${ }^{+}$s Biack Int．
Russia Leather．
2483
644

Rust Joint Cerent ．．＋＋＋＋．＋．．．．．．．．．．． 2167

Rust, to protect Iron against........ 3267
Rust, to protect Steel against........ 3306
Rust, to remove, from Iron............. 3266
Rust, to remove, from Steel............ 3308
Rust-Spots, to remove, from Marble... 514
Rye Whiskey, Distillation of931, sc.
Rye Whiskey, Imitation..................... 688
Rypophagon Soap, 603
s
Saccharometer used by Brevers..........858
Sachets, Vanilla Powder for............ 1105
Sachets, Violet Powder for 1106
Safflover-Lake pigment. 2683
Safranine Aniline Dye........+........... 2578
Sage Water, to Diatill.+.+.+,+107n, 1073 St. John'e Bread Flavoring for Liquors. 656
Sal Enixum. 3470
Salmon-Color Dye for Silks.......270, 313
Salt of Lemons, Essential......+ + + +... 378
Salt Water, to Wash In..................... 484
Salve for the Lips .+.+............1170, 8 Cc ,
Sandarach French Polish............................. 2999
Santa Cruz Rum, Imitation................. 599
Santa Cruz Sour
.926
Sap Green
2606
Sapphire, Imitation..........., $, 2358,2443$
Sarel'a Cement...+........................... 2171
Sarsaparilla Syrup.+............................. 1391
Sarsaparilla Syrup for Soda-viter. 1389 , sc.
Sassafras Flavoring for Liquors,....... 670
Sassafras Water, to dist i11...1071, 1073
Satin Shoes. White, to clean. 455
Satins, to clean.
460
Savona au Doquet
Saws, Broken, to Solder +................. 3512
Scalp, Wash to cleanse thet+....1187
Scarlet Aniline Dye....++........ 2582, Sc.
Scarlet Dye for cottons..................... 155
Scarlet Dye for Feathers.................. 330
scarlet Dye for Silks...............249, 252
Scarlet Dye for Woolens....195, 199, 322
Scarlet Spirit for Dy ing.+.+................. 199

Scents for Pomades................................. 1261

.2711
. .697
Schiedam Gin, Imitation..................... 697
Schist's Aniline Yellow................ 2590
Schiff's Table of Soda Solutions + 628
Scorched Linen, to restore.............. 504
Scotch Whiskey, Imitation................. 691
Scouring Bal2a.....t+1............... 349
Scratch Brumh for cleaning Metal.
3381, 3706
Scuppernong Champagne. 721
Scurvy-Grass Water, to distill. 1071,1073
Sea-Salt, Pure.................................... 3209
Sealing Cements for Bottles.+.+....... 2238

Sealing-Wax, Brown.......+.+...................... 2321
Sealing-Nax for Bottle-Corks $+\ldots+++\ldots .929$
Sealing-Wax for Diplomas............... 2327
Sealing-Wax, Gold-colored................ 2318
Sealing-Wax, Green.
.2324
Sealing-Wax, Marbled
. .2319
Sealing-Wax, Perfumed. 2325
Sealing-Wax, Proof Impressions in.... 2328
Sealing-Kax, Proof Impressions in, .. 2328
Seailing-Kax, Red.............2313, 2315
Sealing-Nax, to improve the Appearance
of, 2326
Sealing-Wax, to Polish. + + + 2314
Sealing-Wax Varnish....................... . 3044
Sealing-Nax, Yellow....+................ 2320
Searing's Photography on Wood........ 3165
Secret Writing, Inks for.2533, \&C.
Shaker Soft Soap. + 609
Shampoo Mixtures....................... 1188 . 5 .C.
Shaving Cream..........................602, Sc.
Shaving, Lotion after1158, 4833
Shaving paste. 1165
Shaving Soap.............................. 597,603
Shaving Wash. .. 4161
Shawls, Woolen, to Nash..........
Shear Steel.
.496
Sheepskin Mats, to clean...+............ 420
Sheet ing, to Bleach.
.420
.509
Shell fold,
.+.509
Shellac, Filter for..................................... 29349
Shellac Ink.+.+............................2484

Shellac Varnish............2932, 2933, bc
Sherbet.. 904

Sherry Cobbler,
Shirt Bosoms, to starch....................... 498
Shoes, Varnish for2957, 2966
Shoes, White Satin, to clean..........455
Shrub, Raspberry....................................... 905
Silicate of Potash........................... 2816
Silicate of Potasea for Strengthening skeletons. 2235
Silicate of Soda............................. 2816
Silicium, to Electroplate with....... 3767
Silk, Aniline Dyes for2574, sc .
Silk. Black, to clean. +.................... 457
Silk, Black, to restore Color of 459
Silk, Colored, to clean.................... 448
Silk, Family fiecelpts for Dying. 304, \&C.
Silk, for Trimmings, to stiffen....... 476
Silk, tace, White, to clean. 472
Silk, Pocket Handicerchiefs. to wanh.,477
Silk, Receipts for Dying.233, bc
Silk stockings, White, to wash, +..... 467
silk, to clean.437, 460, 6342
silk. to clean, with old kid-glovee.,.456
silk, to distinguish In mixed Fabrics:.
299. Kc.

Silk. to Electrogild on. 3738
silk, to Electroplate on.................... 3738
Silk, to Electrotype on3738
Silk, to Gild on...................3599. 3738
$\$ 11 k$, to prepare, for Dying+.+.233
Silk, to prepare, for Manhing...........474
silk, to rewove Stains and Grease from.
$338,341,350$, 66., 6343
Solk, to Silver............3599, 3627, 3736 Silk, to vash.......t+............. 475: 6378
Silver.. 3205
Sliver Alley, to recover from Amalgam, +1
3554 3554
Silver, Alloys of . +3404, Kc,
Silver Amalgam................................ 3535
Silver and Potaselus, Cyanide of.... 3698
Sliver, Assay of 3206, be.
Silver Assay, Solution for ,.......,+,+,3208
Silver Bath for Photography+3150
Silver, Chloride of3214, 3216
Sliver Coins, to Clean..................... 3239
Sliver, Cyanide of *+*+++...................... 3697
Silver Dust3217. 3536
Silver Enamel, Black. 2390
Silver, French. ...+*........................... 3426
Silver, Franch Coln..........................3400
sliver, German, bee Ggraku fiver
silver, rItard.
Silver Ink.
3407

Silver Lear, to pulveriz.....................414
Silver, Liquid. 2519
Silver Luster tor Pottery.............. 2418
Silver, Permanent Black Writing on ++2525
Silver, Polished, to frost............. 3218
Silver, Powder for Burnishing........ 3223
Silver. Powder for cleaning................ 3222
Silver, Pure, to Obtain+.3212; 3216
Silver, Solder for3493, \$C,
Silver Solution....+++++.................. 3537
Silver Solution for Electropinting.. 3698
5 ilver Solution for Photography...... 3133
Silver Solutions for Silvering....... 3604
SIlver, Solvent for .+......................... 3213
Silver Stains to remove from the Hand.
387, 3241
Silver staling, to remove froe Linen. 305. Sc. . 6339, sc.

Silver, Test for............................... 3211
Silver, Test for, on Platpd-vare.
3714, 3722
Silver, to clean+..3226, 3230, sc. +6345
sliver, to clean, after Soldering... 3222
Silver, to coat, with Platina.......... 3670
Silver, to dissolve............................. 3537
Silver, to extract, from Lead,.++++..3210
Silver, to Gild................................. 3577
silver, to kep, from Tarnishing.
3224, 3232
Silver, to Oxidize............................ 3219
Silver, to Purify..................................... 3214
Silver, to recover, from Copper................................
3721
Silver, to recover from old Plated Ware.
Silver, to recover, from Solutions., 3158
3166, 3702
Silver, to reduce.................3214, 4079
Silver, to remove stains from ,........3236
Silver, to remove Chalky appearance of,
after Plating
3709
Silver, to separate, from Copper, 475

Silver Tree, to make a.................. 3221

Silver White Bronzing Powder......... 3796
Silvering on Bone.......................... 3628
Silvering, Cold..................................... 3611
Silvering on Cotton................+.,., 3627
Silvering, Dead, for Medals........... 3719
Silvering on Flowers.................... . 3694
Silvering on Glass by Solutions...... 3615
EC. . 3651
Silvering on Glass with Amalgam. 3613
Silvering on Horn+.......................... 3628
Silvering on Iron +......3608, 3610, 3715
Slivering on Metals 3599 , Sc., 3632,3744
Silvering on Mirrors, to repair...... 3624
silvering on Paper......................... 3628
Silvering on Porcelain....t++ 3631
Silvering on Pottery+.+3630
Silvering on Silk,...............3599, 3627
silvering on Steel............................ 3715
Silvering on Various Substances +..... 3626
silvering on Wood.+.+. 3612
Silvering on Wool......................... 3627
simple Cream-Syrup. ...14266
Simple Syrup for Cordial.,+........... 1385
SInger's Cement. 2170
Size for Engravings to be Colored,+,2647
Size for Gilding Frames, Kc........... 3562
Size for Painters.
size for preparing Wood for Gilding. 3559
Size, Give.
Size, oil for gilding
size, Parchment Gilding 3571,3580
Size. Parchment, +........
Size, Water, for Gilding.
3559
Skeletons, to cement and strengthen 3572
Skin, Cosmetics for the
Skin, Lot iona for the.
Skin, Lotions for the1141, Kc,
Skin. Paints, or Rouges for the...., 1107
Skin. Spanish, for perfuming........... 1355
Skin, Vanillin Powder for the........., 1105
Skin. violet Powder for the, +ili00, 1166
Sky-Blue Dye for Cottons. ...
Sky-Blue Dye for $\$ 11 \mathrm{kH}$.
254
Sky-lluve Dye for Woolent.,................... 204
$\$ 1 \mathrm{ag}$. Furnace, Cement from+.............. 2212
Slate-Color Dye for FamIly une....+i...33!
slake-Color bye for silks+i. 275
Slate-Color Dye f for Woolen
Smalt, to remove from old Signify....... 2782
Smalto for Pligment..........................2687
See's Battery
Simith'e Lavender Water
Snow Cream for the Complexion.......+ .1131
Soap. Almond,
Soap, Art of Making. 557 , 592
Soap Bale.574, se
Soap by the Cold Process. $++\ldots .582, \mathrm{BC}$,
Soap, Cadmium Yellow for Coloring +i, 2638
Soap, Carbolic Acid...................... 591
Soap. Caution in using Medicated....., 579
Soap, Chemics. , ...+. + +...................... 546
Soap, Cinnamon.++t+............... 573
Soap, Cocoa-ntt oi1.........542, 593, 594
Soap, Composite, Patent......t++*..... 545

Soap. Filled, 538
Soap, Floating. 568
Soap, Frangipani........................... . . . 562
Soap, Glycerine.............................. . . 570
Soap, Honey.+.+1....... 560
Soap, Honey, Imitation + +++ +................... . . 561

Soap Marble for Book-covers.............................
Soap, Mercurial.....+t++......................... 577
Soap, Mottled. 576
Soap, Musk+... 571
Soap, olive ail.......................................605
Soap, Orange-Fiover +i. 572
Soap, ox-gall... 552
Soap. Palm 0i1. 543 , 567
Soap, Pontine.....+............................. 565
Soap, Resin. 541
Soap, Rose.++.................................... . . 563
Soap, Rypophagon.+.................... 603
Soap, Sand. + + 575
Soap, Soft602, 60. 6 dc .
Soap, Soft, to make, Hard. 615
Soap, Spermaceti. +.+++*...................... 566
Soap, Sulphur + + + + +................... 578
Soap, Tallow.+*......539, 544, 547
Soap, Tallow Resin......................... 54012
31216

782| 87 |
| :--- |
| 57 |967

990
131

[^8]

45
504
2

05
31
54
04
12
31
75
16
12
77
77
9
31
92
1
1
1
3
1
1

[^9] 71 7252 65 63 63
03
\qquad

[^10][^11]
\qquad

Soap，	to Analyze．．．．．．．．．＋＋＋．＋．．．．． 620
Soap，	to clarify Fat for，．．．．．．．．．．．．．．．529
Soap．	to deodorize Fat for ．．．．．．．．．．．．530
Soap：	to Marble．．．．．．．．．．＊＋＋＋＋＋＋．． 5556
Soap，	to Perfume，E．C＋+ ＋＊＋＊＊＊＊＊＊＊＊． 555
Soap，	to pulverizer．．．．．．．．．．．．．．．．． 619
Soap；	to refine，for the Tollet＋＊＊＊＊554
Soapt	to Test ．＋．．．．．．．．．．．．．617，Ect
Soap	
Soap．	Tranaparent＊＊＊＊＊＊＊＊＊＊＊＊．＊569
Soap，	Turpentine
Soap，	Turpentine，to use．＊＊＊＊＊＋＋＋4＋＊614
Soapt	Mashing ．．．．．．．．．．．．．．$+596,599$
Soap． 580	Whale－oil，for destroying Insects．

Seap，White．．．．．．．．．．．．．．．．．．．．．．．．．．．591， 606

Soda．	Caustic．$+\ldots+\ldots+*+4+\cdots$ ． 102,3979

Soda，Caustic，to test．．．．．．．．．．．．．． 514 ，Bc．
Soda Lye，Analysis of ．．．．．．．．．．．．621，5C，
Soda Lye，Caustic，Home－made．．．． 540 ， 550
Soda Lye，Caustic，Tablea of ．．．．623． 630
Soda Lye，Soapmakers
Soda，Silicate of．．．．．．．．．．．．．．．．2816，SC，
Soda Soluble Glasa．．．．．．．＋．．．．．．2818， 8 CC ，
Soda Solutions，Tabies of．．．．．．．627， 628
Soda Water，Cream Syrupe for．．．．．．．．．．． 1425
Soda Water，Syrupe for，．．．．．．．．．．13e4，EC．
Sodium，Fluid Aliay of，．．．．．＋，＋，．．．．．．． 3455
Soft Sealing－vax for Diplomas，$\ldots . .2327$
Soft Soap．．．．．．．．．．．．．．．．．．．．．521， $600,5 \mathrm{~S}$ ．
Soft Soap，to make，Hard．．．．．．1．．．．．． 615
Soft Solder，．．．．．．．．．．．．．．．．．．．．．．．．3479， 3500
Soft Soldering，see SoLKRING
Soft Solder ing，see soLoer ing

Solder，Brass for．．．．．．．．．．．．．．．．．．．．．．．．．． 3371
solder propa．
Solder for Brasa．．．．．．．．＋＋．．．．．．．．．．．．．．．．．．． 3518

Solder for 1ron，．．．．．．．．．．3512，3515，6c．
Solder for Lead．．．．．．．．．．．．．．．．．．．．．．．．．．， 3506
solder for Pevter．．．．．．．．．．．．．．．．． 3502
Solder for Silver．．．．．．．．．．3493，3495，ke．

Solder，Fusible in Boliling Water＋＋ 3504

Solder，Hard．．．．．．．．．．．．．3460，3494， 3515
Solder，soft．＋．．．．．．．．．．．．．．．．．．．．3479， 3500

solder，to make．．．．．．．．．＋．．．．．．．．．．．．．．．． 3491
Soldering．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3472
Soldering：Fiulds for，．．．．．．．．．3473，se．
Soldering，Fiuxen for． 3471 ， 3476 ，SC．
3480 ，6c．， 3531
Soldering，Hard．．．．．．．．．．．．．．．．．．．3488，3490
Soldering smooth Surfaces．．．．．．．．．．．．． 3487

Soldering，to ciean Gold arter．．．．．．．3200
Soldering，to clean Silver arter．．．．．3222
Solferino syrup．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1424
Soluble Gians．
2815．KCC，
Soluble Glass，Double＋＋．＋．＋．＋＋．．．．．．．2822
Soluble Glass for Stereo＝chromic Paint－
Soluble Glats for Stereo－chromic Paint－ 1 ng ． 2823

Soluble Giass，Potash and Soda，to dis－ tinguish． 2820
Soluble Glasts，Soda．＋．．．．．．．．．．．．2日18， 2819
Solutions for cleaning Brass．．．．．．．．．． 3393
Solution for coloring Gold．．．．3197，sc，
Solutions for caloring Metals．．．．．．．．．31家
Solutions for Dying ．．．．．＊＊＊．．．．．．．．．．．．．．．．． 121
Solut ions for Electroplating，\＄C． 3696
SC．3726，SC．
Solutions for Photographic Paper． 3131 3133
Solutions for Photography．3151， 3160 $3181, \mathrm{SC}$ ．
Solvent for India Rubber ．．．．＋．．．．．．． 2947
Solvent for Gutta－percha．．．．．．．．．．．．．． 2947
Solvent for Silver．．．．．．．．．．．．．．．．．．．．．．．．．．． 3213
Soubeiran＇a Apparatus for Dibtiliing Perfumed Naters． 1077
Soubeiran＇s Pomade．．．．＋．．．．．．．．．．．．．． 1283
Soup Herbs，Extract of ．．．．．．．．．．．．．． 1044
Sour for Dying，to make an＊．．．．．＋i＋＋．＋．．． 105

Sozodont， .1330
Spanish Dentifrice 1311
5 panish 5 kin． 1355
Specific Gravity of Syrups，Table of1362
spectroscopes，Liquid．．．．．．．．．．．．．．．．．．． 2364
speculum Metal．
3348,3344
Spelter Salder
3468
Spencer＇s Method of Silvering on Hood．．． 3612
Spermaceti Soap．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 566
Spermaceti Stains，to remave．．．．．．．．．．．．． 343
Splce Mills，to clean．．．．．．．．．．．．．．．．．．．．． 423
Spirit Dyea for Cottong，．＋．＋．＋．．．＋＋，＋＋＋141
Spirit Fininge．
Spirit of Salt．
．．．＊＊＊＊＊＋．．．．．．．．．．．．．．． 365
spirit．Scarlet．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 199
Spirit，stiffening for Hate．．．．．．．．．．．．． 335
Splrit Varnishee．．．．．．．．．．．．．．．．．．．2903，be．
Spirite，Earwood．
.110
Spirits，Distilled Aromatic＋．．．．t＋t＋， 941
Spirits for finishing Erench Polish． 3006
Spirits，Perfuned．．．．．．．．．．．．． $940,976,998$
Spirits，Plueb．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．11， 112
Spiritm，Red．．
Splrite，Tin，for Dying，．．．．．．．．．． 107
Spirite，Yellover Dying
107．Sc．
Spirits，Yellow． 109
Spongy Platinum．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3336
Spoons．French A110y for ．．．．．．．．．．．．．．．．． 3427
Spoons，White Metal for．．．．．．．．．．．．．．．．．．． 3416
Sportsmens＇Water－proofing for Boots3071
Spota，to remove，see STAIMS
Spotted Marbling tor Mookn．．．．．．．．．．． 3124
Spring Beer，co Brew，．．．．．．．．．．．．．．．．．．．．．．．．．．83
Springs for Arcificlai Teeth．．．．．．．．．．3406
Springs，5piral，to Tenper＋．．．．．．．．．．．． 3288
Spruce 直eer，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．884，bc．
Spruce Beer Powdern．
.903
Spruce，Envence ot ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 888
Staining，foe ARTICIE to bo stalned
staining Mood，to improve the Color of 2857
Stains，Spols，Sc．，to remove．．．337，Sc．
Stains，all Non－petaliic，to resove．． 372
Stains，Aniline，to remove．＋．．．．．．．．．．． 2566
gtinltis for Wood．．．．．．．．．．．．．．．．＋．．．．．．．．．．． 2642
Stains，Frult，to remove．．．． $360,364,369$
Stains，Grease，to remove，from Paper．．．
5 t 410
5tajne，तireane，to remove from Mootens． 345
Stains，Hafr－dye，to remove．365，367，6339
Stainn，Indelibie Ink，to remove＋．＋．．． 129 305， 6339
Staing，Ink，to reapve．．．．．．375，379，384
Stains，Ink，to remove，from Books．．． 412 6393
Stain．Ink，to remove，From Mahogany． 359 393
Stains， $1 n k$ ，to resove．from Silver． 3236 3238
stains，Iodine t to remove．．．．．．．．．．．．．．．． 371
Stains，Iron，to renove，from Cottons．．． $127,375 . \mathrm{sc}$.
Stains，Iron－mould，to remove．．．．．．．．．． 373
stains，Nitrate of shver，to remove， 385 307．3141， 6339
Stainfi，Oil，to remove，from Boards．． 391 401
Stainn，oil，to remove，from Cottons． 126
Stains，011，te remove，from leather， 359
Staing，oil，to remove，from Marble ． 394 401
stains，011；to remove，from Paper＋．．． 359
Stainn，Persperation，to remove．．．．．．505
Stains．Prepared ox－qa11 for removing 373
Stains，to remove，from Binck Crape．． 470
Stains，to comove，from black Dresses470
stains，to remove，from Bombarinc＋＋4．470
Stains，to reoove，from Kid Gloves．．．438
Stains，to reatove，from silver．．．．．．． 3237
Stains，to remove，from White Marble． 400 401．514， 6 c
Stains，Vegetable，to renove．．．．．．．．．． 360
Stains，Varnish，to resove．．．．．．．．．．．．．． 319
Stains，Wine，to remove．．．．．360，364， 369
Staina．Yellov，to remove，From Engrav－ Ings． 413
Stair Carpeta，to clean．．．．．．．．．．．．．．．．．． 445
Stairs，stone，to clean．．．．．．．．．．．．．．．．．． 428
Standard Government Meaturen，Alloy of the， 3434
starch for Colored Articleg．．．．．．．．．．．．．． 499
Stareh for Limpns and Cottans．．．．．．．． 497
Starch，Gum－arabic．．．．．．．．．．．．．．．．．．．．．．．．． 498
Starch，How to use ．．．．．．．．．．．．．．．．．．．．．．．．．．． 497
Starch，to clear．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 501
Stearine Stains．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 343

Steel
3273
Steel，Alloys of
3423
Steel and Iron．to make Edge tools of 3280
Steel．B1istered．．．．．．．．．．．．．．．．．．．．． 3274
Steel．Brown Tint for．．．．．．．．．．．．．．．．．．．．．． 3262
Steel．Cast ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3276
Strel．Cement to join teather to．．．． 2259
Steel．Composition for Welding．．．．．．． 3523
Steel，Ftching Fluid for．．．．．．．2963， 3284
Steel，Flux for Soldering．．．．．．．．．．．．． 3477
Steel，Fiux for Welding．．．．．．．．．．．．．．．．．． 3531
Steel，Shear，
3275
Steel．Solder for．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3511
Steel．Solution for Gilding．．．．．．．．．． 3585
Steel，to Anneal．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3283
Steel．to blue．．．．．．．．．．＋．，．，．，＋，＋，．．．．．．． 3278
Steel．to Case－harden．．．．．．．．．．．．3297，SC，
Steel，to cement Steel to．．．．．．．．．．．．．．． 2152
Steel，to clean．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3272
Steel，to coat，with Copper．．．．．．．．．．． 3636
Steel，to convert Iron into．．．．．．．．．．．． 3274
Steel，to dintinguish Iron from．．．．．． 3260
Steel，to Rlectro－plate on．．．．．．．．．．．．．． 3711
Steel，to G11d，．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3582
Steel，to keep，from Rusting．．．3306， 3764
Steel，to make，blue．．．．．．．．．．．．．3278， 3290
Steel，to make，from Iron Scrapt．．．．＋3277
Steel，to make，Straw－clored，．3285， 3290
Steel，to remove Rust from．．．．．．．．．．．．＋3306
Steel，to remove scale from．．．．．．．．．．． 3281
Steel，to retatore，when Burnt．．．．．．．． 3282
Steel，to Straighten．．．．．．．．．．．．．．．．．．．．．．．．． 3295
Steel，to Temper ．．．．．．．．．．．．．．．．．．．．．．3285，Kc．
Steel，to Weld．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2483
Stephens＇Patent b1ue 1nk．．．．．．．．．．．．．．． 2481
Sti11 for Perfumed Natera．．．．． 1073,1077
Stil1a，Lute tor ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2264
stockinge，White sitik，to wash．．．．．．． 467
Stolba＇si Method of Nickel－coating ．．． 3659
Stolba＇a Method of Tinning Metal．．．．． 3644
Stolzel＇n Brown Stain for Wood＋．．．．．． 2854
Stone，Artiflelal，．．．．t＋．．．．．．．．2196， 2219
Stone，Blue，to make．．．．．．．．．．．．．．．．．． 120
Stone，Cement for ．．．．．．．．．．．．．．．．．．2218， 2225
Stone，Cement to join Iron to．2211， 2215
Stone－Color Dye for Cottonk．．．．．．．．．．．．．． 180
5tope－Color Dye for Silke．．．．．．．．．．．．．． 275
Stone－Color Dye for Silke．．．．．．．．．．．．．．．．． 275
Stone－Color Dye for Noolene．．．．．．．．．．．． 215
Stone Stalre，to clean．．．．．．．．．．．．．．．．．．．428
Stone，to cement Metal to，2215，2222，2231
Stone Mare，to Bronze．．．．＋1＋．．．．．．．．．．＋＋＋3827
Storax，Ebsence of ．．．．．．．．．．．．．．．．．．． 962
Storax，0il of ．．．．．．．．．．．．．．．．．．．．．． 1238
Storax Pomade．
.1262
Storax，Tincture of
1016
Stout，Biteer Balls for
.870
Stout，to Brev
．856
Stoves．Cement to riii Cracks in．．．． 2214
Strass for Artificial Gems．．．．．2352， 2419
Straw－Color Dye for Cottonsi．．．．．157，184
Strav－Color Dye for Slike，＋．．．．．．．．．．， 261
Straw－Goods．to clean．
Strav Matting，to clean．．．．．．．．．．．．．．．．．．．．．．418
Strawberry Essence．Artificial．．．．．．． 105 B
Stravberry Syrup．．．．．．．．．．．．．．t．t．．．．．．．． 1374
Stravberry Syrup for Soda Kater ．．．．． 1398
Stravber ry 5yrup．Teitation．．．．．．．．．．．．．． 1402
Strauberry Nine．．．．．．．．．．．．．．．．．．．．．．．．． 72199.
Stucco．．．．．．．．．．．．．．．．．．．．．． 2201
stucco，to sliver＋．．．．．．．．．．．．．．．．．．．．．．．．．． 3630
Stuff．Coarse，for Piantering．．．．．．． 2197
Sturt，Fine，for Plaster ing ．．．．．．．．．．．．． 2198
Sturf，Guage，for Mouldings．．．．．．．．．． 2200
Submarine Varnish．
2955
Substantive Colors．
$+.93$
Suet，Mutton．．．．
Suet，to Purlfy．．．．．．．．．．．．．．．．．．．．．．．．．．．．i253
Sugar，Claritication of，for Syrups． 1357
Sugar，Degreen of Boiling，for Candies．

1368

Sugar，Proportions of，for Syrups，．， 1360
Sugar，Test for，In Aniline．．．．．．．．．．． 2561
Sugar，to remave，from Aniline．．．．．．． 2562
Sulphate of Baryta．．．．．．．．．．．．．．2697， 4231
Sulphate of Copper Electrotyping Solu－ tion． 3661
Sulphate of Indigo．．．．．．．．．．．．＋．．．．．98， 4791
Sulphur Soap．．．．．．．．．．．．．．．．．．＋．．．．．．．＋ 578
Sulphuret of Ammonla．．．．．．．．．．．．．．．．． 1203
Sulphuret of Moreury ．．．．．．．．．．．．．．．．．．．．．． 2682
Sultana Cold Cream．
Sunburns，Borax Lotion for．．．．．．．．．．．．．．．1157
Surface Bronzing．
5 weating in Wines．
Sweet Cider，．．．．．．．757

Sweet Cider，Imitation．．．．．．．．．．．．．．．．．．．．． 849 Sympathetic Inks for Secret Writing． 2533

Table Covera，to clean．．．．．．．．．．．．．．．．．．452 Tabla for Mixing oil－Colars．．．．．．．．． 2762 Table，Geriach＇n of Soda Solutions＋．627 Table Glase，to make．
Table，of Lorme＇s，of piluted Lyes．． 522
Table of Alloyn of Copper；．．．．．．．．．．．3348
Table of Cauntic Potash Lyes．．．．．iti． 629
Table of Caustic Soda Lyes．．．．．，＋，＋．，630
Table of Melting Heat of Lead and Tin
Alloys， 3459
Table of Proportionn for Making Glase． 2352
Table of Properties of Metala3350， 6143
Table of Specific Gravities of ．．．． 1362
Table．Schitf＇s，of Soda Solutions，．，628
Tablet Soap，Paria．．．．．．．．．．．．．．．．．．．．．．．．．．． 595
Talmi Gold．
.3432
Tallov．
.523
.540
Tailow Reain Soap．．．．．．．．．．．＋．．．．．．．．．．．．．．．．．．．． 540
Thallow Soap，to make．．．．．．．．．．．．．539， 547
Tallov，to Grain．．．．．．．．．．．．．．．．．．．．．．．．．．．． 532
Tallor，to keep，from turning Rancids 35 Tallow，to purify，
Tanks，to render，Watertight．．．．．．．．． 2195
Tansy Nater，to disti11，．．．．．．1701， 1703
Tapeatry，to clean．
Tapioca Photographic Paper．．．．．．．．．．．．．． 3157
Tay1or＇s Cream Syrup．．．．．．．．．．．．．．．．．．．．．． 1427
Teeth．Amalgama for stopping．．．．．＋．． 3549
Teeth，Artificial，Pivats for $+\cdots++, 3405$
Teeth，Artiticlal，Springe for．．．．． 3406
Teeth，Electuaries for the．．．．i1305，sc．
Teeth，pabtes for the $++\ldots \ldots, 1305$ ，6．GC．
Teeth，Poviers for Cleaning thel288， 5 C ．
Teeth，to cleanse the Spacen betveen
Teeth，to r the． 1296
Teeth．Washes for the．．．1323，BC．， 1335
Tempering Steel and Tools 3285，5C．
Tenacity of Metals．．．．．．．．．．．．．．．3356， 6143
Thousand Flowers，Balm of ．．．．．．．．．．．．． 1327
Thread Lace，to clean．．．．．．．．．．．．．．．．．．． 473
Thread Marble for Book Edges．．．．．．．．．． 3114
Tick，Bed，to clean．．．．．．．．．＋．＋．．．
Tin，Acid，Preparations of ．．．．．．．．．．．．．．． 107
Tin，Alloys of．．．．．．．．．．．．．．．．．．3421， 3425
Tin，Alloys of，Mevtina Heat of．．．．．3459 Tin Amalqam，．．．．．．3542，3544，3549， 3552 Tin Castinga，Bronzing Liquid for．．．． 3790

Tin，Crystallized．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3320
Tin，Feathered．．． 3320
Tin，Feathered ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．37， 3476,3419
Tin．Flux far Soldering．．．．．．． 3482

Tin in Teara．．3316
Tin，Lacquer for．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3057
Tin Pipes，Fiux for Soldering．．．．．．．．．．．．．．．． 3531
Tin，Poviered．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3317
Tin．Solder for．．．．．．．．．．．．．．．．．．．．．．．．． 3479 ． 3499
Tin．Spirite for Dying．．．．．．．．．．．．．．．．．．．．．．．．．． 107
Tin，Testa for Pure．．．．．．．．．．．．．．．．．．．．．．．．．3315
Tin，to coat Copper and Brass vith．, 3644
Tin，to coat Iron with．．．．．．．．．．3638， sc ．
Tin，to slectro－Gi1d on．．．．．．．．．．．．．．．．．．．．．3731
Tin，to Electroplate with．．．．．．．．．．．．．．．．． 3750
Tin，to separate fron Copper．．．．．．．．．．．． 3244
Tin，Tree，to make a．．．．．．．．．．．．．．．．．．．．．．．．．． 3322
Tincture of Ambergris．．．．．．．．．．．．．．．．．．．．．．．．．．．．33． 1024
Tincture of Balsas of Peru．．．．．．．．．．．．． 1020
Tincture of Balsae of Tolu．．．．．．．．．．．．．．．．． 1022
Tincture of Benzoin．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1019
Tincture of Cirdamom．．．．．．．．．．．．．． 1023 ， 4540
Tincture of Corlander＋．．．．．．．．．．．．．．．．．．．． 1014
Tincture of Grain of Paradibe．．．．．．．．．．． 1021
Tincture of Musk．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1025
Tincture of Nutneg．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1015
Tincture of storax or styrax．．．．．．．．．． 1016
Tincture of Vanilia．＋．．．．．．．．．．．．．．．．．．．．．．．． 1018
Tingry＇g Easence Varnish．．．＋＋＋．．．．．．．． 2915
Tinnlng，Cold．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3643
Tinning，Dlreckions for ．．．．．．．．．．3638，sc．
Tinning，Heta1 for \ldots.
Tollrt Soop，Recelpte for＋ 5533 ， $\mathrm{Kc} ., 601$
Toilet Soap，to Perfume，＋．＋．．．．．．．．．．．．．．． 555
Tombac，Red．． 3442

Tomb Stonen．Ink for ．．．．．．．．．．．＋＋．．．． 2516
Tonic，Hair，．． 1180
Tonquin oin ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1246
Tonquin Famade．．．．．．＋＋．．．．．．．．．．．．．．．．．．．．．．．．．． 1246
Too1s，Edge，to sake，of Steel and Iron． 3280
Tools，to Temper ．．．．．．．．．．．．．．．．3285，te．

Tooth Poviders．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．1285，be．

Topaz，Imitation．．．．．．．．．．．．．．．．．2334， 2434
Touch Stonew，for Aesaying Goid $+\ldots+.3190$
Touch stonen，for Aesaying Goid＋x＋＋＋3190
Tragacanth，Kuc11age of＋．．．．．．．．．．．．．．．．．．．． 2310
Transter Varnish．．．．．．．．＋4．．．．．．．．．．．．．．．．．．．． 2919
Transparent Cement．．．．．．．．．．．．．．．．．22136． 2252
Trankparent Colored Varnishee．．．．．．．． 2941
Tranoparent Enamelw．＋．．．．．．．．．．．．．．．．．．．．．．． 2392
Transparent Ponade．＋1＋．．．．．．．．．．．．．．．．．．．． 1273
Transparent Soap．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 569
Trays，0i1，to Japan $+\ldots3037$
Tree Marble for Book Covern．．．．．．．．．．．．． 3117
Tricopherous．．．．．．t＋．．．．．．．．．．．．．．．．．．．．．．． 1250
Troughs，Acld，Cesent for Coating．．． 2232
Troughs，Galvanic，Cement for ．．．．．．．． 2170
Tuberose，Esnenice of ．．．．．．．．．．．．．．．．．．．．．．．．． 954
Tuberobe Pomade．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2263
Tubes，Glams，to bend．．．．．．．．．．．．．．．．．．．． 2851
Tungstic Glue．．．．．．．．．．．．．．．．．．．．．．．．． 2261
Turkey Red，Prench Process for Dying，189
Turnbul1＇s Pruneian B1ue．．．．．．．．．．．．．．．． 2674
Turner＊${ }^{\text {s }}$ Cement．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2228
Turners＇Work，to Polish．．．．．．．．．．．．．．．．．．．． 3009
Turning，Brass for．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3372
Turning Metals，Prtroleus for．．．．．．．．． 3449
Turpentine，郎eaching by ．．．．．．．．．．．．．．．．＋． 510
Turpentine soap．
613
Turpentine Varninh．．． 2909
Turquoine，Tmitatioh．．．．．．．．．．．．．．．．．．．．．．．．．． 3452
Tvelvetree＇s Washing Fiuid．．．．．．．．．．．．．．． 479
Type Metal ．．＋＋＋．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3419
Type Metal，to Electroplate on．．．．．．．． 3711
Unbleached Muslin，to 皿leach．＋＋＋＋．．．． 509
Univermal Cement．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2175
Upton＇s Gold Detergent．．．．．．．．．．．．．．．．．．．．．．． 3598
Ure＇${ }^{\text {Un }}$ Diamond Cemint．．．．．．．．．．．．．．．．．．．．．． 2154

Urna，to clean．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．408

Utencils for Leaf－Gilding ．．．．．．．．．．．． 3557
Utencils for Paper－hanging ．．．．．．．．．． 2812
Uvanterin Brown Dye for Cottona．．．．．．． 145

Valerian Nater，to diati11．．．．．1071， 1073

Vani11a Cream Syrup．．．．．．．．．．．．．．．．．．．．．．．． 1432

Vanilla，Extract of ．．．．．．．．．．．．．．．．．．．．．．． 1042
Vanilla，Flavoring for Liquora．．．．．．．．．．668
Vanilla oil．． 1247
Vanilla Pomade．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1239
Vanilla Pouder for Sachets，bc．．．．．．．．．．．．．1105
Vanilla Syrup for Soda Water．．．．．．．．．．．． 1394
Vani11a，Tincture of＋．．．．．．．．．．．．．．．．．．．．．．．．． 1018
Vanilla Tooth Paste．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1309
Vanilla Nater，to diati11，1071，1073，1078
Varnish，Amalgam for Caste．．．．．．．．．．．．． 3548
Varnish，Amber Oil．．．．．．．．．．．．．．．．．
Varnish，Amber 0il．．．．．．．．．．．．．．．．．2879，\＆c，
Varnish，Amber Spirit．．．．．．．．．．．．．
Varnish，Aniline B1ack．．．．．．．．．．．．．．．．．．．．．2943
Varnish，Aniline Colored．．．．．．．．．＋．＋＋＋．＋2942
Varnish，Bookbinders＂．．．．．．．．．．．．．．． 2933
Varnish，Cablnet ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2893

Varnish，Carriage，．．．．．．t．．．．．．．．2877，sc，
Varnish，Chinese，Imitation，．．．．．．．．．．． 2923
Varnlmh，Collodion．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 292223
Varnish，Colored oil．．．．．．．．．．．．．．．．．．．．．．． 2901
Varnish，Colored Spirit．．．．．．．．．．．．．．．．．．．． 2942
Varnish．Copal oil．．．．．．．．．．．．．．．．．．．．．．．．．． 2876
Varnish，Copal Spirit．．．．．．．．．．．．2905，\＆c，
Varniah，Crystal Sporit．．．．．．．．．．．．．．．．． 2910
Varnish，Dextrine．＋＊．．．．．．．．．．．．．．．．．．．．．．．． 2927
Varndah，Etching．．．＋1＋．．．．．．．．．．．2959，KC．
Varnish．Fiexible Spirit．．．．．．．．2948，bc，
Varnish．Plexible 011．．．．．．．．．．＋2890， 2891
Varnish for Boote and Shoes．．．2957， 2966
Varnish for Card Ornement \＆．．．＋ 2939,2965
Varnish for Casks，Inside of，．．．．．．．， 2970
Varnish For Engravings，Kc，．，．2944， 2964
Varnish for qastening Leather on Rollers 295月
Varnish for firing Dravinge．．．．．．．．． 2924
Varninh for Grates．
Varnish for Grateb．．．．．．．．＋＋．．．．．．．．．．．．．． 2902
Varnish for Gun－barrels＋．＋＋1．．．．．．．．．．． 2954
Varnish for Harnenk．
Varnish for Hot－bed Frames．．．．．．．．．．．．． 2898
Varnish For Iron Work．．＋．＋．＋．．．．2900， 2956
Varnish for teather．．．．．．．．．．．．．．2967，sc
Varnish for Metaliic Palnt．．．．．．．．，， 2894
Varnigh for Paintings ．．．．．．．． 2911,2914
Varnish for Paper－hanginge．．．．．．．．．． 2938
Varnish for Photographe，2932，3253， 3161
Varnlah for Printers Ink．．．．．．．．．．．．．． 2897
Varnish for Materproot Gopde．．．．．．．．．．2885
Varnish，Green Tranmparent．．．．．．．．．．．． 2941
Varninh，Gutta－percha．．．．．．．．．．．．．．．．． 2988
Yarniah，Halr．．．．．tit．．．．．．．．．．．．．．．．．．．．．．．． 2892
Varndsh，India－rubber 011＋．＋．．．．．．．．．． 2866
Ke．，2889，6c．
Varnish，India－rubber Spirit．．．．．．．．． 2948
Varnish，Italian．．．．．．．．．．．．．．．．．．．．．．．．．．． 2896
Varnish，Lac Water．．．．．．．．．．．．．．．．．．． 2940
Varndsh．Mahogany ．．．．．＋＋＋＋＋＋．．．．．．． 2895
Varnish．Map＋．．．
Varnlsh，Mastich．．．．．．．．．．．．．．．．．．．．．．．．．．．． 292
Varnish，Hetalific．． 29511
Varnish，Seallng Wax，＋．．．．．．．．．．．．．．．．．． 3044
Varnish Stains，to remove．．．．．．．．．．．．．．．． 339
Varnish，Submarine．．．．．．．．．．．．．．．．．．．．．．． 2955
Varnish，to．Drawings，Paper，SC．．．．． 2965
Varnish，to，Furniture．．．．．．．．．2972，Sc
Varnish，to remove，from Paintinge．．． 405
Varnish．Trannfer or Mordant．，2919， 2928
Varniah，Transparent Colorleas．．．．．．． 2935
Vnrnish．Transparent Colored．．．．．．．．．．．． 2949
Varnioh，Turpentine Spirit．．．．．．．．．．．．．． 2909
Varnleh，Wax＋＋＋．．．．．．．．．．．．．．．．．．．t．． 2936
Varnish，White Spirit．．．．．．．．．．．．．2916，bc．
Varnished Paint，to clean．．．．．．．．．．．．．． 436
Varnished Surfaces，to poilish．．．．．．．．． 2976

Varnisher．．．．．．．．．．．．．．．．．．．．．．．．．2867，\＆c．
Varnishes，Boiled oil for．．．．．．．．．．2872
Varnishes，oit．．．．2874 2872
Varnishes，oil，Cautions in making， 2873
Varnishen，Spirit．．．．．．．．．．．．．．．．．2903，\＆c．
Varnishes，to clarify oil for．．．．．．．． 2869
Varnishes，to prepare innseed oil for

2868

Varnishing ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2971
Varnishing，Bruehea for ．．．．．．．．．．．．．．．．．． 2977
Vat，Blue，to make up A．．．．．．．．．．．．．．．．．．． 119
Vegetable Cement．．．．．．．．．．．．．．．．．．．．．．．．．．． 2223
Vegetable Fiber，to detect in Mixed fab－ rics． 294
Vegetable Stalns；to remove．．．．．．．．．．．． 360
Vegetable Substances，to Silver．．．．．． 3626
Veils，Black Lace，to wash．．．．．．．．．．．．． 466
Yeils，White tace，to clean．466

Velvet，to raise the pile on．．．．．．．．．．463 Velvet，to remove Grease from．．．351， 355
Veneers，Ivory，to glue on．．．．．．．．．．．．． 2297

verdigris．． 3240
Vermilition，to make，＋．．．．．．．．．．．．．．．．．．．．． 2681
Vermiliion，to make，＋1．．．．．．．．．．．．．．．．．．2682
vermilition，to pregerve．．．．．．．．．．．． 3638
Yesself，Iron，to Tin．．．．．．．．．．．．．．．．．．．．． 3638
Vosuvine Aniline pye，．．．．．．．．．．．．．．．．．2594
Vinegar，Black，for Bookbinders．．．．．． 3118
Violet Aniline Dyes．． 26191
Violet Cement．，．．．．．．．．．．．．

Violet Coloring for Bronze．．．．．．．．．． 3714
Violet Dye for Cottons．．．．．．．．．．．．．．． 190
Viplet Dye for Silka．．．．．．．．．．．．．．．253， 262
Violet Dyf for woolens．．．．．．．．．．．．211， 316
Vfolet Enamel． .2393
Violet Glazing．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2409
Vlolet Ink，．．＋．．．．．．．．＋．．．＋．．．．．．．．．＋＋＋，＋，＋． 2497
Violet Mouth Wash．．．＋．．．．．．．．．．．．．．．．．．．．．．．．．． 1325
Violet Pomade．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1263
Vfolet Ponder ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1100
Violet Tooth－pante．．．．．．．．．．．．．．．．． 1312
Violet Tooth－powder ．．．．．．．．．．．．．．．．．． 1300
Vialets，Eanence of．．．．．．．．．．．．．．．．．．．＋．＋．＋． 949

Vitriol，Roman，．．．．．．．．．1．．．．．．．．．．．．．．．． 120
Vulcanite，Substitute For．．．．．．．．．．．．．．．．．．． 2281

Wagner＇s clue of Caseine．．．．．．．．．．．．．．． 2295
Wahoo Beer．．．．．．．．．．．．．．．．．．．．．．．．． 0990
Walks，Aaphalt for，．，．．．．．2207，sc．， 6345
Wall Paper，to clean．．．．．．．．．．．．．．．．．．．．409
Wa11 Paper，to prepare，for lianging． 2813
Nall Paper，to remore Greane from．．．＋410
Walla，Cement for InBide．
Walis，Cement for outride
2171
.2173
Nalls，Fine Whitevanh for．．．．．．．．．．．．．．．． 2795
Mallif，Kal nomive Por．．．．．．．．．．．．．．．． 2794
Na11月，Smoked，to Whitewash．．．．．．．．．．． 2806
Nalla，Whiteranhed，to paper．．．．．．．．． 2000
Halnut，Black，to deaden．．．．．．．．．．．．．．．． 3008
Nalnut，Diack，so imitate，．．．．＋．．．．．．＋2056
Halnut Purniture，to Varnish．．2972， 2974
Halnut Nood，to prepare，tor Varniahing． 2972
Ward＇g Tooth Paste．．．．．．．．．．．．．．．．．．．．．．．．．．． 1306
Warh for Dry Stubborn Hair ，＋．．．．．．．．．．．．．1186
Kash for Faistra Hair and Daldness．， 1177
sc.
Hash for Frecklea．．．．．．．． 1122,1158 ， 1151
Wash for Shavira．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．1161
Hagh for the Mouth and Teeth＋＋＋．．．． 1323
Wash to cleanse the Hair，．．．．．．1187， SC,
Wagh to darken the Hairiis3，Ko． $1215,6 \mathrm{C}$ ，
Wash to darken the Hairia83，W0．， $1215,6 \mathrm{c}$,
Wash，to，in $\$ a 2 t$ Water．．．．．．．．．．．．．．．．．．484
Washitug．
Washing Piuid．．．．．t＋＋＋＋．，．．479，481， 6306
Washing Made Eary＋＋＋1＋．．．．．．．．．．．．．．． 402
Washing Mixture．．．．．．．．．．．．．．．．．．．．．．．． 4228 ， 596
Washing Soap．．．．．．．．．．．．．．．． 596
Washing Soap．．．．．．．．．．．．．．．．．．．．．．．．．522， 596
Washing，White Lye Eor＋．．．．．．＋．＋．．．．．483
Watch Hands，to make，Hed．．．．．．．．．．．． 3196
Natch Movements，to $\mathrm{Frost}33161$
Water Cement，
म故er，Cologne．．．．．．．．．．．．．．．．．．．．．．．．．．． 976 ，bC，
Water，Cologne，Concontrated．．．．．．．＋．．． 950
Water Colors，Improved Vehicle for．．．2725
Water，Fiorldin＋＋t＋．．．．．t．．．．．．．．．．1011，Sc．
Water Gilding ．．
Water Glass．．．．．．．
Hater Glass Solvent tor Coraline．．．． 2587
Nater，Honey，．．．．．．．．．．．．．．．．．．．．．．． 1007
Water，Honey，Imitablon．．．．．．．．．．．．．．．．． 1006

1712， 6359
Water Lac Varnish＋＋＋＋＋．．．．．．．．．．．．．．．．．．．． 2940
Water，Lavender ．．．＋．．．．．．．．．．．．． 989 ，be．
Water，Lavender，Ammaniacal．．．．．．．．．．． 1096
Water，Lime，for Dying ．．．．．．．．．．．．．．．．．．．．． 103
Water，Orange Flowor．．．．．．．．．．．．．．．．．．．．．．．． 1009
Water，Orange F10wor ．．． 1079
Water Size for Gilding．．．．．．．．．．．．．．．．．．． 3572
Water，Vanilla＋．．．．．．．＋t＋．．．．．．．．．．．．．．．．．．．．． 3078
Waterproot B1acking for Harnesses．．． 3082
Waterproot Cements．．．．．．．．．．．．．．2174， 2179
Naterproof French Polish．＋．．．．．．＋＋＋．． 3004
Waterproof Goods，Oil Varnish for．．． 2885

Waterproof，to render Boots．．．．．．．．．．． 3069 Waters，Perfued by Distillation1070，8C．
Waters，Ferfused，How to Distill．．．．． 1073
Waters，Perfumed，from Essences．．．．．． 1082
Wakers，Perfumed，fron Essential Oils．． 1080， 1081
Water玉，Perfuned，Practical Suggentions For． 1076
daters，Perfumpd，Proportions of Aroma－ tic！for＋．．． 1071
Naters，Pertuned，Soubeiran＇s Apparatua for． 1077
Maters，Perfuned，to prevent from Sour－ ing． 1075
Maters；Perfuned，to remove the Burnt Sarel1 from． 1074
Wax for Sealing Bottles．．．．．．．．．．．．．．． 929
Wax，to，Furniture .929
Wax Marble for Book－covers．．．．．．．．．．． 3109
Wax，Hilk of ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2936
Hax，Houlds，to coat，for Electrotyping． 3689
Wax，Nowlds，to make．．．．．．．．．．．．．．3674，bC． Nax Moulds，to make，of the Face．．．．．3682
Nax Paper for Photography．
Wax Putty for Leaky Canka．．．．．．．．．．．．．．．．．．． 696
Hax Stains on Cloth，to remove．．．．．．．．． 342
Wax 5tains on 5 ilk，to remove．．．．．．．．．． 341
Wax Varniah for Furniture．．．．．．．．．．．．．． 2937
Wax Varnish for Paintings．．．．．．．．．．．．．． 2936
Meather Moardi，old，Paint for＋．．．．．． 2771
Meil＇n Copper Conting Lor Iron．．＋．．．． 3637
Meld Yellov Dye for SilkB．．．．．．．．．．．．．．．． 265
Weiding ．．．．．．．．．．．．．．．．．3250，3472，so．
Welding＋Fluces for ．．．．．．．．．．．．．．．．．．．．．．．．．． 3531
Welding Pavders．．．．．．．．．．．．．．．．．．．．．3523，Se．
Wenderoth＇${ }^{\text {W Photographic Varniah．．．．} 3161}$
Hernicke＇s Hethod of Gilding on alsse． 3596
Whale oin Soap for deatroying Insects5B0
Whinkey，Bourbon，Imitation $++\ldots . . .++663$
Whinkey，Distillation of．．．．．．．．．．．．．．．．．．．931
Whinkey，Flavorings for．．．．664，We．， 6294
Whiskey，Irish，Imitatlon．．．．．．．．．．．．． 690
Whiskey punch．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 920
Whiakey，Rye，Imitation．．．＋＋＋＋＋．668，6C．
Whisker，Scotch，Initation，＋＋＋＋．．．．．．．， 691
Whinkey，to give a 5 soiky Flavor to ．．． 692
Whiskey，to Imbrove，by Electricity．． 726
Whinkey，Manh foc，tes prepare．．．．．．．．996
Whiskey，Yeant ror，to propare， 932,934

White Currant Mine．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 726
White Dye，French．for Sisks．．．．．t．．．．． 263
White Enamel．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2396
White Enanel for Irom－Ware．．．．．．＋．＋．．． 2403
White，French，tor the skin．．．．．．．．．．．． 1108
White Glazilng．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2405
White Jean Bloots，to clean．．．．．．．．．．．．． 453
White Kid Boote，to clean．．．．＋．＋．＋．＋．．． 454
White Lace Vells，to clean．．．．．．．．．．．．．．471
White tead．
693
White Lead，Tents for．．．．．．．．．2694， 2695
White Lip Salvo ．．．．．．．．．．．．．．．．．．． 1172
White Liqoors，Ee Blanch．．．．．．＊＋＊＋．．．． 705
White Lye for Mashing $++\ldots . .+++\ldots, 483$
White Metal ．＋．．．．．．t＋＋．．．．．．．＋．＋3416；3426
White，Pearl，for the Skin．．．＋，＋＋，＋．，1109
White Pigmenta．．．．．．．＋＋＋2．．．．．．．．．2693，BC．
White satin Shoes；to clean．．．．．．．．．． 455
White Silk Bland and Lace，to wanh．． 472
White silk stockings，to wanh．＋．．．．．． 467
White Soap．．．．．．．．．．．．．．．＋．．．．．．．．．＋＋＋＊．．． 591
White Spoon Metal．．．．．．．．．．．．．．．．．．．．．．．．．． 3416
White Tollet Soap．Soft ．．．．．．．．．．．．．． 606
White Varniph．．．．．．．．．．．．．．．．．．．．．．．．． 2916
White Windsor Soap．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 558
White Wine，to fine．．．．．，＋，．．．．．．．，＋，＋，． 744
White，zinc．．．＋＋＋．．．．．t．＋．．．．．．．．．．．．． 2696
Whiten，to，Tallov．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 639
Whiten，to，Woalen6．．．．．．．．．．．．．．．．．．．．．．． 508
Whitervash．．．．．．．．．．．．．．．．．．．．．．．．2793，Kc．
Whiterath．Fine，for lfally．．．．．．．．． 2800
Whitevagh，Fireproof．．．．．．．．．．．．．．．． 2801
Whitevash for Fences．．．．．．．．．．．．．．．．．．．．．．．．． 2803
Whitewash for out－door Use．．．2796， 2802
Whitewash，to color．．．．．．．．．．．．2798， 2807
Mhitewash．to keep．．．．．．．．＋＋＋．．．．．．．．．．． 2805
Whitovash，to mix＋．．．．．．．．．．．．．．．．．．．．．．．2ted
Whitevash，to prevent．Irom Rubbing off 2807
Whitewaah，to，Spoky Walle．．．．．．．．．．． 2806 Whitevash，Treasury Department．．．．． 2797
Whitevash，Zinc．＋．＋．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2799

Whitevashed Walls，to paper ．．．．．．．．． 2808
Thitevashed Walls，to prepare，for
Painting． 2763
Whortleberry Wine，．．．＋．＋．．．．．．．．＋＋．．．．．． 728
Wild－Cherry Syrup for Soda Nater．．． 1396
Wilk＇s Refined Linseed oil．．．．．．．．．．．． 2871
Wilmon＇s Halr Wash．
1182
window G1ass．
2342
Windowe，Priematic Crystala for．．．， 2365
Nindsor Soap ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 558 ， 559
Wine，Acidity in，to remedy ．．．．．．．．．．．． 753
Wine，Acidity in，to test．．．．．．．．．．．．．． 760
Wine，Antiferments for ．．．．．．．．．．．．．．．．．． 764
Wine，Champagne．．．．．．．．．．．．．．．．．．．．713，sc．
Wine Color Dye for Silks．．．．．．．．．．．．．．．． 262
Wine Color Dye for Wonlens．．．．．．．．．．．． 210
Wins，Decayed，to restore．．．．．．．．．．．．． 752
Mine，Decomposition in，to test．．．．． 755
Wine，Domestic．．．．．．．．713，BC．，727，${ }^{\text {EC }}$ ，
Wine，Filter for．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

MIne from Fresh Fruits．．．＋1．．．．．728，bc．
Wine From Dried Fruita，i，＋＋，＋，＋．，．，．，．，729

WIne，Ielnglase for Fining．．．．．．．．．．．．． 716
Wine，Nust iness in，to remove．．．．．．．．． 75 8
Mine，Pricked，to reatore．＋．，．．．．．．．． 752
Wine Punch．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 711
Mine，Sour，to remedy．．．．．．．．．．．． 751 ， 754
Wine Stains，to remove．．．．．．．．．．．．．．360， 369
Hine，Sveat ing in．．．．．．．．．．．．．．．．．．．．．．．．．．． 757
Wine，to decolor＋．．．．．．．．．．．．．＋．．．．．．．．．．．．．． 748
Hine，to fine．．．＋＋＋＋，＋．．．．．＋＋＋t＋，．742，be，
Wine，to Improve，by Electricity 726,6295
Wine，to preserve．．．．．．．．．．．．．．．．．．．759， 761
Wine，to remedy Ropiness in．．．．．．．．．．．． 749
Wine，to Ripen．．．．．ti＋．．．．．．．．＋．＋．．．．．．．．． 759
Wine，Une of Giycerine ln，．．．＋．＋．．．．．．． 725
Wire，Brass for ．．．．．．．．．．．．．．．．．．．3348， 3374
Wood，Cument for Coating ．．．．．．．．．．．． 2195
Kood，Coment to fi11 Cracke in．．．．．．． 2244
Food Dyen for，to brighten and set；， 2828
hood，Enameled，to polish ．．．．， 3015 ，EC．
Wood，Gold－size for Gilding on，．．．．， 3562
Nood，Implemente for Gilding in．．．．．． 3557
Mood，to bronze．．．．．．．．．．．．3792，Sc．． 3825
Wood，to cement Metal to．．．．．．．．．．．．．．． 2231
Wood，to Dye．．．．4．．．．．．．．．．．．．．．．．2824，Sc，
Wood，to Electrotype bn．．．．．．．．．． 3010.3695 ．Sc．
Wood，to Ename1．．．．．．．．．．．．．．．．．．
Hood，to Gisd on．．．．．．．．．．．．．．．3557，Kc．
Hond，to make，Incombustible．．．．．．． 2621
Wond，to Photograph on，．．．．．．．．．．．．．．．． 3165
Wood，to prepare，for Enameling 3011,3015
Wood，to propare，for Gilding．．．．．．．．． 3559
Kood，to prepare for Japaning，．．．．．．．． 3020
Wood，to prepare，Jor Polishing $, \ldots,+3983$
Wood，to इilver＋．．．．．．．．．3612，3627， 3628
Nood，to Btain＋．．．．．．．．．．．．＋．＋．．．．．2842，68 C ．
Wood＇s Spruce Beer
886
Wopds uned for Dying．．．．．．．．．．．．．．．．．．．．．．．． 94
Nool，to dietinguish in mixed fabrice．．． 298，sc．
Noolen Goods，So restore the Giown Fin－ Ish on． 469
Noolen Mose，to Nhiten．．．．．．．．．．．．．．．．．．． 508
Hoolen Flamele and Shavin，to vanh．，． 493 so．
Kooiens，Aniline Dyes for ．．．．．2573，bc，
Woolens，Chrove Dyes for．
221
Noolens．Colored，to clean．．．．．．．．．．．．． 451
Woolens，Family Recelptef for Dying ++303 bc．
Woolens，General Receipts for Dying，＋191 \＆c．
Hoolens，to prepare，for Dying．．．．．．．． 191
woolens，to preserve from Moths．．．．．．． 654
Woolens，to remove spots from．．．．．．．．．． 493
Woolens，to Wash．，．．．．．．．．．．．．．．．．．．．，； 493
Hormopod Water，to disti11＋．＋．1071， 1073

Wrinklen in the Face，Wash for，．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Writing Erraced by Chlorine，to restore 2504
Writing Fluids．．．．．．．．．．．．．．．．．．．．．．．2477．\＆C
Writing，New，to make appear oid，．，＋2505
Writing on Glass＋．＋．＋．＋．t．＋．．．．．2371， 2375
Wrought Iron，bee IRON

Yarn，Cotton，to bleach．．．．．．．．．．．．．．．．．． 123
Yarn．Cotton，to prepare for Dying．．．． 122122

Yarn，Fustic－green Dye for
Yarn，Indigo－blue Dye for．
rarn，Fustic－green Dye for
Yarn，Indigo－blue Dye for．
bolt or pivot of the front pair．To the under side of the bottom board and four inches from the end screw two strips $3^{*} \times 2^{*} \times 6^{*}$ ，with a groove cut to receive the axie．Extending beyond these strips fasten two brakestraps， $1^{*} \times 2^{*} \times 8^{*}$ ，each provided with a groove $1 / 2^{*}$ by z^{*} by $4^{\prime \prime}$ to admit the brakes（see 4 in Figs，A and D）．Two and 4 in the Figs．A and D may be male in one piece；but remember that the measurements here given are for $14{ }^{*}$ wheels， so that a clange in the length of the strap and the location of the groove would have to be
made if your wheets were of a diffierent sise lamps are to be bolted in place in a similar may． Use cans with slip tops that may be replaned after the bolting has bero done．Meacure－ ments for the seat can be taken from the dia－ gram．The rounding 2 op is made of a cheese bor with the froat cat and straightened ool． and the sides Lapered．Two sorts of brakes are possible，but the foot－brake is to be pre－ ferred．Paint the car ren，and don＇t forger the tail－number．If you wish，you can fix your dark－lantern within the search－light can．

When＂wf．＂the loake thuuld pet cote inch frum the wheels
 The boands ate os ko remoned ebrotulty ind replacod when the boy－ends have tween shyped as seen inf Fig B．Hefore jorming the hel
 light an The seacelofizhi is a \＆＋1）－evor． Through it and through the jefon blowt b＂b^{*} f＂$X ?^{\prime \prime}$ and the top board of the hool homs a bule for the boit，whick shoulat be sct ju－4 litht enough on allow the lopht on woti the sinfe

INDEX

Sheiterp and the Noeli a ：insty shooting oaslury，is c．icics． \＄forwe，lima Hala，＋．．．．
 siang stick． Noay，Mekm－NaSn． Sind futtiv． cruorate．．．．．．．．．．．．． 60 － Shoti Knaly

Soldurita mixplete－．．．1．．．．．．．Ses
Solderey to Mak6 $+1+111=1$ ．150is
Spre Back，thareu ．．．． 1 ．．．．． 447
Spavin．Heres．a｜

SLove，Clepp $1 .+\ldots$ ．

Stove \mathcal{E} ros ofil apums－2
Strerti．
servivai kiss．
Suegival manhibivy＋．
Sarvives of the rictent：． B 4 a
Survival गoust．
Surgive in ther El大y．．．．．．．．．．5盆
\＄wirg．Parch．．．．．．．．．．．．．．．． 1 ，
Tharwang Stjctc＝cy

Treve and Rasit α ．．．．．．．．．．．．．4

Toy Marta．．
Fithe
Toy HakLng．．
Toy Pigemin： 690

I－Squares，Naking ．．．．．．．．．qui
Thanars．
Hashlog Hade Eafy
Waterproof Clath．
Waterprop！ing aboets．
Heather Paretasting．

ifre Linkyy，Farzing＋．．＋－＋．．．． 55

Vibres in Humants．．．．．．．．．．．．．． 507
Write on Wetal．．．．．．．．．．．．．．．SB3
Yeast，$t_{4} y_{1}+\ldots . .2+\ldots309$
Yeaet for 苗read e．．．．．．．．．．．．．． 509
Yeast，to Kake

[^0]:

[^1]: RLUSTRATION 10. Abothed sier of the bean sopp svown in Illutrration 2, showing in eddivion = portion of one foedingtuek which is ploced between twp 25 toot grown ingevnith is the foregrousel, ene af thene is wern plopted in caviflower. The fem: perature af the fime the photegreph wat foknn, was. 110 degreet F, Neither the beens tat the cavalolower had poses shrough a sein. Photopraph by Dr. Charles Deavers.

[^2]: ILUUSTRATION 12. A sestige of ane unit showing sucumber vines gravieng as a second ciop after harkpiting tumalaps. The planks had funt papued poo werks of enathat whan the semperarurt reathad 105 degrees F. daily. The vines were net protected trom the isn, and thus the legves thas aome wilking at the time the pictare wes tahes. Thit set of trims protured a Jine crop at cotwmbers suring Sieptember and Oefaher.

[^3]: Centery (Gr , kaio, '1 bum'), in Medicine, is need of say subntange which burns the tive, (The torm 'potantial eantery,' ea applied to caustic mebatanons, is becoming ofeoleto :) The actual esatery is an instrument with a hoed or blade of itet), (ron, or platinnm, which ta hoated to a fre or spirit-lamp. In the tharmo-acatery (or Paquelin's oselary, from Ite inventor). the heed or Blede is mude of hollow platinum, so arranged that a flame of benzole can be kept burning in ita interior. The galmano-caufery conniste ensentially of a platinum wire which can be heated to say required degree by pasaing a strong galvanic current through it. The cautery is used for three main purpoeen in sargery : to prodice counter-irritation over an inflamed part (Bee BLISTER) (actual cautery): to check beeding (sctual or thermo-cautery). by alowly deatroying the tisauea at the bleeding point or aurface: to perform operations, where the tissuen to be divided are either very vascular (thermecantery), or very difficult of socens (galvanocautery). See Causric,

[^4]: nud umbels of
 small yellow small yellow
 flowers,
 which bloemt from Maty to Augasts might alone
 attract attenattract atten-
 tion, but ito ancient repute among herland-
 ists is due to its ists is due to its
 yellow milky
 juice, which is juice, which is
 very' acrid and poisonous. Ex.

[^5]: batitse panage resistance between the electroden and the so-called vacuum, or to the absolute noncoaducting power of the vacuum, is a point not
 yet settled. Electric dincharge through rarefied eflects in socompanied by very beantiful luminous ewoence of the glas forming the vacuum tubeer. Theen tubee are usnally called Griseler tuleen, ofter

[^6]: E
 namels. A species of vitreons ranusil, colored by means of metallic

[^7]: Z
 inc.
 Zine is a bltreish whitn metal baving a specific eravity of 6.8 to 7.2 ; toagh when cold ductife sod malleable at

[^8]:

[^9]:[^10]: 5

[^11]:

